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Abstrakt
A method for computing a sparse incomplete factorization of the inverse of a

symmetric positive de�nite matrix A is developed� and the resulting factorized sparse

approximate inverse is used as an explicit preconditioner for conjugate gradient calcu

lations� It is proved that in exact arithmetic the preconditioner is wellde�ned if A is

an H�matrix� The results of numerical experiments are presented�
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Abstract� A method for computing a sparse incomplete factorization of the inverse of a
symmetric positive de�nite matrix A is developed� and the resulting factorized sparse approximate
inverse is used as an explicit preconditioner for conjugate gradient calculations� It is proved that in
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�� Introduction� In this paper we develop a method for computing an incom�
plete factorization of the inverse of a symmetric positive de�nite �SPD matrix A 

The resulting factorized sparse approximate inverse is used as an explicit precondi�
tioner for the solution of Ax � b by the preconditioned conjugate gradient method

Due to the fact that an explicit preconditioning step only requires matrix�vector prod�
ucts	 explicit preconditioners are particularly attractive for use on vector and parallel
computers ��	��	���
 This is in contrast with more traditional preconditioners based
on incomplete factorizations of the coe�cient matrix A which necessitate triangular
solves �a serial bottleneck in the preconditioning steps
 Sparse incomplete inverses
are also useful in the construction of sparse approximate Schur complements for use
in incomplete block factorization preconditioners ���
 Furthermore	 our preconditioner
does not require that A be explicitly stored	 a feature which is useful for problems
where A is only implicitly given as an operator


The paper is organized as follows
 In x� we describe the main idea upon which
the preconditioner is based
 x� is devoted to a proof of the existence of the incomplete
inverse factorization for H�matrices	 while in xx� and � implementation details and
the results of numerical experiments are discussed
 Our experiments indicate that
this preconditioning strategy can insure rapid convergence of the PCG iteration	 with
convergence rates comparable with those of the best serial preconditioners
 In x� we
draw some conclusions and we indicate some future research directions


This paper can be viewed as a natural outgrowth of work on a direct sparse linear
solver based on oblique projections ��	���


�� Computing an incomplete inverse factorization� If An�n is a SPD
matrix	 then a factorization of A�� can readily be obtained from a set of conjugate
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directions z�� z�� � � � � zn for A 
 If

Z � �z�� z�� � � � � zn�

is the matrix whose i th column is zi� we have

ZTAZ � D �

�
BB�
p� � � � � �
� p� � � � �










 
 






� � � � � pn

�
CCA where pi � zTi Azi�

It follows that
A�� � ZD��ZT �

and a factorization of A�� is obtained
 A set of conjugate directions zi may be con�
structed by means of a �conjugate Gram�Schmidt� �or A �orthogonalization process
applied to any set of linearly independent vectors v�� v�� � � � � vn� The choice vi � ei
�the ith unit vector is computationally convenient
 The resulting Z matrix is unit
upper triangular� indeed	

Z � L�T where A � LDLT

is the root�free Cholesky factorization of A 
 Denoting the i th row of A by aTi 	 the
inverse factorization algorithm can be written as follows


The Inverse Factorization Algorithm

�� Let z
���
i �� ei �� � i � n

�� for i � �� �� � � � � n
for j � i� i� �� � � � � n

p
�i���
j �� aTi z

�i���
j

end
if i � n go to ��
for j � i � �� � � � � n

z
�i�
j �� z

�i���
j �

�
p
�i���
j

p
�i���
i

�
z
�i���
i

end
end

�� Let zi �� z
�i���
i and pi � p

�i���
i 	 for � � i � n 


Return Z � �z�� z�� � � � � zn� and D �

�
BB�
p� � � � � �
� p� � � � �










 
 






� � � � � pn

�
CCA �

Notice that the matrix A need not be explicitly stored�only the capability of
forming inner products involving the rows of A is required
 This is an attractive
feature for cases where the matrix is only implicitly given as an operator
 Once Z
and D are available	 the solution of Ax � b can be computed as

x� � A��b � ZD��ZT b �
nX
i��

�
zTi b

pi

�
zi�
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A similar algorithm was �rst proposed in ���
 For a dense matrix this method re�
quires roughly twice as much work as Cholesky
 For a sparse matrix the cost can
be substantially reduced	 but the method is still impractical because the resulting Z
tends to be dense
 The idea of computing a sparse approximation of Z to construct
a preconditioner for the conjugate gradient method was �rst proposed in ��� �see also
��	��
 This paper is devoted to developing and testing this idea


Sparsity is preserved by reducing the amount of �ll�in occurring in the computa�
tion of the z �vectors
 This can be achieved either by ignoring all �ll outside selected
positions in Z or by discarding �ll whose magnitude falls below a preset drop toler�
ance �see x� for details
 The motivation for this approach is based upon theoretical
results and computer experiments which show that many of the entries in the inverse
�or in the inverse Cholesky factor of a sparse SPD matrix are small in absolute value
��	���
 Several authors have exploited this fact to construct explicit preconditioners
based on sparse approximate inverses ��	��	���
 However	 the approach taken in this
paper is quite di�erent from the previous ones


If the incomplete inverse factorization process is successfully completed	 one ob�
tains a unit upper triangular matrix �Z and a diagonal matrix �D with positive diag�
onal entries such that

M�� �� �Z �D�� �ZT � A��

is a factorized sparse approximate inverse of A 
 It is shown in the next section
that such an incomplete inverse factorization of A exists �in exact arithmetic for
arbitrary values of the drop tolerance and for any choice of the sparsity pattern in
�Z when A is an H�matrix
 For general SPD matrices the process may break down
due to the occurrence of negative or zero pivots �pi� Although numerical experiments
show that this breakdown is not very likely to occur for reasonably well�conditioned
problems	 it is necessary to safeguard the computation of the approximate pivots
against breakdown in order to obtain a robust procedure �see x�


In this paper we limit ourselves to SPD matrices	 but it is possible to apply
the inverse factorization algorithm to arbitrary matrices
 In exact arithmetic	 the
procedure can be carried out provided that all leading principal minors of A are
nonzero ���
 The resulting Z and D matrices satisfy

AZ � LD

where L 	 a unit lower triangular matrix	 is not explicitly computed
 Hence	 Z is
the inverse of U in the LDU factorization of A� The application of such an im�
plicit Gaussian elimination method to the solution of sparse linear systems has been
investigated in ��	�	���


�� Existence of the incomplete inverse factorization� The preconditioner
based on the incomplete inverse factorization of A exhibits many analogies with the
classical incomplete LDU factorization of Meijerink and Van der Vorst ����
 These
authors proved that such an incomplete factorization is well�de�ned for arbitrary zero�
structures of the incomplete factors if A is an M�matrix
 In other words	 if A is a
nonsingular M�matrix	 then the incomplete factorization can be carried out	 in exact
arithmetic	 and the computed pivots are strictly positive
 Furthermore	 the pivots in
the incomplete factorization are no smaller than the pivots in the exact factorization

In ����	 Manteu�el extended the existence of incomplete LDU factorizations to the
class of H�matrices
 Recall that A � �aij� is an H�matrix if �A � ��aij� is an M�matrix
where

�aij �

��jaijj when i �� j
aii when i � j

�
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Note that a diagonally dominant matrix is an H�matrix

If A is a symmetric H�matrix	 this result means that the incomplete Cholesky

factorization always exists and it can be used to construct a �symmetric positive
de�nite preconditioner for the conjugate gradient method
 If A is a general �non�H
SPD matrix	 the incomplete factorization may break down due to the occurrence of
zero pivots	 or the corresponding preconditioner may fail to be positive de�nite due
to the presence of negative pivots


The same turns out to be true for the incomplete inverse factorization described
in the previous section
 Here we prove that the inverse factorization algorithm given
in x� will never break down	 in exact arithmetic	 provided that A is an H�matrix�
in the symmetric case this implies that the approximate inverse �Z �D�� �ZT is positive
de�nite and so it may be used as preconditioner for the conjugate gradient method

This fact was �rst proved for M�matrices in ���


The proof runs as follows
 First we show that the incomplete process will never
break down if A is an M�matrix
 This is a consequence of the fact that applying the
incomplete inverse factorization scheme on A is equivalent to applying the complete
�exact scheme to a matrix �A obtained from A by setting o��diagonal elements
to zero
 Because the class of M�matrices is invariant to setting o��diagonal entries
to zero	 �A is an M�matrix and therefore the inverse factorization algorithm can be
carried out and the corresponding pivots �pi will be positive
 Moreover	 we will see
that the pivots cannot decrease as a result of dropping


Subsequently we show that when A is an H�matrix	 the pivots pi computed by
the inverse factorization scheme are no smaller than the pivots �pi corresponding to
the associated M�matrix


These two results put together insure the stability of the incomplete procedure
for H�matrices� in the symmetric case	 this means that the factorized approximate
inverse is positive de�nite and it can be used as a preconditioner for the conjugate
gradient method
 However	 symmetry is not required in our proof


Theorem ���� Let A be an M�matrix and let pi be the pivots produced by

the inverse factorization algorithm� If �pi are the pivots computed by the incomplete

inverse factorization algorithm with any preset zero pattern in Z or any value of the

drop tolerance� then

�pi � pi � ��

Proof� From the identity AZ � LD and the fact that Z and L are unit trian�
gular matrices it follows that the pivots pi can be expressed in terms of the leading
principal minors �i of A as

pi �
�i

�i��
�� � i � n� �� � ��

Because A is an M�matrix	 all its leading principal minors are positive and therefore
pi � � for all i� After i � � steps of the inverse factorization scheme	 the column

vectors z
�i���
j �i � j � n are available
 Let z

�i���
kj denote the kth entry of z

�i���
j �

At step i of the inverse factorization scheme	 the following are computed�

���� p
�i�
i �

i��X
l��

ailz
�i���
li � aii

p
�i�
j �

i��X
l��

ailz
�i���
lj � aij �i� � � j � n�
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Suppose now that a sparsity pattern is imposed on the z �vectors	 or that all �ll�in in
the z �vectors whose magnitude falls below a given drop tolerance is to be dropped


The modi�ed z �vectors will be denoted by �z
�i���
j � and the pivots are now given by

�p�i�i �
i��X
l��

ail�z
�i���
li � aii�

If �z
�i���
li is set equal to zero to reduce �ll�in	 it is clear that �p

�i�
i is the exact pivot

for a matrix �A obtained from A by setting ail � �� Since �A is still an M�matrix	

it must be true that �p�i�i � �� This is su�cient to show that the incomplete inverse
factorization process will not breakdown
 Furthermore	 it is not di�cult to see that
the pivots cannot become smaller because of dropping
 �From ��
� and the fact that
o��diagonal entries in an M�matrix are nonpositive	 it is clear that the value of the

pivot will increase whenever a positive z
�i���
li is set equal to zero
 But all nonzero

entries in the z� vectors are necessarily positive	 as is easily proved by induction
 We
omit the details


Now let A be an H�matrix	 and apply the inverse factorization scheme to A as
well as to the associated M�matrix �A� In the sequel	 quantities with hats correspond
to the associated process on �A� We need to compare pivots and z �vectors for the
original process �on A  and for the associated process �on �A 
 To do this we also need
to introduce intermediate quantities�denoted with tildes�which are constructed with
entries from �A and with pivots from A�

Theorem ���� Let A be an H�matrix and let �A be the associated M�matrix� If

pi and �pi denote the pivots computed by the inverse factorization scheme applied to

A and to �A� respectively� then pi � �pi�

Proof� Consider elements �z
�k�
lj of �z

�k�
j as functions

�z�k�lj � �F �k�
lj ��a��� � � � � �akn� �p�� � � � � �pk

dependent on the elements of �A and on the computed quantities �p�� � � � � �pk� Set

 z
�k�
lj � �F

�k�
lj ��a��� � � � � �akn� p�� � � � � pk�

�This is the same function as above with �pi replaced by pi 
 We will prove that
pi � �pi using induction on i 
 We make the following inductive assumptions for all
k � i � ��

pk � �pk����

�z�k�
lj

�  z�k�
lj

for l � j� j � i����

 z
�k�
lj � �F

�k�
lj ��a��� � � � � �akn� p�� � � � � pk is nonnegative����

I� For i � � we have p� � a�� � �a�� � �p� � � and �z
���
lk �  z

���
lk � ��

II� Using ��
� for �pi we get

�pi �
i��X
l��

�ail�z
�i���
li � �aii �

i��X
l��

�ail z
�i���
li � �aii�



� m� benzi� c� d� meyer� and m� tuma

This inequality follows from the inductive assumption �z
�i���
li �  z

�i���
li and from the

fact that the �ail !s are nonpositive �being o��diagonal elements of the associated M�

matrix
 Notice that corresponding terms in expressions for  z
�i���
li and for z

�i���
li

have the same absolute value	 so they can di�er only by the sign
 In the last sum we
are summing only nonpositive terms
 Using the de�ning identities for the H�matrix	
i
e
	 �aii � aii and �aik � �jaikj for i �� k� we get

i��X
l��

�ail z
�i���
li � �aii �

i��X
l��

ailz
�i���
li � aii � pi�

All terms �ail z
�i���
li on the left hand side are nonpositive
 On the right�hand side	

some of them can be positive
 But corresponding terms have the same absolute value	
so they di�er only by the sign
 Using the updating formula�given in the inverse

factorization algorithm�for �z�i�j we have

�z
�i�
j � �z

�i���
j �

Pi��
l�� �ail�z

�i���
lj � �aik

�pi
�z
�i���
i �

Since the o��diagonal elements of the M�matrix are nonpositive	 and since pi � �pi � ��
we obtain

�z�i�j �  z�i���j �
Pi��

l�� �ail z
�i���
lj � �aij

pi
 z�i���i �  z�i�j

This follows from the set of inequalities

��ail�z
�i���
lj � ��ail z

�i���
lj �

�z�i���i �  z�i���i �

�p��i � p��i �

Assembling everything together we have

�
Pi��

l�� �ail�z
�i���
lj � �aik

�pi
�z�i���i � �

Pi��
l�� �ail z

�i���
lj � �aij

pi
 z�i���i �  z�i�j �

This inequality is added to the inequality from the assumption

�z
�i���
j �  z

�i���
j

to arrive at
�z
�i�
j �  z

�i�
j �

Using the inductive assumption and de�ning identities for the H�matrix it can also be
seen that ��
� is true for k � i�

It follows from propositions �
� and �
� that the incomplete inverse factorization
process will never break down �in exact arithmetic when A is an H�matrix
 This
is true for arbitrary zero patterns on the strictly upper triangular part of �Z and for
arbitrary choices of the drop tolerance
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The pivots produced by the incomplete inverse factorization of an H�matrix are
no smaller than the pivots produced by the incomplete inverse factorization of the as�
sociated M�matrix
 However	 they are not necessarily larger than the pivots produced
by the exact inverse factorization of A� contrary to what happens in the M�matrix
case
 For example	 consider the H�matrix�

� � �� ��
�� � �
�� � �

�
A �

If � � � � ��� 	 the incomplete inverse factorization algorithm with drop tolerance
TOL � ���� returns a pivot �p� which is smaller than the pivot p� produced by
the exact inverse factorization scheme
 This is in perfect analogy with incomplete
Cholesky factorizations �see ����	 p
 ���


If A is not an H�matrix	 the incomplete inverse factorization algorithm may
break down
 For instance	 applying the algorithm with a drop tolerance TOL � ����
to the SPD matrix �

� ��� ���� ����
��� ���" ����
��� ���� ����

�
A

results in �p� � � �a breakdown

In �nite precision computations	 zero or negative pivots may occur even for H�

matrices	 due to round�o� errors
 Indeed	 this is one way for extreme ill�conditioning
to manifest itself
 It is not likely to happen for reasonably conditioned problems
 At
any rate	 it is important to safeguard the algorithm from the occurrence of zero or
even very small pivots
 Furthermore	 there are many applications leading to SPD
matrices which are not H�matrices� typically	 �nite element analysis
 It is therefore
desirable to incorporate some safeguard mechanism in the incomplete algorithmwhich
guarantees that the computation of the preconditioner will run to completion and that
it will always produce a symmetric positive de�nite inverse factorization
 Similar tech�
niques have been implemented in connection with incomplete Cholesky factorization
preconditioning and with approximate Hessian modi�cations ���	 ��	 �"�


�� Notes on implementation� We have implemented the preconditioned con�
jugate gradient algorithm with our approximate inverse preconditioner�hereafter re�
ferred to as AINV�based on the inverse factorization algorithm of x� as well as with
a standard Incomplete Cholesky �IC preconditioner
 The purpose of this comparison
is to explore some characteristic algorithmic properties of the explicit preconditioner	
and to get a feeling for the convergence rate for the explicitly preconditioned CG
method as compared with one of the best scalar preconditioners


We �rst describe the IC preconditioner used in our comparison
 It was computed
by a standard column algorithmwith symbolic and numeric phases �see ���	 ���
 Dur�
ing the decomposition we removed all the elements of the factor less than a prescribed
drop tolerance T� Necessary working space was thus dominated by the size �number
of nonzero entries of the lower triangular factor of the IC preconditioner


This decomposition	 which could break down for general �non�H matrices	 was
modi�ed by a standard stabilization	 see ����
 The algorithm insures that all diagonal
elements of D in the LDLT decomposition are strictly positive and the absolute val�
ues of the elements of L satisfy a uniform upper bound in order to preserve numerical
stability and to prevent excessively large elements in the factors
 We refer to ���� for
details
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Computing the AINV preconditioner is a slightly more complicated process
 In
the Cholesky case we can use an elimination tree structure to minimize symbolic
integer overhead and working storage
 Due to the complicated rules governing �ll�in in
the AINV case	 it is not clear how to realize an analogous symbolic process
 Therefore	
we used a submatrix type of algorithm which updates in each step all the remaining
z �vectors by a rank one modi�cation
 We adopted dynamic data structures similar
to those used in submatrix formulations of sparse unsymmetric Gaussian elimination
�see ���	���
 However	 there are some di�erences in the use of such data structures in
Gaussian elimination and in the AINV procedure
 For instance	 these data structures
are used in AINV for the Z matrix	 and not for A 	 which is now stored in static
data structures
 During the AINV process	 A is delivered into the cache by rows
since we need in each step only one row of A
 Recall that in some cases it may even
be possible to avoid storage of A altogether	 for example when a routine is available
to compute the action of A on a vector �we did not take advantage of this option in
our implementation


The amount of �ll�in created during the computation of the AINV preconditioner
in most of the �rst steps is very small and thus the integer overhead and CPU time
spent in these initial stages is very small
 This is in contrast with sparse Gaussian
elimination �as represented	 for instance	 by MA�" ���	 where the proportion of integer
overhead and CPU time is distributed more uniformly over the algorithmic steps


The size of the data structures in the AINV case which are necessary in the top
level of the memory hierarchy was found to be small	 often much smaller than the
size of the preconditioner
 This fact can strongly in#uence performance	 especially
on workstation equipment
 Nevertheless	 working storage for the implementation of
AINV is larger than for the implementation of IC


Sparsity was preserved on the basis of value rather than on the positions of �ll�in

For capturing the relevant entries in the inverse Cholesky factor of A� this is a better
strategy than imposing a preset sparsity pattern on Z� Consistency suggested that
drop tolerances be used with IC as well


Skipping some z �vector updates in step �� of the inverse factorization algorithm

when the coe�cients p
�i���
j �p

�i���
i were in some sense �small� produced bad numerical

results	 so no skipping was done


In the AINV case we also implemented an algorithmic modi�cation to avoid
breakdown for general SPD �non�H matrices
 When some computed diagonal element
�pi was too small�in our case	 less than

p
�M where �M is the machine precision�we

replaced it by

���� �pi 	� maxfp�M � �	
g

where
� � ��� �a relaxation parameter	

	 � max
i�k�n��

n
p
�i���
k

o
�


 � kz�i���i k� �� ��

The rule ��
� was chosen to avoid breakdowns due to very small or negative diagonal
elements �pi 
 It also has the e�ect of constraining the growth of elements in the z �
vectors
 The process now cannot break down	 but there is also	 as in the IC case	 no
guarantee that after this regularization we will get a good preconditioner
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�� Numerical experiments� The following experiments show some properties
of the two preconditioners applied within the PCG algorithm to SPD matrices
 Nine
test matrices were taken from the Harwell�Boeing collection �"� and the remaining two
were kindly provided by Prof
 G
 Zilli �Padoa University


All experiments were run on a SGI Crimson computer with RISC processor R����

Codes were written in Fortran �� and compiled with the optimization level �O�� CPU
time was measured using the standard function dtime� We denote by tIC and by
tAINV the CPU time �in seconds required for the computation of the two precon�
ditioners	 respectively
 CPU time for PCG is denoted by tPCG and the number of
iterations by nPCG 
 T is used to denote the drop tolerance


All matrices were rescaled by dividing their elements by their largest nonzero
entry� no preordering of their elements was used
 The right�hand side of each system
was computed using the solution vector composed of ones
 The PCG iteration was
terminated when the residual had been reduced to less than ���� 
 The matrices
used in the experiments correspond to �nite element approximations to problems in
structural engineering �NOS�	 NOS�	 PADOA�	 PADOA�	 �nite di�erence approxi�
mations to elliptic PDE!s �NOS�	 NOS�	 GR���� and to modelling of power system
networks �BUS matrices


The listings in Table � are for the unpreconditioned CG algorithm
 Column � is
the name of the Harwell�Boeing test matrix� column � lists the size �n of the matrix�
column � �density gives the number of nonzeros in the lower triangular part including
the diagonal of the test matrix� column � �time reports the execution time in seconds�
and column � �iterations gives the number of iterations
 A �$ in column � indicates
that the algorithm failed to converge after n steps using the above mentioned stopping
criterion	 and computations were terminated


H	B Name n density time iterations

NOS� ��� "	��� �
�� ���

NOS� ��" �	"�� �
"" ��"$

NOS� ��� �	��� �
�� ���$

NOS� ��� �	��� �
�� ���$

���BUS ��� �	�"� �
�� ���$

���BUS ��� �	��" �
�� ���

�"�BUS �"� �	��� �
�� ���

���"BUS �	��" �	��� �
"� ���"$

GR���� ��� �	��� �
�" ��

PADOA� "�� �	��� �
�� "��$

PADOA� �	"�� ��	��� ��
�� �"��$

Table �

Behavior of the unpreconditioned CG algorithm
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�From the description of our implementation it can be expected that the CPU
times for IC and AINV will be di�erent because the IC computation has very small
integer overhead
 Of course	 this di�erence may become negligible if a sequence of lin�
ear systems with the same coe�cient matrix �or a slightly modi�ed one and di�erent
right�hand sides has to be solved	 since the time for computing the preconditioners is
then only a small fraction of the time required for the overall computation
 Also	 the
two algorithms exhibit di�erent potential for parallelization	 but exploration of this
issue is outside the scope of the present paper


Drop tolerances parametrize IC and AINV in di�erent ways
 That is	 using the
same Tol value will produce very di�erent results in the two cases
 It is preferable to
compare the two preconditioners in terms of amount of �ll�in rather than to compare
two preconditioners obtained using the same value of Tol� The key role in the ex�
periments is played by the �ll�in allowed in the preconditioners
 Allowing more �ll�in
results in less PCG iterations	 though not always in less overall CPU time
 The rela�
tion between preconditioner size �measured by �ll�in and number of PCG iterations
for AINV and IC is one of the objectives of our comparison
 Table � lists the results
of applying PCG with di�erent sizes �measured by �ll�in of IC and AINV on the
���
 ��� Harwell�Boeing test matrix NOS� which is derived from Poisson!s equation
in an L�shaped region with mixed boundary conditions


IC AINV


ll	in iterations time 
ll	in iterations time

��� "� �
�� ��� �� �
��

"�� �� �
�" �"� �� �
��

��� �� �
�� �	��� �� �
��

�	��� �" �
�� �	��" �� �
�"

�	��� �� �
�� �	��� �� �
��

�	��� �" �
�� �	��� �� �
��

�	��� �� �
�� �	��� �� �
��

�	��" " �
�� ��	�"� � �
��

Table �

Behavior of PCG using IC versus AINV on H�B test matrix NOS�


The results in Table � indicate that by using preconditioners of restricted size
�obtained by adjusting the drop tolerances	 the iteration counts as well as the timings
for IC and AINV preconditioning are comparable	 even in scalar mode allowing slightly
more �ll�in for the AINV preconditioner
 For preconditioners of comparable size	
slightly more iterations are needed by AINV preconditioning


If we keep the size of the preconditioners �moderate	� we usually decrease overall
CPU time
 What moderate means here is strongly problem dependent and architec�
ture �CPU	 memory hierarchy dependent


The AINV method tends to generate more �ll�in than IC	 and for small drop
tolerances the �ll�in for AINV can be so high on some structured problems that we
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can no longer talk of sparse approximate inverse preconditioning thus making the
comparison with IC not very meaningful �a preconditioner can be considered sparse
if it contains about the same number of nonzeros as the original matrix or less

However	 as discussed in ��	 ��	 problems having irregular sparsity patterns seem to
be well�suited for the AINV preconditioner because �ll�in is often held to reasonably
low levels


Tables � shows iteration counts and timings for PCG using the IC preconditioner	
and Table � gives the same information for PCG using the AINV preconditioner
 The
IC and AINV preconditioners were computed with similar restricted sizes up to about
the original number of nonzeros
 Drop tolerances for IC were taken between ������
and ���� 	 and drop tolerances for AINV were in the range ��� to ���� For each test
matrix two sparse preconditioners were computed�the �rst being very sparse while
the second contains roughly the same number of nonzeros as the test matrix being
used


Our results indicate that implicit and explicit sparse preconditioners can have
similar behavior�even in the scalar case
 The fact that a somewhat higher �ll�in
is required by the AINV preconditioner in order to achieve the same reduction in
the number of PCG iterations as with IC is only natural	 since in AINV we are
approximating the inverse Cholesky factor �usually a dense matrix	 whereas IC is a
sparse approximation to the Cholesky factor L itself
 If �L is an incomplete Cholesky
factor of A and �Z is an incomplete inverse Cholesky factor	 and if the amount of
nonzeros in these two matrices is about the same	 then one can expect that �L�� will
be substantially denser than �Z 


In other words	 for the same amount of �ll�in in the preconditioners	 IC yields a
better approximation to A�� than AINV
 But this comes at a price�namely that
two triangular solves are needed at each PCG iteration
 On the other hand	 the
price to pay for the explicitness a�orded by the AINV preconditioner is the increased
size of the preconditioner	 so	 on a scalar computer	 IC has a slight edge over AINV

However	 the situation will be reversed in a vector%parallel environment because the
explicitness a�orded by AINV can be substantially exploited whereas the triangular
solves necessitated by IC cannot
 But even in scalar mode there are problems for
which AINV is superior to IC�see the results for test matrix PADOA�


It should be observed that all test matrices used are M�matrices except for NOS�	
NOS�	 PADOA� and PADOA�	 and these are not even H�matrices
 In no case was
safeguarding necessary during the computation of the AINV preconditioners	 whereas
in a few cases IC shifted positive pivots away from zero by a very small amount
 This
did not adversely a�ect the convergence of PCG
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H�B Fill PCG IC PCG Fill PCG IC PCG
Matrix in steps time time in steps time time

NOS� �	��� ��� �
�" �
�� ��	"�� �� �
�" �
�"

NOS� ��� �� �
�� �
�" �	��� �� �
�� �
��

NOS� ��� �� �
�� �
�� �	��� �� �
�� �
��

NOS� ��� �� �
�� �
�� ��" �� �
�� �
��

���BUS ��� ��� �
�� �
�� "�� ��� �
�� �
��

���BUS ��� ��� �
�� �
�" �	��� ��� �
�� �
��

�"�BUS ��� �"� �
�� �
�� �	��� �� �
�� �
��

���"BUS �	�"� ��� �
�� �
"� �	�"� ��� �
�� �
��

GR���� ��� �� �
�� �
�" �	��� �� �
�� �
��

PADOA� �	��" ��� �
�� �
�� �	��� �� �
�� �
��

PADOA� �	��� ��� �
�� �
�� �	��� "� �
�� �
��

Table �

Iteration counts and timings for the IC preconditioner in PCG

H�B Fill PCG AINV PCG Fill PCG AINV PCG
Matrix in steps time time in steps time time

NOS� �	��� ��� �
�� �
�� �	��� "� �
�� �
��

NOS� ""� "� �
�� �
�� �	�"� �� �
�� �
��

NOS� ��� �� �
�� �
�� �	��� �� �
�� �
��

NOS� ��� �� �
�� �
�" �	��� �� �
�� �
��

���BUS �"� ��� �
�� �
�" "�� ��� �
�� �
��

���BUS "�� ��� �
�� �
�" �	��" ��� �
�� �
��

�"�BUS "�" ��" �
�� �
�� �	"�� �� �
�� �
��

���"BUS �	"�" ��� �
�� �
�� �	��� ��� �
�� �
"�

GR���� ��� �� �
�� �
�� ��	��� �� �
�� �
��

PADOA� �	��� �� �
�� �
�" �	��� �" �
�� �
��

PADOA� �	��� ��� �
�� �
�� ��	��� "� �
�� �
��

Table �

Iteration counts and timings for the AINV preconditioner in PCG
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�� Conclusions and future work� Our study involved a novel approach to ap�
proximate inverse preconditioning for conjugate gradient calculations
 One interesting
feature of this technique is the fact that the entries of the coe�cient matrix A are
not explicitly needed	 which may be useful for problems where A is only implicitly
given as an operator
 It was proven that the computation of the preconditioner has
the same robustness as standard incomplete Cholesky factorization	 and numerical
evidence was given to make the point that the new preconditioner is competitive with
incomplete Cholesky�even in scalar mode
 But the real advantage in using sparse
approximate inverse preconditioners will be realized for vector and parallel computers

The results presented in this paper suggest that approximate inverse preconditioners
can be a useful tool for the solution of large sparse symmetric positive de�nite linear
systems on modern high�performance architectures


Future research will focus on e�cient parallel implementations and on the exten�
sion to unsymmetric problems
 A sparse approximate inverse preconditioner for an
unsymmetric matrix A may be obtained by constructing a set of approximate bicon�
jugate directions for A 
 This can be achieved by applying the inverse factorization
algorithm to both A and AT 	 together with suitable sparsity�preserving strategies

The resulting factorized sparse approximate inverse	 which is guaranteed to exist when
A is an H�matrix	 is an explicit preconditioner which can be used to enhance the con�
vergence of conjugate gradient�like methods for the solution of Ax � b 
 These issues
will be investigated in a future paper
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