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Abstract. Stabilized mixed methods can circumvent the restrictive inf-sup condition without
introducing penalty errors. For properly chosen stabilization parameters these methods are well-
posed for all conforming velocity-pressure pairs. However, their variational forms have widely varying
properties. First, stabilization offers a choice between weakly or strongly coercive bilinear forms that
give rise to linear systems with identical solutions but very different matrix properties. Second,
coercivity may be conditional upon a proper choice of a stabilizing parameter. Here we focus on
how these two aspects of stabilized methods affect their accuracy and efficient iterative solution. We
present results that indicate a preference of Krylov subspace solvers for strongly coercive formulations.
Stability criteria obtained by finite element and algebraic analyses are compared with numerical
experiments. While for two popular classes of stabilized methods, sufficient stability bounds correlate
well with numerical stability, our experiments indicate the intriguing possibility that the pressure-
stabilized Galerkin method is unconditionally stable.

Key words. stabilized finite element methods, mixed methods, iterative solvers, coercive forms

AMS subject classifications. 76D05, 76D07, 65F10, 65F30

DOI. 10.1137/S1064827502407718

1. Introduction. It is well known that stable and accurate mixed methods for
the Stokes problem require finite element spaces that satisfy the LBB compatibility
condition (see, e.g., [5, 13, 15]). This restrictive condition can be circumvented by
regularization of the mixed problem. Regularizations that also avoid penalty errors
are known as stabilized Galerkin methods; see [2, 6, 8, 10, 11, 19, 20, 21]. Stabilized
methods achieve consistency by embedding the stabilizing terms into expressions that
vanish on all sufficiently smooth solutions. This necessarily makes such methods de-
pendent upon various stabilizing parameters whose purpose is to blend the regularizing
terms with the mixed Galerkin form.

During the last two decades, stabilized methods have attracted significant atten-
tion from mathematicians and engineers, and today they are widely used in practice.
However, despite their popularity, very few studies have addressed the impact of for-
mulation choice and regularization parameters upon performance of iterative solvers,
finite element stability, and convergence rates. For instance, finite element analyses
give sufficient but not necessary stability conditions, and, as a result, they can lead
to pessimistic estimates of stability ranges for the parameters. The sharpness of these
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bounds is not known, nor is it well documented numerically. There’s also an ambigu-
ity in the choice of stabilized variational forms. Some authors insist on using strongly
coercive formulations (see, e.g., [6]), while others emphasize symmetry (see [19]). The
extant literature gives very few clues about these issues and, more importantly, about
the relative advantages and disadvantages of the different methods. To add to the
confusion, in many cases conclusions are drawn from numerical results computed by
implementations that do not correspond to the formulations they are supposed to
represent. A typical example is the use of an iterative solver that scales a matrix
row whenever a negative diagonal entry is encountered. This seemingly innocuous
trick can effectively switch the formulation from one based on a weakly coercive form
to one based on a strongly coercive form! Equally widespread is the tendency to
confuse the original Galerkin least-squares (GLS) formulation of [19] with a method
that can be derived from the Douglas–Wang stabilization introduced in [8]. While
the two variational equations do indeed look a lot like each other and can be easily
mistaken, their properties differ quite substantially. The GLS form is symmetric and
weakly coercive. In contrast, the form derived from [8] is nonsymmetric and strongly
coercive.

With this paper we aim to rectify this situation first by giving a rigorous taxonomy
of consistently stabilized methods, and second by conducting a study of issues related
to their numerical performance. Our main focus is on the finite element stability and
accuracy of different methods and the performance of Krylov subspace solvers for the
solution of the discrete systems.

At this point, we should define what we mean by a consistent method; perhaps
a more apt terminology would be variationally consistent. In standard usage, consis-
tency of numerical schemes for partial differential equations requires that the pointwise
truncation error vanish as the grid size goes to zero; i.e., if one substitutes a smooth
solution of the partial differential equation into the numerical scheme, then the resid-
ual is at least o(h), where h denotes the grid size. Finite element schemes are not,
in general, consistent in this sense. However, for standard finite element methods,
sufficiently smooth exact solutions of the partial differential equations exactly satisfy
the variational equation that defines the discrete finite element equations. This is
what we mean by a consistent finite element scheme. This allows us to differentiate
between the methods we consider in this paper and methods which are not consistent
in this latter sense. For example, penalty methods for the Stokes problem are not con-
sistent finite element methods since substitution of an exact solution into the discrete
equations leaves a residual that is proportional to the penalty parameter. Thus, we
consider only methods that do not suffer from this type of variational inconsistency.

We subdivide consistently stabilized methods into three classes. Each class con-
tains two complementary methods: one that involves a weakly coercive, and possibly
symmetric bilinear, form, and the other a strongly coercive but nonsymmetric form.
The complementary methods lead to linear systems with identical solutions but dif-
ferent matrix properties. As a result, matrix problems engendered by consistent sta-
bilization can vary from symmetric indefinite systems that are conditionally stable to
nonsymmetric, unconditionally positive definite problems. This means that success-
ful implementation of a stabilized method requires the proper selection of parameter
values so as to choose one of the three classes of methods and, whenever iterative
solvers are employed, the proper selection of one of the two complementary methods
within the class. In this paper, we provide information to help make these choices.

We have organized the paper as follows. Section 2 develops the taxonomy of
consistently stabilized methods, including their precise definition and nomenclature.
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It is shown that consistently stabilized methods originate from a single regularized
bilinear form by virtue of a proper choice of parameters. Finite element stability of
the methods is discussed in section 3, where we also show how stability ranges can be
estimated by algebraic methods. Section 4 summarizes our numerical experiments on
finite element convergence rates and the performance of unpreconditioned GMRES
and QMR solvers. The paper concludes, in section 5, with a brief summary of our
experiences.

1.1. Notation. In what follows, we will make use of the usual notation Hp(Ω),
‖ · ‖p, and (·, ·)p with p a nonnegative integer to denote the Sobolev spaces consisting
of all functions having square integrable derivatives up to order p on Ω, the standard
Sobolev norm, and inner product, respectively. When p = 0, we will write L2(Ω)
instead of H0(Ω) and drop the index from the inner product designation. The symbol
| · |k, 0 < k ≤ p, will denote the kth seminorm on Hp(Ω). As usual, Hp

0 (Ω) will denote
the closure of C∞

0 (Ω) with respect to the norm ‖ · ‖p, and H−p(Ω) will denote the
dual space of Hp

0 (Ω). Vector-valued functions are denoted by boldface font, e.g., u
and v. Vectors in Euclidean spaces are denoted by vector notation; e.g., �x and �y and
the Euclidean inner product and norm are denoted by 〈·, ·〉 and | · |, respectively, e.g.,
〈�x, �y〉 = �x∗�y and |�x| = 〈�x, �x〉1/2. Matrices are denoted by block letters, e.g., A and B.

The symbol Sh
p denotes a space of continuous, piecewise polynomial functions

defined with respect to a regular subdivision Th of the domain Ω into finite elements K.
For example, K can be hexahedrons or tetrahedrons in three dimensions or triangles
or quadrilaterals in two dimensions. It is assumed that for every v ∈ Hp+1(Ω) there
exists vh ∈ Sh

p such that

‖v − vh‖0 + h‖v − vh‖1 ≤ Chp+1‖v‖p+1 .(1.1)

We will also need the inverse inequality

‖vh‖1 ≤ CIh
−1‖vh‖0(1.2)

that holds for C0 finite element spaces on regular subdivisions; see [7]. Lastly, we
recall Poincaré’s inequality (see, e.g., [13]) in the form

CP ‖u‖1 ≤ |u|1(1.3)

that holds for all functions belonging to Hp(Ω) ∩H1
0 (Ω).

1.2. Galerkin mixed methods for the Stokes equations. We consider the
incompressible Stokes equations

−ν�u + ∇p = f in Ω,(1.4)

∇ · u = 0 in Ω,(1.5)

u = 0 on Γ.(1.6)

In (1.4)–(1.6), Ω denotes a bounded, open region in Rd, d = 2, 3, with Lipschitz
continuous boundary Γ. A weak formulation of the Stokes problem is to seek (u, p) ∈
H1

0(Ω) × L2
0(Ω) such that

A(u,v) + B(v, p) = F (v) ∀ v ∈ H1
0(Ω),(1.7)

B(u, q) = 0 ∀ q ∈ L2
0(Ω),(1.8)
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where A(·, ·), B(·, ·), and F (·) are defined by

A(u,v) =

∫
Ω

ν∇u : ∇v dΩ, B(v, p) = −
∫

Ω

p∇ · v dΩ, and F (v) =

∫
Ω

f · v dΩ,

respectively. We recall that (1.7)–(1.8) is the optimality system for the saddle-point
(u, p) of the Lagrangian functional

L(v, q) =
1

2
A(v,v) − F (v) + B(v, q) .(1.9)

Therefore, the pressure p is the Lagrange multiplier that is introduced into (1.9) to
enforce the (weak) incompressibility constraint (1.8).

The Galerkin mixed method for the Stokes equations is obtained by restricting
(1.7)–(1.8) to a pair of finite element subspaces Vh ⊂ H1

0(Ω) and Sh ⊂ L2
0(Ω). The

corresponding discrete problem is to seek (uh, ph) ∈ Vh × Sh such that

A(uh,vh) + B(vh, ph) = F (vh) ∀ vh ∈ Vh,(1.10)

B(uh, qh) = 0 ∀ qh ∈ Sh .(1.11)

Evidently, (1.10)–(1.11) is the optimality system for the saddle-point (uh, ph) of (1.9)
out of Vh × Sh. Because (1.10)–(1.11) is a discrete saddle-point problem, it leads to
stable and accurate approximations of (u, p) if and only if the pair (Vh, Sh) satisfies
the following conditions. First, the inf-sup condition (see [5, 13, 15]): there exists
γ > 0, independent of h, such that

sup
vh∈Vh

B(vh, qh)

‖vh‖1
≥ γ‖qh‖0 ∀ qh ∈ Sh .(1.12)

Second, A is coercive on Zh × Zh, where Zh = {vh ∈ Vh | B(qh,vh) = 0 ∀ qh ∈
Sh} is the subspace of discretely solenoidal functions belonging to Vh. Examples of
unstable pairs include equal order finite elements on the same mesh and some other
combinations such as the bilinear-constant pair; see [13, 15].

Problem (1.10)–(1.11) is equivalent to the symmetric, indefinite linear system(
A BT

B 0

)(
�u
�p

)
=

(
�f
�0

)
,(1.13)

where the elements of �u and �p are the coefficients in the representation in terms of
bases of the finite element pair (uh, ph); the matrices A and B are deduced in the
usual manner, using the bases for Vh and Sh, from the bilinear forms A(·, ·) and
B(·, ·), respectively.

If the second equation in (1.10)–(1.11) is multiplied by −1, we obtain the linear
system (

A BT

−B 0

)(
�u
�p

)
=

(
�f
�0

)
.(1.14)

This system has the same solution as (1.13) but is nonsymmetric. Thus, iterative
methods may perform differently on (1.13) and (1.14). The dichotomy between the
algebraically equivalent systems (1.13) and (1.14) will be relevant to our discussions
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about stabilized methods. For this reason, we will (using the acronym GMM for
Galerkin mixed methods) refer to (1.13) and (1.14) as the GMM+ and GMM– meth-
ods, respectively.

For future reference, note that (1.7)–(1.8) can be rewritten in the form

Qgmm(u, p;v, q) = F (v) ∀(v, q) ∈ H1
0(Ω) × L2

0(Ω) ,(1.15)

where F is the same as before and

Qgmm(u, p;v, q) = A(u,v) + B(v, p) + B(u, q) .(1.16)

2. Consistently stabilized methods for the Stokes equations. To define
consistently stabilized mixed finite element methods for the Stokes equation, we con-
sider families of bilinear forms,

Qαβ(uh, ph;vh, qh) = A(uh,vh) + B(vh, ph) + βB(uh, qh)

− δ
∑
K∈Th

h2
K(−�uh + ∇ph,−α�vh + β∇qh)0,K,

(2.1)

and linear functionals,

Fαβ(vh, qh) = F (vh) − δ
∑
K∈Th

h2
K(f ,−α�vh + β∇qh)0,K,(2.2)

parametrized by α, β, and δ; α and β take on the values {−1, 0, 1} and {−1, 1},
respectively, and δ is a positive, real-valued parameter. The stabilized methods we
consider are then as follows: find (uh, ph) ∈ Vh × Sh such that

Qαβ(uh, ph;vh, qh) = Fαβ(vh, qh) ∀(vh, qh) ∈ Vh × Sh .(2.3)

Comparing (2.1)–(2.3) with (1.15)–(1.16), one can easily identify the terms added to
the latter to effect stabilization.

Introducing the bilinear forms

D(uh,vh) = δ
∑
K∈Th

h2
K(−�uh,−�vh)0,K, C(vh, qh) = δ

∑
K∈Th

h2
K(∇qh,�vh)0,K,

and

K(ph, qh) = δ
∑
K∈Th

h2
K(∇ph,∇qh)0,K

defined on Vh × Vh, Vh × Sh, and Sh × Sh, respectively, we can write (2.1) as

Qαβ(uh, ph;vh, qh) = A(uh,vh) + B(vh, ph) + βB(uh, qh)

−αD(uh,vh) + αC(vh, ph) + βC(uh, qh) − βK(ph, qh) .

It is then easy to see that the discrete problem (2.3) is equivalent to a family of linear
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algebraic systems of the form(
A − αD (B + αC)T

β(B + C) −βK

)(
�u
�p

)
=

(
�f1
�f2

)
,(2.4)

where the matrices C, D, and K are, respectively, deduced in the usual manner from
the bilinear forms C(·, ·), D(·, ·), and K(·, ·).

Choosing different α and β gives rise to different bilinear forms in (2.1) and to
different matrices in (2.4). It is clear that changing β to −β is the same as changing
qh to −qh in (2.3), or scaling the last row in (2.4) by −1. Therefore, the problems
corresponding to {α, β} and {α,−β} are equivalent in the sense that their solutions
are identical. We will refer to these problems and the associated forms and matrices
as complementary.

Remark 1. Writing (2.3) in the form

A(uh,vh) + B(vh, ph) + βB(uh, qh)

− δ
∑
K∈Th

h2
K(−�uh + ∇ph − f ,−α�vh + β∇qh)0,K = F (vh)

shows that (2.3) is satisfied by all sufficiently smooth solutions of (1.4). This type of
consistency, which is a hallmark of the stabilized methods we consider, is obtained by
using residuals of the momentum equation to effect stabilization.

Remark 2. For affine families of linear or bilinear finite element spaces, the
second-order terms in (2.1) vanish and (2.3) reduces to a penalty method with penalty
parameter proportional to h2; see [6]. In this case, the consistency error can be
reduced to within discretization error by employing a projection; see [21]. However,
numerical studies of stability ranges require all residual terms to be represented in
the discretization. Consequently, we restrict attention to quadratic and higher-order
finite element spaces, even though on unstructured meshes second-order terms will
not vanish for bilinear elements.

Remark 3. Stabilized methods lead to well-posed discrete problems for a wide
range of velocity-pressure pairs, including equal-order C0 spaces and other combina-
tions such as C0 velocities and discontinuous pressures. The latter pairs, however,
have not gained much acceptance in stabilized methods because they require the use
of nonstandard assembly processes and face-based data structures; see [12]. Indeed,
one of the main appeals of stabilized methods is that they allow for the use of standard
C0, equal-order spaces for all variables. This greatly simplifies the code development
and solution processes, and so here we restrict attention to these type of spaces.

Remark 4. Many of the methods defined by (2.3) do not represent an optimality
system of some regularized Lagrangian and can only be derived as modifications of
(1.10)–(1.11). Such methods cannot be related to optimization problems even though
the underlying mixed method can be.

Remark 5. It is tempting to study, instead of (2.1), the still consistent but even
more general bilinear form

Qαβ1β2
(uh, ph;vh, qh) = A(uh,vh) + B(vh, ph) + β1B(uh, qh)

− δ
∑
K∈Th

h2
K(−�uh + ∇ph,−α�vh + β2∇qh)0,K,

(2.5)

where α is as before and β1 and β2 are allowed to take on the values ±1. However,
whenever β2 = −β1, the form (2.5) leads to an unstable method so that we need only
consider the case β1 = β2, i.e., the form (2.1).
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2.1. The GLS class. For α = 1, the complimentary forms are

Q±
gls(u

h, ph;vh, qh) = A(uh,vh) + B(vh, ph) ±B(uh, qh)

− δ
∑
K∈Th

h2
K(−�uh + ∇ph,−�vh ±∇qh)0,K .(2.6)

For β = 1, the form (2.6) is symmetric and leads to a symmetric linear system. This
case corresponds to the original GLS method of Hughes and Franca [19] denoted here
by GLS+. The term “least-squares” can be justified by noting that the resulting
variational equation is the optimality system for the penalized Lagrangian functional

Lδ(v, q) = L(v, q) − δ
∑
K∈Th

1

2
h2
K‖ −�uh + ∇ph − f‖2

0,K .(2.7)

The regularizing contribution

δ
∑
K∈Th

h2
K(−�uh + ∇ph,−�vh + ∇qh)0,K(2.8)

is the first variation of the least-squares penalty term

δ
∑
K∈Th

1

2
h2
K‖ −�uh + ∇ph − f‖2

0,K .

The GLS– form, obtained with β = −1, leads to a linear system with a nonsym-
metric matrix. This method has not been previously reported in the literature. Its
regularizing contribution

δ
∑
K∈Th

h2
K(−�uh + ∇ph,−�vh −∇qh)0,K(2.9)

cannot be viewed as originating from a least-squares term, nor does the resulting
variational equation correspond to an optimality system.

2.2. The simplified GLS class. For α = 0, the complimentary forms are

Q±
sgls(u

h, ph;vh, qh) = A(uh,vh) + B(vh, ph) ±B(uh, qh)

− δ
∑

K∈Th

h2
K(−�uh + ∇ph,±∇qh)0,K .(2.10)

The form in (2.10) can be viewed as being derived from (2.6) through a “simplification”
of the weighting function. Thus, we will refer to these simplified GLS methods as the
SGLS+ and SGLS– methods.

The SGLS– finite element method is the first example of a consistently stabilized
formulation of the Stokes equations. It was introduced in [20] and is widely known as
the pressure-Poisson stabilized Galerkin method. The SGLS+ method has not been
reported elsewhere. Neither of the two complementary forms in (2.10) is symmetric;
consequently both the SGLS+ and SGLS– linear systems are nonsymmetric. Likewise,
neither the SGLS+ nor the SGLS– variational problems can be derived as a first-order
optimality condition of some Lagrangian functional.
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2.3. The reflected GLS class. For α = −1, the complimentary forms are

Q±
rgls(u

h, ph;vh, qh) = A(uh,vh) + B(vh, ph) ±B(uh, qh)

− δ
∑

K∈Th

h2
K(−�uh + ∇ph,�vh ±∇qh)0,K .(2.11)

The form in (2.11) can be viewed as being obtained from (2.6) through “reflection”
of the sign of �vh. Accordingly, we will refer to these reflected GLS methods as the
RGLS+ and RGLS– methods.

The RGLS+ method was introduced in [8] and is commonly known as the
Douglas–Wang stabilized Galerkin method. Its RGLS– companion has not been for-
mally introduced in the literature. The stabilizing term of RGLS– is given by

− δ
∑
K∈Th

h2
K(−�uh + ∇ph,−�vh + ∇qh)0,K(2.12)

and looks exactly like the stabilizing term (2.8) in the GLS+ formulation! As a result,
RGLS– is often confused with the original GLS+ method. To see that RGLS– and
GLS+ are in fact quite different, it helps to write their bilinear forms side by side.
The GLS+ bilinear form is

Q+
gls(u

h, ph;vh, qh) = A(uh,vh) + B(vh, ph) + B(uh, qh)

− δ
∑
K∈Th

h2
K(−�uh + ∇ph,−�vh + ∇qh)0,K,

(2.13)

while the RGLS– form is

Q−
rgls(u

h, ph;vh, qh) = A(uh,vh) + B(vh, ph) −B(uh, qh)

+ δ
∑

K∈Th

h2
K(−�uh + ∇ph,−�vh + ∇qh)0,K .(2.14)

Despite their similarity, these two forms have strikingly different properties. We will
see that the symmetric GLS+ form is weakly coercive only for sufficiently small δ. In
contrast, the nonsymmetric RGLS– form is strongly coercive for all positive values of
δ. Another major difference is that (2.13) represents the optimality condition for the
saddle-points of (2.7), while (2.14) is not related to optimization.

It is also clear that the RGLS– and GLS+ forms are not complimentary; i.e.,
they cannot be obtained from each other by changing the sign of the pressure test
function. As a result, the linear systems engendered by these two forms are not
equivalent, cannot be obtained from each other, and have different solutions. Even
though RGLS– has not been introduced in [8] or anywhere else in the literature, the
misconception that (2.14) is the “Galerkin least-squares” method is quite widespread.
However, as our discussion shows, (2.14) is a variant of Douglas–Wang stabilization
and cannot be obtained from the true, original GLS formulation that uses (2.13).

3. Finite element stability analyses. We briefly review some relevant notions
from functional analysis, specialized to our needs. For statements of general results,
we refer to [1].

Let V be a Hilbert space. A bilinear form Q(·; ·) : V × V �→ R is called weakly
coercive if there exists a positive constant C2 such that

sup
v∈V,v �=0

Q(u; v)

‖v‖V
≥ C2‖u‖V ∀u ∈ V(3.1)
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and

sup
u∈V,u �=0

Q(u; v)

‖u‖V
> 0 ∀ v ∈ V .(3.2)

A statement equivalent to (3.1) is that for any given u ∈ V , there exists v ∈ V such
that

Q(u; v) ≥ C2‖u‖V ‖v‖V .(3.3)

A bilinear form Q(·; ·) : V × V �→ R is called strongly coercive (or V -elliptic) if

Q(u;u) ≥ C2‖u‖2
V ∀u ∈ V.(3.4)

Finally, a form is called continuous if

|Q(u; v)| ≤ C1‖v‖V ‖u‖V .(3.5)

The continuity and coercivity (either weak or strong) of a bilinear form implies
that associated variational problems and the associated finite element discretizations
are well-posed [1].

Theorem 3.1. Assume that F : V �→ R is a continuous linear functional. For
any weakly or strongly coercive bilinear form Q(·; ·), the following variational problem
has a unique solution: seek u ∈ V such that

Q(u; v) = F (v) ∀ v ∈ V.(3.6)

Moreover, that solution depends continuously on the data, i.e.,

‖u‖V ≤ 1

C2
‖F‖ .(3.7)

Theorem 3.2. Assume all the hypotheses of Theorem 3.1 and let V h be a closed
subspace of V . Furthermore, assume either that Q(·; ·) is strongly coercive or that
Q(·; ·) satisfies the discrete weak coercivity conditions

sup
vh∈V h

Q(uh; vh)

‖vh‖V
≥ Ch

2 ‖uh‖V ∀uh ∈ V h(3.8)

and

sup
uh∈V h

Q(uh; vh)

‖uh‖V
> 0 ∀ vh ∈ V h .(3.9)

Then the following approximate problem has a unique solution uh: seek uh ∈ V h such
that

Q(uh; vh) = F (vh) ∀ vh ∈ V h;(3.10)

that solution satisfies the estimate

‖uh‖V ≤ 1

C1
‖F‖.(3.11)
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Moreover,

‖u− uh‖V ≤
(
1 +

C1

Ch
2

)
inf

wh∈V h
‖u− wh‖V .(3.12)

Remark 6. If Q(·, ·) is strongly coercive, then (3.8) trivially holds with Ch
2 = C2

for any conforming subspace V h ⊂ V . Clearly, (3.9) holds too.
Remark 7. For weakly coercive forms Q(·, ·), the inclusion V h ⊂ V may not be

sufficient for (3.8)–(3.9) to hold. This inclusion implies only that for any uh ∈ V h,
there exists v ∈ V such that

Q(uh, v) ≥ C2‖uh‖V ‖v‖V .

However, existence of v is guaranteed only in the larger space V and not necessarily
in the subspace V h.

3.1. Stability of consistently modified Galerkin forms. If the variational
problem (2.3) is to result in stable and accurate finite element approximations, then
it must be well-posed. Thus, we now turn our attention to the stability of the form
Qαβ(·; ·) defined in (2.1). For fixed α and β, this form depends on the parameter
δ, and so its stability, the ensuing well-posedness of (2.3), and the validity of finite
element error estimates will, in general, also depend upon the values of δ. Thus, given
a particular form Qαβ(·; ·) and a finite element subspace of H1

0(Ω) × L2
0(Ω), we must

determine whether or not there exists at least one positive value of δ and a positive
constant Ch

2 (δ) such that (3.8) holds.
We will say that Qαβ(·; ·) is unconditionally stable if for any δ > 0 one can

find Ch
2 (δ) ≥ γ > 0 such that either (3.4) or (3.8) holds for all h > 0. If weak or

strong coercivity holds only for selected values of δ, we will call the form Qαβ(·; ·)
conditionally stable. Finally, we will call the set of all stable values of δ the admissible
range for the form Qαβ(·; ·).

In general, admissibility ranges cannot be determined exactly and must be esti-
mated. We first consider an approach based on finite element techniques. For this
purpose, we will need to employ the mesh-dependent norm

‖ph‖0,h =

( ∑
K∈Th

h2
K‖∇ph‖2

0,K

)1/2

.

The next theorem generalizes and extends results of [8, 6, 19, 20] to all three pairs of
stabilized formulations.

Theorem 3.3. Assume that Vh contains at least quadratic polynomials and that
Sh is continuous. Then, for any (uh, ph) ∈ Vh × Sh,⎧⎪⎪⎪⎨⎪⎪⎪⎩

sup
(vh,qh)∈Vh×Sh

Q+(uh, ph;vh, qh)

‖vh‖1 + ‖qh‖0,h

Q−(uh, ph;uh, ph)

‖uh‖1 + ‖ph‖0,h

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≥ (C2
P−δC2

I )1/2‖uh‖1+δC2‖ph‖0,h(3.13)

for the GLS and SGLS formulations and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sup

(vh,qh)∈Vh×Sh

Q+
rgls(u

h, ph;vh, qh)

‖vh‖1 + ‖qh‖0,h

Q−
rgls(u

h, ph;uh, ph)

‖uh‖1 + ‖ph‖0,h

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
≥ C1‖u‖1 + δC2‖p‖0,h(3.14)
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for the RGLS formulation. Furthermore, (3.9) holds for RGLS+ for all δ > 0 and
also for GLS+ and SGLS+, provided that C2

P − δC2
I > 0.

The proof of this theorem uses the fact that strong coercivity of a minus form
always implies weak coercivity of a plus form. This easily follows from the identity

Q+(u, p;u,−p) = Q−(u, p;u, p) ,

because if Q−(·; ·) is strongly coercive, then (3.3) holds with (vh, qh) = (uh,−ph); i.e.,
Q+(·; ·) satisfies (3.8). The other inf-sup condition (3.9) also easily follows. On the
other hand, weak coercivity does not imply strong coercivity. However, since comple-
mentary forms define problems with identical solutions, they are either simultaneously
stable or unstable. This opens up an interesting possibility that is not represented in
Theorem 3.3, namely, that both the plus and the minus forms can be weakly coercive.

Theorem 3.3 provides a sufficiency estimate of the stability ranges for GLS and
SGLS methods. From (3.13), it follows that (2.6) and (2.10) will be, respectively,
strongly and weakly coercive if

0 < δ <
C2

P

C2
I

.(3.15)

When using this bound as an estimate for the stability range, it is important to
recognize that it represents only a sufficient condition for the strong coercivity of
the GLS– and SGLS– forms and the weak coercivity of their plus counterparts. The
estimate says nothing about what happens for values of δ that violate the inequality
in (3.15). For example, it may be the case that the GLS– and SGLS– forms that are
strongly coercive if (3.15) is satisfied are weakly coercive when it is violated and thus
can still result in a stable and accurate method.

On the other hand, Theorem 3.3 allows us unambiguously to conclude that RGLS
forms are unconditionally stable. From (3.14), we see that (2.11) is coercive whenever
δ > 0.

Table 3.1 provides a summary of the stability and other properties for the three
classes of stabilized methods that can be inferred from Theorem 3.3. For the sake of
completeness, we also include information about the GMM.

Table 3.1

Summary of properties of mixed and stabilized variational forms.

Method α β Symmetry Type of Stability
property coercivity property

GMM+ − 1 symmetric weak inf-sup
GMM– − −1 nonsymmetric weak inf-sup

SGLS+ 0 1 nonsymmetric weak conditional(?)
SGLS– 0 −1 nonsymmetric strong conditional(?)
GLS+ 1 1 symmetric weak conditional(?)
GLS– 1 −1 nonsymmetric strong conditional(?)
RGLS+ −1 1 nonsymmetric weak unconditional
RGLS– −1 −1 nonsymmetric strong unconditional

Remark 8. The constants CP and CI are not known explicitly except in some
special cases such as rectangular regions and uniform meshes. As a result, the upper
bound in (3.15) is not in general easily computable.

Remark 9. In practical computations, we must also impose a lower bound on δ
in terms of the mesh size employed in the discretization, e.g., 0 < δ0h < δ.
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3.2. Computable bounds through algebraic stability analyses. We now
turn our attention to computable estimates of the admissible range for δ. Such esti-
mates can be derived from the equivalent algebraic representations of (3.1) and (3.4).
Let �x and �y denote coefficient vectors of the finite element functions (uh, ph) and
(vh, qh), respectively. Let Qαβ(δ) denote the matrix in (2.4). For simplicity, we will
write Q instead of Qαβ(δ) with the understanding that Q depends on α, β, and δ.
For a given subdivision Th, �x and �y are in Rn, n = O(h−d), where d is the space
dimension. In terms of the matrix Q, the first weak coercivity condition (3.8) can be
written as

max
�y∈Rn

�yTQ�x

(�yTS�y)1/2
≥ Ch

2 (δ)(�xTS�x)1/2 ∀�x ∈ Rn, ∀h > 0.(3.16)

The matrix analogue of strong coercivity (3.4) is given by

�xTQ�x ≥ Ch
2 (δ)�xTS�x ∀�x ∈ Rn, ∀h > 0.(3.17)

Here, S is the symmetric, positive definite Gram matrix of the finite element basis
with respect to the norm ‖uh‖1 + ‖p‖0,h on V h × Sh.

The algebraic conditions (3.16) and (3.17) have interesting interpretations. An
equivalent statement of (3.16) is given by

min
�x∈Rn

max
�y∈Rn

�yTQ�x

(�yTS�y)1/2(�xTS�x)1/2
≥ Ch

2 (δ) ∀h > 0.(3.18)

The left-hand side in (3.18) defines the smallest generalized singular value of Q, de-
noted here by σ1(Q,S). Therefore, weak coercivity of the bilinear form amounts to
having the smallest generalized singular value of the coefficient matrix in the discrete
system bounded away from zero, independently of the mesh size h, i.e.,

σ1(Q,S) > Ch
2 (δ) ≥ γ > 0 ∀h > 0

for some fixed γ.
Before interpreting (3.17), we first review some background information about

the generalized field of values of a matrix. Let W be a Hermitian positive definite
matrix and let G ∈ Cn×n. Then the W -field of values of G is defined as

FW (G) :=

{
λ : λ =

〈WG�z,�z〉
〈W�z,�z〉 for some �z �= �0 ∈ Cn

}
.(3.19)

Recall that the W -adjoint of G is the unique matrix G† that satisfies

〈WG�z, �w〉 = 〈W�z,G†�w〉 ∀�z, �w ∈ Cn,

which yields G† = W−1G∗W. A matrix is W -self-adjoint if G† = G and W -skew-
adjoint if G† = −G. Next, by decomposing G into its W -self-adjoint and W -skew-
adjoint parts,

G = M + N,

where

M =
1

2
(G + G†) and N =

1

2
(G − G†),
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we can write

〈WG�z,�z〉
〈W�z,�z〉 =

〈WM�z,�z〉
〈W�z,�z〉 +

〈WN�z,�z〉
〈W�z,�z〉 ∀�z ∈ Cn,

where

〈WM�z,�z〉
〈W�z,�z〉 ∈ FW (M) and

〈WN�z,�z〉
〈W�z,�z〉 ∈ FW (N).

Since M is W -self-adjoint, it is normal with respect to the W -inner product, and
FW (M) is equivalent to the convex hull of the spectrum of M which is contained in
the reals. Similarly, since N is W -skew-adjoint, FW (N) is pure imaginary. Thus, the
real part of FW (G) can be bounded by the minimum and the maximum eigenvalues of
M. For details regarding properties of the field of values of matrices, see [17, 18, 24].

In our case, Q is real and S is symmetric, positive definite. Notice that we can
write

〈Q�z,�z〉
〈S�z,�z〉 =

〈S(S−1Q)�z,�z〉
〈S�z,�z〉 .

This is a Rayleigh quotient generalized to the S-inner product. It follows from (3.19)
that the set of all quotients of this form can be referred to as FS(S−1Q), the S-field
of values of S−1Q. Since S−1Q is real,

〈S(S−1Q)�x, �x〉
〈S�x, �x〉 =

〈S(S−1Q)SA �x, �x〉
〈S�x, �x〉 ∀�x ∈ Rn,

where (S−1Q)SA is the S-self-adjoint part of S−1Q. With this information, (3.17) can
be rewritten as

�xTQ�x

�xTS�x
=

〈Q�x, �x〉
〈S�x, �x〉 =

〈S(S−1Q)SA �x, �x〉
〈S�x, �x〉 ≥ Ch

2 (δ) ∀�x ∈ Rn, ∀h > 0.(3.20)

Since the real part of FS(S−1Q), denoted here by Re(FS(S−1Q)), is bounded below
by the minimum eigenvalue of (S−1Q)SA and the eigenvectors of (S−1Q)SA are real,
the condition (3.17) for strong coercivity can be interpreted as requiring the S-field
of values of S−1Q to be in the right half plane, independent of h, i.e.,

Re(FS(S−1Q)) > Ch
2 (δ) ≥ γ > 0 ∀h > 0.

In contrast to (3.15), both (3.18) and (3.20) are computable in the sense that
σ1(Q,S) and Re(FS(S−1Q)) can be computed numerically for any given Th and δ.
However, the type of estimates for the admissible range implied by (3.15) on the one
hand and enabled by (3.18) or (3.20) on the other hand are very different. The bound
in (3.15) guarantees stability for any h and represents an inner estimate of the true
admissibility range. In contrast, (3.18) and (3.20) can provide only outer estimates
for this range. Indeed, given a subdivision Th and a desired value for Ch

2 (δ), one can
determine computationally whether or not there is a δ that verifies (3.16) or (3.17)
and then estimate the largest such δ. The catch is that finite element stability requires
more than just a nonsingular matrix (which could easily be the case even for unstable
forms); we also need for Ch

2 (δ) to be mesh independent. This fact may not be so easy
to verify, as we can only compute the field of values or the smallest singular value for
a finite number of mesh sizes h and parameter values δ. Therefore, while computable,
these bounds should be treated with caution.



1598 T. BARTH, P. BOCHEV, M. GUNZBURGER, AND J. SHADID

3.3. Remarks about stability. We saw that weakly coercive formulations are
associated with linear systems with indefinite matrices whose smallest generalized
singular value is bounded away from zero independently of h. Strongly coercive for-
mulations lead to linear systems with real, positive definite1 matrices whose field of
values has its real part bounded away from zero independently of h. In addition,
for conditionally stable forms, these properties may hold only for a limited range of
values for δ.

From these wide and varied properties of stabilized methods and their associated
algebraic problems, there arises a number of issues about their use and implemen-
tation. First, each class of stabilized forms, i.e., GLS, SGSL, and RGLS, offers a
choice of a linear system with either a positive definite or an indefinite matrix. When
the complimentary systems generated by the GLS±, SGLS±, or RGLS± formula-
tions are solved by a direct method, the answers and the solver performance will be
identical. However, if these systems are solved iteratively, it is not clear which for-
mulation should be preferred: a strongly coercive one, yielding a positive definite but
nonsymmetric matrix, or a weakly coercive one, which gives an indefinite but possibly
symmetric (as in the case of GLS+ method) matrix. Moreover, the answer to this
question may depend on the type of iterative solver and preconditioning used.

A second set of questions concerns the admissible range bound (3.15) and its
algebraic estimates computed using (3.18) or (3.20). We recall that (3.15) is biased
with respect to the minus forms; i.e., it is a sufficient condition for a strong coercivity
of GLS− and SGLS−. However, a minus form may fail to be strongly coercive and
still lead to a stable method if it happens to be weakly coercive. Thus, the possibilities
are that either loss of strong coercivity in a minus form will immediately lead to an
unstable complementary pair, or that the pair will remain stable even if the minus form
is not strongly coercive. In the former case, (3.15) and its algebraic estimates should
be able to reliably predict loss of stability, while in the latter case these estimates will
be overly pessimistic.

4. Computational studies. The main goal of this section is to document the
numerical behavior of the three stabilized classes, including the performance of iter-
ative solvers, and to compare them with one another. Specifically, for the GLS and
SGLS classes, we want to assess the accuracy of the algebraic estimates of the admis-
sibility range by comparing finite element stability inside and outside the estimated
range. Then we will compare and contrast Krylov subspace solvers for two typical
scenarios that may arise in the use of stabilized methods. In the first case, the same
stabilized formulation is solved for different values of δ. The goal is to compare solver
convergence for stable versus unstable values of δ. The second scenario is to alternate
between a plus and minus formulation for the same δ. Here our objective is to deter-
mine whether or not iterative solvers have a markedly better performance for one of
the two complementary formulations.

In all numerical experiments, Ω is taken to be the unit square in R2. The stabilized
methods were implemented using C0, piecewise quadratic finite element spaces on
triangles for all dependent variables, i.e., using a P 2 −P 2 discretization. The reasons
for using such elements were explained in Remarks 2 and 3. We recall that the
P 2 − P 2 pair is unstable for the mixed Galerkin problem (1.10)–(1.11). To eliminate
the hydrostatic pressure mode without changing the effective condition number, a
rank-one update defined by �cT�c, where �c is the coefficient vector of the constant

1A matrix A is real positive definite if �uT A�u > 0 for any real-valued vector �u. Equivalently, A is
real positive definite if (A + AT )/2 is positive definite.
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pressure mode, is added to the lower right block of the matrices; see [3] for details
about this approach.

4.1. Numerical estimates of the admissible region. To estimate the admis-
sible range (3.15) for δ for the conditionally stable GLS and SGLS methods, we can
use the approach based on the generalized field of values outlined in section 3.2. First,
we choose a positive C̃ and a sequence of subdivisions Thk. For each Thk, we seek to
determine, if possible, the largest δ such that Re(FS(S−1Q)) > C̃, or, equivalently,
for which

�xTQ�x ≥ C̃�xTS�x ∀�x ∈ Rn.(4.1)

Let δk denote this value. Then the stable range of δ is estimated as

0 < δ < min
k

δk.

It is clear that the value of δk is itself an estimate that can be determined by solving
for the eigenvalues of (S−1Q)SA with several values of δ.

We can simplify this process by using the field of values F(Q) instead of FS(S−1Q).
Since S is symmetric positive definite,

�xTS�x ≥ λmin(S) �xT�x ∀�x ∈ Rn.

Therefore, if δ is such that

�xTQ�x ≥ Ĉ�xT�x(4.2)

for some given Ĉ, then (4.1) holds with C̃ = Ĉ/λmin(S). Since the real part of F(Q)
is bounded by the smallest and the largest eigenvalues of (Q+QT )/2, we can proceed
as in the first case, except that now estimating δk for each Thk requires solving just
one symmetric eigenvalue problem. If Thk are obtained through a uniform refinement
process, then δk should be approximately the same for all values of k. In general, δk
will vary with the geometry of the mesh, and so this approach should be used only
on sequences of meshes that are not too different.

Let us apply the simplified procedure to compute an estimate for the admissible
range of the GLS– method. Ideally we would like to use only few, relatively coarse
grids to estimate the range for δ. Here, we employ two uniform triangulations of the
unit square, denoted by Th1 and Th2, whose respective mesh sizes are h = 1/4 and
h = 1/8. Table 4.1 shows the smallest and the largest eigenvalues of (Q + QT )/2, i.e.,
the range of Re(F(Q)), on these meshes for 10 different values of δ.

From Table 4.1 it follows that δ1 = δ2 ≈ 0.04. As a result, based on the two grids
Th1 and Th2, the admissible range can be estimated by (0, 0.04).

Remark 10. For uniform Q2 spaces (piecewise continuous biquadratic polyno-
mials on squares) on [0, 1]2, the upper bound in (3.15) has been analytically shown
to be equal to 11/270 ≈ 0.0407; see [16] and [10]. Note that this is essentially the
same value as the one that we have obtained from the data in Table 4.1 for quadratic
elements on uniform triangulations.

To compute an estimate for the SGLS– method, we use the same two grids but
with a slightly different range of values for δ. From Table 4.2, we see that δ1 = 0.2
and δ2 = 0.1, so the estimate for the admissibility range based on Th1 and Th2 is
approximately (0, 0.1).
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Table 4.1

Estimate of the admissible range for GLS–.

h δ λmin((Q + QT )/2) λmax((Q + QT )/2)
0.1 -0.8089484E+01 0.7241451E+01
0.09 -0.6520340E+01 0.7286919E+01
0.08 -0.4962731E+01 0.7344019E+01
0.07 -0.3421514E+01 0.7417573E+01

1/4 0.06 -0.1904588E+01 0.7515238E+01
0.05 -0.4267026E+00 0.7649627E+01
0.04 0.1321793E-03 0.7842181E+01
0.03 0.9913447E-04 0.8129579E+01
0.02 0.6608964E-04 0.8570449E+01
0.01 0.3304482E-04 0.9236781E+01
0.1 -0.9977763E+01 0.7408766E+01
0.09 -0.8181848E+01 0.7451614E+01
0.08 -0.6396991E+01 0.7505553E+01
0.07 -0.4627906E+01 0.7575311E+01
0.06 -0.2882238E+01 0.7668542E+01

1/8 0.05 -0.1173041E+01 0.7798242E+01
0.04 0.9987927E-05 0.7987464E+01
0.03 0.7490945E-05 0.8278022E+01
0.02 0.4993963E-05 0.8741929E+01
0.01 0.2496982E-05 0.9476134E+01

Table 4.2

Estimate of the admissible range for SGLS–.

h δ λmin((Q + QT )/2) λmax((Q + QT )/2)
0.5 -0.2921313E-01 0.1017679E+02
0.4 -0.1095955E-01 0.1017352E+02
0.3 -0.2242186E-02 0.1017099E+02

1/4 0.2 0.1567617E-05 0.1016918E+02
0.1 0.1802104E-03 0.1016810E+02
0.05 0.1282501E-03 0.1016783E+02
0.01 0.3157644E-04 0.1016775E+02
0.5 -0.9540696E-02 0.1053977E+02
0.4 -0.4307011E-02 0.1053954E+02
0.3 -0.1199751E-02 0.1053935E+02

1/8 0.2 -0.3833118E-04 0.1053922E+02
0.1 0.1148637E-04 0.1053915E+02
0.05 0.9140608E-05 0.1053913E+02
0.01 0.2363616E-05 0.1053912E+02

4.2. Finite element convergence rates. We will now test how well the com-
putable bounds for δ predict the finite element stability of GLS and SGLS methods,
and whether or not the unconditional theoretical stability of RGLS formulations also
translates into numerical stability over a wide range of parameter values. To assess
stability, we will compute numerical convergence rates for the smooth exact solution{

u = (sin(πx− 0.7) sin(πy + 0.2), cos(πx− 0.7) cos(πy + 0.2)),
p = sin(x) cos(y) + (cos(1) − 1) sin(1).

As usual, the inhomogeneous boundary condition is handled by using a boundary
interpolant that becomes an additional source term in the discrete problem.

The goal of our experiments is not so much to obtain sharp estimates of the
theoretical convergence rates but rather to investigate whether or not the changes
of sign in Tables 4.1 and 4.2 that were used to determine the stable values of δ also



STABILIZED FEMs FOR THE STOKES PROBLEM 1601

correlate with changes in the behavior of the finite element errors and the convergence
rates.

Numerical rates of convergence are computed by solving SGLS, GLS, and RGLS
problems on uniform triangular meshes obtained by subdividing Ω into squares using
17×17 and 33×33 uniformly spaced grid lines and then drawing the diagonal in each
square. Since we use P 2 elements, the first mesh has 33 × 33 nodes and the second
mesh has 65 × 65 nodes. The linear systems are solved by direct solvers. We denote
the errors in the approximations to u and p by Eu and Ep, respectively.

Table 4.3 contains a sample of the computed numerical convergence rates. We
see that the convergence rates for the SGLS and RGLS methods are essentially the
same even for values of δ that are outside the estimated stability range for SGLS. In
contrast, the convergence rates of GLS solutions become erratic once δ exceeds the
numerically estimated threshold stability value of 0.04.

Table 4.3

Convergence rates for the GLS, SGLS, and RGLS methods for different values of δ. Boldface
numbers denote unstable values of δ for GLS. Columns (i) are for ‖Eu‖0, columns (ii) are for
|Eu|1, and columns (iii) are for ‖Ep‖0.

GLS SGLS RGLS

δ (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

0.02 3.0 2.0 1.9 3.0 2.0 1.9 3.0 2.0 1.9
0.03 3.0 2.0 1.9 3.0 2.0 1.9 3.0 2.0 1.9
0.04 3.3 2.2 1.8 3.0 2.0 1.9 3.0 2.0 1.9
0.05 2.3 1.3 1.6 3.0 2.0 3.6 3.0 2.0 3.6
1.00 1.7 0.8 0.9 3.5 2.0 2.1 3.2 2.1 2.1
20.0 0.6 -0.5 -1.0 3.8 2.8 3.4 3.8 2.2 3.2

To further compare and contrast the behavior of the errors in the finite element
approximations, we provide in Figures 4.1 to 4.3 plots of the error norms on 17 × 17
and 33 × 33 meshes, and the associated convergence rates for values of δ ranging
from 0.01 to 100. Figure 4.1 confirms the expected unconditional stability of RGLS
methods.

Figure 4.2 is quite intriguing as it shows that errors and convergence rates of
SGLS methods are almost indistinguishable from those of RGLS formulations. These
results indicate that SGLS formulation remains numerically stable even after the
SGLS– form loses its strong coercivity. Therefore, it is very likely that the SGLS–
form switches from strong to weak coercivity and the method retains its stability.
This also means that well-posedness of the SGLS class of methods is not governed by
the strong coercivity of the minus form. The curious “superconvergence” spike that
occurs for the error in the pressure approximation is unexplained at this moment.

Figure 4.3 shows that exactly the opposite holds true for GLS methods. We see
that, for values of δ that exceed the threshold value of 0.04, both the errors and the
convergence rates became erratic. The failure of finite element solutions to converge to
the smooth exact solution clearly indicates the instability of the variational problem.
Therefore, the algebraic estimate of the stability region turns out to be very sharp.
This also means that well-posedness of the GLS class of methods is equivalent, at
least numerically, to the strong coercivity of the GLS– form.

4.3. Performance of Krylov subspace solvers. This section gives prelimi-
nary results on the performance of various Krylov subspace solvers for the three classes
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Fig. 4.1. Finite element errors and convergence rates: RGLS–.

of stabilized methods and the complementary plus and minus forms within each class.
The linear systems that result from the stabilized methods studied in this paper vary
from symmetric indefinite systems that are conditionally stable to nonsymmetric, un-
conditionally positive definite systems. Ideally, the Krylov subspace method and the
preconditioner would be chosen specifically for each class and complementary form.
Although preconditioning is necessary on real application problems, it would not be
very meaningful to compare results obtained by using the same general purpose pre-
conditioners for all formulations. A more thorough investigation is needed to compare
iterative solvers and preconditioning techniques that are designed specifically for each
method and complementary form.

Here, we have tested unpreconditioned versions of restarted and full GMRES (see
[14, 23, 24]) and QMR (see [9, 14, 24]) on the linear systems resulting from the various
stabilized formulations on a small example problem. The purpose of this work is to get
a general idea of how basic Krylov solvers perform on these stabilized formulations,
and to use the results to help decide on the direction of future investigations.

Table 4.4 describes the convergence history for GMRES(10), full GMRES, and
QMR on the various stabilized formulations. To discuss results, we will refer to
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Fig. 4.2. Finite element errors and convergence rates: SGLS–.

values of δ inside and outside the numerically determined stability interval as “stable”
and “unstable,” respectively. The history is given for three values of the stabilizing
parameter δ for the minus form of each class, and one (stable) value of δ for the plus
form of each class. We present only one value of δ in the stable range for the plus
formulations since these possibly symmetric, indefinite forms are less suited to our
brief study of unpreconditioned, nonsymmetric Krylov solvers. In addition, the only
suitable formulation, GLS+, that can take advantage of symmetry has a very limited
range of finite element stability as described above. In the table, stable values of δ are
indicated by bold type. The ∗∗ symbols in the table mean the relative residual norm
has not been reduced to the specified level in less than or equal to 4,000 iterations for
restarted GMRES(10), or 800 iterations for full GMRES or QMR.

We see that iterative solver performance for the SGLS method is less sensitive to
violations of (3.15) than for the GLS method. Note that observed solver performance
also correlates well with the finite element stability of these methods discussed in
section 4.2. Iterative solver performance for the unconditionally stable RGLS method
is also sensitive to the value of δ. Here, the value of δ affects only the condition
number but not the definiteness of the matrix.
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Fig. 4.3. Finite element errors and convergence rates: GLS+.

Table 4.4

Iterative solver performance.

Number of iterations required for GMRES(10)/GMRES/QMR
to reduce the relative residual norm to

Method δ 1.0e-2 1.0e-3 1.0e-4 1.0e-5
SGLS- 0.10 300/95/110 710/135/140 1170/180/225 1550/210/280
SGLS- 5.00 190/75/135 580/155/185 720/225/280 960/270/370
SGLS- 15.00 190/70/130 600/135/185 1010/190/280 1450/240/320

SGLS+ 0.10 700/105/115 2950/150/165 **/190/200 **/220/270

GLS- 0.04 250/110/110 650/165/200 1000/215/240 1650/230/275
GLS- 0.05 **/170/220 **/215/350 **/250/405 **/265/500
GLS- 1.00 **/235/** **/285/** **/330/** **/345/**

GLS+ 0.04 **/110/115 **/170/180 **/220/245 **/240/285

RGLS- 0.01 200/155/210 3500/230/300 **/250/390 **/275/500
RGLS- 1.00 50/75/150 1300/185/380 **/230/700 **/260/**
RGLS- 10.00 1000/25/50 3600/125/130 **/180/700 **/230/**

RGLS+ 1.00 **/110/150 **/230/600 **/255/** **/280/**
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Recall that for the GLS method, the computed admissible range for δ is (0, 0.04).
For the SGLS method, the computed admissible range for δ is wider, (0, 0.1). Fig-
ure 4.4 compares F(Q) for the GLS– method with δ = 0.05, and the SGLS– method
with δ = 15. The solid lines enclose the field of values of the matrices, the vertical
dashed lines bound Re(F(Q)), and the small circles denote the eigenvalues of the
matrices Q. The dotted vertical line indicates the location of the line x = 0. Notice
that δ = 0.05 is slightly outside of the GLS admissible δ range, yet both F(Q) and
the spectrum of Q extend into the left half plane. On the other hand, δ = 15 is
significantly outside of the computed admissible δ range for the SGLS method. Here,
F(Q) extends well into the left half plane, but the eigenvalues of Q remain in the right
half plane. This may in part explain the greater sensitivity of the GLS– method.

Fig. 4.4. Left: F(Q) for GLS– with δ = 0.05. Right: F(Q) for SGLS– with δ = 15.

5. Conclusions. The choice of the stabilizing parameter δ is critical to the
success of the consistently stabilized finite element methods studied in this article. We
saw that this could even be important for the unconditionally stable RGLS class. Here,
the range of δ mattered most for the solver convergence and much less for the finite
element convergence rates. We found that smaller values of δ yield faster convergence
of the iterative solvers. Finite element error convergence essentially remained the
same over all practical values of δ. These results are consistent with the unconditional
stability of RGLS formulations established in Theorem 3.3.

According to Theorem 3.3, stability of GLS methods is possibly conditional. In-
deed, we found that for this class of methods the choice of δ proved to be critical
for the accuracy and stability of finite element solutions. Outside of the estimated
admissible range for δ, we observed a sharp deterioration of finite element convergence
rates. This strongly suggests that for GLS formulations, the field of values estimate
has a very good predictive capability for the admissible range. Most notably, our
numerical estimate of the admissible range for GLS coincided with the analytic result
of [16] for a slightly different element type.

The sharpness of these bounds also means that the practical use of GLS must be
accompanied by a careful determination of the admissible range for δ. Unfortunately,
the inverse constant CI in (3.15) depends upon the subdivision. As a result, one may
have to recompute the admissible range estimate every time Th is refined or the region
is remeshed. An alternative is to use iterative solvers as an indicator for the finite
element stability of GLS. In practice, the wide variation in their convergence behavior
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makes such an indicator rather unreliable. For example, we saw that QMR converged
for δ = 0.05 and stalled for δ = 1. Both are unstable values for GLS, but based on
solver performance, one may be led to believe that the method behaves reasonably
well. Again, this highlights the distinction between having a matrix problem that
defines a stable finite element approximation versus one that is merely nonsingular.

The most unexpected conclusion from our study is the unconditional stability
of SGLS formulations. We found that strong coercivity of the SGLS− form is not
necessary for the stability of this method. As a result, estimates of the stability
range based on Theorem 3.3 turned out to be very pessimistic for SGLS methods.
We saw that errors and convergence rates of SGLS are very close to those of RGLS
methods over a wide range of values for δ. In addition, solver performance remained
robust for virtually all values of δ, even though the associated matrices were real
positive definite only for some of the tested values. These numerical results led us
to develop and analyze an SGLS-like formulation for which we were able to prove
unconditional stability [4]. The rigorous proof of unconditional stability for the specific
SGLS formulation considered in this paper still remains an open question.

Nevertheless, we can conclude that SGLS is in actuality a strong contender among
stabilized methods, first, because of its excellent finite element stability, and second,
because our preliminary results for performance of unpreconditioned iterative solvers
indicate better performance for this formulation. While these results are encouraging,
more careful studies that includes appropriate preconditioning methods need to be
carried out. Further, of the three classes of stabilized methods, the structure of the
SGLS matrices is closest to that of the unperturbed GMM matrices, as well as to that
of the mixed method penalty matrices studied in [22], where an optimal preconditioner
was designed that was independent of the discretization and penalty parameters. For
these reasons, we plan a future, more thorough study of preconditioned Krylov solvers
for SGLS matrices.

As a final note, the reader should be aware that the term GLS is often used in a
generic sense to denote any consistently stabilized formulation. Our taxonomy clearly
shows the distinctions between the three principal classes of stabilized methods and
should be helpful to avoid the confusion between these methods that often results
from such generic labeling. The information provided about the different methods
should also be useful when making choices regarding their use and iterative methods
for their solution.
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