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STOCHASTIC SOLUTIONS FOR THE TWO-DIMENSIONAL
ADVECTION-DIFFUSION EQUATION*
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Abstract. In this paper, we solve the two-dimensional advection-diffusion equation with ran-
dom transport velocity. The generalized polynomial chaos expansion is employed to discretize the
equation in random space while the spectral/hp element method is used for spatial discretization.
Numerical results which demonstrate the convergence of generalized polynomial chaos are presented.
Specifically, it appears that the fast convergence rate in the variance is the same as that of the
mean solution in the Jacobi-chaos unlike the Hermite-chaos. To this end, a new model to represent
compact Gaussian distributions is also proposed.
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1. Introduction. The importance of uncertainty modeling is clearly recognized
in scientific computing, and there has been a growing interest in applications of prob-
abilistic methods [5, 11, 13, 18]. Among the existing methods, polynomial chaos
expansion has been shown to work effectively for many problems. It is based on the
homogeneous chaos theory of Wiener [23] and has been applied to various practical
applications by Ghanem and coworkers; see, e.g., [7, 8, 9, 10, 15]. The classical polyno-
mial chaos expansion employs Hermite orthogonal polynomials in terms of Gaussian
random variables to represent stochastic processes and is essentially a spectral ex-
pansion of random variables. Cameron and Martin have proven that this expansion
converges to any Ly functionals in the random space in the mean-square sense [3].
Combined with Karhunen-Loeve decomposition of the stochastic inputs [16], polyno-
mial chaos results in computationally tractable algorithms for large engineering sys-
tems. Other applications and analysis, including the limitation of Wiener-Hermite
expansion, can be found in [4, 17, 20].

More recently, a more general framework, called the generalized polynomial chaos,
was developed [26], following the more fundamental work on stochastic theory [19, 22]
and orthogonal polynomials [1, 14]. The generalized polynomial chaos employs new
classes of orthogonal polynomials and is more efficient to represent general non-
Gaussian processes. Applications to stochastic ODEs, PDEs, Navier—Stokes equa-
tions, and flow-structure interactions have been reported, along with convergence for
model problems in [25, 26, 27].

In this paper, we consider the two-dimensional advection-diffusion equation with
random transport velocity. This can be considered as a model of transport phenomena
in random media, which has been a subject of intensive research; see, for example,
[21, 24]. In this paper, we use this equation as a means of examining the approximation
properties of generalized polynomial chaos. Different types of random distributions
are considered, and convergence rate is examined using exact solutions.
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This paper is organized as follows. In section 2, we briefly review the concept
of generalized polynomial chaos. The formulation of stochastic advection-diffusion
equation and its chaos expansion are presented in section 3. Numerical results are in
section 4, and we conclude the paper with a short summary in section 5.

2. Generalized polynomial chaos. The generalized polynomial chaos is a
means of representing second-order stochastic processes X (¢, z,w), viewed as a func-
tion of w (the random event) and ¢, x (variables in time and space, respectively):

X(t,z,w) = aO\IIO

+ Z all 611 )

i1=1

+ Z Z Ajqiy \:[12(&1 (W),&Q (w))

i1=112=1
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i1=11i2=1143=1

where U,,(&;,, ... , &, ) denotes the generalized polynomial chaos of order n in the vari-
ables (&;,,...,&;, ) and are orthogonal polynomials in terms of the multidimensional
random variables & = (&;,,...,§;,). For notational convenience, one can rearrange
the terms in (2.1), according to some numbering scheme, and rewrite the expansion
as

(o)
(2.2) X(z,t,w) Z )s
§=0
where there is a one-to-one correspondence between the functions ¥, (&;,,...,&;,)

and ®;(§), and their corresponding coefficients a;, ;,i,... and a;. Again {®;(£)} are the
(multidimensional) orthogonal polynomials in terms of the multidimensional random
vector &, satisfying the orthogonality relation

(2.3) (i, @) = (@)6y5,

where 6;; is the Kronecker delta and () denotes the ensemble average. This is the inner
product in the Hilbert space determined by the probability measure of the random
variables

(2.4) (F(€).9(8)) = / F©)9(E)w(€)de

with w(€) denoting the weighting function. In the discrete case, the above orthogonal
relation takes the form

(2.5) (£(£).9() = f(&)g(&)w(®)
3

Note that the above integral and summation are taken in the domain defined by the
support of the underlying random variables &, and the summation in (2.5) is taken
over all possible values of &.



580 X. WAN, D. XIU, AND G. E. KARNIADAKIS

TABLE 2.1
Correspondence of the types of Wiener—Askey polynomial chaos and their underlying random
variables (N > 0 is a finite integer).

[ | Random variables £ | Wiener—Askey chaos {®(£)} | Support |
Continuous Gaussian Hermite-chaos (—o00,00)

gamma Laguerre-chaos [0, 00)
beta Jacobi-chaos la,b]
uniform Legendre-chaos la,b]

Discrete Poisson Charlier-chaos {0,1,2,...}

binomial Krawtchouk-chaos {0,1,...,N}

negative binomial Meixner-chaos {0,1,2,...}

hypergeometric Hahn-chaos {0,1,...,N}

In (2.2), there is a one-to-one correspondence between the type of the orthog-
onal polynomials {®} and the type of the random variables £. This is determined
by choosing the type of the orthogonal polynomials {®} in such a way that their
weighting function w(€) in the orthogonality relation of (2.4) has the same form as
the probability distribution function of the underlying random variables €. For ex-
ample, the weighting function of n-dimensional Hermite orthogonal polynomials is
W exp(—%STE) and is the same as the probability density function of the n-
dimensional Gaussian random variables £&. Hence, the classical Wiener polynomial
chaos is an expansion of Hermite polynomials in terms of Gaussian random variables.
Some types of generalized polynomial chaos corresponding to the commonly known
distributions are listed in Table 2.1.

The expansion of (2.1) (or (2.2)) resides in an infinite-dimensional space deter-
mined by £ and is an infinite summation. In practice, we have to restrict ourselves
to the finite-term summation. This is achieved by reducing the expansion to a finite-
dimensional space, i.e., expansion of finite-dimensional random variables &, according
to the nature of random inputs; we also set the highest order of the polynomials {®}
according to accuracy requirement. The finite-term expansion takes the form

M
(2.6) X(w) =Y 4,9, ().
§=0

where £ is an n-dimensional random vector. Multidimensional generalized polynomial
bases are constructed as the tensor products of the corresponding one-dimensional
bases.

3. Stochastic advection-diffusion equation. In this paper, we consider the
two-dimensional advection-diffusion equation with random transport velocity,

(3.1) %(:&t;w) +u(z;w) - Vo = vV2¢ (x,t;w) € D x RY x Q,

where D is a bounded domain in R?, Q is the sample space in an appropriately
defined probability space, and v is the viscosity. In this paper, we will assume de-
terministic boundary and initial conditions. The transport velocity field is u(x;w) =
u(z, y;w)ey + vz, y;w)e,, and we will focus on large-scale random perturbations;
i.e., the random field is strongly correlated and retains certain smoothness. The
problem of stochastic advection-diffusion subject to white noise input will not be
considered here.
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By using the generalized polynomial chaos expansion of (2.6), we can expand the
solution process and the transport velocity field as

(3.2) o(x, t;w) Z@ (x,1)P;(£(w)),  u(z;w) = Zui(w)@(ﬁ(w)).

By substituting these expansions into governing equation (3.1), we obtain

(3.3) ad“cb —|—ZZu, Vo0, _qu $; ®

1=0 =0 j=0

A Galerkin projection of the above equation onto each polynomial basis {®;} is then
conducted to ensure the error is orthogonal to the functional space spanned by the
finite-dimensional basis {®;}. By projection with ®; for each k¥ = {0,..., M} and
employing the orthogonality relation of (2.3), we obtain for each k =0,..., M,

8¢k 1

(3.4)

v¢j62]k - VV ¢ka
=0 j=0

where e;;, = (®;®;P;). Together with (®?), these coefficients can be evaluated
analytically from the definition of the polynomial basis {®;}.

Equation (3.4) is a set of (M + 1) PDEs coupled through the advection terms.
The total number of expansion terms is determined by the dimensionality of random
space (n) and the highest order of the polynomial expansion (p) from

(n+p)!

(3.5) (M+1) = ]

The equations obtained from (3.4) are deterministic and can be solved readily by any
conventional numerical schemes. In this paper, we employ the spectral/hp element
method to obtain high accurate results in physical space [12]. A second-order stiffly
stable scheme, also called backward differentiation scheme, is employed for the time-
integration (cf. [6]).

4. Numerical results. In this section, we present numerical solutions of the
two-dimensional advection-diffusion equation via the generalized polynomial chaos
expansion.

4.1. Model problem: Convergence. We first consider a simple model prob-
lem where its exact solution is available. We assume that the transport velocity is a
circular motion plus a constant random perturbation, i.e.,

(4.1) u(z;w) = (y + a(w), -z — b(w)),

where a(w) and b(w) are random variables. The initial condition is a Gaussian-shape
cone,

(4.2) o(x,0;w) = e—[(1—10)2+(y—y0)2]/2>\2’

and the corresponding exact stochastic solution is

)\2 (82492 2 v
(4.3) be(@ tiw) = 175 0€ @ +570)/2(7+2vt)
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where

{ T=z+bw)— (xog+bw))cost — (yo + a(w)) sint,
g=vy+a(w)+ (xg+ b(w))sint — (yo + a(w)) cost.

By using the exact solution we examine the “mean-square” error of numerical solutions

defined by
(44) 62(ﬂ3,t) = (E [¢M(w7t;w) - ¢e(w’t;w)]2)l/27

where F(-) denotes the “expectation” operator and ¢, is the numerical solution
obtained by (M + 1)-term expansion. We then examine the Lo.-norm of es(x, )
at some fixed time t in the physical space. Here we set v = 107°, A = 1/8, and
a(w) = b(w) = 0.05¢, where ¢ is a continuous random variable with zero mean. The
final integration time is set as t = 37, corresponding to 3/2 revolutions of the Gaussian
cone.

4.1.1. Beta random input and Jacobi-chaos. Here we assume that £ ~
Be(®f)(—~1,1) is a beta random variable defined in (—1, 1) with parameters a, 3 > —1;
correspondingly, the Jacobi-chaos is employed. The result of uniform random input
(a = = 0) by Legendre-chaos is shown in Figure 1. We observe that errors in both
the mean and variance decrease exponentially fast as the order of chaos expansion (p)
increases. This is in accordance with the results in [25, 26, 27].

: <
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L_error

—=A—— Mean
— —#M— — Variance

-
o
S

UBELIL B AL B R L SRR R AL |

Fic. 1. L°° error of Legendre-chaos with uniform random input at T = 3.

In Figure 2, the error convergence of Be(*%19)(—1,1) random input is shown, and
similar exponential convergence is obtained.

4.1.2. Gaussian random input and Hermite-chaos. Figure 3 shows the
convergence rate of Hermite-chaos expansion when the input follows a Gaussian dis-
tribution, i.e., £ ~ N(0,1).

In Figure 4, the probability density function (PDF) of the solution at its peak
location is shown at ¢t = 7, along with the corresponding PDF from the exact solution

of (4.3). The peak of the solution is in the range of [0, pmax], Where Pmax < ﬁ;t <1
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Fia. 3. L*® error of Hermite-chaos with Gaussian random input at T = 3.

Thus, its PDF should be strictly bounded on both sides, i.e., with no tails present. It
is seen from Figure 4 that the Hermite-chaos approximates the exact PDF well, except
from the apparent Gibb’s oscillations around zero. However, the numerical PDF is
clearly not bounded from below and has a thin tail along the negative axis. In fact,
since Gaussian random variables have infinite support, i.e., £ € (—00, 00), we expect
Hermite-chaos expansions, which are polynomial functions of Gaussian variables, to
retain the infinite long tail. In this particular problem, the long tail indicates the
existence of an unphysical solution with wvery small but nonzero probability. The
difficulty of representing variables with bounded support by Hermite-chaos has also
been discussed in [26].
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F1G. 4. PDF of the peak solution at T = 7 with Gaussian input and Hermite-chaos expansion.

4.1.3. “Truncated” Gaussian input and Jacobi-chaos. An alternative to
the Gaussian distribution is a “truncated” Gaussian distribution, first introduced in
[28]. This is a Jacobi-chaos approximation to Gaussian distributions. It approximates
Gaussian distributions closely with no long tails. It has been shown that the long tails
of Gaussian distribution can result in ill-posedness of Hermite-chaos expansion for
certain applications where the boundedness of stochastic inputs is critical [2]. Thus,
the truncated Gaussian distribution can be used to represent Gaussian-like inputs
with no tails. Here we examine the performance of truncated Gaussian, although
for random transport velocity the tails of the Gaussian assumption will not pose
ill-posedness of the problem. The truncated Gaussian is obtained by a fifth-order
Jacobi-chaos with o = 3 = 10 and will be denoted as G119 In Figure 5, we show
the first-, third-, and fifth-order approximation of N(0,1). It can be seen that the
target Gaussian distribution is closely approximated. However, G(1910) has strictly
bounded support. For more details on the construction of the truncated Gaussian
distribution; see [28]. Here we employ this model to approximate the Gaussian input
in the advection-diffusion problem from the previous section and use the corresponding
Jacobi-chaos with @ = # = 10 to solve the problem. The error convergence in the
solution is shown in Figure 6, where we use the exact solution from Gaussian input.
We can see that the error converges fast, and its rate is almost exponential with
respect to polynomial order. For example, at polynomial order of p = 5, the error in
variance for Hermite-chaos is 0.1738 and for Jacobi-chaos is 0.0810 (see Figures 3 and
6). This indicates that the error in approximating the Gaussian input by G(10:19) is
subdominant compared to the overall error.

In Figure 7, we show the PDF of the solution at its peak location at t = .
The solution of Jacobi-chaos approximates the exact PDF well, except the apparent
Gibb’s oscillations around zero. Note that here the PDF of the Jacobi-chaos solution
is strictly bounded on both ends with no tails, consistent with the physics of the
advection-diffusion problem.

The stochastic response at the solution peak is shown in Figure 8, along with the
deterministic solution denoted by a dotted line. The stochastic solution is plotted
using error bars, with a length of two standard deviations (20) around the mean
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FIG. 6. L error of Jacobi-chaos with truncated Gaussian G(10:10) random input at T = 3x.

values. The presence of the random perturbation in the transport velocity introduces
extra diffusion in the mean solution, compared to the deterministic solution. It should
be noted that for this particular type of random perturbation of (4.1), the stochastic
effect disappears at t = 2nm,n = 0,1,... (see exact solution (4.3)). This can be
clearly seen from the error bars.

In Figure 9, the evolution of the mean solutions and variances for the truncated
Gaussian input G110 is shown at different times. The initial condition is a symmet-
ric Gaussian-shape cone with circular contours. We observe that as the cone travels,
it becomes asymmetric with elliptic contours due to the random perturbation intro-
duced in the transport velocity of (4.1). After one revolution (¢ = 27), it returns to
the symmetric shape as the random effect disappears at this instance. This is con-
firmed in Figure 9; the variance of the solution at ¢t = 2 is of the order O(1077).
The deformation of the solution contours resumes after this. The corresponding
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Fic. 8. Error bars of the evolution of the peak solution with G10,10) ynput and Jacobi-chaos
expansion. The circles represent the stochastic mean solution, and the dotted line represents the
deterministic solution.

deterministic solution is free from such deformation, and thus the cone will retain
its symmetric shape and simply decay over time.

4.2. Results with two-dimensional truncated Gaussian input. In this
section we assume the random transport velocity takes the following form:

(4.5) u = (y + 0.05y&;, —x — 0.052&7),

where £ and & are two independent Gaussian random variables with zero mean and
unit variance. To avoid the unphysical tails in the solution, we use the truncated
Gaussian G19:10) to approximate &1 and &, and employ the Jacobi-chaos to solve the
equations.

The evolution of the stochastic response at the peak is shown in Figure 10,
along with the deterministic solution denoted by a dotted line. The extra diffusion
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Fi1a. 9. Ewolution of Jacobi-chaos solution with G10.10) random input within T < 2.
(a) Mean solution; (b) Variance. Note that at t = 27 the variance is zero.

introduced by randomness in the transport velocity can be seen clearly, compared to
the deterministic solution. As opposed to the example in the previous section, the
random effect does not disappear after every 27 evolution in time.

The evolution of the stochastic solutions at different times is plotted in Figure 11
(a) and (b) for the mean solutions and variances, respectively. Compared to the results
of the one-dimensional truncated Gaussian perturbation in the previous section, the
mean solution under the two-dimensional random perturbation deforms in a different
way and does not return to the symmetric shape after each period 27.

5. Conclusion. In this paper, the two-dimensional advection-diffusion equation
with random transport velocity is studied. Such a problem is important not only
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Fi1c. 10. Error bars of the evolution of the peak solution with two-dimensional “truncated”
Gaussian input and Jacobi-chaos expansion. The circles represent the stochastic mean solution and
the dotted line the deterministic solution.

from a numerical standpoint due to its time dependence and hyperbolic/parabolic
character of the equation, but also from a physical standpoint, as it is a fundamental
model in meteorology and other engineering applications.

While traditional studies on advection-diffusion equations focus on the determin-
istic aspects, we apply in this paper, for the first time, the generalized polynomial
chaos expansion to the random advection-diffusion with uncertain inputs. In par-
ticular, we focus on the Hermite-chaos and Jacobi-chaos, corresponding to Gaussian
random inputs and beta random inputs, respectively. An exact solution, which offers
a testbed for the new formulation, is presented, and we examined the convergence of
the generalized polynomial chaos expansion.

A truncated Gaussian model, based on Jacobi-chaos, is employed to approximate
a Gaussian input and produce solutions with bounded support. In some applications,
the true solution has bounded support, and it is preferred that the numerical solution
retains the same feature. This is an issue that could have numerical and physical
implications, e.g., stability of a numerical scheme, dispersion of species in turbulent
flows, etc. In applications where the bounded support, either in the stochastic in-
puts or in the stochastic outputs, is important, the Jacobi-chaos expansion can be
considered as an effective approach to achieve this goal.
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