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Abstract

A minimax method for finding multiple critical points in Banach spaces is developed
by using a modified pseudo-gradient. The method is implemented successfully to solve
several quasilinear elliptic boundary value problems for multiple solutions. Numerical
solutions are presented by their profiles to illustrate the theory and method. A unified

convergence result of the algorithm is established in a subsequent paper [21].
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1 Introduction

Many nonlinear boundary value problems (BVP) are equivalent to solving
(1.1) Au =10

where A : X — Y is a nonlinear operator between two Banach spaces. Denote X* the
topological dual of X and (-) the dual relation. When a problem is variational, there exists

J € CY(X,R) s.t. A= V.J, where VJ is the gradient of J, i.e., for each u € X,V.J(u) € X*
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sit. (VJ(u),v) = 4],_oJ(u + tv), Vv € X. Then (1.1) is equivalent to solving the Euler-
Lagrange equation

(1.2) VJ(u)=0 or (VJ(u),v)=0, VvelX.

A solution u* to (1.2) is called a critical point of J and its value ¢ = J(u*) is called a critical
value of J, and the set J=(c) is called a critical level of J. Multiple critical points with
different performance exist in many nonlinear problems in applications [9,15,16,17,20]. The
first candidates for critical points are the local extrema to which the classical critical point
theory was devoted in calculus of variation. Traditional numerical methods focus on finding
such stable solutions. Critical points that are not local extremes are called saddle points. In
physical systems, saddle points appear as unstable equilibria or transient excited states. To
theoretical and computational physics and chemistry, saddle points between two stable states
on the potential hypersurface are of great interests and are the theme of so called Transition
State Theory or Activated Complex Theory, as they correspond to the transition states
and lead to the minimum energy paths between reactant molecules and product molecules
[8]. Although a vast literature on algorithms for computing transition states can be found
in computational physics and chemistry, etc., most of them lacked of proper mathematical
justification and were just for certain special cases in low finite-dimension spaces , e.g., a
transition state between two local minima [8].

How to numerically find saddle points in a stable way is interesting to both theory and
applications. However it is a challenging problem due to the unstable nature, saddle points
are very elusive to capture numerically.

Minimax principle, which characterizes a saddle point as a solution to gleiﬂ max J(v) for
some collection A of subsets A in X, is one of the most popular approaches in critical
point theory. Since the mountain pass lemma proved in 1973 [1] set a milestone for
modern nonlinear analysis, many minimax theorems, such as various linking and saddle point
theorems, have been successfully established to prove the existence of multiple solutions to
numerous nonlinear problems [1,2,5,12,13,14,17,18,20, etc.]. But most of them focus mainly
on the existence issue and require one to solve a two-level global minimax problem, and

therefore are not useful for algorithm implementation.
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The first numerical minimax algorithm for finding critical points basically with MI=1,
was developed by Choi-McKenna in 1993. Ding-Costa-Chen proposed a numerical minimax
method in 1999 to capture critical points basically with MI=2. But no mathematical
justification or convergence of the algorithms was established.

A numerical local minimax algorithm together with its mathematical justification and
convergence was successfully developed by Li-Zhou in [10,11], to find multiple saddle points of
MI=1,2,...n. All those three algorithms are formulated in Hilbert spaces, where the gradient
and orthogonality played important roles. As a matter of fact, the gradient is used as a
search direction to update an approximation point and the orthogonality is used to prevent
a search from degenerating to a lower critical level. In terms of minimax approach, at the
first level, A is a 1D simplex in Choi-McKenna’s method, a 2D simplex in Ding-Costa-Chen’s
method and an nD subspace in Li-Zhou’s method.

On the other hand, many nonlinear problems in application, such as the wellknown
nonlinear p-Laplacian equation in the study of non-Newtonian fluid flows [4,9,17], have to
be formulated in Banach spaces. How to find multiple critical points in Banach spaces? So
far no such numerical methods are available in the literature. In this paper, we develop a
numerical minimax method for this purpose.

Since the local minimax characterization of saddle points in a Hilbert space in [10,11]
serves as a mathematical justification of the local minimax method of Li-Zhou, it provides
us with a theoretical foundation to work on. Let us closely examine Li-Zhou’s method.
We can see that the maximization at the first level is to reach a desired orthogonality,
i.e., VJ(u) is orthogonal to the subspace generated by previously found solutions, and the
negative gradient is used to search for a minimum at the second level. When mathematical
justification of a minimax method in a Banach space is concerned, there are two basic
theoretical difficulties to overcome. The first is related to the gradient. Since, in general, a
Banach space X is different from its topological dual X*, the gradient V.J(u) is in X* not
X. Thus it cannot be used at the second level as a search direction to update a point in

X to approximate a local minimum. To overcome this difficulty, a pseudo-gradient can be

'When X = H is a Hilbert space and J" exists at a critical point «*, the Morse index (MI) of »* is the maximum

dimension of a subspace H~ of H on which J"(u*) is negative definite. MI is not defined in Banach spaces.
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used to replace the gradient as a search direction for a local minimum at the second level.
Then the second basic difficulty at the first level takes place, i.e., the orthogonality between
a search direction and the subspace generated by previously found solutions is broken. We
propose to use a modified pseudo-gradient to overcome this difficulty. Those are done in
Section 2. Omnce a local minimax characterization of saddle points in a Banach space is
established, its numerical implementation will be developed in Section 3. In Section 4, we
discuss implementation of computing a pseudo-gradient. In Section 5, we carry out several

numerical examples to illustrate the new theory and its applications.

2 Local Min-Max Theorems in Banach Spaces
For a subspace X' C X, denote Sx: = {v|v € X', ||v|| = 1}-the unit sphere in X’'. Assume
that X = L& L', where L (called a support) and L' are closed subspaces of X, and P : X — L'
is the corresponding linear projection with a bound M > 1 (see Theorem 5.6 in [7]).

DEFINITION 2.1. A set-valued mapping P : Sy — 2% is the peak mapping of J
w.r.t. Lif Yv € Sy, P(v) is the set of all local mazimum points of J in the subspace
[L,v] ={tv+w|w € L, t € R}. A single-valued mapping p : Sp, — X is a peak selection of
Jwrt. Laf

p(v) € P(v), Yv € Sp.

For a given v € Sy, p is said to be a local peak selection of J at v w.r.t. L if p is a peak
selection of J locally defined near v.

DEFINITION 2.2. Let u € X be a point s.t. VJ(u) # 0. For given 0 € (0,1], a point
V(u) € X is a pseudo-gradient of J at v w.r.t. 6 if

(2.1) ()l <1, (VJ(u), ¥(u) = 0[IVJ ()]l

Denote X = {u € X : VJ(u) # 0}. A pseudo-gradient flow of J with a constant 0 is a
continuous mapping ¥ : X — X s.t. Yu € X, U(u) satisfies (2.1).

Lemma 2.10.1 in [16] guarantees the existence of a pseudo-gradient flow.

REMARK 2.1. Note that the number 1 in (2.1) can be replaced by any number m > 1,

since it can be absorbed by the constant 6 to become 0 < % <1
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Pseudo-gradients have been used in the literature to search for a local minimum of a C*
functional in a Banach space. However, when a saddle point is concerned, such a pseudo-
gradient does not work, since it always leads to a local minimum. To prevent this degeneracy
from a saddle point (higher critical level) to a local minimum (lower critical level), we need
to modify the notion of a pseudo-gradient. Due to the definition of a peak selection, we
are able to construct a special pseudo-gradient whose role in a local minimax method is
similar to the gradient in a Hilbert space. Such a pseudo-gradient will be used to replace
the gradient to design a local minimax method for finding a saddle point in a Banach space.

LEMMA 2.1. Let 0 < 0 < 1 be given. For vy € S, if p is a local peak selection of J
w.r.t. L at vy s.t. VJ(p(vo)) # 0 and U (p(vy)) € X is a pseudo-gradient of J at p(vy) w.r.1.
the constant 0, then there exists a (modified) pseudo-gradient G(p(vo)) of J at p(ve) w.r.t.

the constant 0 s.t.

(a) G(p(vg)) € L', 0 < ||G(p(vo))|| £ M where M > 1 is the bound of the linear projection
P from X to L';

(b) {VJ(p(v0)), G(p(vo))) = (VI (p(v0)), ¥ (p(v0)));

(¢) If ¥(p(vo)) is the value of a pseudo-gradient flow V(-) of J at p(vy), then G(-) is
continuous and G(p(vo)) is called the value of a modified pseudo-gradient flow of J at

p(vo)-

Proof. Let G(p(v)) = P(¥(p(vo))) € L'. Then ||G(p(vo))|| < M||¥(p(vo))|| < M. Denote
U (p(vg)) = ¥r(p(ve)) + G(p(vg)) for some vector Wy (p(vy)) € L. By the definition of a peak
selection p, we have (V.J(p(v)), ¥r(p(vo))) = 0. Thus

(VJ(p(w0)), G(p(w))) = (VJ(p(v0)), ¥(p(v0))) = O[|VJ (p(w0))]| > 0.

Therefore G(p(vg))) # 0 is a pseudo-gradient of J at p(vy) w.r.t. 6. The results follow. |
The following inequality will be used in later development.
LEMMA 2.2. For each v € X with ||v|| = 1, it holds

2wl

v—w||’

()

||lv — Vw € X.

— <
o —w]" =]
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Proof. In fact,

- =% = [o(llv —wl| = 1) +wl| _ [lvll [{lv —wl]l = 1]+ [Jwl]
lv = wll lo = wll B lo = wll
v = wll = [[ofl [ + flwll __2[w]]
lv = wll = v =

The next lemma is crucial in this paper, which shows the relation between the gradient
of J and the variation of a peak selection. It will be used to establish a local minimax
characterization of saddle points and to design a stepsize rule in a local minimax algorithm.

LEMMA 2.3. For vy € Sy, if there is a local peak selection p of J w.r.t. L at vy satisfying
(1) p is continuous at vy, (2) d(p(vo), L) > 0 and (3) VJ(p(vy)) # 0, then there exists so > 0
s.t. as 0 < s < s

_s0l[[VI(p(wo))ll . 8d(p(wo), L)V (p(wo))

)l ¢ VI, oy

(2.2) J(p(vs)) — J(p(wo)) <

where p(vy) = tovg + wo, P(vs) = tsvs + ws with ty,ts # 0 and wy, ws € L,

Y — vo — sign(te)sG(p(vy))
* lvo — sign(te)sG(p(wo))|l

and G(p(vy)) is a modified pseudo-gradient of J at p(vy) as defined in Lemma 2.1.
Proof. Since J € C'(X, R), we have

(2.3) J(p(vs) = J(p(v0)) + (VI (p(v0)), p(vs) — p(w0)) + o([lp(vs) — p(vo)l])-

Since p is a peak selection, we have (VJ(p(vy)),vo) = (VJ(p(v9)),v) =0, Vv € L. Thus

(VJ(p(v0)), pvs) = p(vo)) = ts(VJ(p(v0)), vs)
_ sign(to)tss(VJ(p(vo)), G(p(wo))) _ _ sign(to)tss(VJ(p(vo)), ¥ (p(vo)))
[lvo — sign(to)sG (p(vo))|l [[vo — sign(to)sG(p(vo))|l

by Lemma 2.1. When p is continuous at vy and X = L& L', we have ¢, — ¢, and w, — wy

as s — 0. Then, by the definition of a pseudo-gradient, as s > 0 is small

s0|t;|

(24) (VJ(p(UO)),p(Us) - p(’l)o)) < - ||U0 — szgn(to)sG(p(vo))H ||VJ(p(UO))||
Hence, by (2.3) and (2.4), there is s > 0 s.t. as 0 < s < s,
(25) J(p(?)s)) . J(p(?)o)) < — 89|t5|||v<](p(1)0))|| < — Sed(p(IUO)a L)“V‘](p(UO))”

2[|vo — sign(to)sG(p(vo))ll ~  4llve — sign(to)sG(p(vo))ll
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Choose s > 0 small such that ||vy — sign(ty)sG(p(v))|| < 2. Then

(26)  J(p(vs)) — J(p(vo)) < _ SOV I (o))l s8d(p(wo), LIV I (p(vo)) |

4 8
On the other hand, by Lemma 2.2
vo — sign(te)sG(p(vg))
Vs — = - —v
Ios = vl = = Sign(aysG oot ~ ™!
2||sign(to)sG(p(vo))|| < 2sM
[[vo — sign(te)sG(p(vo))ll ~ [lvo — sign(te)sG(p(vo))ll’

where the last inequality holds due to the fact that

1G(p(vo))ll = IP(T(p(vo))[| < MW (p(vo))l| < M.

We have
llvs — woll
-

s < —
Then (2.6) becomes (2.2). I
The following theorem characterizes saddle points as local minimax solutions.
THEOREM 2.1. Let vy € Spr. Suppose that J has a local peak selection p w.r.t. L at vy
satisfying (1) p is continuous at vo, (2) d(p(vo), L) > 0 and (3) vy is a local minimum point
of J(p(+)). Then p(vy) is a critical point of J.

Proof. Suppose p(vg) is not a critical point, then, by Lemma 2.3, there is sg > 0 s.t.

0d(p(vo), L)[|VJ (p(v0))

VIR, vy, s € (0,50)

J(p(vs)) < J(p(vo)) —

vo — sign(to)sG(p(vo)) .
- and G(p(vg)) is

oo = sign(ia)sGlp(ea))] " ¢
a modified pseudo-gradient of J with the constant  at p(vy) as defined in Lemma 2.1. This

where p(vy) = tovg +wp (to # 0 and wg € L), vs =

contradicts the assumption that vy is a local minimum point of J(p(v)). I

To establish an existence result, we need the following PS condition.

DEFINITION 2.3. A functional J € CY(X, R) is said to satisfy the Palais-Smale (PS)
condition if any sequence {u;} C X s.t. J(u;) is bounded and VJ(u;) — 0 possesses a
convergent subsequence.

THEOREM 2.2. Let J € C' (X, R) satisfy the PS condition. If there is a peak selection p
of J w.rt. L satisfying (1) p is continuous, (2) d(p(v),L) > a,Vv € Sp/ for some o > 0 and
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(3) infyes,, J(p(v)) > —o0, then there is vy € Sy s.t. p(vg) s a critical point of J, and

J(p(vo)) = min J(p(v)).

vES

Proof. Since Sy is a closed subset and J(p(-)) is a continuous function on Sy, bounded from

below, by Ekeland’s variational principle [20], for any integer n, there is v, € Sy s.t.

(2.7) J(p(vs)) < inf J(p(v))+l and J(p(v)) — J(p(vn)) > —%HU—UHH, Yo € Sy, v # vy

vES n
By Lemma 2.3, for some v € Sp/ and close to v,

0d(p(vn), L)|IVJ (p(vn))
8M

I
[v = val-

J(p(v)) — J(p(va)) < —

Thus

(2.8) IV < sM

< .
nbd(p(v,), L) — nba
By the PS condition, {p(v,)} has a subsequence, denoted again by {p(v,)}, converging to

a point ug € X. If denote p(v,) = t,v, + z, where t, € R and z, € L, then, {t,v,} is
convergent since X = L @& L'. Hence, {|t,|} is convergent. Assume {t¢,} is a convergent
subsequence. Denote ty = lim, , t,.- Then, by our assumption (2), |to| > a > 0. Thus,

v, — Vg € Sps. Since p is continuous, by (2.8), p(vg) is a critical point of J and by (2.7),
J(p(w)) = minyes,, J(p(v)). !

3 A Local Minimax Algorithm in Banach Spaces

Let uy,usg,...,u, 1 be n — 1 previously found critical points of J, L = [u, ug, ..., Upn 1],

X=La L. Givene,A>0andf € (0,1). A flow chart of the algorithm reads:
Step 1: Let v} € S; be an increasing-decreasing direction at u, ;.

Step 2: Set £ =1 and solve for

up = pof) =thok + thuy + -+ 8 _jup

= arg local—maX{J(tovﬁ +tuy + -+ tpoun—)|ti € Ri=0,1,...,n— 1}

Step 3: If ||[VJ(p(v¥))|| < ¢, then output uk, stop. Otherwise, do Step 4.
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Step 4: Find a descent direction w* = —sign(tk)GE of J at uf, where Gk € L' is a modified
pseudo-gradient of J at uf = p(v¥) with the constant @ as defined in Lemma 2.1.

k k
v, + sw,

Step 5: Denote v,’j(s) = m
n n

and

n—1
p(vF(s)) = arg local—max{J(tova(s) + thuz)\tZ €R,i=0,1,...,n— 1},

=1

where initial point (¢, % ....#* ) is used. Then solve

s, = max{s = Q%Im € N,2™ > |lwgll, J(p(vp(s))) = T (p(vy)) < —§|t’SISIIVJ(p(v'Z))II}

and set uFtl = p(vF+1) = p(vF(s)).

n

Step 6: Update £k = £+ 1 and go to Step 3.
REMARK 3.1. It is worthwhile making some remarks on the algorithm:

(a) vl € Sp/ is an increasing-decreasing direction at wu,_; if J(u,—1 + tv}) > (<)J(up_1)
when |¢| is small (large). It reflects a local mountain pass structure. If X is a Hilbert

space, by taking L' = Lt and Gf = V.J(uF), it becomes Li-Zhou’s algorithm.

(b) Step 5 will not stop until ||VJ(u¥)|| < & since by Lemma 2.1, V.J(uf) # 0 implies
G(uy) # 0.

(c) There are two key steps: (1) computation of a modified pseudo-gradient, (2) finite-
dimensional unconstrained optimization. (2) can be done by some standard optimiza-

tion method. The implementation of (1) will be addressed later.

(d) In Step 3, theoretically we can either follow a modified pseudo-gradient flow given by

k

Lemma 2.1, i.e., to keep the continuity of G¥ in uk

or just find a modified pseudo-

gradient.
(e) The following theorem indicates that the algorithm is stable.

THEOREM 3.1. In the algorithm, if uf = p(v*) ¢ L, VJ(uk) # 0 and p is continuous at

v¥ € Sy, then s > 0 and ubt! = p(vE(s¥)) is well defined. Consequently J(uF*t1) < J(uk).

n

Proof. By the setpsize rule and Lemma 2.3. |
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4 Computation of Pseudo-Gradients

In this section, we present some formulas to compute a pseudo-gradient and a pseudo-
gradient flow in LP(Q) (p > 1). Their modified versions follow from a projection to a
subspace. Assume that 2 is a measurable space with measure p and || - ||, represents the

norm in LP(Q). Let us recall some wellknown results.

LEMMA 4.1. ([10]) Let f,{fn} be in LP(Q),1 < p < o0,

(a) if fo — f in LP(Q), then {f,} has a subsequence that converges to f pointwise a.e.;

(b) if fo =5 | and [|fally = [ fllp, then fu — f in LP(Q). 1

LEMMA 4.2. Let p,q > 1 satisfy % —f—% =1and f,f, € LYQ) s.t. fo — f. Then
sign(fa) fal 7T — sign(f)|f|7T in L'(Q), where

. L if g(x) 20,
sign(g)(x) = , g € LY(Q).
-1 Zf g(iC) < 07
Proof. 1t suffices to show that any subsequence, denoted always by {sign(f,)| fn|ﬁ}, has a
subsequence that converges to sign(f) |f\ﬁ in L?(Q2). Since f, — fin L?(2), by Lemma 4.1,

we have | f,|7~1 % | f|s-1. It follows,

1

sign(fa) (@) fu(@) |71 5 sign(f)(z)|f (z)|71.
Since gl)+ % =1and f, — fin LIY(Q), it leads to

sign(fu)l ful 718 = 1| fulld = llsign(£)| £17T | = [I£]1%

By Lemma 4.1, the proof is complete. 1
THEOREM 4.1. Let p > 2 and  + , = 1. Assume that J : LP(Q) — R is Fréchet
differentiable at f € IP(Q) s.t. VJ(f) £ 0. Let G(f) = sign(VJ(f))|VJ(f)|7. Then
U(f)=— ) q—1
IVJ(f)lla
is a pseudo-gradient of J at f with the constant 1. If in addition, J is C*, then VU is a

pseudo-gradient flow of J with the constant 1.
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Proof. |[¥(f)|l, =1 can be seen from

-

Gl = ([ 19T F1d)> = [ IDIE = VT

On the other hand,

(V3.6 = [ Vs Ddu = [ VI @I dn = VI

Hence (VJ(f),¥(f)) = |IVJ(f)|l, and ¥(f) is a pseudo-gradient at f with the constant 1.

To show ¥ is continuous. Let f, € LP(Q2) with VJ(fy) # 0 and {f,} C LP(Q)
st. fo — fo. Since J € CMIP(Q),R), we have VJ(f,) — VJ(fo) in L¢(R) and
IVI(fu)llg = IVI(fo)llg- Then Lemma 4.2 leads to

G(f.) — G(fo) in IP(Q), ie. U(f,) — U(fy) in LP(Q). |

1

THEOREM 4.2. Let 1 <p <2, s+ =1, p() < oo and 0 = max(1, (u(Q))> 7).
If J: LP(Q) — R is Fréchet differentiable at f with VJ(f) # 0. Then V(f) = %
is a pseudo-gradient of J with the constant 0=2 at f. If in addition, J is C', then ¥ is a
pseudo-gradient of J with the constant 0~2.

Proof. By the Holder inequality, we have

(4.1) IVl < IVIE)2(u()> 72 or (A, <1
It follows
(VI(f),¥(f)) = / W(f)(x)%du: ||VJ0<f)||2 ||we( My

Hence ¥(f) = % is a pseudo-gradient of J at f with the constant §~2.

To show W is continuous, let { f,} C L?(Q) s.t. f, — fin LP(2). Since J € C*(L?(Q), R),
VJ(f.) = VJ(f) in LY(Q). It follows VJ(f,) — VJ(f) in LP(Q2) and ||VJ(fn)|l2 —
IVJ(f)]|2, since % + % =1,1<p<2<qand u(Q) < oco. Hence ¥(f,) = ¥(f) in LP(Q),
i.e., ¥ is a pseudo-gradient flow of J with the constant §—2. |

In a general Banach space X, when VJ(f) # 0 is computed in X* at some f € X, a

pseudo-gradient of J at f corresponding to a constant 0 < < 1 can be computed through

sup VJ(f)

wex,||w|\X:1<W’ ),
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which has an upper bound é. It seems to us that it is extremely difficult, in this case, to
derive an explicit formula for computing a pseudo-gradient for a functional J : W'P(Q) — R.

Instead we develop some numerical techniques to do the job in the next section.

5 Application to Quasilinear Elliptic PDE

Consider solving the following quasilinear elliptic BVP for multiple solutions:
(5.1) Apu(z) + flz,u(z) =0,z €Q, ue X =W,"Q), p>1,

where ) is an open bounded domain in R" and Ayu(z) = div(|Vu(z)[P~?Vu(z)) is the
nonlinear p-Laplacian differential operator, which has a variety of applications in physical
fields, such as in fluid dynamics when the shear stress 7 and the velocity gradient Vu of the
fluid are related in the manner 7(z) = r(z)|Vu|P~?>Vu, where p = 2,p < 2,p > 2 if the fluid
is Newtonian, pseudoplastic, dilatant, respectively. The p-Laplacian operator also appears
in the study of flow in a porous media (p = 2), nonlinear elasticity (p > 2) and glaciology
(p € (1,%)) [4]. So far people’s knowledge about solutions to (5.1) is still very limited.
We hope to examine the qualitative behavior of solutions and find new phenomena through

numerical investigation. We have X* = W, "%(Q) where 5+ 7 = L. Under certain standard

conditions on f, weak solutions of (5.1) coincide with critical points of the functional

(5.2)  J(u) = ! |\Vu(z)|Pde — | F(z,u(z))dz where F(z,t)= [ f(z,s)ds.
P Ja Q 0

For u € X, to find the gradient d = VJ(u) € X*, for each v € X, we have
d
(d,v) = / Vd(z)Vu(z)dx = / —Ad(z)v(z)dx = %hZOJ(u + tv)
Q Q

= /Q (|Vu(x)|p_2Vu(x)Vv(:v) - f(x,u(x))v(x))dx = /(—Apu(x) — f(z,u(z)))v(z)de.

Q

Thus d = VJ(u) can be computed through solving the linear elliptic equation

(5.3) Ad(z) = Apu(z)+ f(z,u(x), €,
d(z) = 0, x € 012.

Where since Apu(z) + f(z,u(z)) € Wy (), we have d € W;(2). When u = p(v) for
some v € Sy, by the definition of a peak selection, d = V.J(u) satisfies

(d,w) = /QVd(x)Vw(ac) de =0, Vwel,
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ie., d=VJ(u) L L. In our numerical examples, we check the ratio

[14][3
(5.4) SR TR T
el - [ldllq

where || - ||, is the norm in W,”(Q). 7 < 1 by the Hélder inequality. If v > o > 0,
then G(u) = ﬁ € L' is a modified pseudo-gradient of J at w as in Lemma 2.1. It
is interesting to point out that although we have not been able to analytically prove
v > « > 0, we can numerically check this ratio in each computation. All our numerical
examples show that the ratio v is a way above 0. For p > 2, since X C X* we define
L'=Lt={veX:(uv)=0Yue L} Forp<2 VJ(u) € X* C X, it can be used
directly in the algorithm. Set GF = V.J(uf) in Step 3 of the algorithm and modify the

stepsize rule in Step 5 as

|t0|5

s = max {5 = S jm € N 2" > el Jp(ux(5) — T0(00) < 2NV B}

where || - || is the norm in Wy"*(©2). The convergence will be handled with extra care [21].
Next, the local minimax algorithm is applied to find multiple solutions for the p-Emden-

Flower Equation:

(5.5) Apu(z) + [u(@) | u(z) =0, 2 € Q, u e W,P(Q)
and the p-Henon Equation:

(5.6) Apu(z) + |z — 1" u(@)|" tu(z) =0, 2 € Q, u e WyP(Q)

where | - | is the Euclidean norm, I = (1,...,1), 1 < p < ¢+ 1 < p* with p* = nl forp<n
and p* = oo for n < p, and n is the dimension of the domain space. In our computation,
=1[0,2] x [0,2] C R2.
Note that the right-hand-side of (5.3) involves an evaluation of a higher-order derivative
of a numerical solution u, i.e., Ayu(x), which causes difficulty for using linear finite elements.
To solve the problem?, we utilize a weak form of (5.3)

(5.7) /QAd(:L')v(a:) dx = / (Ayu(z) + flz,u(z)) v(z)dz Yo e Wy

Q

2The authors would like to thank Dr. Jun Zhao for providing us with this technique suggestion
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and the identity
(5.8) / Apu(z)v(z) de = —/ \Vu(z) P 2Vu(z)Vo(z)dz Yo € WyP
Q Q

to replace the higher-order derivative term by a first-order derivative term. Thus linear finite
elements can be applied. Since p < 2 and p > 2 represent two distinct mathematical and
physical applications, and the parameter r is related to the symmetry breaking phenomenon,
we will select some values for p and r to examine their solution profiles. In all figures, Itn,
if listed, is the number of iterations, e, if listed, is the the norm of the gradient at the
ending point and 7y, if listed, is the minimum ratio of (5.4) in the last 10 iterations of
the computation for each solution. L is the support used in the algorithm and L = [0] if
it is not listed. In our numerical computations, A = 1 and € = 103, either 400 x 400 or
800 x 800 linear square elements are used. Thus our equations and finite-element meshes
possess certain symmetries. For computational efficiency, some solutions are captured by
using symmetry invariance, refer to [19] for details. In this case, the symmetry is listed in

the caption for reference.

o
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Fic. 1. Equation (5.5) with p=3, q=7. The ground state uy with J = 4.4829, ~y,i, = 0.88
(left). Two solutions with J = 40.9568, vymin = 0.93, L = [u1] (middle) and J = 34.4457,
Ymin = 0.65, L = [ul] (right).
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Fic. 2. Equation (5.5) with p=3, q=7. Three solutions with J = 188.5327, Yuin = 0.73
(left, locally odd symmetric about the lines © = %, x = %), J = 124.875, ymin = 0.83 (middle, odd

symmetric about the linesy =1 and x = 1) and J = 181.7966, vin = 0.88 (right, odd symmetric
about the linesy =,z +y =2).
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Fic. 3. FEgquation (5.5) with p=3, q=7. A solution with J = 228.2925, ~pin = 0.74 and
L = [u1] (left, 4-rotation symmetry). Equation (5.5) with p = 1.75, ¢ = 3. The ground state u;
with J = 7.0745, Ymin = 0.9, Itn = 13, e = 0.000247 (middle) and a solution uy with J = 25.4653,
Ymin = 0.96, Itn =16, e = 0.000375, L = [u1] (right).
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Fi1c. 4. Equation (5.5) with p = 1.75, ¢ = 3. Three solutions with J = 24.0274, Ypmin = 0.91,
Ttn = 37, e = 0.000643, L = [u1] (left), J = 59.4209, Itn = 31, Ymin = 0.93, e = 0.000238 (middle,
locally odd symmetric about the lines © = %,x = %) and J = 61.1246, ymin = 0.98, Itn = 33,
e =0.000197, L = [u1, ua(z,y),u2(y, )] (right).
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Fic. 5. Equation (5.5) with p = 1.75, ¢ = 3. Two solutions with J = 70.6261,
Ymin = 0.94, Itn = 61, e = 0.000205 (left, odd symmetric about the lines y = z,z +y = 2)
and J = 77.2337,Ymin = 0.91, Itn < 160, e = 0.000805, L = [u1] (middle, 4-rotation symmetry)
and its contours (right).
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Fiac. 6. Egquation (5.6) with p = 3,q = 7,7 = 7. The ground state with J = 60.46 (left).
A 2-peak solution with J = 116.231 (middle, symmetric about the line x = 1). Another 2-peak
solution with J = 118.906 (right, symmetric about the lines y = z,x +y = 2).
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Fic. 7. Egquation (5.6) with p = 3,q = 7,7 = 7. A j-peak solution with J = 219.8671
(left, 4-rotation symmetry). Equation (5.6) with p = 1.75,q = 3,7 = 7. The ground state u1 with
J = 15.7588 (middle). A 2-peak solution with J = 31.3832 (right, symmetric about the line x = 1).
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Fic. 8. Equation (5.6) with p=1.75,q = 3,7 = 7. Another 2-peak solution with J = 31.4178
(left, symmetric about the lines y = x,z +y = 2) and a 4-peak solution with J = 62.2163, L = [u1]
(right, 4-rotation symmetry).

REMARK 5.1. It is to the best of our knowledge that the above solutions are the first
time to be computed and visualized. Solution profiles to (5.5) are listed in Fig. 1(left)-
Fig. 3(left) for p < 2 and in Fig. 3(middle)-Fig. 5(right) for p > 2. It deserves to notice
the contour, the right of Fig.5, which shows the solution, the middle of Fig.5, has 5 peaks.
Fig. 3(left) with Fig. 5(middle). For (5.6), if r is small, the solution profiles are similar to
that of (5.5). When r is large, as shown by solution profiles in Fig. 6(left)-Fig. 7(left) for
p < 2 and in Fig. 7(middle)-Fig. 8(right) for p > 2, the ground states in Fig. 6(left) and
Fig. 7(middle) become asymmetric and multi-peak positive solutions take place. Such cases
are called symmetry breaking phenomena and are impossible to (5.5).

As a final remark concerning convergence of the algorithm, we point out that due to
multiplicity of solutions and Banach space setting, convergence analysis of the algorithm
is very complicated. In a subsequent paper [21], we established a unified point-to-set
convergence result (Theorem 2.1 in [21]) for a theoretically generalized version of the
algorithm by first proving an abstract convergence result with a general condition and then
verifying that the pseudo-gradient flow or pseudo-gradients computed in several different
ways all satisfy the condition.

Acknowledgement: The authors would like to thank two anonymous referees for their

interesting comments.
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