ACCELERATION METHODS FOR TOTAL VARIATION-BASED
IMAGE DENOISING
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Abstract. In this paper, we apply a fixed point method to solve the total variation-based image
denoising problem. An algebraic multigrid method is used to solve the corresponding linear equations.
Krylov subspace acceleration is adopted to improve convergence in the fixed point iteration. A good
initial guess for this outer iteration at finest grid is obtained by combining fixed point iteration and
geometric multigrid interpolation successively from the coarsest grid to the finest grid. Numerical
experiments demonstrate that this method is efficient and robust even for images with large noise-
to-signal ratios.
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1. Introduction. The image restoration problem is to recover a “true” image u
from an observed image z. The latter is usually noisy and blurred, and is modeled by
z = Ku+mn. Here, K is a known linear blur operator, and n is a Gaussian white noise.
When K is the identity, the observed images are not blurred. and the corresponding
problem is called a denoising problem. In recent years, one main method for noise
removal and deblurring is the total variation based restoration method, proposed by
L. Rudin, S. Osher and E. Fatemi [16]. In this method, the total variation of u is used
as a regularization penalty functional for a corresponding minimization problem (see
(1.1) below). The main advantage of this method is that it can maintain sharpness of
edges of images. The drawback is that the corresponding partial differential equation
(PDE) is harder to solve because the degeneracy of the diffusion coefficients on edges.
This paper is devoted to an efficient algorithm for solving this nonlinear PDE.

Using the Tikhonov penalty method and a diffusion regularization, the total vari-
ation based restoration method can be formulated as an unconstrained minimization
problem:

1
(L.1) muin <a/Q\/|vu|2+,8 da:dy—|—§||Ku—z||2L2> .

Here, a > 0 is the penalty parameter which controls the trade-off between the smooth-
ness of u and the goodness of fit-to-the-data. The parameter 5 > 0 is a regularization
parameter and is usually small. The functional in (1.1) is strictly convex. Its global
minimizer is unique. The well-posedness of problem (1.1) with § — 0+ has been
discussed in [1].

The corresponding Euler-Lagrange equation for (1.1) is

Vu
VIVu|? + 8

where K* is the adjoint operator of K with respect to the Ly inner product. Numer-
ically, solving equation (1.2) is not an easy task for its nonlinearity and singularity in

(1.2) —aV - ( )+ K*(Ku—2z) =0,
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the diffusion term. Many methods have been proposed. The time marching scheme to
reach the steady state of the corresponding parabolic equation of (1.2) was suggested
in [3, 16]. An affine scaling algorithm was proposed in [12]. Vogel and Oman [20]
applied a fixed point method to solve equation (1.2). Global convergence of fixed
point method in finite space setting was shown in [10]. Newton’s method with a
continuation procedure on the regularization parameter § was used in [6]. T. Chan,
G. Golub, and P. Mulet [7] proposed a nonlinear primal-dual method. A multigrid
method was proposed to solve the linearization part of equation (1.2) in [19, 14, 18].
However, the convergence rate there was slow.

In this paper, we focus on denoising problems. We suggest to use the fixed point
method [20] with Krylov’s acceleration procedure instead of Newton’s method, despite
the latter is of quadratic convergence. From our experience, for practical images with
reasonable accuracy, the number of iterations needed in Newton’s method is about the
same as that of a fixed point method with algebraic multigrid acceleration. The reason
is that, the corresponding linear system in Newton’s method is much harder to solve,
because its diffusion coefficient (which is a matrix) is always degenerate in certain
direction (the normal direction of the level set of the underlying function u), while
the diffusion coefficient of (1.2) is a scalar, thus no preferential direction of degeneracy.
Although this diffusion coefficient may vary dramatically, it can still be manageable.
An algebraic multigrid (AMG) method is suitable to solve the corresponding linear
system. We will show that the number of inner iterations needed is much less than
that of a preconditioned conjugate gradient method used in Newton’s method.

Multigrid methods have been successful for solving elliptic or parabolic prob-
lems numerically. The method is nearly optimal in the sense that the computational
work required to achieve a fixed accuracy is proportional to the number of discrete
unknowns [13]. The algebraic multigrid (AMG) method is designed to utilize the
principle of the geometrically oriented multigrid (GMG) method to obtain a fast and
automatic solution procedure for linear algebraic systems of equations ( see [8, 9, 17]).
This method is particularly suitable to our problem, where the coefficients may vary
dramatically. AMG method has been adopted as a preconditioner for image restora-
tion problem [18]. In this paper, we adopt an improved version of ordinary AMG
method [8]. The number of inner iterations needed is just one per each outer itera-
tion. The convergent factor about 0.05. This is much better than Newton’s method
with PCG, where the numbers of inner iteration are between 4 to 7 [7].

By noticing the convexity of the functional (1.1), or equivalently, the monotonicity
of equation (1.2), we adopt the Krylov subspace method [5, 15] to accelerate the outer
iteration in our fixed point method. The improvement is about double in our numerical
experiment.

The fixed point method with small 3 converges slowly [10]. A nice initial guess
in a fixed point method can allow us to choose small 3 and meantimes to reduce
the number of iterations. No continuation procedure in £ is needed as that in [6].
To produce such a nice initial guess at finest grid, we first solve (1.2) at coarsest
grid (by using the fixed point method with a direct solver), then we interpolate to
the next fine grid level, then solve equation (1.2) again at that level with algebraic
multigrid solver, and so on, until we reach the finest grid. In this grid continuation
procedure, a natural diffusion regularization is introduced implicitly because there
is no diffusion degeneracy problem at coarse grid at all. In our experiment, the
improvement from this grid continuation procedure is about 40%. But it can allow
us to choose B = 10732, the smallest positive machine number.
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This accelerated fixed point method with algebraic multigrid procedure and a
nice initialization procedure produces a valuable computational method for image
denoising. Computational experiments demonstrate that the method is efficient and
robust even for images with large noise-to-signal ratios.

The paper is organized as follows. Section 2 is the finite difference scheme and
the fixed point algorithm. In section 3, we introduce the algebraic multigrid algo-
rithm to solve the corresponding linear systems. The combination of Krylov subspace
acceleration and the fixed point iteration is given in section 4. And section 5 is the
initialization procedure to produce a nice initial data for fixed point iteration. Finally,
numerical results and discussion are given in section 6.

2. Difference Scheme and Fixed Point Method. Let us consider the Euler-
Lagrange equation

Vu
VIVul? + 3

with zero Neumann (no flux) boundary condition. We partition the domain (0,1) x
(0,1) into L x L uniform cells. Denote 1/L by h. The cell centers are (x;,y;) =
((I—=1/2)h,(k —1/2)h),l,k =1,---, L. The value u(x;,yx) is approximated by wy .
Following [20], we discretize (1.2) by a standard five-point finite difference scheme:

(2.1) —aVV - ( )+ K*(Ku—2)=0in Q=(0,1) x (0,1),

— 25 [(Dis1/2.6 + D12+ Dy 12 + Dig—1/2) ik
(2.2) —Dip1/o k%16 — Di—1y2 pUi—1,6 — Dy pgp1/2U k41 — Dl,kfl/zul,k—l]
+(K*(KU = 2));, =0, L,k=1,---,L,

where
«
(23) Dl+1 2,/@ =
/ VI ke — k) /AP + B
and U = (u1,1,u1,2, -, U1,0,U2,1, ", U2,L, "> UL,L), Z = (21,1, 21,2, " *» 21,0, 22,1, " *» ZL,L)-

The discrete Neumann boundary conditions is

(2.4) o,k = ULk, UL4+1,k = ULk, U0 =UL1, UL L+1 = U L-
We abbreviate (2.2) by

(2.5) AU + K (KU — Z) =0.

Following [20], we use the following fixed point method to solve the above finite
difference equation.

(2.6) A(UHUST + K (KU — Z) = 0.

In order to solve system (2.6) for u®*! efficiently, Vogel [19] applied the geometric
multigrid (GMG) method. Unfortunately, he found that the GMG converges slowly,
because the diffusion coefficients 1/1/|Vu?#|? + /8 varies too much. In this paper we use
the algebraic multigrid (AMG) method instead, where the information of these large
variation of coefficients are built in the interpolation operator and coarse grid equation.
Near edges (where the coefficients 1/4/|Vu®|? + £ is very small), it maintains more
grid points than the GMG method in the coarse grid equation. Hence, the coarse grid
equation is more accurate and the convergence rate is improved.
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3. Basic AMG Algorithm. Now, we describe our version of the AMG algo-
rithm [8, 17] briefly. We consider the following n x n system of linear equations

(3.1) AU =F.

An AMG method breaks this equation into a sequence of smaller and smaller equa-
tions: AmU™ = F™,m = 1,---, M, where A™ = (a]"})n,, xn,,., U™ = (ui",uz’, -, up’
and F'™ = (f{",fé",---,gm)T, withn=n; >ny >--->nuy, Al =AU =U,F! =

F. These equations formally play the same role as the coarse grid equations in the
GMG method.

In a standard multigrid process, one needs to define the coarse grids, the inter-
polation operator I, ;, the restriction operator I+ and the coarse grid operator
A™*1 With these, at each level, a smoothing process, say Gauss-Seidel, is applied to
the equation A™U™ = F™ to find an approximate solution U™. The high frequency
errors of the residual r™ := F" — A™U™ are usually reduced in this smoothing
process. The correction for low frequency errors is approximated by the following
procedure. First, the correction equation A™e™ = r™ is restricted to the next coarser
grid by the restriction operator. The resulting equation is solved to obtain the coarse
grid correction e™t!. This correction e™*! is then interpolated back to level m by
the interpolation operator to obtain approximate solution e™.

We shall adopt Galerkin type algorithm, where I+ = (I, )T and A™*! =
[+t gmpm - Thus, we will only need to define the coarse grids and interpolation
operators. We follow the approach in [8, 17] to define the grid ™ and its coarse grid
C™. The grid Q™ is regarded as the indices {1,---,n,,} of the unknowns e}, 1 <
j < nm. The coarse grid C™ is a subset of Q™. The grid Q™*! is nothing but a
re-indexing of C™. We denote Q™ — C™ by F™, the fine grid. Criteria to determine
C™ will be discussed later.

The interpolation operator I/, ; maps data on Q™+ to data on Q™. Namely,
for i € C", the datum e}* is taken to be the datum on the corresponding index on
QM+l while for i € F™, e is interpolated from data on C™. Roughly speaking, this
interpolation formula is derived so that the i*" equation

(32) ai7i€i + ai7j€j —T'i %0
JEN™

is almost satisfied. Here, NJ™ = {j € Q™ | a}"; # 0, j # i, }, which can be thought as
the neighbors of .

In order to solve (3.2) approximately, we classify the neighbors of the point 4 into
two classes. A point j € N/™ is said to be strongly connected to i if

| aflj |2 6 max | afl |
for some fixed 0 < # < 1, and weakly connected if otherwise. We denote the collection

of these neighboring points by S (strong) and W/™ (weak), respectively. We also
denote C™ (| S™ by C™. Our goal is to derive an interpolation formula

el' = E wj je;, fori € F
jecy

so that the it" correction equation is almost satisfied:

m m m ,m __
(3.3) a;yei" + E a;yel = 0.
jEN™

)T
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Noting that N/* = SPUW/™ = (S NC™) U (SN F™) UW]™, the issue here is how
to approximate e" with j € S" N F™ or j € W/™ in terms of e; or ej* with k € C}".
Before going to the discussion of this issue, let us describe how to choose the coarse
grid C™ for a moment.

The coarse grid C'™ is chosen such that the following criteria are satisfied:

(C1) For each point i € F™, every point j € SI" is either in CI™ or strongly
connected to at least one point in CT" (i.e. S|P NCM™ # ¢).

(C2) C™ should be the mazimal subset of all points with the property that any two
points in C™ are not strongly connected to each other.

Condition (C1) ensures that for i € F™, el can be constructed from the values
et with £ € C™ with certain accuracy. Condition (C2) means that C™ is chosen
as smaller as possible to gain efficiency. In general, it is difficult to construct C™ to
satisfy (C2) strictly. Ruge and Stiiben [17] provided an O(n,,) algorithm to construct
the coarse grid C'"™ which is small enough and leads to linear computational complexity
of the overall algorithm practically.

Let us go back to the issue: how to approximate e* with j € S"NF™ or j € W™
in terms of ef* or e;" with k € Cj"? For j € W™, we may simply approximate e by

(34) e;n = ezma

based on the smoothness of e™ which we do expect. For j € S* N F™, we look into
the jt* equation:

ajyel + Z ajgey + - =0.

3.3
keCT NN
The part “ -7 is secondary error and thus negligible. A natural approximation of e}
is the following average formula:
(3.5) € = E, 95,k€k gj,k_z a7 ]
kecpnN® LeC™ NN} 7,0

The condition (C1) (i.e. C]"NS}* # ¢) guarantees that Zkecl?” a7 | is not too small.

The above interpolation formula was given by J. Ruge and K. Stiiben [17]. An
improved interpolation formula using some geometric assumptions was proposed in [8].
It further uses interpolation or extrapolation of formulae (3.4) and (3.5), depending
on the “relative locations” of points j, i and {k|k € C" N S7*}. These “geometric”
assumptions are as below.

(G1) Elements in N™ are the neighbors of a point i in Q™. Further, the larger the
quantity |a;] is, the closer the point j is to the point 4.

(G2) If a}”; <0 or |aj%] is small, we say that the error between i and j is geomet-
rically smooth. Otherwise, we call it geometrically oscillating. Here, we have
normalized a; ; > 0.

Roughly speaking, “geometrically,” the average location of points in C™ N S N S
is somewhere between 7 and j. Therefore the error €’ can be approximated more

J
accurately by interpolation or extrapolation using e; and ), ccmqgm gjkef' . More
i J

precisely, let us define

_ m
Zkeo;"mN;n N | ai} |

m __ mo __
Ci,j = Ni; =

1 .
E’“ECZ"QN}" a3l I o N ZkngﬂmN;" | aly |
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The quantity ¢ indicates whether there is a large negative entry a7, for k € C7" N
N7*. When ¢ > 1/2 and a;”; <0, it can be shown that the errors between the point ¢
and the point j are geometrically smooth. The quantity 7;”; roughly gives the “inverse
ratio” of the distance between j and 7 to the average distance between the point j and
the points in C7* NN If n"; < 3/4, we think the “average location” of the points in
C{" N Nj, denoted by l::j,i, is closer to j than that of i. That is, l?:j,i lies between ¢ and
Jj, and thus, an extrapolation formula for e; in terms of e; and ), ecrnNT gj kep’ can

be applied. When 7", > 2, we think 7 is closer to j than that of IQM. In this case, we

use an interpolation formula instead. Otherwise, we think IQN is very close to j and
we should just use the average formula ), . cmnm gjk€);" to approximate e;.
i J

In summary, we use the following “geometric” interpolation formulae.
(1) For j € S N F™, we have

(3 = %(Ekeci’" grer +et), ifn’y >2,¢% >1/2and aff; <0
Zkecl?n 9ier otherwise.

23 reom 9Twer — e if % < 3/4,¢i; > 1/2 and af; <0

(2) For j € W™, we have

egn, lfclmﬂsjm:(j),a:?]<0

m -, fornsSy =¢,a >0

el = i

5T 2 ke gkl — e, O NST # ¢, ¢ > 1/2 and af; <0
> kecr giner’s otherwise.

(3.7
The convergence proof for this improved AMG method was given in [8] when A™ is
symmetric positive definite. Many numerical examples support the improvement of
this “geometric” interpolation formula [8]. In Table 1, we compare the convergent rate
pa of two AMG methods: Ruge and Stiiben’s formulae (3.4) (3.5) and our geometric
interpolation formulae (3.6) (3.7). This result also supports such improvement. There
are other interpolation formulae, for reader’s reference, please see [11].

4. Krylov Subspace Acceleration. The Krylov subspace method [5, 15] is an
acceleration technique for general iteration methods. Basically, it uses extrapolation
to accelerate convergence rate. It is particularly suitable to accelerate our fixed point
iteration, because the functional (1.1) is convex, or equivalently, the operator of the
corresponding Euler-Lagrange equation (1.2) is monotone. We illustrate this acceler-
ation procedure below. First, we choose two parameters K and s, with K < s. The
Krylov subspace acceleration is perform after every s steps of fixed point iterations
as the follows. For integer n > 0, let

K
(4.1) U = U £ 3 ap (U Uy,
k=1

where the coefficients ay, are chosen such that the residual R™¢" for U™¢" is minimum
in Ly norm, i.e.,

(4.2) min (R"Y, R"€Y).

Q1,5 OK

We then reset U™ to be U™°Y.
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Noticing
K
(43) R"e% — RS 4 Z g (Rns+1fk _ Rnsfk)’
k=1
the coefficients (aq,---,akx) can be found easily. For instance, for K =1, oy is
—(R"s. Rms _Rns—l
(44) o) = ( ’ )

(Rns _ Rnsfl, Rns — Rnsfl)

Remark. The acceleration formula with K = 1 is the same as the one given by
Brandt and Mikulinsky in [5] when the iteration is linear. Indeed,

_ . (Rns, RM™S _ Rns—l)
= —— with A = .
a1 A—1 wi (Rnsfly Rns — Rnsfl)

And A here is approximately the largest eigenvalue of the iteration matrix M. The
reason is shown below.

Suppose the eigenvalues of M are A, A2, -+, A, = A with the corresponding
eigenvectors vy, vs, -+, Up. Then

0o_,0 0 0
R° =rjv +ryvs + .. + 7, U,
n, _ \ns,0 ns,.0 ns,.0 ~ 18,0 — \ns,.0
R A A A A A
S=ALTTIVUL F AU + oo F AT Um R A T Um = TnUm-

(Rns’ RS _Rns—l) o ()\nsrgnvm, )\ns—l()\_ l)rgnvm) _
(Rnsfl, Rns — Rnsfl) (Ansflr(r)nvm, Ansfl(A _ l)r?nvm)

5. Initialization for the Nonlinear Iteration — a grid continuation pro-
cedure. A good initial guess u° (2.6) is important to reduce the number of iterations
in the above fixed point method. We shall use a grid continuation procedure, an idea
from geometric multigrid method, to construct our initial guess. First, we start at the
coarsest grid 4 x 4 grid by performing the fixed point iteration (2.6) few times until
the residual is reduced to 102 of the original one. Here, the noisy data z is restricted
to this coarsest grid through a usual restriction operator (5.1):

(5.1) Uiy = i(“glq,%q + ngfl,zk + ugl,2k71 + U’gl,zk)'
Next, we interpolate the computed result to the next level grid (8 x 8) by the following
interpolation formula: At (z2;—1,y2k—1), we take the same values from the coarse grid.
At (z2r,y2r), We use

1
(5.2) “gz,gk = 1_6(9“f,k + 33Ul g 3] ey T UL g)-
For the rest grid points, we use bilinear interpolation. This interpolated U is used
as the initial guess for the fixed point iteration at this grid level 8 x 8. We continue
this process until we reach the finest grid 256 x 256. At every level, we use our AMG
method and the Krylov acceleration to solve the systsm (2.6).

In this grid continuation procedure, a natural diffusion regularization is intro-
duced implicitly, because there is no diffusion degeneracy problem at coarse grid at
all. Thus, we can choose a very small 8 from the beginning.
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6. Numerical Experiments and Discussions. In the numerical experiments
below, we take the blur operator K to be the identity matrix (i.e. K = I). Two
benchmark model problems are considered here [7, 3]. The original images (denoted
by u®, see Figure 1) have 256 x 256 pixels. Each pixel has value in [0,255]. A
Gaussian distribution with mean 0 and variance o (to be determined later) is added
to the original images and the resulting noisy images (denoted by z) are displayed in
Figure 2, respectively. By definition, we have ||u® — z||;, = 0. We choose o such that
the noise-to-signal ratios of these two noisy images are

(6.1) el | 028 for model IL

The values of grey level of the original image is 120, 10 for model I, and 230, 215,140, 0
for model II. The value of ¢ is approximate 35. At the end of this section, we shall
also demonstrate denoised results for large noise-to-signal ratios.

During the denoising process, following T. Chan et al’s experiment [7], we take
a = 1.18, and # = 0.01, 0.001. Due to a good initialization, we can further take
B = 10732 in our experiment.

In the AMG procedure, we apply the simple V-cycle and use the Gauss-Seidel
iteration as the smoother.

|u® — Z||L2 { 0.21  for model I

L L L L L
50 100 150 200 250 50 100

Fi1G. 6.1. Original images of model I (left) and model II (right)

6.1. Normalized residual. An important issue in image restorations is to
choose a quantity to measure the quality of improvement. It is used as a stopping cri-
terion for the fixed point iteration. Usually, the residual of the system (2.6) is chosen.
But, a normalization is needed. Namely, we should use D~!(Re) as the normalized
residual. Here, (Re) is the residual of the system (2.6) and D is the corresponding
diagonal matrix. The reason for this normalization is the follows. Due to the fact
that the diffusion coefficient is very large in smooth region, we observe that the un-
normalized residual is very large in those components where u is smooth (thus, no
more denoising is needed), and is relatively small in those where u is less smooth
(thus, either it has a jump or it needs further denoising). A normalization will cure
this imbalance. Numerical experiments below demonstrates that this quantity is able
to measure the improvement of the denoising process. From now on, we shall denote
this normalized residual by Re.



ACCELERATION METHODS FOR IMAGE DENOISING 9

50

F1G. 6.2. Noisy images of model I (left) and model II (right). Noise-to-signal ratios: 0.21
(model 1), 0.28 (model II).

6.2. Fixed point iteration with AMG method. In the first set of numerical
experiments, we apply the fixed point method to the model images at the finest grid
directly. No particular preparation of initial data and nor the Krylov acceleration
are adopted at this moment. In each fixed point iteration, only one V-cycle of the
AMG method is applied for solving the corresponding linear system. There is no need
to have more iteration because the dominant error is from the outer iteration. The
stopping criterion for the fixed point iteration in this paper is a relative decrease of
the residual by a factor of 10~* for model I and of 10~° for model II, namely,

|ReN||L, < 104,  for Model I,
|Re||z, — | 1077, for Model IL

In AMG, we adopt two interpolation formulae: AMG T uses Ruge and Stiiben’s for-
mula (3.4) (3.5), whereas AMG II uses (3.6) and (3.7). Table 1 is the comparison of
the convergent factor pa of these two AMG algorithms, i.e. the ratio of the residual
after and before the AMG. The result shows that our AMG algorithm is superior to
the Ruge and Stiiben’s AMG in this denoising test.

iteration step 1 2 3 4 5 6 7 8
AMG I 0.306 | 0.006 | 0.088 | 0.079 | 0.097 | 0.076 | 0.072 | 0.068
AMG II 0.209 | 0.009 | 0.088 | 0.069 | 0.064 | 0.063 | 0.058 | 0.052

iteration step 9 10 11 12 13 14 15 16
AMGI 0.064 | 0.061 | 0.058 | 0.055 | 0.052 | 0.052 | 0.051 | 0.051
AMG II 0.049 | 0.048 | 0.045 | 0.044 | 0.043 | 0.043 | 0.043 | 0.047

iteration step 17 18 19 20 21 22
AMG I 0.050 | 0.050 | 0.052 | 0.055 | 0.056 | 0.058
AMG II 0.051 | 0.049 | 0.052 | 0.053 | 0.054 | 0.053

TABLE 6.1
pA, the convergence factor of the two AMG methods in each fized point iteration. AMG I is

the Ruge-Stiben’s formula (3.4) and (3.5), whereas AMG II uses (3.6) and (3.7). This result is for
the Model I with 3 = 0.01.

Next, we compare our method (fixed-point method + AMG I) for Model I with
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that of the primal-dual Newton method [7]. Table 2 is the number of fixed point
iterations (denoted by N) and the “CPU” time (on Sparc 10 machine) needed in our
method. In Figure 3, the solid line on the left figure is the log of the residual versus
the iteration steps. Comparing these results with those in [7], we observe that the
number of outer iteration is about the same in both methods, whereas the number of
inner iteration is just one in our method versus 4 to 5 in their method. The reason
is that the linear equation in fixed point method is much easier to solve than that of
Newton’s method.

Model g N | CPU time (in second)
I 0.01 | 22 79.60
0.001 | 22 84.11
II 0.01 | 48 165.97
0.001 | 49 172.6
TABLE 6.2

Number of fized point iterations N and the CPU time (on Sprac 10) needed to achieve a
reduction of residual by a factor of 10~ for Model I and of 10~° for Model II.

6.3. Improvement by the Krylov Acceleration. The convergence of the
fixed point iteration above can further be improved by the Krylov acceleration method.
In the application of Krylov acceleration, we choose the parameter s = 4, i.e. we apply
the Krylov acceleration every four fixed point iterations. The parameter K is taken
to be 1 or 2. The result is given in Figure 3. The total number of iterations is reduced
to about 50%. The overhead is low, because only simple algebraic operations are
needed. The results demonstrate that the Krylov acceleration method is very efficient
to accelerate the convergence of our fixed point method.

K | Model g N | CPU time ( in second )
I 0.01 | 12 44.14
1 0.001 | 12 44.34
II 0.01 | 21 74.48
0.001 | 21 75.53
I 0.01 | 12 44.64
2 0.001 | 12 44.82
II 0.01 | 21 74.72
0.001 | 20 71.26
TABLE 6.3

Number of fized point iterations N needed with Krylov acceleration. Comparing with Table 2,
the improvement is almost double.

6.4. Further improvement by a good preparation of initial data. In
previous numerical experiments, the initial data is 0. We can have less nonlinear
iterations if we start from a good initial guess. As mentioned in previous section,
such an initial guess is obtained by interpolation from an approximate solution at
coarse grid successively. We start from 4 x 4 grid. The stopping criterion at each
grid level is the 10% reduction of the residual. Table 5 is the number of iteration
and CPU time with this initialization. There, C;, Cf and Cyotar are the CPU times
of the initialization, the fixed point iteration and the total time, respectively. We
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Modell, _:FP ;_.:FP+KY 2f Model Il, __:FP ;_.:FP+KY

Log ( Residual )
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10 20 30 40 50 60 0 10 20 30 40 50
Number of iterations Number of iterations

F1G. 6.3. Log of residuals versus iteration steps for the fized point method with (dash line) and
without (solid line) the Krylov acceleration for Model I (left) and Model II (right)

observe that the initialization is about 10% of the total work for Model I and 7% for
Model II. Comparing Table 3 and Table 5, we observe this initialization gives about
20% improvement. What a surprise is that we are allowed to choose a very small
regularization coefficient 3, say 8 = 10732, the smallest positive machine number.
The overall method still converges. Without a good initialization, the fixed point
method converges slowly for 3 < 10~* [10]. Figure 3 is the denoised images with
B =10"32,

Model B NT C | Cr [ Ciota
0.01 9 | 3.16 | 32.46 | 35.62
I 0.001 9 | 3.18 | 32.68 | 35.86
1.0x10732 | 9 | 3.20 | 33.11 | 36.31
0.01 17 | 4.51 | 56.87 | 61.38
II 0.001 17 | 4.48 | 57.75 | 62.23
1.0x 10732 | 17 | 4.59 | 59.15 | 63.74

TABLE 6.4

CPU time by using the combination of the fixed point method, AMG algorithm, Krylov accel-
eration and good preparation of initial guess. The improvement of the good initialization is about
40%. It can also allow us to choose a very small 3, the smallest positive machine number.

6.5. Denoised results for images with large noise-to-signal ratios . Fi-
nally, we test the denoising quality for images with large noise-to-signal ratios. Figure
5 is the noised images. The noise-to-signal ratios are respectively 2.03 for model I
and 2.01 for model II. The corresponding values of noise are between —200 to 200 for
model I, and between —300 to 300 for model II. Figure 6 is the denoised images. The
denoised image of model II looks darker due to the rescaling of the matlab graphic
tool. The denoised results are satisfactory.

In conclusion, numerical experiments demonstrate that our algorithm, which com-
bines the fixed point method, an improved AMG method, the Krylov acceleration and
a good initialization, is efficient and robust.
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F1G. 6.4. Restored images of Model I(left) and Model II (right)

F1Gc. 6.5. Noisy images of Model I and II. Noise-to-signal ratios: 2.03 (model I) and 2.01
(model IT).
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