
MULTIMODAL IMAGE REGISTRATION USING A
VARIATIONAL APPROACH∗

STEFAN HENN† AND KRISTIAN WITSCH†

SIAM J. SCI. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 25, No. 4, pp. 1429–1447

Abstract. This paper presents an approach to obtain a deformation which matches two images
acquired from different medical imaging modalities. This problem arises in the investigation of human
brains. Two distance functionals for the images are proposed with different pros and cons. These
functionals are to be minimized. We add a smoothing term to the minimization problem which retains
certain desired elastic features in the solution. At each minimization step an approximate solution for
the linearized problem is computed with a multigrid method as an inner iteration. Furthermore, we
use a multiresolution minimization approach to obtain a suitable initial guess. Finally, we present
some experimental results for registration problems of synthetic images and for a real computer
tomography (CT)–magnetic resonance imaging (MRI) registration.
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1. Introduction. Image registration, also known as image matching or image
mapping, is a widely used method in medical image analysis, having applications in
various domains; see, e.g., [1, 5, 8, 10, 12, 21]. A good survey of a part of the practical
applications is given in [6, 14] and the references therein.

Given are two images, a reference R and a template T of the same object using
the same or different imaging modalities. We assume that in continuous variables the
images can be represented by compactly supported functions T,R : Ω → G, which
map points of a domain Ω ⊂ R

2 to a domain G ⊂ R. This means that the map
associates with each pixel (picture element) x = (x1, x2)

t ∈ Ω ∩ R
2 its intensities

T (x) and R(x). For the purpose of numerical computation Ω will simply be the unit
square [0, 1]2 and G = [0, 1] for gray-scale images. We assume that T is distorted by
an invertible deformation φ−1. We search for a transformation

φ(u)(·) : R
2 → R

2, φ(u)(x) : x �→ x − u(x)

that depends on the unknown displacements u = (u1, u2)
t : R2 → R

2 (whose compo-
nents are functions of the variables x = (x1, x2)

t). The goal of image registration is
to determine u from the space of displacements X in such a way that the transformed
template T ◦ φ(u) matches the reference R. For a functional D[R, T, u], which mea-
sures the disparity between T ◦ φ(u) and R, the image registration problem can be
identified, in that way, with the following minimization problem:

Find u ∈ X such that D[R, T, u] is minimal.(1.1)

In the situation where the intensities of the given images are comparable, a proper
choice of D is the so-called sum of squared differences

DSSD[R, T, u] =

∫
Ω

(
T (x1 − u1(x1, x2), x2 − u2(x1, x2))− R(x1, x2)

)2
dx1dx2.
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This is a common criterion. It is used, for example, in the case where the images
are recorded with the same imaging machinery, the so-called monomodal image reg-
istration, or in the case of registration of MRI to histological images. In general, if
the images are recorded with different imaging machinery, the so-called multimodal
registration, the DSSD functional is not an appropriate measure. The main reason
is that the same structures may have quite different gray values in the multimodal
case. Multimodal image registration is required, e.g., in radiotherapy planning where
the representation of a tumor is much better performed using MRI but the present
planning (e.g., dose calculation) has to be done based on CT.

The aim of this paper is to examine appropriate measurements for the general
multimodal registration problem and to design the deformations in a suitable way
to make certain that they have desired features. This leads to a variational problem
similar to many other approaches, which have been investigated in the last decade for
a variety of purposes in digital image processing [1, 2, 3, 7, 12, 16, 17, 18, 20], includ-
ing image denoising, image segmentation, curve evolution, mathematical morphology,
speech recognition, optical flow computation, and monomodal image matching.

The paper is organized as follows. In section 2, we will discuss suitable measures
for the multimodal registration problem. We present two approaches using different
distance metrics.

In section 3, we present an iterative method to minimize the distance functionals
that can be regarded as an explicit discretization of a classical gradient flow method
(e.g., see [9]) . Here, the basic idea is the computation of a smoothed approximation of
a linearized problem. To this purpose, we add a smoothing term, which arises in the
investigation in the theory of elastic deformations. The corresponding Euler–Lagrange
equations are a coupled system of linear partial differential equations (PDEs). The
discretized PDEs are solved by using multigrid methods with optimal complexity.
Throughout the iteration we solve a one-dimensional minimization problem, which
makes sure that in every iteration step the functional decreases. Finally, in section 4,
we present some experimental results for a synthetic example and for a real CT–MRI
registration.

2. Multimodal distance measures. The goal of this section is to introduce
two different distance measures for the multimodal registration problem (1.1). The
multimodal registration task can be illustrated by the example depicted in Figure 6.
Here, some corresponding structures of the images have nearly equal gray values, while
other structures have completely different (in the worst case, inverse) intensities for
corresponding structures. For convenience, we will use in this section ξu1 = T (x−u(x))
for the intensity values of the deformed template and ξ2 = R(x1, x2) for the reference.
We suppose ξ2 and ξu1 to be random variables taking values in the set of images Y,
whose probability mass functions are given by dT (resp., dR). The joint distribution
dT,R summarizes the co-occurrence of events from ξu1 and ξ2 and describes “how
random” the “joint variable” (ξu1 , ξ2) is.

2.1. Distance between the probability density functions. Our first ap-
proach to solving the nonlinear matching problem is to map corresponding structures
in the images with nearly equal probability. Therefore, we assume that the pixel den-
sity in the template image has a probability similar to the corresponding pixel density
in the reference image.

This leads us to search for u so that dT (ξu1 ) ≈ dR(ξ2). We address the multimodal
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image matching problem by minimizing the nonlinear functional

DDF [R, T, u] =

∫
Ω

(
dT (ξu1 )− dR(ξ2)

)2
dx1dx2.(2.1)

Of course, this approach imposes restrictions on the registration process, but it works
well for many image modalities, which are interesting for medical applications, such
as CT, MR, or histological image data. A minimizer u of (2.1) is characterized by the
necessary condition ∂

∂uDDF (u) = 0. This condition can be expressed by

∂

∂u
DDF [R, T, u] =

∫
Ω

2 · (dT (ξu1 )− dR(ξ2)
) · ∂

∂u
dT (ξu1 ) dx1dx2 = 0.

With the Jacobian J of a function we determine

∂dT (ξu1 )

∂u
dΩ = JdT (T ) · JT (φ(u))︸ ︷︷ ︸

=∇T (φ(u))

·Jφ(u)︸ ︷︷ ︸
=−I

= −JdT (T ) · ∇T ◦ φ(u)

and get overall

∂
∂uDDF [R, T, u] = −

∫
Ω

2 · (dT (ξu1 )−dR(ξ2)
)·JdT (ξu1 )·∇T (φ(u)) dx1dx2 = 0.(2.2)

2.2. The mutual information. An information theoretical approach for image
registration was suggested by Viola, Wells, and others in [23, 22]. They search for an
affine-linear transformation so that the mutual information (or transinformation) is
maximized.

The mutual information is a functional of u and is defined by the distance between
the joint distribution dT,R(ξu1 , ξ2) and the product distribution dT (ξu1 ) · dR(ξ2) of the
random variables ξ2 and ξu1 :

DMI [R, T, u] = KL(dT,R(ξu1 , ξ2), d
T (ξu1 ) · dR(ξ2))

=

∫
Ω

dT,R(ξu1 , ξ2) log

(
dT,R(ξu1 , ξ2)

dT (ξu1 ) · dR(ξ2)

)
dx1dx2

with the Kullback–Leibler distance KL(p, q) =
∫

p(x) log p(x)
q(x)dx (see, e.g., [4]) be-

tween two probability density functions p and q. The mutual information DMI [R, T, u]
is positive. Note that DMI [R, T, u] = 0 if and only if ξu1 and ξ2 are independent, i.e.,
dT,R(ξu1 , ξ2) = dT (ξu1 ) · dR(ξ2).

This makes sense: if they are independent, then the random variable ξ2 can tell
us nothing about the random variable ξu1 . The mutual information is maximum if
the images are matched. Therefore the mutual information is a measure of align-
ment between the images. This signifies that we have to maximize DMI [R, T, u] or
equivalently minimize D−MI [R, T, u] := −DMI [R, T, u].

A minimizer u of the negative mutual information is characterized by the neces-
sary condition ∂

∂uD−MI [R, T, u] = 0. This condition can be expressed by the Euler–
Lagrange equation

∫
Ω

((
log

(
dT,R(ξu1 , ξ2)

dR(ξ2) · dT (ξu1 )
)
+ 1

)
dT,R
1 (ξu1 , ξ2) +

dT,R(ξu1 , ξ2)d
T
u (ξ

u
1 )

dR(ξ2) · dT (ξu1 )
)

dx1dx2 = 0,

(2.3)

where dTu denotes the partial derivative of d
T with respect to u, and dT,R

1 denotes the
partial derivative of dT,R with respect to the first variable and satisfies

dT,R
1 (ξu1 , ξ2) = JdT,R(ξu1 ) · JT ◦ φ(u) · Jφ(u) = −JdT,R(ξu1 ) · ∇T (φ(u)).
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3. Iterative minimization of the distance functional. We solve the multi-
modal image matching problem by approximatively minimizing a distance functional
D[R, T, u], where D ∈ {DDF ,D−MI}. The functional is nonlinear in u and contains
in general multiple local and global minima. In order to find a local minimum of
the image registration problem, we replace the distance functional by its first order
Taylor expansion around a known deformation. To obtain a smooth path from an
initial deformation u∗ to a minimizer of D, we add a convex energy functional based
on gradients of the actual registration energy. The energy used can be regarded as a
penalty for “elastic stresses” resulting from the deformation of the images.

The iterative process can be considered to be an explicit discretization of a clas-
sical gradient-flow method for minimizing the distance functional. In every iteration
step the resulting Euler–Lagrange equation is a coupled system of linear PDEs. The
solution of the discretized PDE is obtained using a multigrid method.

3.1. Minimization of the distance functional. To minimize D for a given

current approximation u(k) = (u
(k)
1 , u

(k)
2 )t, we search for an approximation u(k+1) =

(u
(k+1)
1 , u

(k+1)
2 )t so that

D[R, T, u(k+1)] < D[R, T, u(k)].

The functional D[R, T, u(k+1)] is replaced by its linearization around u(k),

D[R, T, u(k+1)] ≈ D[R, T, u(k)] +

〈
∂

∂u
D[R, T, u(k)], δu(k)

〉
L2(Ω)

,

with δu(k) = u(k+1) − u(k). We add a bilinear form B : X × X → R to the linearized
functional with desired elastic properties of the deformations (see section 3.2) and get
the following minimization problem:

arg min
δu(k)

{〈
∂

∂u
D[R, T, u(k)], δu(k)

〉
+B[δu(k), δu(k)]

}
.

The Euler–Lagrange equation is given by the linear variational equation〈
L[δu(k)] +

∂

∂u
D[R, T, u(k)], ϕ

〉
= 0 for all ϕ ∈ X ,

where L denotes the canonical linear mapping B[δu(k), ϕ] = 〈L[δu(k)], ϕ〉 which maps
the derivatives of D into a more regular space X ⊂ X . Therefore, we minimize D by
successively determining

u(k+1) = u(k) + δu(k) for k = 0, 1, . . .

with an initial guess u(0) = u∗ and the solution δu(k) of the linear system

L[δu(k)] = − ∂

∂u
D[R, T, u(k)].(3.1)

Here, every iteration step can be regarded as an explicit time-step

u(k+1) = u(k) − 1

δtk
L−1

[
∂

∂u
D[R, T, u(k)]

]
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of length δtk = 1 in a classical gradient-flow method to minimize the distance measure
D, {

∂u(x,t)
∂t = −L−1

[
∂
∂uD[R, T, u(x, t)]

]
on Ω× (0,∞),

u(x, 0) = u∗(x) on Ω,

and boundary conditions for u on ∂Ω× (0,∞) which depend on the bilinear form B
used for L. Of course, in general the sequence {D[R, T, u(k)]}k∈N is not decreasing
necessarily for a constant time-step δtk. This problem can be overcome by considering
the function D[R, T, u(k) + τkd

(k)] for an artificial evolution parameter τk and d(k) :=
δu(k)/||δu(k)||∞.

When the parameter τk is small enough, this is a decreasing function, due to
the direction of d(k). We choose the parameter τk as a solution of the following
one-dimensional minimization problem:

Find τk such that τk = arg min
τ∈[0,2]

D[R, T, u(k) + τ · d(k)].(3.2)

This means that the template is moved in one iteration step by at most two pixels.
In practice, this seems to be a reasonable compromise between convergence speed
and robustness. We stop the iteration when ∇D[R, T, u(k)] ≈ 0 and get the following
algorithm.

Algorithm 3.1. Iterative minimization of D[R, T, u] (D ∈ {D−MI ,DDF }).
k = 0; u(0) = 0;
repeat

calculate ∂
∂uD[R, T, u(k)] by (2.2) or (2.3)

compute δu(k) from (3.1)
set d(k) = δu(k)/||δu(k)||∞
compute τk by solving problem (3.2)
set u(k+1) = u(k) + τk · d(k)

set k = k + 1
until ||∇D[R, T, u(k+1)]||2 ≤ 10−8

3.2. Elastic registration. The monomodal image registration approach pro-
posed in [11] leads us to choose a smoothing term of the form

Bel[u, v]

=

∫
Ω

[
2µ

2∑
i,j=1

(
∂ui

∂xj
+

∂uj

∂xi

)
·
(

∂vi
∂xj

+
∂vj
∂xi

)
+ λ ·

(
2∑

i=1

∂ui

∂xi

)
·
(

2∑
i=1

∂vi
∂xi

)]
dΩ.

The so-called Lamé constants λ ≥ 0 and µ > 0 reflect material properties. They are
chosen so that the changes in volume are maximal (i.e., λ = 0 and µ = 1

2 ). In this
case, the linear differential operator Lel is given by

Lel[u1(x1, x2), u2(x1, x2)] =

{ −∆u1(x1, x2)− (∂x1,x1
u1(x1, x2) + ∂x1,x2

u2(x1, x2))
−∆u2(x1, x2)− (∂x1,x2u1(x1, x2) + ∂x2,x2u2(x1, x2))

for (x1, x2) ∈ Ω, the displacements u = (u1(x1, x2), u2(x1, x2))
t), and the Laplace

operator ∆ := ∂x1,x1 + ∂x2,x2 . In medical applications, it is appropriate to use X =
H1

0 (Ω)× H1
0 (Ω), which yields Dirichlet boundary conditions

ul(x1, x2) = 0 for (x1, x2) ∈ ∂Ω and l = 1, 2.
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Here, the bilinear form models the brain data like an elastic medium, measures the
energy of the elastic deformation, is isotropic in the directions, and is neutral with re-
spect to translations and rotations but penalizes these transformations by the Dirichlet
boundary conditions.

3.3. Numerical solution. Solving the PDE (3.1) is the time-consuming part
of the minimization process. In the following, we describe briefly the discretization,
approximation, and the solution method for solving the PDE numerically.

3.3.1. Discretization. In practice the images T and R are encoded as two-
dimensional arrays of image intensities denoted by Th (resp., Rh). For the purpose
of the numerical computation of the deformation u, we choose a finite difference
discretization. With the regular grid

Gh =

{
x ∈ R

2 : x =

(
h

2
+ ih,

h

2
+ jh

)
, i, j = 0, 1, . . . ,∞

}
we arrange the grid points of Ωh = Gh∩Ω at the centers of the two-dimensional image
array (pixel-centered discretization). The discrete displacement vector is given by

uh(xh) = (u1,h, u2,h)
t ∈ F(Ωh)×F(Ωh)

with a grid function F defined by F : Ωh → Ωh.

3.3.2. Approximation. We approximate the partial derivatives by second order
approximations. This yields the following second order stencils:

−∆u =
1

h2

(
4 · u(x1, x2)− u(x1 + h, x2)− u(x1 − h, x2)− u(x1, x2 + h)

− u(x1, x2 − h)
)
+O(h2)

and

ux1x2 =
1

4h2

(
u(x1 + h, x2 − h)− u(x1 − h, x2 − h)− u(x1 + h, x2 + h)

+ u(x1 − h, x2 + h)
)
+O(h2).

With fh := − ∂
∂uD[Rh, Th, u

(k)
h ] this leads to the discrete difference operator

Lel
h [uh] =




1
h2


 0 −1 0

−2 6 −2
0 −1 0


u1,h +

1
4h2


 1 0 −1

0 0 0
−1 0 1


u2,h = f1,h on Ωh,

1
h2


 0 −2 0

−1 6 −1
0 −2 0


u2,h +

1
4h2


 1 0 −1

0 0 0
−1 0 1


u1,h = f2,h on Ωh,

u1,h = u2,h = 0 on ∂Ωh.

In two-dimensional applications with typically 28 × 28 picture elements, the linear
system with unknowns

uh = (u
(1,1)
1 , . . . , u

(n−1,n−1)
1 , u

(1,1)
2 , . . . , u

(n−1,n−1)
2 ) ∈ F(Ωh)×F(Ωh)

and right-hand side

fh = (f
(1,1)
1 , . . . , f

(n−1,n−1)
1 , f

(1,1)
2 , . . . , f

(n−1,n−1)
2 ) ∈ F(Ωh)×F(Ωh)

includes up to 105 equations and unknowns.
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3.3.3. Multigrid method. The PDE is solved by a classical multigrid correc-
tion scheme with one relaxation before and one after the coarse grid correction for
smoothing the error by a V -cycle. On the coarsest grid, which includes only one inner
grid point, we solve the defect equation directly. We use within the correction scheme
a full weighting restriction for defect and bilinear interpolation for the corrections.
Some different classical relaxation methods such as Gauss–Seidel, Jacobi, and vari-
ations thereof were implemented. It turns out that a Gauss–Seidel relaxation with
red-black ordering of the grid points and an over-relaxation parameter ω = 1.3 leads
to the best convergence rates for the multigrid correction scheme. This relaxation is
also used for the following results.

3.3.4. Numerical results. The convergence rates of our multigrid implemen-
tation are very good and independent of the grid size h. In order to show this we
solve the linear system Lel[u] = f with given right-hand side

f1(x1, x2) = π2 · (4 · sin 2πx2 · (2 · cos 2πx1 − 1)− cosπ(x1 + x2) + sinπx1 · sinπx2),

f2(x1, x2) = π2 · (4 · sin 2πx2 · (1− 2 · cos 2πx1)− cosπ(x1 + x2) + sinπx1 · sinπx2)

and corresponding exact solution

uex
1 (x1, x2) = sin 2πx2 · (cos 2πx1 − 1) + sinπx1 · sinπx2,

uex
2 (x1, x2) = sin 2πx1 · (1− cos 2πx2) + sinπx1 · sinπx2

for different mesh sizes hl. For this example, we present in Table 3.1 the errors

||Ihuex
1 − u

(ν)
1,h||2 for the numerical solution of the first component u

(ν)
1,h after the νth

multigrid iteration. It can be seen that the multigrid iteration converges up to an
accuracy of 10−08 after the seventh iteration—independent of the grid size hl. Fur-
thermore, the error is reduced after the first iteration to approximately 3.2 · 10−02.
This indicates optimal multigrid convergence.

Note that the second order approximation can be observed by the discretization
errors, which decrease quadratically.

Table 3.1
Error development for a V -cycle.

hl =
1
16

hl =
1
32

hl =
1
64

hl =
1

128
hl =

1
256

ν = 1 2.9980 · 10−02 3.218 · 10−02 3.27 · 10−02 3.28 · 10−02 3.2 · 10−02

ν = 2 1.9861 · 10−03 2.777 · 10−03 3.05 · 10−03 3.12 · 10−03 3.1 · 10−03

ν = 3 1.4260 · 10−03 3.733 · 10−04 3.55 · 10−04 3.89 · 10−04 3.9 · 10−04

ν = 4 1.5455 · 10−03 3.713 · 10−04 9.20 · 10−05 5.51 · 10−05 5.8 · 10−05

ν = 5 1.5580 · 10−03 3.862 · 10−04 9.47 · 10−05 2.33 · 10−05 9.8 · 10−06

ν = 6 1.5593 · 10−03 3.882 · 10−04 9.67 · 10−05 2.39 · 10−05 5.9 · 10−06

ν = 7 1.5594 · 10−03 3.885 · 10−04 9.70 · 10−05 2.42 · 10−05 6.0 · 10−06

ν = 8 1.5594 · 10−03 3.885 · 10−04 9.70 · 10−05 2.42 · 10−05 6.0 · 10−06

3.4. Multiresolution minimization. The distance functionalsD−MI andDDF

are nonlinear and may have many global and local minima. In section 3.2 we have in-
troduced an algorithm which finds a local minimum close to an initial guess u∗. With-
out a priori information, it is suitable to start the image registration with u(0) = 0,
which corresponds to the identity map φ(x) = x. For a given small pixel width h
(resp., the step size of the discretization of the linear PDE (3.1)) this leads to a de-
formation that mainly adapts structures with size h and neglects larger structures.
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Here, the minimization process sometimes finds only a poor local minimum and re-
quires many time-consuming iteration steps. Both disadvantages can be avoided by
minimizing the distance functional D[R, T, u] at first on coarser resolutions.

We approximate the sets Xh and Yh by a sequence of subsets

XhL
⊂ XhL−1

⊂ · · · ⊂ Xh ⊂ X and YhL
⊂ YhL−1

⊂ · · · ⊂ Yh ⊂ Y

with increasing mesh size hl = 2
lh for l = 0, 1, . . . , L and decreasing dimension. We

get a sequence of minimization problems

(Mhl
) u∗

hl
= arg min

uhl
∈Xhl

{
D[Rhl

, Thl
, uhl

]
}

defined on the sets Xhl
. With a bilinear interpolation operator I l−1

l : X2lh → X2(l−1)h

we transform the solution u∗
hl

∈ Xhl
of Mhl

onto the next finer resolution. Then

I l−1
l (u∗

hl
) ∈ X2l−1h is a suitable initial guess for the minimization of Mhl−1

. The
multiresolution minimization algorithm can be described as follows.

Algorithm 3.2. Multiresolution minimization of D[R, T, u].
l = L; uhL

= 0;
repeat

if (l == L)
find a local minimum u∗

hL
of MhL

, starting from uhL

else
interpolate the local minimum uhl

= I ll+1(u
∗
hl+1

)
find a local minimum u∗

hl
of Mhl

, starting from uhl

endif
set l = l − 1

until (l == 0)

4. Results. To demonstrate the efficiency of the proposed matching algorithm,
we present numerical results on two experiments of varying difficulty. Throughout
this section we denote the minimization of the density-based functional in (2.1) as
approach 1 and the mutual information in (2.2) as approach 2.

4.1. Specifics of the solution method. To solve the PDE in (3.1), we used in
all examples a multigrid correction scheme for smoothing the error with the maximal
number of coarse grids, one relaxation before, and one after the coarse grid correction,
with full weighting restriction and bilinear interpolation. For all examples, we use
within the multiresolution minimization (Algorithm 3.2) the injection operator for the
restriction of the image data and the bilinear interpolation to transfer the initial guess
on the next finer grid. During the iteration the probability functions are estimated
by the approach introduced in [23]. The results presented in Figure 2 (resp., Figure
7) are calculated by using a two-level strategy (i.e., L = 1 in Algorithm 3.2).

4.2. Experiments with synthetic images. In order to show the working prin-
ciple, we present the registration of two synthetic images (256×256) displayed in Fig-
ure 1. The images contain simulated structures of varying size which are delineated
in different modalities. The synthetic images should be matched to give an indication
of the behavior of the two proposed approaches. Figure 2 displays the calculated
results. Both approaches match the different structures onto the correspondent ref-
erence structures. The checkerboard views of the results show smooth transitions
between the structures.
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Fig. 1. Top, left to right: Reference image and template image. Bottom, left to right: Template
and reference image mixed like a 2× 2 checkerboard with superimposed reference contour.

These findings can be stressed by the joint probability distribution dT,R of the two
images, which can be graphically displayed as a 2D-histogram. The 2D-histogram has
an entry at position (t, r) if there exists at least one pixel with value r in the reference
image and a value t in the template image. The pictures in Figure 3 are made by the
matlab spy command and display the sparsity pattern of the 2D-histogram. The
2D-histogram of the images before registration is displayed at the top of Figure 3.
The misalignment of the images can be illustrated by the many diffuse clusters in the
2D-histogram.

The 2D-histograms after registration via approaches 1 and 2 consist of three cen-
tral peaks. The peak around (0, 0) corresponds to the background, the large ellipsoid
structure corresponds to the peak around (60, 190), and the ellipsoid-shaped outer
structure corresponds to the peak around (255, 50). But there are subtle distinctions
between the 2D-histograms. The result obtained by approach 1 includes a high profile
cluster from (0, 0) to (150, 150) in the associated 2D-histogram. This corresponds to
aligned structures with similar gray values. By matching the images by the second ap-
proach this correlation is not so pronounced in the resulting 2D-histogram. Another
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Fig. 2. Top, left to right: Template deformed by the solution of approach 1 and superimposed
reference contour, template deformed by the solution of approach 1 and reference image mixed like a
2×2 checkerboard with superimposed reference contour. Bottom, left to right: Template deformed by
the solution of approach 2 and superimposed reference contour, template deformed by the solution of
approach 2 and reference image mixed like a 2×2 checkerboard with superimposed reference contour.

difference is that for the first approach a black pixel of the template corresponds, as
expected, only to a black pixel of the reference. For the second approach some of the
template pixels with gray values between 1 and 100 are mapped onto black reference
pixels; this is a subtle hint of misalignment, which could not be found by considering
only the deformed templates in Figure 2.

The graphs in Figures 4 and 5 display the decreasing distance measures D between
the images after each minimization step of both approaches. The graphs are scaled by
a work unit (WU), which corresponds to the effort of a multigrid correction scheme on
the finest grid. The approaches have been carried out two times. First, we minimize
the functional on only one image resolution and, second, we determine an initial guess
on a coarse grid of size 128 × 128. It can be seen that both strategies converge to
the same local minimum. By comparing the WUs needed for both strategies, we
can observe that the two-level strategy needs only 52% of the costs of the one-level
strategy by using the first approach and 36% by using the second approach.
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Fig. 3. From left to right: Sparsity pattern of the 2D-histogram and the 2D-histogram. Top:
2D-histogram created from the template (x-axis) and the reference (y-axis). Middle: 2D-histogram
created from the template deformed by the solution of approach 1 (x-axis) and the reference (y-axis).
Bottom: 2D-histogram created from the template deformed by the solution of approach 2 (x-axis)
and the reference (y-axis).
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Fig. 4. Distance measure DDF [R, T, u(k)] trace for the example displayed in Figure 1.

Fig. 5. Distance measure D−MI [R, T, u(k)] trace for the example displayed in Figure 1.
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Fig. 6. Top, left to right: CT template image, MR reference image. Bottom, left to right:
Template image and reference image mixed like a 2× 2 checkerboard. All images are presented with
superimposed reference contour.

4.3. A CT-MRI registration. In the next experiment, we present the regis-
tration of two images recorded by different image machineries. Figure 6 displays a
CT slice (256× 256) of a human brain and a corresponding MRI slice (256× 256).

By using the two-level strategy, both approaches seem to match the main anatom-
ical structures correctly. Here, the results are displayed in Figure 7. The checkerboard
views show smooth transitions between the deformed structures of the CT image and
the corresponding structures of the MR image.

The 2D-histogram displayed in Figure 8 shows the typical broad ridge of MR
soft tissue values corresponding to a narrow range of CT soft tissue values. An
indicator for a good CT-MRI registration is that the high CT values representing the
skull do not overlap higher MRI values corresponding to soft tissue. This criterion
verifies the misregistration of the undeformed template and the reference image. After
registration this effect is eliminated (see middle and bottom of Figure 8).
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Fig. 7. Top, left to right: CT template deformed by the solution of approach 1 in (2.1) and
superimposed reference contour, CT template deformed by the solution of approach 1 and MR ref-
erence image mixed like a 2 × 2 checkerboard with superimposed reference contour. Bottom, left
to right: CT template deformed by the solution of approach 2 in (2.2) and superimposed reference
contour, CT template deformed by the solution of approach 2 and MR reference image mixed like a
2× 2 checkerboard with superimposed reference contour.

As for the synthetic experiment, approach 2 (in contrast to approach 1) maps
black pixels of the template (CT image) onto pixels with gray values between 1 and
100 of the reference (MR image). In practice it is a difficult task, even for technicians,
to evaluate the results on the basis of images or 2D-histograms, but as shown it is
possible that different deformations can lead to sensible alignments.

For the performance of the approaches we refer to Figures 9–10. The graph in
Figure 9 displays the decreasing distance measures DDF . In this case, it can be seen
that the one- and two-level strategies converge to the same local minimum. Note that
the value of the distance functional for the two-level strategy drops rapidly on the
coarse grid so that the two-level strategy needs only 50% of the costs of the one-level
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strategy. The graph in Figure 10 displays the decreasing distance measures D−MI for
both a one-level and a two-level strategy. Here, the result (shown in Figure 11) of the
one-level strategy is slightly worse than what is obtained with the two-level strategy
(shown in Figure 7) in approximately the same amount of WUs. The reason is that, in
this example, the one-level registration strategy mainly adapts small structures (e.g.,
the eyes) and neglects coarser structures (e.g., the skull).

5. Summary, conclusion, and future work. In this paper we have presented
a pixel-based approach for nonlinear multimodal image matching. The main contri-
bution of the paper is twofold. First, we measure the distance between the images
by two different nonlinear functionals. Second, we achieve the minimization of these
functionals by an iterative method which closely relates to a classical gradient-flow
method with explicit discretization. We use a multilevel minimization to speed up
the minimization process and to avoid irrelevant local minima. We model the images
like an elastic medium by adding a bilinear form with desired elastic properties to the
resulting Euler–Lagrange equations. We solve the resulting Euler–Lagrange equations
by a multigrid method with optimal multigrid complexity O(N), with N the number
of picture elements. For images consisting of 256×256 picture elements, our algorithm
written in C takes less than one minute on a 400 MHz Linux-PC.

In the meantime there have been various research groups who investigated regis-
tration algorithms for multimodal images. Viola, Wells, and others [23, 22] introduced
the mutual information as distance metric for medical images to obtain a global align-
ment of multimodal images. For nonlinear image matching, some authors [13] tried to
apply some criterion developed for rigid matching using block matching techniques.
The approach proposed in [19] assumes that, at the registration position, one image
could be approximated in terms of the other by applying some intensity function. In
[15] a mutual information metric is used to refine the position of control points in a
thin plate spline-based registration.

Of course, the presented approach could not replace these techniques, but by
considering more extensive structures (like the human brain) the presented approach
will improve the registration process. On the other hand, the presented method is
restricted to small nonlinear deformations; therefore in many cases a preregistration
is necessary.
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Fig. 8. Top: 2D-histogram created from the CT template slice (x-axis) and the MRI reference
slice (y-axis). Middle: 2D-histogram created from Algorithm 3.1 (x-axis) and the MRI reference
slice (y-axis). Bottom: 2D-histogram created from Algorithm 3.2 (x-axis) and the MRI reference
slice (y-axis).
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Fig. 9. Distance measure DDF [R, T, u(k)] trace for the example displayed in Figure 6.

Fig. 10. Distance measure D−MI [R, T, u(k)] trace for the example displayed in Figure 6.
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Fig. 11. From left to right: CT template deformed by the solution of approach 2 in (2.2)
and superimposed reference contour. CT template deformed by the solution of approach 2 and MR
reference image mixed like a 2× 2 checkerboard with superimposed reference contour.

The experimental results indicate that both approaches proposed in this paper
lead to satisfactory results. As shown in section 4, they seem to match the main
anatomical structures for a CT-MRI registration problem. Consequently, both mea-
sures provide a meaningful indication of misalignment for the registration problems.
We have discussed in section 4 the behavior of the algorithms with respect to the
underlying measures and the multiresolution minimization strategy. It turns out that
the numerical effort is about the same for both methods.

The similarity measure based on mutual information is highly nonlinear in u
and contains many local and global minima caused by good local matches between
some smaller substructures. As a consequence, the minimization process may lead
to a “useless” local minimum. Typically, in this case a multiresolution minimization
approach becomes necessary to find a meaningful minimum; see, for instance, the
second example (Figure 11). This fact and the implementation of (2.3) lead to a
significant programming overhead in comparison to the approach based on the density
functional. In many cases the minimization also works here by using only the finest
resolution. On the other hand, for this functional it is easy to construct examples
where the registration fails, but in practical examples it often works surprisingly well.
The computations are simpler than in the mutual information based approach, and
therefore it seems useful to develop both methods. So, it is possible to choose the
best method for application classes.

Based on our experience with unimodal image matching, the extension to a three-
dimensional approach is straightforward and is planned for the near future.
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