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A class of spectral two-level preconditioners!
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ABSTRACT

When solving the linear system Az = b with a Krylov method, the smallest
eigenvalues of the matrix A often slow down the convergence. This is usually
still the case even after the system has been preconditioned. Consequently if the
smallest eigenvalues of A could be somehow “removed” the convergence would be
improved. Several techniques have been proposed in the past few years that attempt
to tackle this problem. The proposed approaches can be split into two main families
depending on whether the scheme enlarges the generated Krylov space or adaptively
updates the preconditioner. In this paper, we follow the second approach and
propose a class of preconditioners both for unsymmetric and for symmetric linear
systems that can also be adapted for symmetric positive definite problems. Our
preconditioners are particularly suitable when there are only a few eigenvalues near
the origin that are well separated. We show that our preconditioners shift these
eigenvalues from close to the origin to near one. We illustrate the performance of our
method through extensive numerical experiments on a set of general linear systems.
Finally we show the advantages of the preconditioners for solving dense linear
systems arising in electromagnetism applications that were the main motivation
for this work.
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1 Introduction

The starting point for this work was the iterative solution of linear systems that
arise in electromagnetism applications. In the last few years we have studied
preconditioning techniques based on sparse approximate inverses and have found
them to be quite effective. These preconditioners are able to cluster most of the
eigenvalues close to one but still leave a few close to the origin that are difficult
to remove by tuning the parameter that controls our preconditioner (Alléon, Benzi
and Giraud 1997, Carpentieri 2002, Carpentieri, Duff and Giraud 2000, Carpentieri,
Duff, Giraud and Sylvand 2002). This is a fairly common situation for a wide range
of problems and preconditioners. We address this in a more general context in this
article even though we present some results for that particular application in a later
section of this paper.

It is well known that, when solving the linear system Az = b with a Krylov
method, the smallest eigenvalues of the matrix A often slow down the convergence.
In the symmetric positive definite (SPD) case, this is clearly highlighted by the
bound on the rate of convergence of the Conjugate Gradient method (CG) given by
Golub and Loan (1996) viz.
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where el = z* — (™ denotes the error associated with the iterate at step k and

A
k(A) = === denotes the condition number. From this bound, it can be seen that

increasing the size of the smallest eigenvalues will improve the convergence rate of
CG. Consequently if the smallest eigenvalues of A could be somehow “removed” the
convergence of CG will be improved (Kolotilina 1995, Mansfield 1988, Mansfield
1991, Nicolaides 1987). Similar arguments exist for unsymmetric systems to
mitigate the bad effect of the smallest eigenvalues on the rate of convergence of the
unsymmetric Krylov solver (Baglama, Calvetti, Golub and Reichel 1999, de Sturler
1996, Erhel, Burrage and Pohl 1996, Morgan 1995). The main argument is that the
Krylov methods build a polynomial expansion that should be equal to one when
the argument is zero and whose roots are the eigenvalues. To get fast convergence
it is necessary to find a low order polynomial with these properties (for example,
strategies have been developed to improve the convergence of GMRES (Saad and
Schultz 1986)). Clearly the presence of eigenvalues close to the origin makes this
difficult.

In exact arithmetic, the number of distinct eigenvalues determines the maximum
dimension of the Krylov subspace. If the eigenvalues are not distinct but the
diameters of the clusters are small enough, the eigenvalues within each cluster
behave numerically like a single eigenvalue, and we expect a few iterations of a
Krylov method to produce reasonably accurate approximations. Theoretical studies



have related superlinear convergence of GMRES to the convergence of the Ritz
values (van der Vorst and Vuik 1993). Basically, convergence occurs if, at each
iteration of GMRES, the next smallest eigenvalue in magnitude is removed from the
system. As the restarting procedure destroys information about the Ritz values at
each restart, the superlinear convergence may be lost. Thus removing the effect of
small eigenvalues in the preconditioned matrix can have a beneficial effect on the
convergence.

When GMRES is the Krylov solver there are essentially two different approaches
for exploiting information related to the smallest eigenvalues. The first idea
is to compute a few, k say, approximate eigenvectors of M A corresponding to
the k£ smallest eigenvalues in magnitude, and augment the Krylov subspace with
those directions. At each restart, let wy,us,...,u; be approximate eigenvectors
corresponding to the approximate eigenvalues of M A closest to the origin. The
updated solution of the linear system in the next cycle of GMRES is extracted
from Span{rq, Ary, A%rg, A7, ..., A" *=1rg uy, ug, ..., uz}. This approach is referred
to as the augmented subspace approach (see Morgan (2000), Morgan (1995), Saad
(1993)). The approximate eigenvectors can be chosen to be Ritz vectors from the
Arnoldi process. The standard implementation of the restarted GMRES algorithm
is based on the Arnoldi process, and spectral information of M A might be recovered
during the iterations. The second idea exploits spectral information gathered during
the Arnoldi process to determine an approximation of an invariant subspace of A
associated with the eigenvalues nearest the origin, and uses this information to
construct a preconditioner or to update the preconditioner. The idea of using
exact invariant subspaces to improve the eigenvalue distribution was proposed by
Saad (1988). Information from the invariant subspace associated with the smallest
eigenvalues and its orthogonal complement are used to construct a preconditioner in
the approach proposed in Baglama et al. (1999). This information can be obtained
from the Arnoldi decomposition of a matrix A of size n that has the form

AVt,n - VmH'm + f'lnez:’b

where V,, € R"™ f,, € R", VIV, = I,,VIf, = 0, and H,, € R™™ is an
upper Hessenberg matrix. If the Arnoldi process is started from V,,e; = ro/||70l|,
the columns of V,, span the Krylov subspace K,,(A,7r). Let the matrix V} €
RF*™ consist of the first k& columns v, v, ..., v}, of V,,, and let the columns of the
orthogonal matrix W,,_j span the orthogonal complement of Span{vi,va, ..., v }. As
W,T_kWn_k = I,,_1, the columns of the matrix [V}, W,,_j] form an orthogonal basis
of R™. Baglama et al. (1999) use the inverse of the matrix

M =ViHRkV} + W, WL,
as a left preconditioner. It can be expressed as:

M =V, H 'V + W, W],
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At each restart, the preconditioner is updated by extracting new eigenvalues which
are the smallest in magnitude. The algorithm proposed uses the recursion formulae
of the implicitly restarted Arnoldi (IRA) method described by Sorensen (1992),
and the determination of the preconditioner does not require the evaluation of any
matrix-vector products with the matrix A in addition to those needed for the Arnoldi
process.

Another adaptive procedure to determine a preconditioner during GMRES
iterations was introduced by Erhel et al. (1996). It is based on the same idea
of estimating the invariant subspace corresponding to the smallest eigenvalues. The
preconditioner is based on a deflation technique such that the linear system is solved
exactly in an invariant subspace of dimension 7 corresponding to the smallest r
eigenvalues of A.

Finally, a preconditioner for GMRES based on a sequence of rank-one updates
that involve the left and right smallest eigenvectors is proposed by Kharchenko and
Yeremin (1995). The method is based on the idea of translating isolated eigenvalues
consecutively group by group into a vicinity of one using low-rank projections of the
coefficient matrix of the form

A=A (I, +uof) - ... (I, + wf’).

The vectors u; and v, j € [1,[] are determined to ensure the numerical stability of
consecutive translations of groups of isolated eigenvalues of A. After each restart
of GMRES(m), approximations to the isolated eigenvalues to be translated are
computed by the Arnoldi process. The isolated eigenvalues are translated towards
one, and the next cycle of GMRES(m) is applied to the transformed matrix. The
effectiveness of this method relies on the assumption that most of the eigenvalues of
A are clustered close to one in the complex plane.

Most of these schemes are combined with the GMRES procedure as they
derive information directly from its internal Arnoldi process. In our work, we
consider an additional explicit eigencomputation that is used to update the selected
preconditioner. This makes the preconditioner independent of the Krylov solver
used for the actual solution of the linear system. This extra cost will be overcome
if the same linear system with several right-hand sides has to be solved because the
number of Krylov iterations can be significantly reduced.

The paper is organized as follows. In the following section, we describe the
proposed preconditioners and prove their shifting capabilities on diagonalizable
matrices. In Section 3, we illustrate the numerical efficiency of the proposed
scheme on a set of unsymmetric and SPD linear systems from the Harwell-Boeing
collection (Duff, Grimes and Lewis 1992). We devote Section 4 to a particular
application in electromagnetism where the same linear system has to be solved with
many different right-hand sides. This situation is particularly of interest for the
preconditioners we propose as it enables us to amortize the extra eigencomputation
required. Finally, we conclude with some remarks in Section 5.



2 Two-level preconditioner via low-rank update

Many of the preconditioners proposed in the literature succeed in clustering most of
the eigenvalues of the preconditioned matrix M A (for left preconditioning) far from
the origin. Such a distribution is highly desirable to get fast convergence of Krylov
solvers. However, a few eigenvalues can be left close to zero and they potentially
can significantly degrade the convergence. In order to tackle this difficulty we
propose a refinement technique based on the introduction of low-rank corrections
computed from spectral information associated with the smallest eigenvalues of
MA. Roughly speaking, the proposed technique consists in solving exactly the
preconditioned system in the low dimensional space spanned by the eigenvectors
associated with the eigenvalues closest to the origin. This is then used to update
the preconditioned residual. We first present our technique for unsymmetric linear
systems and then derive a variant for symmetric and symmetric positive definite
matrices. For simplicity, we first consider complex linear systems. We later indicate
how it can be adapted for problems in real arithmetic.
We consider the solution of the linear system

Az = b, (2.1)

where A is a n X n unsymmetric complex nonsingular matrix, and z and b are vectors
of size n. The linear system is solved using a preconditioned Krylov solver and we
denote by M; the left preconditioner, meaning that we solve

We assume that the preconditioned matrix M; A is diagonalizable, that is:
MA=VAV ! (2.3)

with A = diag();), where |\| < ... < |\,| are the eigenvalues and V' = (v;) the
associated right eigenvectors. We denote by U = (u;) the associated left eigenvectors;
we then have URV = diag(ufv;), with ufv; # 0,Vi (Wilkinson 1965). Let V; be
the set of right eigenvectors associated with the set of eigenvalues A; with |\;| < e.
Similarly, we define by U, the corresponding subset of left eigenvectors.

Proposition 1 Let A, = UZM,AV., M. = V. A;'UEM; and M = My + M,. Then
M A 1is diagonalizable and we have M A = Vdiag(n;,)V " with

Proof
We first remark that A, = diag(\;uffv;) with |\;] < ¢ and so A, is nonsingular.



A, represents the projection of the matrix M;A on the space spanned by the
approximate eigenvectors associated with its smallest eigenvalues.
Let V' = (V., Vz), where V: is the set of (n — k) right eigenvectors associated with
eigenvalues |\;| > e.
Let D, = diag();) with |A;| < e and D = diag(};) with |A;| > e.
The following relations hold
MAV, = M AV, + V.AZ'UE M, AV,
=VeD. + Vel
where I;, denotes the (k X k) identity matrix, and
MAV: = MAV; + V. AZ'UF My AV:
= VeDe + V. AT'URVED,
=V:D;: since UEHVg = 0.
We then have Dol 0
e+ 1k
MAV =V ( 0 D. ) .

Pr0p9siti0n 2 Let W be such that fic = WHAV, has full rank, MC = VEAC_lWH
and M = My + M.. Then M A is similar to a matrix whose eigenvalues are

?71:)\1 if |>\z| > €,
Proof
With the same notation as for Proposition 1 we have:
MAV, = MAV, + V.AZTWH AV,
=VeD. + VeI,
= Ve(De + 1)
MAV: = MAV:+ V.AZ'WH AV,
=V.D, +V.C with C = AZ'WH AV,

i (5)

We then have

-~ (D41 C
MAV_V( A Dg).

For right preconditioning, that is AM;y = b, similar results hold.

Proposition 3 Let A, = U AM,V., M. = M V.A_;'UE and M = M, + M,. Then
AM 1is diagonalizable and we have AM = Vdiag(n;)V ™! with

7],:>\Z if |>\z| > g,



Proposition 4 Let W be such that AQ = WHAMV, has full rank, M, =
MlV'EA;lWH and M = Mi+ M.. Then AM 1is similar to a matriz whose eigenvalues

are
7],:)\1 if |>\Z| >E,

We should point out that, if the symmetry of the preconditioner has to be
preserved, an obvious choice exists. For left preconditioning, we can set W = V|
but then A, may not have full rank. In the SPD case, these results extend as
follows and lead to an expression that is similar to those proposed by Carvalho,
Giraud and Tallec (2001) for two-level preconditioners in non-overlapping domain
decomposition.

Proposition 5 If A and M are SPD, then My A 1is diagonalizable, and A,
VH AV, is SPD. The preconditioner defined by M = M, + M., with M, = VA 1VH
is SPD and MA is similar to a matriz whose eigenvalues are

7]1:)\1 if |>\Z| > €,

Proof

Because the matrix M; is SPD, there exists a unique SPD matrix M that is the
square root of M; (see for instance, Golub and Loan (1996)). Then, the matrix
1 1

M A is similar to the matrix M AM}? which is symmetric and consequently similar
to a diagonal matrix. Therefore the matrix M; A is diagonalizable.

By construction A, is symmetric, let us show that it is positive definite. V. is an x k
matrix. Let z € R*) 2z # 0.
<Agz,z> = < VHEAV.z,z >
= < AV.z,V.z >
V.z # 0 because V, has full rank. Then < A.z,z > is greater than 0 because A is
SPD. Therefore A, is a SPD matrix and consequently has full rank.
Let z € R, = # 0.
<Maz,z> = <VA WHy = >
= < A7 1VEH33,VEH1* >
> 0as A, is a SPD matrix.
Therefore ]\ch is a positive semi-definite matrix and M = M+ ]\ch is an SPD matrix
because M; is SPD, and the results of Proposition 2 hold with W = V.



For unsymmetric linear systems in real arithmetic some of the eigenvectors can be
complex. If implemented as described so far, the preconditioner would be complex
which is not desirable because all the calculations would have to be performed
in complex arithmetic. If a complex eigenvector exists its conjugate is also an
eigenvector. So the drawback just described can be overcome by considering not
just the eigenvectors but a real basis of the plane spanned by those two conjugate
eigenvectors; that are the two real vectors defined by the real part and the imaginary
part of those vectors.

Finally we mention that we can use an additional scaling in the low-rank update
so that the k smallest eigenvalues are not just shifted by one, but rather are all
transformed to one with multiplicity equal to k. This feature is obtained by using
M. = V.(I — D.)AZ;'U2 M, in Proposition 1, and M, = V.(I — D.)A;*W*H in
Proposition 2. Similar transformations can be applied to get the same property for
right preconditioning. This does not change the numerical behaviour of the method
although it makes the expression of the preconditioner slightly more complicated.
For those reasons we do not develop this variant further.

3 Numerical experiments

In order to illustrate the efficiency of the preconditioners, we first present numerical
experiments on general linear systems that are either unsymmetric or symmetric
indefinite. Then we consider SPD linear systems to assess the effectiveness of the
preconditioners on those problems as well.

3.1 Non-Hermitian linear systems

In Table 3.1 we display the list of test problems from the Harwell-Boeing collection
that we have considered for the experiments on general matrices. All the experiments
have been performed in Matlab using /LU (t) (Saad 1994) as the preconditioner M.
The stopping criterion in all cases just consists in reducing the original residual by
10~% that then can be related to a normwise backward error as we use the null
vector as initial guess. In all the tables, the symbol “-” means that convergence is
not obtained after 1000 iterations. The eigenvectors are computed using the Matlab
function eigs that calls ARPACK (Lehoucq, Sorensen and Yang 1998).

Name Size | Field Characteristics

HORI131 434 | Flow in networks real unsymmetric

ORSIRR1 1030 | Oil reservoir simulation real unsymmetric

GRE1107 1107 | Simulation studies in computer systems real unsymmetric
YOUNG2C 841 | Dynamic analysis in structural engineering | complex symmetric indefinite

Table 3.1: Set of non-Hermitian test matrices.



In Table 3.2, we show the number of iterations required by restarted GMRES and
BiCGStab (van der Vorst 1992) varying the dimension of the low-rank correction in
the range 1 to 10. The choice of the threshold for /LU has been set to illustrate
the behaviour generally observed when the spectrum of the preconditioned system
has only a few eigenvalues close to the origin. That is, when the preconditioner is
already effective in clustering most of the eigenvalues. In Figure 3.1, we display the
spectrum of the preconditioned matrices using only ILU(t). For the experiments
shown in Table 3.2, we use a left preconditioner and the formulation described in
Proposition 1 that is W# = U¥ M;. Similar results are displayed in Table 3.3 using
the formulation described in Proposition 2 that is with W = V_. In this latter case,
the cost for the eigencomputation to setup the update is halved because only right
eigenvectors need to be computed. As expected, it can be immediately seen that,
for these two choices of W, the numerical trends are the same; that is, the larger
the rank of the correction the faster the convergence. However, the decrease is not
always monotonic with the dimension of the rank correction. This behaviour is
observed both for GMRES and BiCGStab.

As can be seen, a correction of rank ten enables us to half the number of iterations
in most of the cases. In general, a very small dimension correction (i.e. one or two)
improves the convergence of the Krylov solver significantly. In some cases, it even
enables convergence that was otherwise not obtained. This situation is illustrated in
Figure 3.2 where we display the convergence history of GMRES(30) on the Grenoble
test problem, GRE1107. Without correction the backward error stagnates (as well
as with a correction of dimension one or two) and the convergence is obtained only
for a correction of dimension larger than 3. Even though this aspect is discussed
later, we can already observe the link that exists between the dimension of the
update and the size of the restart of GMRES since GMRES(40) converges with a
rank-one update (see Table 3.2) while GMRES(30) does not (see Figure 3.2). This
linear system has a very small eigenvalue that is fairly isolated and that prevents the
convergence of the solvers. Once this eigencomponent is removed by the rank-one
update preconditioner both GMRES(40) and BiCGStab converge.

Dimension of the small dimensional correction space
Matrix t Solver 0 1 2 3 4 5 6 7 8 9 10
HORI131 4.10-2 | GMRES(5) 106 76 66 60 61 58 54 43 41 39 39
BiCGStab 19 14 12 13 12 10 10 9 9 8 8
ORSIRR1 5-10~2 | GMRES(5) 95 88 77 71 68 65 62 59 55 54 50
BiCGStab 28 29 24 26 22 21 18 18 18 16 16
GRE1107 1-10—2 | GMRES(40) - 159 | 120 75 67 39 37 35 34 32 30
BiCGStab - 80 80 61 63 51 58 44 33 29 27
YOUNG2C [ 7-10-2 | GMRES(30) - 535 | 494 | 478 | 330 | 316 | 299 | 322 | 299 | 298 | 293
BiCGStab 76 60 57 58 46 46 47 47 47 46 46

Table 3.2: Number of iterations varying the dimension of the low-rank update with
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Figure 3.1: The spectrum of the preconditioned matrices.
Dimension of the small dimensional correction space
Matrix t Solver 0 1 2 3 4 5 6 7 8 9 10
HORI131 41072 | GMRES(5) 106 71 62 64 59 60 53 44 46 44 41
BiCGStab 19 14 13 13 11 10 10 9 9 9 9
ORSIRRI1 5-10~2 | GMRES(5) 95 88 77 71 68 65 62 59 55 54 50
BiCGStab 28 28 24 24 21 22 20 18 18 17 16
GRE1107 1-10~2 | GMRES(40) - 160 88 76 62 39 60 36 58 57 57
BiCGStab - 79 87 74 84 82 56 47 65 67 40
YOUNG2C | 7-10—-2 | GMRES(30) - 562 | 497 | 474 | 358 | 297 | 297 | 299 | 301 | 297 | 296
BiCGStab 76 59 55 52 46 44 46 45 47 46 46

Table 3.3: Number of iterations varying the dimension of the low-rank update with

W=V,

To illustrate that the proposed updates should be used to improve an already
effective preconditioner, we report in Table 3.4 the number of iterations when the
threshold of ILU(t) is relaxed making the original preconditioner less and less
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Figure 3.2: Convergence history varying the dimension of the low-rank correction

for GRE1107 and JLU(1 - 1072).

efficient. We see that, in that case, the update will only improve the convergence
up to a certain level above which it does not have any effect. That corresponds to
the situation where there are many eigenvalues close to zero and shifting a few of
them does not further affect the convergence.

# GMRES(5) iterations
t Without update | With update
6-10 2 150 150
5-1072 95 93
4-1072 106 58
3-1072 85 55
2102 52 32
1-10°2 31 18

Table 3.4: Number of GMRES(5) iterations varying the threshold for a low-rank
update of dimension 5 for the matrix ORSIRRI.

As mentioned earlier, theoretical studies have related superlinear convergence of
GMRES to the convergence of Ritz values (van der Vorst and Vuik 1993). Basically,
convergence occurs if, at each iteration of GMRES, the next smallest eigenvalue
in magnitude is removed from the system. As the restarting procedure destroys
information about the Ritz values at each restart, the superlinear convergence may
be lost. Thus removing the effect of small eigenvalues in the preconditioned matrix
This has been observed in the
experiments that we have performed. However, this theoretical result can also be

can have a beneficial effect on the convergence.
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read differently. That is, if the small eigenvalues are removed, the restart value
for GMRES might no longer be critical and the convergence should not be much
affected by the choice of the restart. We can see this in Figure 3.3 where we show,
for different choices of the restart parameter, the number of GMRES iterations as a
function of the dimension of the low-rank correction. It can be seen the number of
iterations with all the restarts tend to behave as full-GMRES as the dimension of
the update increases.
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Figure 3.3: Sensitivity to the restart parameter of GMRES. GRE1107 test problem.

3.2 Symmetric positive definite linear systems

In this section we illustrate, on the set of SPD matrices listed in Table 3.5, the
SPD variant of the update presented in Proposition 5. As a preconditioner we use

IC(t) (Meijerink and van der Vorst 1977).

Name Size | Field

BCSSTK27 1224 | Dynamic analyses in structural engineering - Buckling analysis

BCSSTK14 1806 | Static analyses in structural engineering - Roof of the Omni Coliseum, Atlanta
BCSSTKI16 4884 | Static analyses in structural engineering - U.S. Army Corps of Engineers dam
SIRMQ4M1 | 5489 | Structural mechanics - Cylindrical shell

Table 3.5: Set of SPD test matrices.

We observe a similar improvement for SPD linear systems to what was seen in
the previous section. This is illustrated in Table 3.6 where we show the number
of CG iterations as we vary the dimension of the positive semi-definite update. To
show that the improvement of the update is not too closely related to the quality of
the initial preconditioner we show, for BCSSTK27 and SIRMQ4M1, the number of
iterations for two different thresholds for /C. For these examples, the relative gain

11



in terms of number of iterations does not depend much on the selected threshold
although the absolute values do.

Dimension of the small dimensional correction space
Matrix t 0 1 2 3 4 5 6 7 8 9] 10
BCSSTK27 |[5-1072 | 63 | 61 | 53 | 52 | 45 | 39 | 36 | 34 | 30 | 28| 28
BCSSTK27 [1-10°t (143|133 [125 110 97 | 95 | 84 | 78 | 78 | 77| 77
BCSSTK14 |[5-1071 (130 [118 | 119 | 83 | 83 | 83 | 68 | 66 | 66 | 67| 66
BCSSTK16 |[5-1072 | 42 | 36 | 35 | 31 | 29 | 28 | 27 | 24 | 24 | 22| 22
SIRMQ4M1 [ 5-10 2 [[149 | 98 | 79 | 79 | 66 | 61 | 60 | 59 | 59 | 55| 55
SIRMQ4M1 | 1-1071 |[ 379 | 376 | 233 | 164 | 164 | 124 | 122 | 123 | 116 | 96 | 96

Table 3.6: Number of CG iterations varying the dimension of the low-rank update.

3.3 Sensitivity to the accuracy of the eigencomputation

As mentioned earlier, the eigenvalue calculation is performed in a pre-processing
phase using ARPACK on the preconditioned matrix. When a set of isolated
eigenvalues close to zero are computed, the backward error associated with the
smallest ones is always the best. Even if we relax the stopping criterion, the
smallest are still well computed. In order to investigate the sensitivity of the
eigencomputation accuracy on the low-rank update improvement we would like
to have a similar backward error on each eigenpair and to vary it. To do this,
we compute the eigenpairs of a slightly perturbed matrix, (M;A + E), with
| I‘\Lﬂ"lll = n, and we use these eigenvectors to build our preconditioners and compute
tile backward error of these eigenvectors as if they were eigenvectors of M;A. By
varying 7, we can monitor the level of the backward error associated with each
eigenvalue that then becomes comparable for each eigenvector.

In Table 3.7, we give the number of iterations of the Krylov solvers when varying
the backward error of the computed eigenvectors. As we have one backward error per
eigenvector, we give the average of them in the table. It can be seen that, in general,
there is no need for very high accuracy in the computation of the eigenvectors.
However, if some of the eigenvectors are ill-conditioned, even a small backward
error might imply a large forward error and lead us to make a correction in the
wrong space. Such a behaviour can be observed on the GRE1107 matrix.

4 A case study in electromagnetism applications

In recent years, there has been a significant amount of work on the simulation of
electromagnetic wave propagation phenomena, addressing various topics ranging

12



GRE1107 - ILU(1 - 10~2) - GMRES(40)
Backward error Dimension of the small dimensional correction space
0 1 2 3 4 5 6 7 8 9| 10
~1-1071 - | 80| 78 | 37| 35| 32| 30 | 28 | 26 | 24| 23
~1-107° - 155 | 97 | 77| 40| 39 | 38 | 37 | 35 | 33| 31
~2-107° - 134 {134 | 79| 79| 75 | 61 | 40 | 39 | 38 | 36
~1-107% - - - - - 440 | 160 | 116 | 114 | 95 | 80
HORI131 - ILU(5-10~2) - GMRES(5)
Backward error Dimension of the small dimensional correction space
0 1 2 3 4 5 6 7 8 9| 10
~1-1070° 86 | 46 | 42 | 47| 45| 42 | 42 | 31 | 28 | 26 | 26
~3-107° 86 | 46 | 42 | 47 | 47| 42 | 40 | 30 | 28 | 26 | 26
~5-107*% 86 | 46 | 41 | 40 | 42| 44 | 40 | 30 | 28 | 27 | 26
~3-1073 86 | 58 | 49 | 47 | 46 | 47 | 45 | 36 | 29 | 31| 31
~3-1073 8 | 66 | 100 | 55 | 55 | 50 | 50 | 41 | 33 | 33 | 34
BCSSTK27 - IC(5-1072) - CG
Backward error Dimension of the small dimensional correction space
0 1 2 3 4 5 6 7 8 9| 10
~1-1071 63| 61 | 53 | 52| 45| 39 | 36 | 34 | 30 | 28 | 28
~2-107° 63| 60 | 53 | 52| 45| 39 | 37 | 34 | 31 | 28| 28
~1-107% 63| 62 | 53 | 52| 47| 39 | 35 | 34 | 32 | 29| 29
~2-107% 63| 59 | 55 | 53| 49| 42 | 35 | 35 | 33 | 29| 29
~1-1073 63| 64 | 61 | 60| 54 | 50 | 49 | 46 | 50 | 47 | 46
~2-1073 63| 61 | 58 | 62| 59 | 60 | 58 | 61 | 61 | 58 | 58

Table 3.7: Sensitivity of the preconditioner efficiency versus the accuracy of the
eigencomputation.

from radar cross section to electromagnetic compatibility, to absorbing materials,
and antenna design. To address these problems the Maxwell equations are often
solved in the frequency domain leading to singular integral equations of the first
kind. The discretization by the boundary element method (BEM) results in linear
systems with dense complex matrices that are challenging to solve. The solution
of these linear systems using iterative Krylov methods has recently become feasible
thanks to a combination of the Fast Multipole Method (Sylvand 2002) and efficient
preconditioners (Carpentieri 2002). In that framework, we have been working for
the last few years on the design of approximate inverse preconditioners based on
a Frobenius norm minimization with an a prior: pattern selection strategy. We
do not describe these preconditioners further but refer the reader to Alléon et al.
(1997), Carpentieri (2002), and Carpentieri et al. (2000) for a detailed presentation.

The Frobenius-norm minimization preconditioner succeeds in clustering most
of the eigenvalues far from the origin. This can be observed in Figure 4.1 where
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we see a big cluster near one in the spectrum of the preconditioned matrix. This
matrix is associated with a satellite that is particularly challenging to solve. The
corresponding mesh, discretized with 1701 degrees of freedom, is displayed in
Figure 4.2.

0.5

Imaginary axis
)
@
T

I I
05 1 15
Real axis

-15 .

Figure 4.1: Eigenvalue distribution for the coefficient matrix preconditioned by the
Frobenius-norm minimization method on the satellite problem.

Figure 4.2: Mesh of a satellite with 1701 degrees of freedom.

The construction of the Frobenius-norm minimization preconditioner is
inherently local. Each degree of freedom in the approximate inverse is coupled
to only a very few neighbours and this compact support does not allow an exchange
of global information. When the exact inverse is globally coupled, the lack of
global information may have a severe impact on the quality of the preconditioner.
Although the discrete Green’s function in electromagnetic applications exhibits a
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rapid decay, the exact inverse is dense and thus has global support. In that context,
the use of the two-level spectral preconditioners seems appropriate. In addition,
in such electromagnetism applications the same linear system has to be solved
with many right-hand sides, when lighting an object with the same wave frequency
but different incident angles. Depending on the object and the simulation, the
number of right-hand sides can vary from a few to a few thousand. This situation is
particularly suitable as the eigencomputation required to set up the correction can
be compensated by the saving in iteration counts over the multiple right-hand sides.

All the numerical experiments are performed using a Fortran implementation in
double precision complex arithmetic on a SGI Origin 2000. In these experiments, we
consider low-rank updates of dimension up to 20, and different Krylov solvers. For
this test problem, we perform experiments with two levels of accuracy in the GMRES
solution to gain more insight into the robustness of our method. In that section, we
show the qualitative numerical behaviour of our method on one test example that
is representative of the general trend in electromagnetic applications (Carpentieri
2002). In Figure 4.3, we show the number of iterations required by GMRES(10) to
reduce the normwise backward error to 10~® and 10~° for increasing dimension of the
update. The numerical results show that the introduction of the low-rank updates
can remarkably enhance the robustness of the approximate inverse. The plateau in
Figure 4.3 that can be observed before a significant jump corresponds to a cluster of
eigenvalues. When the eigenvalues within the cluster are shifted, a quick speedup of
convergence is observed. By selecting up to 10 eigenpairs the number of iterations
decreases by more than a factor of two on most of the experiments reported. The gain
is more relevant in absolute value when high accuracy is required for the approximate
solution, but remains almost constant in relative gain. As already observed on the
other examples in the previous section, the preconditioning updates enable fast
convergence of GMRES with a low restart within a tolerance of 10~% whereas no
convergence was obtained in 1500 iterations without updates. However, a substantial
improvement in the convergence is observed also when low accuracy is required. In
the most effective case, by selecting 10 corrections, the number of GMRES iterations
needed to achieve convergence of 10 ° using low restarts reduces by more than a
factor of two. If more eigenvectors are selected, generally no substantial improvement
is observed.

Similarly to experiments reported in Section 3.1, we show, in Table 4.1, the
number of iterations with two different choices for W. As expected, and already
observed, with these two choices of W the numerical trends are the same; that is,
the larger the rank of the correction the faster the convergence.

In Table 4.2, we show the number of matrix-vector products required by the
ARPACK implementation of the IRA method to compute the smallest approximate
eigenvalues and the associated approximate right eigenvectors (note that we do need
the invert mode). We remark that the matrix-vector products do not include those
required for the iterative solution. Although the computation can be expensive, the

15



Example 3 - Size = 1701 - IRAM tolerance = 0.1
300 T T T T T

- GMRES Toler = 1.0e-8
A " =1.0e-%

Number of iterations of GMRES(10)

Figure 4.3: Number of iterations required by GMRES preconditioned by a
Frobenius-norm minimization method updated with spectral corrections to reduce
the normwise backward error by 1078 and 10~° for increasing number of corrections

on the satellite.

cost can be amortized if the preconditioner is reused to solve linear systems with the
same coeflicient matrix and several right-hand sides. In the third column of this table
we show the number of amortization vectors relative to GMRES(10) and a tolerance
of 1075, that is the number of right-hand sides that have to be considered to amortize
the extra cost for the eigencomputation. The localization of a few eigenvalues within
a cluster may be more expensive than the computation of a full group of small
eigenvalues. It can be seen that, for that example, the number of amortization
vectors is reasonably small especially compared to real electromagnetic calculations
where linear systems with the same coefficient matrix and up to thousands of right-
hand sides are often solved.

In Figure 4.4 we display the number of iterations of SQMR (Freund and Nachtigal
1994) (QMR version for symmetric matrices with symmetric preconditioner). These
experiments show that convergence of SQMR also benefits from the low-rank update.
We also notice the remarkable robustness of this Krylov solver on electromagnetic
applications; it clearly outperforms GMRES with large restart.

5 Concluding remarks

In this work, we consider a low-rank correction scheme that is particularly suited to
improve a given preconditioner that leaves only few eigenvalues close to zero. The
update of the preconditioner is beneficial to many Krylov solvers but requires an
a prior: eigencomputation that might be performed without too high an accuracy.
Because the technique is used in combination with a first preconditioner, that already
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Dimension of Choice for the operator W#
low-rank update
Wi = U6HM1 W=V
1 267 260
2 271 267
3 263 272
4 260 256
5 255 262
6 209 199
7 209 202
8 209 208
9 137 135
10 127 126
11 126 125
12 115 115
13 119 118
14 119 120
15 114 110
16 104 103
17 105 105
18 103 102
19 97 94
20 96 90

Table 4.1: Number of iterations required by GMRES(10) preconditioned by a
Frobenius-norm minimization method updated with spectral corrections to reduce
the normwise backward error by 10~2 for increasing number of corrections on the
satellite. Different choices are considered for the operator W¥.

succeeds in clustering most of the eigenvalues close to one leaving only few isolated
eigenvalues close to the origin, ARPACK in forward mode is an efficient approach
to compute the associated eigenvectors. In that context, another advantage is
that ARPACK computes with a better accuracy the smallest eigenpairs. These
are the most important to compute accurately as they play a dominant role in the
convergence of the Krylov solvers. This extra calculation can be amortized if several
linear systems with the same coefficient matrix but different right-hand sides have
to be solved. We indicate that, on real life problem arising in electromagnetism
applications, this extra cost can be fairly quickly overcome. As an empiric criterion
for the selection of the dimension of the low rank correction we can indicate that
removing all the eigenvalues that are small and isolated (sometimes in a small
cluster) is an effective approach. For instance in the electromagnetic application,
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Dimension of # ARPACK Mat-vec | # Amortization rhs
low-rank update
1 120 -
2 336 -
3 290 290
4 250 84
5 192 48
6 183 9
7 175 8
8 165 8
9 154 3
10 169 3
11 157 3
12 219 4
13 224 4
14 212 4
15 223 4
16 202 3
17 226 4
18 264 4
19 264 4
20 300 4

Table 4.2: Number of matrix-vector products required by ARPACK to compute
approximate eigenvalues nearest 0 and the corresponding right eigenvectors.

removing the few eigenvalues of magnitude less than 10~3 was enough to speedup the
convergence on all our test examples (Carpentieri 2002). Finally, when the Krylov
solver is GMRES, we suggest that the techniques described by Baglama et al. (1999)
can be applied. This consists in recovering the eigenvectors from the Arnoldi process
embedded in the GMRES iterations and then updates the preconditioner at each
GMRES restart.
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Example 3 - Size = 1701 - IRAM tolerance = 0.1
100 T T T T T

- SQMR Toler = 1.0e-8|
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Number of iterations of SQMR
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Figure 4.4: Number of iterations required by SQMR preconditioned by a
Frobenius-norm minimization method updated with spectral corrections to reduce
the normwise backward error by 107> for increasing number of corrections on the
satellite. The symmetric formulation of Proposition 2 with the choice W =V is
used for the low-rank updates.
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