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PARALLEL ALGORITHMS FOR THE SPECTRAL TRANSFORM METHOD

Ian T. Foster

Patrick H. Worley

Abstract

The spectral transform method is a standard numerical technique for solving partial

differentiM equations on a sphere and is widely used in atmospheric circulation models.

Recent research has identified several promising algorithms for implementing this method

on massively parallel computers; however, no detailed comparison of the different algo-

rithms has previously been attempted. In this paper, we describe these different parallel

algorithms and report on computational experiments that we have conducted to evaluate

their efficiency on parallel computers. The experiments used a testbed code that solves

the nonLinear shallow water equations on a sphere; considerable care was taken to ensure

that the experiments provide a [air comparison of the different algorithms and that the

" results are relevant to global models. We focus on hypercube- and mesh-connected multi-

computers with cut-through routing, such as the Intel iPSC/860, DELTA, and Paragon,

and the nCUBE/2, but also indicate how the results extend to other parallel computer

architectures. The results of this study are relevant not only to the spectral transform

method but also to multidimensional FFTs and other parallel transforms.
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1. Introduction

The spectral transform method is widely used for fluid dynamics problems in spherical geometry,

in such areas as climate modeling, weather modeling, astrophysics, and reactor design. In this

paper, we examine the problem of implementing the spectral transform method on massively

parallel computers. Such computers comprise 102--104 processors, each with local memory

and able to access other processors' memory via an interconnection network. When designing

algorithms for these computers, important considerations include minimizing nonlocal memory

accesses, organizing interprocessor communication to make efficient use of the network, masking

communication latency, and minimizing load imbalances.

The spectral transform method as used in climate models comprises a Fourier transform phase,

in which fast Fourier transforms (FFTs) are applied to each latitude of a latitude/longitude

grid, and a Legendre transform phase, in which Gaussian quadrature is used to approximate

the Legendre transform (LT) applied to each longitude (now wavenumber) of the same grid [4].

Efficient parallel FFT and LT algorithms have been the topic of intensive research (e.g., see [16,

25,28,29]). The spectral transform is nevertheless deserving of special study, first because the

matrices involved are typically much smaller than usual for Fourier and Legendre transforms

(e.g., 64-1024 in each dimension, rather than tens of thousands), second because the two phases

interact in interesting ways on certain architectures, and third because the importance of the

spectral transform makes even small performance improvements valuable.

• Parallel spectral transform algorithms have been investigated previously by several researchers.

We and colleagues at Argonne and Oak Ridge national laboratories have developed a parallel

. transform approach based on parallel FFT and quadrature algorithms [14,32,35]; this work has

been incorporated in a parallel implementation [7,8] of the National Center for Atmospheric Re-

search (NCAR)'s Community Climate Model (CCM2) [19]. Other researchers have examined a

transpose approach, in which communication requirements are encapsulated in a matrix trans-

pose operation. This approach is used, for example, in the European Center for Medium-Range

Weather Forecasts spectral weather model [6] and in Loft and Sato's data parallel implementa-

tion of CCM2 [23]. It has also been explored by Kauranne and Barros [22], Pelz and Stern [26],

and G_rtel, Joppich, and Schiiller [17].

In addition to the transform and transpose approaches, _ .y of hybrid algorithms are

possible that combine aspects of both. A comprehensive comparison of these algorithms has

not previously been attempted. (Both [15] and [22] provide a qualitative analysis of some

algorithms, but not detailed quantitative results or performance models.) Hence, it is difficult to

evaluate the performance tradeoffs that arise when choosing a parallel algorithm for a particular

application.

In this paper, we describe analytic and empirical studies that we have conducted to determine

1. whether there is a best algorithm (on a given platform, for a given problem size, etc.);

. 2. the sensitivity of the choice of optimal algorithm to problem size, number of processors,

and platform specifics; and
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3. the benefits of optimizing for a given platform or problem size.

In the analytic studies, we develop models that characterize the performance of the various

spectral transform algorithms by relating communication requirements and load imbalances to

problem size, processor count, and other parameters.

The empirical studies .utilize a parallel shallow water equation solver designed specifically for

these experiments [36]. Considerable care has been taken to ensure that experiments are as fair

as possible, that is, that one algorithm is not unduly favored through choice of data structures,

greater optimization, etc. In addition, the code structure mimics that of general circulation

models, maximizing the applicability of results to these models.

The contributions of this paper are as follows. First, the analytic models provide a qualitative

characterization of the performance of numerous parallel algorithms for the spectral transform,

including both parallel algorithms developed previously and new algorithms developed in the

course of this work. Second, the empirical results provide a detailed understanding of the

performance characteristics of these algorithms on the target platforms. Third, we identify

robust algorithm combinations for various problem size and machine characteristic regimes.

The rest of this paper is as follows. Sections 2, 3, and 4 provide background information oil

the shallow water equations solved by our testbed code, the spectral transform method, and

parallel computation. Sections 5 and 6 describe the parallel algorithms that we examine in the

Fourier and Legendre phases of ttle transform. In §7, we use these models to make qualitative

comparisons between the algorithms and to identify performance tradeoffs on different parallel

computer architectures. Section 8 describes empirical studies conducted on a range of scalable

parallel computers, and relates the results to algorithm and machine characteristics. Section 9

describes issues not addressed in this study, and directions for future work. Section 10 presents
our conclusions.

2. The Shallow Water Equations

The nonlinear shallow water equations on a rotating sphere constitute a two-dimensional

atmospheric-like fluid prediction model that exhibits many of the features of more complete

models [34]. These equations are frequently used to investigate and compare numerical meth-

ods because they present many of the difficulties found in simulating the horizontal dynamics

in three-dimensional global atmospheric models [5].

The algorithms used to solve the shallow water equations via the spectral transform method are

similar to those employed in the NCAR Community Climate Model to handle the horizontal

dynamics component of the primitive equations [19]. Hence, a model that solves the shallow

water equations on multiple (independent) levels during each timestep of the simulation pro-

vides a framework in which the performance of CCM2's horizontal dynamics can be studied in

isolation from the other aspects of the full model. While this framework is not a completely

reliable predictor of the performance of the parallel algorithms in the full model, it allows us
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. to determine accurately the relative merits of the different parallel approaches.

For completeness, we now describe the shallow water equations in the form that we solve using

the spectral transform method. The shallow water equations on a sphere consist of equations for

the conservation of momentum and the conservation of mass. Let i, j, and k denote unit vectors

in spherical geometry, V denote the horizontal velocity, V = iu+jv, • denote the geopotential,

and f denote the Coriolis term. Then the horizontal momentum and mass continuity equations

can be written as [33]

DV

-DT = -yk × V-VO (1)
DO

D--"t" = -OV.V,

where the substantial derivative is given by

D 0

D---_() _=_-_( ) + V. V( ) . (2)

The spectral transform method does not solve these equations directly; rather, it uses a

streamfunction-vorticity formulation in order to work with scalar fields. Define the vorticity r/

and the horizontal divergence 6 by

r/ = f+k.(VxV)

6 = V.V.

To avoid the singularity in velocity at the poles, let 0 represent latitude, and also redefine the

horizontal velocity components as

(U, V)=VcosO.

Then, after some manipulation, the equations can be written in the form

Or/ 1 0 1 O

= .(1 - _2)0h(v_) - a_(V_) (3)
o, lo lO / u2+ v_ ',

= -t a(1 - p_) oh(Yr/) - a-_-7:"(Ur/),,,i.,- v2 • + 2(1 - (4) l

O0 1 0 1 0

_- = a(1- _2)0,_(WO)- -ab-_(VO)- ¢6. (5)

Here a is the radius of the sphere; the independent variables A and /a denote longitude and

sin 9, respectively; and • is now a perturbation from a constant average geopotential _.
I

Finally, U and V can be represented in terms of 7/ and 6 through two auxiliary equations
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expressed in terms of a scalar streamfunction ¢ and a velocity potential _/"

U = 1(9X 1-p20"¢
a cgA a cgtl (6)

V = li9¢+ 1-p20X
a O"S a 0_, ' (7)

where

= v2¢+I (s)

5 = V2X . (9)

In the spectral transform method, we solve Equ_,tions (3)-(5) for r/, 5, and ¢, and use Equations

(6)-(9) to calculate U and V.

3. The Spectral Transform Method

In the spectral transform method, fields are transformed at each timestep between the physical

domain, where the physical forces are calculated, and the spectral domain, where the horizontal

terms of the differential equation are evaluated. In the three-dimensional atmospheric models

that we wish to emulate, all coupling between vertical levels is also calculated in tile physical "
domain.

The spectral representation of a field variable _ on a given vertical layer above the surface

of a sphere is defined by a truncated expansion in terms of the spherical harmonic functions

{Pnm(p)eimX}:
M N(rn)

('_' P) = E E _n P2 (it)e im_ ,
m=-M,=lml

where

i_'. ..
= /_l I fm(l_)Pm(p)dP .

Here i = vrL"T, ti "- sin 9, 0 is latitude, J is longitude, m is the wavenumber or Fourier mode,

and P_(ti) is the associated Legendre function. The spherical harmonic functions are the

eigensolutions of the Laplacian operator in spherical coordinates and constitute a complete and

orthogonal expansion basis for square integrable functions on the sphere. Additional properties

of' _,hese functions can be found in [24].

In the truncated expansion, M is the highest Fourier mode and N(m) is the highest degree of the

_sociated Legendre function in the north-south representation. Since the physical quantities
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are real, _g,n is the complex conjugate of _n. This fact is used to reduce both computational

" complexity and storage requirements by calculating only spectral coefficients for nonnegative
modes.

In each vertical layer of the physical domain, fields are approximated on an 1 × J longitude-

latitude grid, where the ! longitude grid lines are evenly spaced and the J latitude grid Lines

are placed at the Gaussian quadrature points {pj} in [-1, 1]. Transforming from physical

coordinates to spectral coordinates involves first performing a Fourier transform for each line

of constant latitude, generating the values {_,n(pj)} on an M x J wavenumber-latitude grid

that we will refer to as the Fourier grid. This is followed by integration over latitude for each

line of constant wavenumber, approximated using J-point Gaussian quadrature, to obtain tile

spectral coefficients, ,..,
d-1

_m ._ Z _m (Uj) P2 (Pj) wj .
j=O

Here wj is the Gaussian quadrature weight corresponding to the Gaussian latitude #i. The

point values are recovered from the spectral coefficients by computing

N(m)

_m(p) = _ _pm(u )
,=lml

for each m, followed by inverse Fourier transforms to calculate _(A,_). When the spectral

transform method is applied in a three-dimensional atmospheric model, the principal data

structures are as shown in Fig. 1. P denotes the physical grid, F the Fourier grid, and S the

spectral grid.

In the shallow water equation code [20], each timestep begins by calculating the nonlinear terms

UrI, Vr/, U4), V4), and 4)+(U2.+V2)/(2(1-lJ_)) on the physical grid. Next, the nonlinear terms

and the state variables r/, 6, and 4) are Fourier transformed. The forward Legendre transforms

of tlaese fields are then combined with the calculation of the tendencies used in advancing _,

6, and 4) in time (essentially evaluating the right-hand sides of Equations (3)-(5)) and the I

first step of the time update. This approach decreases the cost, when compared to calculating

transforms individually and then calculating the tendencies, and generates spectral coefficients

for only three fields instead of eight. Next, the time updates of T/, 6, and 4) on the spectral

grid are completed. Finally, the inverse Legendre transforms of O, 6, aad 4) are combined with

the calculation of the fields U and V (solving Equations (6)-(9)), followed by inverse Fourier
transforms of these five fields.

Without significant loss of generality, we assume a triangular spectral truncation in this paper:

N(m) = M and the (m, n) indices of the spectral coefficients for a single vertical layer form a

triangular grid. For a triangular truncation, exact, unaliased transforms of quadratic terms are

. obtained if I > 3M + 1 and if I = 2J [33]. In this work we also u-e a fast Fourier transform

(FFT) algorithm that requires I to be a power of two. As is commonly done, for a given M we

choose I to be the minimum power of two satisfying I >_3M + 1, and set J = I/2. With these

assumptions, the value of M can be used to characterize the horizontal resolution of the grids,
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Figure 1: Principal Data Structures in Spectral Transform

and the term "TM" is used to denote a particular discretization. For example, for T85 we have

M = 85, I = 256, and J = 128, and the number of spectral coefficients (Nspe¢) calculated per

field for a single vertical layer is

M M 1

N, pec = E E 1 = _(M+I)(M+2) = 3741.
rr_'- 0 rl'-- rrl

The number of vertical levels is determined primarily by the physical processes that are being

modeled and is chosen independent of M in current meteorological models. The term "TMLK"

will be used to denote a model with a TM horizontal grid resolution and K vertical levels.

In subsequent discussion, we denote the index set of the physical grid by a triple (2",3", E),

with 2" corresponding to longitude, 3" to latitude, and K: to the vertical. We denote the index

set of the Fourier grid by the triple (._, if, K;), with .£4 corresponding to wavenumbers. We

denote the index set of the spectral grid by the triple (.M,.)V',K:), with At" corresponding to

polynomial degree. (Note that in a triangular truncation, the index set At"is dependent on the

wavenumber.) We assume that computation is performed on a two-dimensional logical grid of

P = Px x Py processors. We denote an individual processor by an index pair (z, y).

Different phases of a parallel spectral transform algorithm may employ different decompositions

of the computational grids onto the processor grid. We describe these by a triple, for example,

of the form (2"a,Jb,l(.e), where a, b, and c are X, meaning that indices in the subscripted

dimension are partitioned over processors in the X plane of the processor grid; Y, meaning

that indices are partitioned over processors in the Y plane; or null, meaning that indices are

not partitioned. Analogous notations are used to represent the decompositions of the Fourier

and spectral grids. Our decompositions never decompose over more than two dimensions. We

assume that the physical space grid is always decomposed as (2"x, J_', K:) and that the physical

domains of all fields are decomposed (and mapped to processors) in the same way, so that

computations in vertical columns can proceed without communication. (These computations

are not considered here but are an important and complex part of a climate model that are

difficult to parallelize efficiently.) Unless otherwise noted, we also assume that all fields use the

same Fourier and spectral domain decompositions.



-7-

4. Parallel Algorithms and Architectures
b

Scalable parallel computers generally comprise a number of independent computers and an

" interconnection network. Each computer has its own processor and memory, can execute a

sequential program, and can send and receive messages to and from other computers. In the

absence of concurrent computation and communication, the run time for a parallel program on

such a system can be characterized on a per-processor basis as

T- Tcomp d- Tcomm , (10)

where reomm is the time spent (actively) communicating or waiting for messages to arrive and

reomp is the time spent computing (i.e., not communicating).

In all of the algorithms described in this paper, each send request is closely preceded or followed

by a receive request for a message of approximately the same size. In current multiprocessors,

the cost of such a send/receive pair can often be modeled with reasonable accuracy as

Teomm =t, + Ntw, (11)

where t8 is the time to initiate the communication requests, N is the size of the messages

in words, and tw is the time to transfer a single word of data into the network and transfer

another word out of the network. By choosing ts and tw to reflect intrinsic system performance

characteristics and defining Tcomm to be the sum of the cost of these send/receive pairs, (10)
becomes a lower bound on the execution time of the form

T = Tcomp + Z (t, + Nitro) • (12)
/

Costs omit: ed in this lower bound--for example, idle time waiting for messages to arrive or

buffer copy:ng associated with message passing--are generally proportional to the number

of messages or to the message lengths in each of our algorithmic phases: physical domain

computations, FFT, LT, and spectral domain computations. (This is due to the nature of our

algorithms and does not hold in general.) Hence, by fitting (12) for a given phase to empirical

data, system- and algorithm-dependent values for t8 and tw can often be derived for which (12)

is valid for a large range of problem sizes and numbers of processors.

Whether as a lower bound or as an empirically-fitted performance model, (12) is often sufficient

to make accurate qualitative comparisons between parallel algorithms, and will be used in

the algorithm analysis to follow. There are also two generalizations of this model that are

important for some of the multiprocessor platforms included in this study, incorporating the

, impact of computation/communication overlap and network bandwidth limitations, respectively.

In the following, we use an example to illustrate the simple model; we then introduce the

generalizatioim.
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4.1.ParallelAlgorithm Example
.i

We use thefastFouriertransform(FFT) to illustratetheuseof(12).The Fouriertransform,

Y = {Yk}, of a sequence of D values x = {zj} is given by

D-1

Yk "- _ Xj e2xijk/D ,
j=0

where s = x/Z'f. The FFT exploits symmetry to perform this computation in log 2 D steps, each

involving O(D) operations. Assume that x is partitioned over Q processors by blocks, and let

D = 2d and Q = 2 q for some integer d and q, d _>q. The first d- q stages of the FFT can then

proceed without communication, while each of the last q stages involves a pairwise exchange

of 2 d-q data or intermediate results with another processor [16,18,25,28,29]. Each processor

engages in log 2 Q communication operations, each involving the transfer of D/Q data, and
communication costs are

D

Tcomm = log2O (t, +-_tw) . (13)

The parallel and sequential algorithms perform exactly the same computation. As this compu-

tation is partitioned evenly among the Q processors, our performance model predicts that the

time taken by the parallel code is

T = T.e...._q+ Tcomm, (14)
Q

where Taeq is the time taken by the sequential code on a single processor.

4.2. Computation/Communication Overlap

Some computers allow the effective cost of interprocessor communication to be reduced by

overlapping computation with some of the operations performed to send or receive a message

or with the time spent waiting for a message to arrive. A simple lower bound on the execution

time when exploiting overlap is

T : max{Tcomp, Tcomm}',

hence, overlap at most halves the nonoverlap performance and does not change asymptotic

behavior. We do not model explicitly the effect of overlap, but note when it can be used to
reduce communication cost.

4.3. Network Bandwidth Limitations

Equation (12) assumes that the cost of sending a me_ssage is independent of the number of

processors that are communicating at the same time. However, some interconnection net-
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work/algorithm combinations may result in multiple processors attempting to send messages

" over the same wire simultaneously. The impact of this behavior on performance can often be

modeled with reasonable accuracy by assuming that the processors share available bandwidth,

- tbal, is, by scaling the data volume term of our communication cost model by S, the number

of processors sending concurrently:

Tcomm.bandwidth.limited -- t, -[- SNOw. (15)

The value S depends on properties of both the parallel algorithm and the underlying commu-

nication network. For example, the FFT described above can be organized to execute without

competition for bandwidth on a hypercube [21]. In contrast, on a 1-D mesh of Q proces-

sors, each processor generates messages that must traverse 1, 2, ..., 2q-1 hops distant in the

q steps of the algorithm [14,18]. The total number of hops traversed by these messages is
q-1 2iQ_"_i=o = Q(Q- 1). This represents the number of wires to which a processor requires

exclusive access during the FFT. Because a 1-D bidirectional mesh provides only 2(Q- 1)

wires, the algorithm cannot possibly proceed in less than Q/2 steps, rather than log 2 Q steps

as supposed previously. Hence, the following model is a lower bound on communication costs:

D

Tfft_mesh_,d-- (log2 Q)t, + _-tw . (16)

5. Parallel Fourier Transform Algorithms

We now present the parallel spectral transform algorithms that we evaluate in this paper. By

assumption, the physical and spectral domains for each field (y, 6, @, U, and V) are decomposed

and mapped onto processors in the same fashion. Thus, the calculation of the nonlinear terms

and the completion of the time update of y, 6, and _ can proceed independently on each

processor, and the computations will be load balanced if the decompositions are equipartitions

of the index sets. These calculations have e(N) complexity, compared with e(N log 2 N) for

the Fourier transform and e(N 2) for the Legendre transform. Since any load imbalances will

also reflect load imbalances in the Fourier or Legendre transforms, the effect of load imbalances

on performance can be compared qualitatively by considering the transforms only. Hence, we

disc,lss only parallel Fourier and Legendre transform algorithms.

For each algorithm that we consider, we develop performance models based on (12). We also

consider the impact of bandwidth limitations in mesh architectures. On a hypercube we assume

that the two-dimensional logical processor mesh of size Px x Py - 2q x 2r = 2p is mapped into

a hypercube of dimension p in such a way that each processor row and column is mapped to

a subcube of dimension q and r, respectively [21]. Hence, performance analysis reduces to the

. problem of determining the cost of an FFT or LT in a hypercube. On a 2-D mesh computcr,

we _qsume that the Px x Pr logical processor mesh is mapped to an equivalent physical mesh.

Thus, each FFT and LT algorithm executes in a 1-D processor array. Although this meansi

that at most one half of the available wires are used in each communication phase, experiments
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suggest that this mapping is close to optimal when Px _ Pr. Increasing the connectivity

for one phase (e.g., FFT) of the spectral transform in order to improve performance generally

decreases the performance of the other phase (e.g., LT) to a degree that offsets the earlier gain.

Moreover, as will be shown later, Px w, Pv is generally optimal, so this assumption will not

unduly affect the qualitative analysis.

We first consider parallel algorithms for the first phase of the spectral transform, in which real

FFTs are performed on each row of the physical grid. The test case used in these experiments

involves one forward FFT for each of 8 fields, J latitudes, and K vertical levels, and one inverse

FFT for each of 5 fields, J latitudes, and K levels, per timestep. As I = 2J, we must perform

13JK FFTs per timestep, each on a vector of length 2J. As noted in §3, we assume that the

physical grid is initially decomposed as (Zx, fir,/C). We also assume that the Z index set is

partitioned over the Px row processors in Px equal-sized blocks and that P,,, divides J evenly.

We will relax the latter assumption when considering load imbalances.

An unordered real FFT is used in all experiments. This is cheaper than an ordered FFT,

especially for the parallel FFT of §4, which would require additional communication to effect

the ordering. It also provides some load balancing during the LT phase, as will be described in

§6.

5.1. Distributed FFT

Our first FFT algorithm assumes (Zx, fir, K) and (Mx, fir, K) decompositions of the physical

and Fourier grids, respectively. Hence, both its input and output are decomposed across Px

processors, and we can use the algorithm presented in §4. There is no load imbalance if Pr

divides d evenly, there is no redundant work, and communication cost is given by (13).

Each row of Px processors is responsible for transforming 1//_, of the physical grid, that

is, computing 8KJ/Py forward FFTs and 5KJ/P,,, inverse FFTs. The forward and inverse

FFTs are each computed as a block, so the number of messages is that required for two single

transforms. As each FFT is applied to a vector of length I, the two block FFTs transform

8KIJ/t_ = 16KJ2/Pr and 5KIJ/Py --" IOKJ2/t_ data per processor row, respectively.

Substituting the data volume values for D and Px for Q and using P - Px PY, we obtain from

(13) the communication cost expression in Table 1.

Computation/Communication Overlap. To exploit overlap, the single-block FFT can

be divided into two, allowing one block's communication to be overlapped with the other's com-

putation [32]. Only the first swap involving the first block is not overlapped with computation.

This process requires twice as many messages, as indicated in Table 1, but has been shown to

be cost effective on some multiprocessors.

Bandwidth Limitations. Both the one- and two-block algorithms can be mapped to a

hypercube without competition for bandwidth [16]. As noted in §4.3, they will suffer from
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. Table 1: Communication Characteristics of Parallel FFT Algorithms

. Algorithm Messages Data Volume

Distributed 2 log 2 Px 26_ log s Px

J2K

Overlapped Distributed 4 log s Px 26---_- log s Px

J2K Px - 1
O(Q) transpose 2(Px - 1) 26

P Px

O(log Q) transpose 2 log s Px 13J_--K logs Px

Table 2: FFT Performance Models Specialized for 1-D Mesh (where they differ)

Algorithm: Revised Data Volume

Distributed 13-_ Px

O(Q) transpose 13 J2K (Px + 1)3 P

O(log Q) transpose "_---px13JpK

bandwidth limitations on a I-D mesh. Applying (16) to the shallow water code, we obtain the

expression in Table 2.

Algorithm Limitations. The basic operation in the standard power-of-two FFT is a "but-

terfly" transform involving two complex values. This corresponds to four real vah, es in the

real FFT, and at least four longitudes must be assigned to each processor to avoid redundant

computation. Thus, if I = 2d, we are restricted to Px _< 2d-2. The distributed FFT algorithm

used in this study also requires that Px be a power of two.

Load Balance. As will be discussed in §6, the choice of Legendre algorithm determines

whether the 3' index set is partitioned over the Pr column processors in Py or 2Py equal-sized

•_a blocks. Two blocks are assigned per processor column in the latter case. If Py does not divide
J (or J/2) evenly, load is somewhat unbalanced, with the processor row with maximum load

• computing 13K[J/Pr] (or 26K[J/(2Pr)]) FFTs. This imbalance increases both data volume

and computation cost proportionally. See Table 5.
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5.2. Transpose FFT

An alternative algorithm reorganizes the physical grid from (Ix, ,.Ty, I(,) to (I, Jy, K.x) prior to

the forward FFT so that each latitude row is stored within a single processor [1,3,6,23,26]. This

eliminates the need for communication during the FFT, but requires communication within the

transpose used for the reorganization. After the transform, the Fourier grid is decomposed as

(Ad, fly,/Ex). The inverse FFT-proceeds similarly, requiring a transpose after the transform

to reorganize from (Z, ffv,ICx) to (Zx,Jy,K.).

The t_anspose requires that each processor exchange information with the other Px processors

in the same row of the processor grid. The two primary in ?lementation approaches require

O(Px) and O(log Px) communication steps, respectively.

O(Q) Transpose. The first algorithm proceeds in Q- 1 steps on Q processors: at each step,

each processor sends 1/Q of its data to another processor [12,21,28]. Communication cost is as
follows.

D

Ti,neartran,po,e = (Q-1) (t, +-_tw) (17)

Substituting appropriate values for D and Q and counting both the forward and inverse FFTs,

we obtain the expression in Table 1.

Note that for this algorithm to be efficient, and for (17) to hold, some care must be taken

with the order of the data communication. For example, significant contention can result if all

processors send to processor i in the ith step. The schedules used in our experiments send at

most one message to each processor during a given step.

O(logQ) Transpose. The transpose can be performed in (log 2 Q) communication steps at

the cost of increased communication volume [13,27]. We first partition processors into two sets.

Each processor sends to the corresponding processor in the other set a single message containing

all the data that it possesses that is destined for processors in the other set. This partitioning

and communication process is repeated logQ times until each set contains a single processor.

Each message has size D/(2Q), so the total communication volume is (log 2 Q)/2 times greater

than in the O(P) algorithm, and communication costs are

D

7log tr.n.po.e = Iog_ Q (t, + _-_w). (18)

When applied to the FFTs in the shallow wager code, communication costs are as in Table 1.

Computation/Communication Overlap. Overlap can be introduced in the transpose

algorithms by breaking up a one-block transform comprised of F vectors into B blocks of size
w

FIB. After the first block is completely transposed, the transpose of a block can (potentially)

be overlapped with the transform of the block preceding it.
o
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This algorithm has not proven to be efficient in practice. Large B minimizes F/B, the size of

" the block whose transpose is not overlapped, but the number of messages grows by a factor of B,

and not all mesnage startup costs can be overlapped. Also, the transform must be divided into

- tile same number of stages as the transpose algorithm to allow for interleaving. This restriction

may diminish the computational rate.

Bandwidth Limitations. Neither transpose algorithm suffers from significant bandwidth

limitations on hypercubes [12,16,21], but both do so on mesh architectures. In the ®(Q)

transpose, a total of (Q3 _ Q)/3 hops are traversed on 2(Q - 1) wires, requiring that the data

volume be scaled by Q(Q+ 1)/6 instead of Q- 1. The scaling factor for the O(logQ) transpose
is the same as that used for the distributed FFT. See Table 2.

Algorithm Limitations. Both transpose algorithms decompose the vertical dimension and

thus require that Px _< K if whole processor rows are not to be idle during the FFT. As K

can be significantly smaller than I, this restriction is limiting for the transpose algorithms.

One approach to mitigating this problem is to decompose also over the field "dimension" (8

for the forward FFT and 5 for the inverse) [22]. Many of these fields must be reunited for

the LT phase, however, resulting in other performance problems. This generalization and the

associated problems are discussed in §9. The O(logQ) transpose algorithm requires that Px

be a power of two.

Load Balance. If/_ does net divide J or J/2 evenly, load is unbalanced as in the distributed

• FFT algorithm. There is also load imbalance if Px does not divide K evenly; some processor

columns must compute FFTs for as many as [K/Px] vertical levels. See Table 5. An analogous

load imbalance does not occur in the distributed FFT because I and Px are both required to

be powers of two.

6. Parallel Legendre Transform Algoritkrns

We next consider parallel algorithms for the second phase of the spectral transform, in which

I,egendre transforms (LT) are performed on each column of the Fourier grid. We define a

single forward transform to be the calculation of the set of spectral coefficients {_ln =

Iml,..., N(m)} for a given wavenumber rn and field variable _, and an inverse transform to be

the calculation of the set of Fourier coefficients {_'n(pj) I 1 < j < J} for a given wavenumber

m and field variable _. Thus the number of spectral coefficients output (input) for each field in

the forward (inverse) transform is a function of the wavenumber and of the spectral truncation

used. Since we assume a triangular truncation, M - rn spectral coefficients are generated for
• wavenumber m.

At each timestep, the shallow water code performs one forward LT for each of three fields, M

wavenumbers, and K vertical levels, and one inverse LT for each of five fields, M wavenumbers,
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and K vertical levels. Eight fields of Fourier coefficients are used to produce tim three fields of

spectral coefficients, and these three spectral fields are used to produce the five fields of Fourier

coefficients. As we a-_sume that J ._ (3M + 1)/2 and I = 2J, the total number of spectral

coefficients produced/consumed in these transforms is 3NlpeeK = (3/2)(M + 1)(M + 2)K

(2/9)(J + 1)(2J + 5)K.

We describe four Legendre transform algorithms. The first two use distributed vector sum

algorithms to complete the LT, while the third and fourth use the transpose algorithms of the

preceding section. Each algorithm can be used with any FFT algorithm, but load balance

may vary. To simplify the exposition, we assume initially assume that the distribution of

spectral coefficients between the different processor columns is uniform, that is, approximately

(2/9)(J + 1)(2J + 5)K/Px spectral coefficients per processor column.

6.1. Distributed LT

The first two LT algorithms assume either (.Mx, Jr', K.)/(.h/Ix, A/'y, K;) decompositions of Fourier

and spectral space, respectively, or (.hal, Jr', K:x)/(.h4,Afr', K:x) decompositions. The simple

forward LT is computed as

,_m= ,_m(pj)pnm(l_j)wj = (m(pj)Pnm(pj)w j =_ _(y) . (19)
j=0 y=o \ieJ_, y=o

o

Each partial sum T_n(y ) can be evaluated within a processor (z,y) without interprocessor

communication. The final calculation of the spectral coefficient _nm requires the summation

of Py partial sums distributed over Pr" processors. A "column-wise" distributed vector sum

algorithm can be used to perform this summation in a block fashion for all spectral coefficients,

fields, and vertical levels associated with a given processor column. The same approach can

also be used with the more complicated transforms producing _nm from multiple fields of Fourier
coefficients.

The simple inverse LT is computed as

N(m)

_,n (pj) = E '_ Prim(PJ)"
n=lml

Each processor can calculate its associated Fourier grid values independently if the (distributed)

vector of spectral coefficients {_m } is first replicated on all Pr" processors in the given processor

column. This requires a broadcast operation prior to the inverse LT. The same approach also

works when more than one field of spectral coefficients is needed to evaluate the Fourier grid
values.

For ease of coding and interprocessor communication efficiency, we have found it useful to com-

bine the distributed vector sum and broadcast in a single operation. Thus, at the end of the

forward LT, all processors in a given colurrm have the same spectral coefficients, and the de-

composition of the spectral grid is (¢_¢1x,A/', K:), a one-dimensional rather than two-dimensional
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, Table 3: Communication Characteristics of Parallel LT Algorithms

Algorithm Messages Data..Volume•

8 (,1 + 1)(2J + 5)K (p_,_ l)Ring sum 2(P), - 1) _ p

8 (J +i)(2g + o)K
Butterfly sum 2 log 2 Pr _ p (Py - i)

52(J+ l)yiiBy-I
O(Q) transpose 2(Pr - 1) _ p py

26 (J + 1)JK
e(log Q) transpose 2 log 2 Py --_ p log_ Py

,.,

decomposition. A disadvantage of this approach is that a small amount of computation that

modifies the spectral coefficients between the forward and inverse LTs must be performed re-

dundantly on the replicated coefficients. But the complexity of this computation is of a lower

order and has a smaller constant than that involved in the LT operations. In our experiments,

the savings due to improved communication efficiency easily outweigh the cost of the redundant

computation. The redundant computation is ignored in subsequent analysis.

Ring Sum. We now describe the first of two LT algorithms based on this structure (dis-

, tributed vector sum and broadcast). These algorithms differ only in the mechanisms used to

sum the vectors of partial sums Tnm and to replicate the results. In the ring sum algorithm,

data flows around a logical ring of processors. A summation involving Q processors proceeds

in Q - 1 steps, with each processor receiving D/Q data from its left neighbor and sending D/Q

data to its right neighbor at each step. Upon completion, the vector of D spectral coefficients

is evenly distributed over the Q processors. This process is reversed (without the summations)
to broadcast the result. Communication costs are

(°)Tr,n,.m= 2(Q- l) t°+ . (20)

In the shallow water code, Q = Py and D _ (4/9)(J + 1)(2./+ 5)K/Px (because the spectral

coefficients are complex (two-word) values), giving the expression in Table 3.

Butterfly Sum. The butterfly sum algorithm is a hybrid of two algorithms [31]. For long

vectors, we use a recursive halving algorithm [16] that utilizes a butterfly communication pattern

like the distributed FFT. Each processor communicates (and sums) D/2 data in the first stage,

. half as much (D/4) in the second, and so on, so that each processor communicates a total

of D(Q - 1)/Q data in (log 2 Q) steps. The global sum is then complete, and the vector of

D spectral coefficients is evenly distributed over the Q processors. This process is reversed

(without the summations) to broadcast the result. Total communication cost is as follows:
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Table 4: LT Performance Models Specialized for 2-D Mesh (where they differ)

Algorithm Revised Data Volume

4 (J + 1)(2J + 5)K p_. log spyButterfly sum _ p

O(Q) transpose 26 (J + 1)JK-9- P (Pv + 1)

O(log Q) transpose -_-13(g +p1)gK p),

O-1

Tbutterfly sum -- 21og2Q t,+ 2D-_tw .
(21)

When the vector becomes small, the hybrid algorithm switches to an exchange algorithm in

which each processor communicates all the remaining data at each subsequent step. This elim-

inates some of the broadcast communication. The vector length at which the hybrid algorithm

switches is a machine-dependent constant, and the communication cost of the butterfly sum is

well characterized by (21). This approximation is used for the expression in Table 3.

Computation/Communication Overlap. The computation of the local sums {T,m(y)}

can be interleaved with stages of the distributed vector sum algorithms. Similarly, the broad-

cast can be delayed until the computation of the inverse LT, and the stages of the broadcast

interleaved with computation. This eliminates the redundant computation on the spectral grid,

because the broadcast is delayed, and does not change the number of messages or data volume.

When the interleaving is organized so that the communication of one stage of the algorithm is

overlapped with the computation of the next stage, the ring sum is able to perform O(J4/Py)

computation while communicating O(Py j3) data [35]. This overlapping can be highly effective

for small P,,, and/or large J, decreasing the cost of communication significantly.

Overlap is less effective for the butterfly sum. Interleaving only applies to the recursive halving

phase of the algorithm, and the communication of a vector of length D/2 i is overlapped with

the computation of local sums for a vector of length D/2 i+1, i.e., half the size, rather than the

same size as in the ring sum. Due to time constraints, we have evaluated the overlap technique

only in the ring sum algorithm.

Bandwidth Limitations. A ring can be embedded in a hypercube or bidirectional mesh,

and ring sum does not suffer from bandwidth limitations on either interconnection topology.

The exchange and recursive halving components of the butterfly sum algorithm have the same

communication structure as the FFT and, thus, suffer from bandwidth limitations on a mesh.
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But the recursive halving component suffers less than the distributed FFT. In the first step,

" D/2 data are exchanged with nearest neighbors without competition. In the second step, D/4

data are exchanged with processors 2 hops distant and 2 processors compete for each wire. la

- the fourth step, 4 processors must send D/8 data over the same wire, and so on, with the result

that data volume must be scaled by (1/2) log_ Q. As before, we use the value for the recursive

halving algorithm in qualitative comparisons, giving the expression in Table 4.

Algorithm Limitations. In order to exploit symmetry (i.e., to avoid computing spectral

coefficients for negative wavenumbers), corresponding latitudes from the northern and southern

hemispheres are paired. Hence, the J index set is partitioned over the Pr colunm processors

into 2P,,, equal-sized blocks, and two blocks are assigned to each processor column. Thus,

Py < J/2 if whole processor rows are not to be idle during the LT. Similarly, Px <_ M + 1 ,_

(2/3)(J + 1), if whole processor columns are not to be idle.

Load Balance. Load imbalance arises if Py does not divide J/2 evenly, with the processor

row with the maximum load computing 2c[J/(2Pr)] flops per spectral coefficient instead of

c(J/Py), for some constant c. The communication volume does not change because spectral

coefficients are being communicated, not Fourier coefficients.

The performance of the distributed LT algorithms is also affected by the FFT algorithm used.

As the Fourier transform is unordered, the distributed FFT algorithm assigns blocks of per-

muted Fourier coefficients to the Px processor columns. This assignment approximately bal-

ances the assignment of "short" Legendre transforms (large wavenumbers) and "long" Legendre

' transforms (small wavenumbers) [32], but the load balance is not perfect and some processor

columns have more work than others. A simple (over)estimate of the maximum number of

spectral coefficients assigned to a processor column is

3(M + 1)2K 3 3
Px + _(M+I)K + _KPx for Px_<(M+I)

and 3(M + 1)K for Px _> M + 1, in contrast to (2/9)(J + 1)(2J + 5)K/Px for a load balanced

assignment. If a transpose FFT is used, then the wavenumber dimension is not partitioned.

The maximum number of spectral coefficients assigned to a processor column is (3/2)(M +

1)(M + 2)[K/Px], and there is load imbalance if Px does not divide K evenly.

Load imbalance in the assignment of spectral coefficients affects both the communication and

computation costs, scaling both proportionately, as indicated in Tables 5 and 6.

6.2. Transpose LT

, The transpose algorithms of §5.2 can also be used to reorganize the Fourier grid so that the LT

can proceed without further communication. If the FFTs are computed using a distributed algo-

rithm, then the forward LT requires that the Fourier grid first be reorganized from (A/Ix, 0ry, K)4'

to (Adx, ,7,/_y). The transform then produces a (A4A- ,A/', ,_Y) decomposition of the spectral
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Table 5: Relative Increase in Computation and Communication Costs in Fourier Transforms
As a Result of Load Imbalances

' hlgorithm Computation Cost Data Volume

Dist. FFW/Dist. LT [J/(2Pr)] rJ/(2P1,)l
g/(2P,,,)

rg/(2PY)lrg/Pxl rg/(2Pv)l rs,/pxl
Trans. FFT/Dist. LT

J/(2Pv) K/Px g/(2Py) K/Px

Dist. FFT/Trans. LT J/Pv J/Pv

rg/P,,,1rK/Pxl ra/Pvl
Trans. FFTfI_rans. LT J/Pv K/P x J/P_" K/Px.....................

grid. For the inverse LT, no further reorganizatien is needed, but the Fourier grid must be

returned to the original (.Mx,ory, K) decomposition before the inverse FFT algorithm can

begin. If the FFTs are computed using a transpose algorithm, then the Fourier grid niust be

reorganized from (.£4, fly, Kx-) to (A/Iv, or, K:x) before the forward LT, and from (A4y, ,7",h:x)

to (2¢I, flY, Kx) after the inverse LT.

In both cases, the reorganizations require Px independent transposes, each involving P_. proces-

sors. Note that these transpositions involve the truncated Fourier grid rather than the spectral

coefficients: that is, (M + 1) x J x K complex values. Hence, assuming perfect load balance,

D = 16(M+ 1)JK/Px for the transpose preceding the forward LT and D = 10(M+ 1),1K/Px

for the transposition following the inverse LT. Adapting (17) and (18) to this situation and

using 2J _ 3M + 1, we obtain the expressions in Table 3 for LT-related communication costs

when using transpose algorithms.

The transpose LT algorithms, like the transpose FFT algorithms, become less efficient when

modified to overlap computation with communication. Bandwidth limitations on a mesh affect,

the transpose LT algorithms in the same ways as the transpose FFT algorithms, as indicated
in Table 4.

Algorithm Limitations. The distributed FFT/transpose LT algorithm decomposes the

vertical dimension before computing the LT and, hence, requires Pv _<K to avoid idle processor

rows. For processor columns not to be idle requires Px < M + 1 _ (2/3)(J + 1).

Conversely, the transpose FFT/transpose LT algorithm decomposes the wavenumber dimension

before computing the LT and requires Pv < M + 1 to avoid idle processor rows. For processor

columns not to be idle requires Px < K.
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" Table 6: Relative Increase in Computation and Communication Costs in Legendre Transforms
As a Result of Load Imbalances (worst-case approximations)

Algorithm Computation Cost Data Volume
Dist. FFT/Dist': LT:......

g / (2Py ) "4g -t-----'_ 1 + -_j +-----_

Px >_ +1) J/(2Py) 2,/+5 2J+5](j [J/(2Py)] 6Px 6Px

rg/(2_)] rKIPx] rKiPx]Trans.FFT/Dist.LT
J/(2_) KIPx KIPx

Dist. FFT/Trans, LT:

K I PY 1 + -_j +----_ K I PI, 1 + ._ j +----._

Px > _(g + 1) [KIPY] 6Px IK/PY] 6Px
- K!Py 2J+5 KIPr 2J+5

Trans. FFT/Trans. LT:

Pv < ](J+ 1) KIPx 1+7(J+1)_ KIPx 1+4iJ+1)2
o

Py :> -_(a + 1) rs(lpx] 6Pv rKip,,] 6Py- KIPx 2J+5 KIPx 2J+5,,

Load Balance. Load imbalances occur in the distributed FF_I/transpose LT algorithm if

Py does not divide K evenly, and in the transpose FFT/transpose LT if Px does not divide K

evenly.

The distributed FFT/transpose LT is also subject to load imbalance as a result of the distribu-

tion of spectral coefficients generated by the distributed FFT, as described for the distributed

FFT/distributed LT algorithm. Because the transpose FFT/transpose LT algorithm also par-

titions the wavenumber dimension, it also suffers from load imbalance. Since all equipartitions

incur the same communication costs in the transpose algorithms, we minimize load imbalance

by using the partitioning strategy described by Barros and Kauranne [3]. This pairs "short"

transforms with "long" transforms in the assignment, and there is no load imbalance when Pl'

divides (M + 1)/2 evenly. Let

M+I [M+I[
= 2By [ 2Pr J"

, With the Barros-Kauranne strategy, the maximum number of spectral coefficients for a given

vertical level assigned to a processor column is

. 3(M + 1)(M + 2)
+ 6Pya(1 - a) - 3a for Pr < (M + 1)2 Pr
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and 3(./14+ 1) for/:'v _ M+ 1. Load imbalances in the assignment of spectral coefficients affect

both the communication and computation costs, scaling both proportionately. See Tables 5
and 6.

7. Qualitative Analysis

The three FFT algorithms described in §5 perform exactly the same computations. The four LT

algorithms described in _6 perform essentially the same computations, modulo different partial

orders and some redundant computations on the spectral grid. The FFT and LT algorithms are

distinguished primarily by their communication performance and their load balance. In this

section, we use the communication cost and load balance models (Tables 1-6) to make simple

qualitative comparisons.

7.1. Parallel FFT Algorithm Comparisons

Data Transfer Costs. (_(Q) transpose communicates the least data: O(J2K/P) per pro-

cessor versus O((Iog_Px)J_K/P) for O(logQ) transpose and distributed FFT. Hence, O(Q)

transpose should perform better on large problems, particularly if data transfer costs (tw) are

high relative to message startup costs (G).

Message Startup Costs. Distributed FFT and (_(logQ) transpose send fewer messages

than O(Q) transpose: O(iogQ) rather than O(Q). Hence, they should perform better when

message startup costs are large relative to data transfer costs, and on problems that are small

relative to the number of processors: that is, when J_K/P is small.

Computation/Communication Overlap. Distributed FFT communicates the most data

but is the most efficient at overlapping communication with computation and, hence, should

perform better on computers that support computation/communication overlap.

Bandwidth Limitations. Distributed FFT and O(logQ) transpose suffer less than ®(Q)

transpose from bandwidth limitations on mesh networks; when these are taken into account,

their effective data volumes differ only by constant factors from that of the e(Q) transpose.

7.2. Parallel LT Algorithm Comparisons

Data Transfer Costs. For large Py, e(Q) transpose communicates the least data: ®(J2K/P)

per processor versus O((iog_ Pt')J2If/P) for O(log Q) transpose and O(PI, J2K/P) for ring and o

butterfly sum. Hence, O(Q) transpose should perform better on large problems, particularly if

data transfer costs are high relative to message startup costs.
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On smaller numbers of processors, the coefficient as well as the complexity of the data transfer

term needs to be considered. As the O(Q) transpose operates on the truncated Fourier grid,

each processor communicates at least (52/3)J2K(Py - 1)/(PPP) words. The summation algo-

o rithms operate on the spectral coefficients. Thus, ring and butterfly sum need move only about

(16/9)(J2K)(Py - 1)/P words, and, for Pv < 10, these algorithms communicate less data than

the transpose.

Message Startup Costs, As butterfly sum and O(log Q) transpose send the fewest messages

(2log 2 Py versus 2Pv for the others), they should be superior on machines where message

startup costs are large and on problems that are small relative to the number of processors.

Agaih, the data volume term for e(logQ) transpose is asymptotically smaller than for the

butterfly sum, but is larger for Pv < 24.

Computation/Communication Overlap and Bandwidth Limitations. Ring sum call

overlap computation and communication when Pv is small or J is Large. It does not suffer

from bandwidth limitations on mesh computers and has the smallest data volume on mesh

computers.

7.3. Parallel Spectral Transform Algorithm Comparisons

A parallel spectral transform algorithm must specify not only a parallel FFT and LT algorithm

but also a processo_ grid aspect ratio (Px and PY) for a given number of processors. Px and

' Py are the processors used in the FFT and LT, respectively.

Aspect Ratio. Algorithmic comparisons are complicated by tile fact that different, com-

binations of FFT and LT algorithms perform best with different aspect ratios. For example,

consider the algorithm combination O(Q) transpose FFT and O(Q) transpose LT. Itere, a

square grid is most efficient, as comparable amounts of data are moved in each phase ill the

same way, and overlap is not exploited, so the difference in computational cost between the

two phases is not an issue. In contrast, for distributed FFT/ring sum LT it is most efficient to

(a) apply all processors to the LT for small P; (b) use remaining processors for the FFT until

communication costs in each phase are comparable; and (c) use an aspect ratio that favors tile

FFT increasingly for large P. The reason is that for small P the ring sum moves less data than

does the distributed FFT and permits more computation/communication overlap. For large P,

the ring sum sends more messages and more data, and the amount of computation available

to overlap communication is small. This analysis changes on meshes, where the ring sum is

favored if message startups do not dominate communication cost.

, These considerations suggest that it is not sufficient to perform separate studies of FFT and LT

algorithms, with the goal of selecting an optimal FFT and an optimal LT algorithm for inclusion

. in a parallel spectral transform. Instead, we must consider all possible pairs of algorithms at

all possible aspect ratios.
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Load Balance. Load balance issues arise when evaluating different FFT/LT algorithm com-

binations. Load balance is sensitive to problem size and number of processors, so general com-

parisons are difficult to make. While load balance problems can often be avoided by intelligent

choices of the number of processors and aspect ratio of the logical grid, these choices implicitly .

represent algorithm limitations for the given algorithm combination.

There are two situations in which load imbalance is difficult to avoid:

1. The number of vertical levels is relatively small in climate models. Hence, transpose

algorithms tend to need to apply relatively more processors in the other dimensions

to avoid idle processors. For example, a transpose FFT implies a need for more LT

processors. Because communication costs increase with P, LT performance will be worse

than if an equal number of processors were applied to both FFT and LT.
i

2. The partitioning of the spectral coefficients usually introduces some load imbalance. Tile

distributed FFT suff_.,s the most from this phenomenon, but transpose FFT/transpose

LT is subject to it also.

The effects of load imbalances are summarized in Tables 5 and 6; from these expressions, we see

that transpose FFT/distributed LT is slightly less sensitive to load imbalance problems than

other algorithms.

7.4. Summary

The qualitative comparisons suggest that no single algorithm is likely to be optimal in all

situations. The choice of algorithm depends on a variety of factors such as problem size, type

of network, number of processors, and communication parameters.

8. Empirical Studies

As indicated in preceding sections, the analytic models introduced in Tables 1-4 can provide

insights into performance issues. The models can also be used to evaluate scalability and to

make rough performance estimates [14,15,22]. For definitive algorithm comparisons, however,

empirical studies are required to calibrate and validate the models. We expect constant factors

to matter for a large range of multiprocessor sizes, and the relative efficiency of the imple-

mentations of the different algorithms can also play a crucial role. For example, the O(log Q)

transpose requires more data copying than the other algorithms, increasing its "effective" tto

value,

In this section we describe our experimental vehicle, methodology, and results. We demonstrate

that the best algorithms do vary with architecture, number of processors, and problem size.

We compare the optimal algorithms with a robust and asymptotically optimal algorithm, to

indicate the importance of optimizing on the different platforms. We also use the results of
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the algorithmic comparison to identify the performance-critical aspects of each platform and

to make simple scaling predictions.

8.1. PSTSWM: A Testbed Code

To permit a fair comparison of the suitability of the various algorithms for atmospheric models,

we have incorporated the algorithms in a single testbed code called PSTSWM (for parallel

spectral transform shallow water model).

PSTSWM is a message-passing parallel implementation of the sequential Fortran code STSWM

2.0 [20]. STSWM uses the spectral transform method to solve the nonlinear shallow water

equations on a rotating sphere; its data structures and implementation are based directly on

equivalent structures and algorithms in CCM2.

PSTSWM differs from STSWM in one major respect: vertical levels have been added to permit

a fair evaluation of the transpose algorithms. This is necessary because in a one-layer model,

a transpose algorithm reduces to a one-dimensional decomposition of each grid and hence can

utilize only a small numbet" of processors. The addition of vertical levels also has the advantage

of modeling more accurately the granularity of the dynamics computation in atmospheric model.

In all other respects we have changed the algorithmic aspects of STSWM as little as possible.

In particular, we did not change loop and array index ordering. Although such changes would

probably improve performance of some algorithms, our goal was to have a code as similar to a4

real atmospheric model as possible.

, PSTSWM is structured so that a variety of different algorithms can be selected by runtime

parameters. The FFT can be calculated using the distributed, O(Q) transpose, or O(logQ)

transpose algorithms. The LT can be calculated using either the ring sum, butterfly sum,

O(Q) transpose, or O(logQ) transpose algorithms. In addition, the distributed FFT can use

either the two-block algorithm that permits computation/communication overlap or the one-

block algorithm, and the ring sum LT can u_e either the overlap or nonoverlap algorithms.

Additional parameters select a range of variants of each of these major algorithms [36]. Note

that all parallel algorithms were carefully implemented, eliminating unnecessary buffer copying

and exploiting our knowledge of the context in which they are called. At the present time,

this allows us to achieve better performance than can be achieved by calling available vendor-

supplied routines. Hence, it provides a fairer test of the parallel algorithms.

8.2. Target Computers

We performed experiments on the five parallel computer systems listed in Table 7. These

systems have similar architectures and programming models, but vary considerably in their

- communication and computational capabilities. Our values for t0 and tw differ from those

reported by most researchers [10,11] because we measure the time required to swap floating-

, point values between two processors rather than the time to send bytes from a source to a

destination. Also, the computational rate is measured by running PSTSWM on a single node
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Table 7: Parallel Computers Used in Empirical Studies

ame OS Processor Network P

nCUBE/2 VERTEX R3.2 nCUBE 2 hypercube 1024
iPSC/860 NX 3.3.2 i860 hypercube 128
DELTA NX/M R1.5 i860 16 x 32 mesh 512
Paragon OSF/1 Rl.l.2 i860SP 16 x 32 mesh 512
Paragon SUNMOS i860SP 16 x 32 mesh 512

-Name t, (#sec) tw (#sec) Single-processor MFlops/sec
nCUBE/2 240 2.3 1.2
iPSC/860 200 1.4 9.8
DELTA 240 0.84 9.8

Paragon (OSF) 350 0.18 11.6
Paragon (SUNMOS) 230 0.04 11.6

and so is an achieved rather than a peak rate.

The Paragon experiments used the OSF-based Rl.l.2 operating system and the low-overhead

SUNMOS operating system from Sandia National Laboratories and the University of New

Mexico. As both systems are still evolving, any conclusions as to their performance will be short-

lived. They are interesting for this study, however, because they have significantly different ,
performance characteristics.

8.3. Methodology

PSTSWM incorporates too many algorithmic variants to permit a comprehensive study of all

possible combinations of parameters, problem size, computer, and processor count. Hence, we

proceeded in two stages: algorithm selection and algorithm comparison.

Algorithm Selection. We first performed a series of tuning experiments to identify "op-

timal" communication parameters for each FFT and LT algorithm variant on each computer.

For example, these parameters specify whether to use blocking or nonblocking sends and re-

ceives, or what schedule to use when the order of communication requests is not fixed by the

algorithm. These experiments were performed using one-dimensional decompositions (Px = 1

or P_ = 1), allowing FFT and LT algorithms to be studied in isolation. Problem dimensions

were reduced to provide the correct computation and communication granularities. For exam-

ple, when evaluating the ring sum algorithm for a 16 x 8 processor grid at T85L32 resolution,

a 1 x 8 processor grid was used with the number of vertical levels reduced by a factor of 16

(from 32 to 2).

We initially evaluated communication parameters only on "largest" and "mid-sized" computer

configurations: for example, P = 512 and P = 128 on the Paragon. If one set of communication
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parameters proved consistently superior, no further experiments were performed. We expected

the performance impact of communication parameters to be insensitive to problem granularity

and number of processors, and we found this to be true in most cases. When a difference

- was significant, we selected the parameters that worked best for the larger configurations.

In all cases, subsequent experiments for a given platform and algorithm used a fixed set of

communication parameters. These experiments were also used to eliminate noncompetitive

FFT and LT algorithmic variants.

Algorithm Comparisons. A second set of experiments compared all possible combinations

of the remaining FFT and LT algorithms on all possible aspect ratios for each power of two

number of processors supported by each computer. For example, on the Intel DELTA and

Paragon, we used 1, 2, 4, 8, 16, 32, 64,128,256, and 512 processors; for 32 proce_:_rs, we tried

the aspect ratios 1 x 32, 2 × 16, 4 x 8, 8 × 4, 16 × 2, and 32 x 1.

To measure the importance of the algorithm tuning and comparison, we repeated these exper-

iments using a reference algorithm comprising the e(Q) transpose FFT and LT algorithms.

The reference algorithm uses a particularly simple and portable communication protocol and is

asymptotically optimal in the sense that it has the smallest data volume (tw); as tile problem

size grows, this term comes to dominate communication costs in all of the parallel algorithms.

All experiments used the performance benchmark described in [34]" global steady state non-

linear zonal geostrophic flow. Experiments were performed for problem sizes T21L8, T42L16,
and T85L32.

8.4. Results: Algorithm Selection

In presenting the results of the algorithm selection experiments, we do not discuss the com-

munication parameters studied (see [36] for details) but focus on the algorithms. Table 8

summarizes both the algorithms considered and those selected for further consideration on dif- i

ferent machines. For the most part, the table is self-explanatory. We always selected at least

one distributed algorithm and one transpose algorithm for both the LT and FFT. In some cases,

two distributed or transpose algorithms were selected, indicating that both were competitive

for at least some of the problem sizes and processor counts being investigated. Tile number

of distinct parallel spectral transform algorithms selected for each platform is also indicated

in Table 8. For example, on the iPSC/860, seven algorithms were selected" 2 parallel FFT

algorithms x 3 parallel LT algorithms plus the reference algorithm.

8.5. Results: Algorithm Comparisons

• Tables 9 and 10 list the best algorithm for each computer, problem size, and processor count.

Table 9 lists the best "FFT algorithm/LT algorithm" pair, where the FFT and LT algorithms

are denoted by the keys listed in the first column of Table 8. If the best algorithm uses a one-

dimensional decomposition (i.e., either the FFT or the LT is not parallelized), then no algorithm
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Table 8: Parallel Algorithms Considered in Algorithm Selection Studies, and Algorithms
Selected for Algorithm Comparison Studies on nCUBE/2 (N), iPSC/860 (I), DELTA (D),
Paragon-OSF (P), and Paragon-SUNMOS (S). A dash indicates a noncompetitive algorithm
that was not considered for further study. The reference algorithm is included in the number
of algorithm combinations.

Key ]Phase]Algorithm Variant ] N [ I ID P ] S

D '"_'FT'Distributed no overlap - - '"'_f"Y ....Y
O overlap Y Y - - -

M O(Q) transpose Y Y Y Y Y
L O(logQ) transpose - - - Y Y

N LT Ringsum no'overlap .....
R overlap Y Y Y Y Y

B Butterflysum Y Y Y Y Y

M O(Q) transpose Y Y Y Y Y
L O(logQ) Transpose - - - Y Y

[ Number of algorithm combinations .....

Table 9: Best Parallel Algorithms as a Function of Machine/OS, Problem Size, and Processors

Machine Problem Processors

Type T [ ,L 2 4 l 8 1 16 I 32 I 64 I 128 I 256 I 512

nCUBE/2 21 8 -/R-/R-/R -/R T/R T/R T/B O/B --
nCUBE/2 42 16 -- -- -/R -/R T/R T/R T/R T/R T/R

nCUBE/2 85 32 ..... o/n T/R T/R T/R
iPSC/860 21 8 -/R-/B -/B T/R T/RIT/B T/B -- --
iPSC/86o 42 16 -- -/R-/a -/T T/R T/R T/R -- --
iPSC/860 85 32 .... T/R T/R T/R -- --
DELTA 21 8 -/B-/B -/B T/B T/B T/B T/B D/B --
DELTA 42 16 -/R-/R-/n -/T T/B T/B T/B T/B T/B
DELTA 85 32 .... /R -/T T/R T/B T/R T/T
PGtOSF 21 8 -/B -/B -/B T/R T/R T/B L/B L/L --
PG-OSF 42 16 -- -/B -/B -/T T/R T/R T/T T/T L/L

PG-OSF 85 32 .... T/R T/R ,T/R T/T T/T
SUNMOS 21 ....8 -/B-/B-/B L/B T/B L/B L/B L/L --
SUNMOS 42 16 -/B-/a-/B -/T LIB T/R T/R T/B L/L

SUNMOS 85 32 -- -- --,,,- -/T D/T L/R T/R L/T
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Table 10: Best Logical Aspect Ratios as a Function of Machine/OS, Problem Size, and Proces-
sors

I Problem [ ProcessorsT [ L 2 [ L4 ] 8 [ 16 [ 32 [ 64 [ 128 [ 256 ] 512
nCUBE/2

211 8 il×211x411×811x16[ 8×418;<8 i8x16[16x16 --
42[ 16 [ -- [ -- [ lx8[ lx16 I 8x4 [ 8x8 [ 16x8 [ 16x16 16x32
851 32l- I -- [ ...I -- I -- 14x161a6xSI 32x8 32x16
iPSC/860

1211 8 I,x2l,x4llxSI 4x41 8x41sx8 18x16l - -
1421 16I - Ilx41 1×81 lx161 8x4 ]16x4[ 16x8] -- --

"' [ 85 I 32 I -- [ -- I -- I -- [ 4x8 I 16x4 1,16x8 I -- --
DELTA

. I 21I 8 [ 1x21 1x41 lx8 I 8x2 [ 8x4 [4x1618x16 [ 16x16 --
[42[ 16 ]1×211×4]1x8[1×16 I 8×4 IX6x4[16x8[X6x16 16x32
[85[ 32 [- [- [- [ lx16[ 1x32, [ 32x2[ 32×4 [ 32x8 8x64

Paragon-OSF

21[ 8 [ 1×2[ lx4[ lx$[ 8x2 [ 8'×4 [ 8x8 [8x16[ 8x32 --
42 [ 16 I -- I lx4 [ lx81 lx16[ 16x2 ] 16x4 [ 8x16 [ 16x16 16x32
85] 32 [ -- [ -- [ -- ] -- ] 4x8, ] 16,x4[ 16x8] 16x16 32x16
Paragon-SUNMOS

21[ 8 ] lx2[ lx4[ 1×8] 2×8 ] 4x8 ] 8'x8 ] 8x16[ 8x32 --
42[ 16 [ lx2[ lx4[ lxS[ lx16[ 8x4 [ 16x4] 16x8 [ 16x16 16x32
85 ] 32 ] -- ] -- [ -- ] -- I lx32 [2x321 16x8 I 32x8 16x32

i
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is listed for the unparallelized transform. Table 10 lists the aspect ratio associated with the best

algorithm (i.e., the number of processors allocated to the FFT and LT, respectively). We see

considerable variety, with 12 of the 30 algorithm combinations being optimal in some situations,

as well as a variety of different aspect ratios. The variation in the aspect ratios stems both

from the use of different algorithms in different situations and from limitations on transpose

algorithms because of the number of vertical levels.

The tables do not indicate how much difference there is between different algorithms. Figures 2

and 3 provide some of this information. They shows on each machine at T42 and T85 resolution

the performance of the reference algorithm and three other "interesting" algorithms: normally

those algorithms that proved to be optimal for some processor count on that machine and

problem size. (In _ few cases, an algorithm that is optimal for just one processor count is

omitted, if another algorithm has similar performance.) Performance is given relative to tile

performance of the best algorithm at each processor count.

Specific comments on the empirical results follow:

1. The reference algorithm is never optimal, and in some cases is ninety per cent worse than

the best algorithm.

2. Some form of transpose forms part of the optimal algorithm combination in almost all

cases on 16 or more processors. On maximal processor configurations, the algorithm T/T

(O(Q) transpose for both FFT and LT) is either optimal or nearly optimal in almost all ,.

cases. Notice that this algorithm is identical with the reference algorithm except that its

communication parameters have been tuned for the particular machine.

3. The algorithm combination that is optimal in the largest number of configurations is

T/R: O(Q) transpose FFT and (overlapped) ring summation LT. This seems a good

candidate for a standard algorithm, although its performance degrades for large P, par-

ticularly on the Paragon. This situation may change when the message coprocessor on

the Paragon is enabled, decreasing message startup costs and better supporting compu-

tation/communication overlap.

4. Because the FFT involves more data than the LT, optimal algorithms on small numbers

of processors (16 or less) mostly decompose data structures in a single dimension so as

to avoid communication in the FFT, and use either the ring summation or butterfly

summation algorithm for the LT. When the FFT is parallelized, transpose algorithms are

almost always superior to distributed FFTs. Algorithm combinations such as O/R and

D/T are optimal in a few configurations, but are not consistent in their performance.

Finally, Fig. 4 give the execution time for the best algorithm on each computer as a function

of P, for problem sizes T42 and T85. We see considerable variation in execution times, with

the nCUBE slower than the other machines by an order of magnitude, and the Paragon un-

der SUNMOS fastest in almost all situations. The 512-processor SUNMOS time for T85L32

represents a computational rate of 4.3 GFlops/second.
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"" Figure 2: Performance of various parallel algorithms on nCUBE/2, iPSC/860, and lntel Delta,
relative to the best algorithm at that processor count.
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Figure 3: Performance of various parallel algorithms on Intel Paragon, relative to the best
algorithm at that processor count.
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resolutions.
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8.6. Discussion
v

These results demonstrate the limitations of asymptotic analysis: the asymptotically optimal

. transpose algorithms are not the most efficient in many situations, particularly for smaller

P. The results also demonstrate the importance of tuning algorithms to the communication

characteristics of a particular machine. In some cases, tuning makes a greater difference than

the choice of algorithm.

A parallel spectral transform code designed for portability should probably incorporate several

parallel algorithms. The testbed code PSTSWM indicates that this is feasible. The most useful

algorithms seem to be the two transpose algorithms for both FFT and LT, and the overlapped

ring sum LT algorithm. A distributed FFT algorithm would also be needed if the number of

vertical levels is small. A program designed to execute on a small number of processors (16

or less) can decompose data structures in one dimension only, and use butterfly summation or

overlapped ring sum LT algorithms.

9. Caveats and Generalizations

We have attempted to make our empirical studies relevant and comprehensive. But the gen-

erality of the study required some simplifying assumptions, and certain algorithms were not

. examined. In this section, we briefly discuss some of these issues. Algorithm comparisons may

need to be repeated if problems of interest differ drastically from our simplifying assumptions.
Benchmark codes like PSTSWM make this feasible.

l,

Problem size. For these experiments, problems sizes and processor counts were all powers

of two. All of the algorithms work best in under these conditions. Some, like the O(logQ)

transpose and distributed FFT algorithms, do not work at all on a nonpower-of-two number

of processors. Other algorithms suffer performance degradation. Nonpower-of-two problem

dimensions also cause load imbalances, and the amount of performance degradation is strongly
algorithm dependent.

Real weather and climate models often use a number of vertical levels significantly smaller

than the other dimensions of the problem. For example, T213L31 is used in some operational

weather-forecast models [22]), corresponding to a 640 × 320 × 31 physical grid. The transpose

FFT algorithms suffer because they must use a larger number of processors for the LT than an

algorithm that uses a distributed FFT.

Decomposing "field" dimension. As mentioned in §5.2, one technique for applying tile

• transpose algorithms when there are few vertical levels is to partition the state variables among

the processors also. (This issue did not arise in our experiments, because our example problems

had sufficient vertical levels relative to other problem dimensions.) This technique can be used

" in two ways in a transpose FFT/distributed LT algorithm:
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la. Starting with the usual (2"x, Jy, g;) distribution of the physical grid, we transpose within

processor rows over both K levels and 8 fields. We compute the FFTs, then transpose

back (again within rows) to a (Adx, ,Ty, K:) decomposition of the Fourier grid. We then

proceed with the LT. A similar approach is used for the inverse transform, although only

5 rather than 8 fields are available. This approach performs twice as many transposes

as the transpose FFT/distributed LT algorithm, but can use 5 times more processors

without load imbalance. It has been used successfully in the message-passing version of

CCM2 [7].

lb. We can avoid the double transpose at the cost of redundant work and some other addi-

tional communication by duplicating one field and decomposing over K levels and 3 sets

of 3 fields. After the FFT, we then have separate distributed LT calculations for 6, ¢,

and _ for the forward transform. For the inverse transform, we have 5K LT calculations

to distribute over (fields/5, ¢, _, U, V), and the U and V calculations require the updated

0 and ¢ fields. The simplest approach, assigning U and V to the 6 and ¢ "columns,"

requires duplication of 6 and ¢ between processor columns and significant load imbalance

and redundant work. A better load-balancing strategy would require something equiva-

lent to an additional transpose and would still not eliminate all redundant work. Note

that load imbalance in the inverse LT due to assignment of fields also implies load im-

balance in the inverse FFT. We gain (at best) the ability to use 3 times more processors

with this approach.
!
I

There is a single approach to distributing fields during the transpose FFT in a transpose

FFT/transpose LT algorithm:

2. Again duplicate one field and decompose over 3K sets of fields, transposing across pro-

cessor rows. After the FFT, transpose within processor columns, with each processor

column computing forward LTs for either 15,¢, or (. For the inverse transform, we again

need to assign the U and V calculations, duplicating the updated 6 and ¢ fields. Similar

communication and computation costs arise.

The double transpose FFT cannot be applied here because the transpose LT requires that the

field and vertical dimensions remain decomposed if all processors are to be utilized.

We feel that the most promising of these approaches is (la). It is simple, is relatively in-

dependent of problem size and number of processors, and incurs no additional computation
cost.

Serial FFT algorithm. FFT routines that can handle vector lengths with factors of 2, 3,

4, and 5 allow a larger set of problem sizes to be treated. In addition, exploiting a factor of

4 is approximately 30 per cent faster than two factors of 2. These routines can be exploited

directly in transpose FFTs. The distlibuted FFT can also be generalized, but some efficiency

is lost.
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Generalized O(iog Q) algorithms. A range of hybrid algorithms combining aspects of tile

" O(IogQ) and O(Q) transpose algorithms can be defined that trade off message counts and

communication volume in different ways. For example, the O(log Q) algorithm can be modified

. to use log 4 Q stages by communicating with 3 other processors at each stage, assuming that

the problem size and number of processors support this. Another approach is to use a switch,

taking a few steps of the O(log Q) algorithm, then switching to the O(Q) algorithm, analogously

to the butterfly sum algorithm.

The distributed FFT can also be modified to use log 4 Q stages and can then exploit factors of

4 to reduce computation costs. And it is possible to apply a transpose-like algorithm within

the FFT itself [9].

These hybrid algorithms can improve performance somewhat in regimes where message startup

costs and data volume costs are comparable. However, they place additional requirements on

problem size and processor counts.

Mesh-based algorithms. We have restricted ourselves to algorithms designed for one-

dimensional processor meshes. In cases where nonsquare logical meshes were mapped to ap-

proximately square physical grids, it would be possible in principle to utilize specialized algo-

rithms that exploit the extra connectivity [2,30]. Because our experiments show that "optimal"

processor grids are mostly close to square, we believe that these algorithms would not change
our results. This issue will be addressed in further research.

Future work. In order to perform empirical investigation of some of the issues discussed in

this section, we plan to incorporate into PSTSWM both distributed and transpose versions of

the 2-3-4-5 parallel FFT, the double transpose FFT, and the hybrid O(Q)-O(log Q)) transpose

algorithms. These add additional capabilites for problem and machines sizes that we have not

yet examined, but should not change our preliminary conclusions. Given the success of the

overlap ring sum algorithm, we will also implement the overlap butterfly sum algorithm. This

may increase the range of optimality of the transpose FFT/distributed LT algorithms on some
machines.

10. Conclusions

We have conducted a detailed analysis and empirical investigation of parallel algorithms for the

spectral transform method. This study has allowed us to identify optimal algorithms for various

problem size and machine parameter regimes. This information should be directly useful to

developers of parallel spectral-transform-based climate and weather models.

• Most of the observed performance trends can be explained using our analytic performance mod-

els; this gives us confidence both that these models are correct and that the parallel algorithm

• implementations incorporated in our testbed code are efficient. It also provides a basis for
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extrapolating the results obtained here to other regimes. However, the models as described

here are not sufficiently detailed to provide detailed performance predictions. In future work,

we will investigate to what extent the empirical studies can be used to generate performance

models that can be used for prediction.

This exhaustive study of alternative algorithms, communication techniques, and aspect ra-

tios suggests some conclusions regarding parallel libraries. It is common practice in parallel

computing to select parallel algorithms on the basis of asymptotic analysis, and then to incor-

porate these algorithms in portable libraries that are used unchanged on different computers.

The results of this study emphasize three limitations of this approach. First, asymptotically

suboptimal algorithms may be superior in many interesting regimes. Second, reference imple-

mentations of parallel algorithms designed for portability can be considerably less efficient than

implementations tuned for a particular machine. Third, interactions between algorithms can

impact performance; hence, for peak performance it can be important to optimize algorithm

combinations rather than individual algorithms.

Our work suggests three techniques that can be used to overcome these limitations. First, de-

tailed analytic models that take into account constant factors and issues such as load imbalance

can be used to develop improved understandings of algorithmic tradeoffs. Second, libraries can

be defined to incorporate multiple algorithmic options selectable at runtime. This allows codes

to be tuned for different problem or machine characteristics, either by the programmer or au-

tomatically on the basis of runtime performance, data. Third, testbed codes such as PSTSWM

car be used to explore algorithmic alternatives.
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