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Abstract

We study a new method in reducing the roundo� error in computing derivatives using Chebyshev
collocation methods. By using a grid mapping derived by Koslo� and Tal-Ezer, and the proper
choice of the parameter �, the roundo� error of the k-th derivative can be reduced from O(N2k)
to O((N jln �j)k), where � is the machine precision and N is the number of collocation points. This
drastic reduction of roundo� error makes mapped Chebyshev methods competitive with any other
algorithm in computing second or higher derivatives with large N . We also study several other
aspects of the mapped Chebyshev di�erentiation matrix. We �nd that 1) the mapped Chebyshev
methods requires much less than � points to resolve a wave, 2) the eigenvalues are less sensitive
to perturbation by roundo� error, and 3) larger time steps can be used for solving PDEs. All
these advantages of the mapped Chebyshev methods can be achieved while maintaining spectral
accuracy.



1 Introduction

In [5], we addressed the issue of roundo� error in computing the derivative using the Chebyshev
collocation methods. For details on these methods, see Canuto, et. al. [1], or Gottlieb and Orszag
[2]. We showed how to construct the Chebyshev collocation derivative with only O(�N2) roundo�
error, where � is the machine precision and N is the number of collocation points, by carefully
constructing the entries of the derivative matrix.

There are PDEs that involve higher derivatives than the �rst. For example, the viscosity term in
the Navier-Stokes Equation and the fourth derivative term in the Kuramoto-Sivashinsky Equation.
For these problems, the roundo� error in the k-th derivative will be O(�N2k). This can ruin the
computed solution, even if k and N are not that large. This limits the applicability of Chebyshev
collocation methods to certain types of PDEs and values of N .

In this paper we investigate a way of modifying the Chebyshev collocation derivative which
reduces the roundo� error, and also improves its accuracy. As stated in [5], the roundo� error
cannot be reduced further for basis functions based on polynomials, since the roundo� error of
the Chebyshev collocation method already achieves the theoretical minimum. Therefore, to have
any hope of reducing the roundo� error, the polynomial basis functions must be replaced with
something else. One way to do this is to apply a coordinate transformation. More speci�cally,
the Chebyshev collocation points �j = cos(�j=N); j = 0; : : : ; N are mapped to a new set of points
xj = g(�j; �); j = 0; : : : ; N with a parameter �. The transformation function g(�; �) is one-to-one
and onto. The mapping is also applied to the polynomial basis functions, and so they are changed
as well.

In this paper, we will concentrate on a mapping of the form x = g(�; �) = sin�1(��)= sin�1(�).
In [4], Koslo� and Tal-Ezer showed that this mapping increases the minimum spacing �x between
collocation points from O(N�2) to O(N�1), and argued that this reduces the spectral radius of the
di�erentiation matrix from O(N2) to O(N). Here, we will show that it has a similar e�ect on the
roundo� error. Moreover, the mapping not only reduces the roundo� error but also requires less
than � points per wave number as with standard Chebyshev methods.

In section 2, we introduce the Chebyshev collocation method and its derivative matrix. Section 3
illustrates the problem of large roundo� error when computing higher derivatives using the standard
Chebyshev collocation methods. We discuss the transformation of the Chebyshev collocation points
and its properties in section 4. The minimum roundo� error is estimated for the standard and
mapped di�erentiation matrix in section 5. In section 6, some numerical results of the standard vs.
mapped Chebyshev collocation methods are demonstrated. We study the e�ect of the mapping on
the eigenvalue spectrum of the matrix with Dirichlet boundary conditions in section 7. Section 8
gives a heuristic estimate for the resolution power of the mapped Chebyshev methods. We discuss
in section 9 some pitfalls and proper procedures in computing the mapped Chebyshev derivatives.

2 Chebyshev Collocation Methods

In this section, we present the Chebyshev collocation method. Consider the Chebyshev-Gauss-
Lobatto collocation points,

xi = cos(
�i

N
); i = 0; : : : ; N ;

which are the extrema of the Nth order Chebyshev polynomial

T
N
(x) = cos(N cos�1 x) :
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Let v(x) be a smooth function in the domain x 2 [�1; 1]. Then v(x) is interpolated by con-
structing the N order interpolation polynomial gj(x) such that gj(xk) = �jk, i.e.

u(x) =
NX
j=0

ujgj(x) ; (1)

where u(x) is the polynomial of degree N and uj = v(xj); j = 0; : : : ; N . It can be shown that

gj(x) =
(�1)j+1(1� x2) T 0

N
(x)

cjN2(x� xj)
; j = 0; : : : ; N ; (2)

where

cj =

(
2 j = 0; N
1 j = 1; : : : ; N � 1

:

Di�erentiation

The derivative of u(x) at the collocation points xj can be computed in many di�erent ways. The
most obvious way to compute the derivative is the matrix-vector multiplication. The entries of
the Chebyshev derivative matrix D, are computed by taking the analytical derivative of gj(x) and
evaluating it at the collocation points xk for j; k = 0; : : : ; N , i.e., Dkj = g0j(xk). Then the entries
of the matrix are, for j = 0; : : : ; N; k = 0; : : : ; N

2

Dkj = �1
2

ck

cj

(�1)j+k
sin �

2N
(k + j) sin �

2N
(k � j)

j 6= k ;

Dkk = �1
2

cos( �
N
k)

sin2( �
N
k)

k 6= 0 ; (3)

D00 = �D
NN

=
2N2 + 1

6
:

and

Dkj = �DN�k;N�j ; k =
N

2
+ 1; : : : ; N ; (4)

The derivative of u(xi) becomes (0 denotes derivative unless speci�ed otherwise)

u0i = D�!u =
NX
j=0

Dijuj ; i = 0; : : : ; N : (5)

There are also O(N log2N) algorithms for computing the derivative that involve Fast Discrete
Fourier and/or Cosine Transforms. Their roundo� error properties are mostly the same as the
matrix-vector multiplication. We will concentrate on the matrix-vector multiplication algorithm
and only mention them occasionally.
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N k = 1 k = 2 k = 3 k = 4

16 0.58E-12 0.44E-10 0.14E-08 0.21E-07
32 0.83E-12 0.47E-09 0.11E-06 0.17E-04
64 0.41E-11 0.62E-08 0.55E-05 0.35E-02
128 0.17E-10 0.71E-07 0.25E-03 0.63E-00
256 0.91E-10 0.35E-04 0.51E-01 0.50E+03
512 0.35E-09 0.98E-04 0.78E+02 0.37E+05
1024 0.31E-08 0.13E-02 0.32E+03 0.51E+08

Table 1: Absolute maximum error for the k-th derivative of u(x) = sin(2x).

3 Accuracy in computing higher derivatives

In this section we show some numerical experiments which illustrate the large roundo� error of
the standard Chebyshev collocation method. We computed the �rst four derivatives of the test
function u(x) = sin(mx); x 2 [�1; 1] without any mapping. The kth derivative is computed by

multiplying the vector �!u = fu(x0); : : : ; u(xN)gt by the derivative matrix D k times. Table 1 shows
the absolute maximum error for the �rst four derivatives of u(x) = sin(2x) for di�erent numbers of
Chebyshev collocation points. It clearly illustrates the problem when one wishes to obtain higher
derivatives using the Chebyshev collocation methods. The absolute maximum error is �ne for the
�rst derivative and acceptable for the second derivative if N < 128. For the third and the fourth
derivatives, the error becomes unacceptable for N > 64 and N > 32, respectively.

The rate of growth of the roundo� error shown in table 1 is approximately O(N2k); k = 1; 2; 3; 4
(See section 5 for more details). Similar conclusions can be reached for other functions, since this
situation is quite generic to the Chebyshev di�erentiation matrix D. Since the matrix D has
already achieved the minimum roundo� error possible, any further manipulation of the elements
of the matrix is useless. The situation seems hopeless unless other basis functions are found.
For example, we know that the Fourier collocation methods only have roundo� error growth like
O(Nk) for the k-th derivative. So if we modify the Chebyshev basis functions to resemble the
Fourier methods in some way, then maybe we can reduce the roundo� error. However, this has to
be done in such a way as to preserve the spectral accuracy that the standard Chebyshev method
has. One way to achieve this is to map the Chebyshev collocation points to some other set of
interpolation points. We discuss this in the next section.

4 Grid Transformation

In [4], Koslo� and Tal-Ezer derived a grid transformation that mapped the Chebyshev collocation
points to a new set of interpolation points. The grid transformation was de�ned as

x = g(�; �) =
sin�1(��)

sin�1 �
(6)

where �j = cos(�j=N); j = 0; : : : ; N are the Chebyshev collocation points and xj are a new set of
interpolation points with the parameter � 2 [0; 1].

Given a function u(x) and x = g(�; �), the derivative of u(x) can be evaluated as

du

dx
=

du

d�

d�

dx
(7)
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where

d�

dx
=

1

g0(�; �)
(8)

and

g0(�; �) =
�

sin�1 �

1p
1� (��)2

(9)

So computing at the grid points xj = g(�j; �); j = 0; : : : ; N , (5) or (7) can be rewritten as

�!u 0

=MD�!u (10)

where the diagonal matrix M has elements

Mjj =
1

g0(�j; �)
: (11)

We de�ne D =MD as our new di�erentiation matrix.
We will now give a few important properties of the mapping g(�; �).

� the mapping derivative g0(�; �) is singular if � = 1.

� For �xmin = 1� x1 = 1� g(�1; �), one can show that

�! 1; �xmin ! 2
N

�! 0; �xmin ! 1� cos( �
N
) :

� if, for some positive number c [4],

� � 1� c

N2

then

�xmin �
2

�N
(
p
�2 + 2c�

p
2c): (12)

The coordinate transform results in some approximation error due to the fact that the trans-
formation function g is not entirely smooth (g(�) has singularities at � = ���1). In [4, section 4.8]
Koslo� and Tal-Ezer showed that if � is chosen to be

� = sech(
jln �j
N

); (13)

then the approximation error is roughly �. By choosing � to be the machine precision, the error of
the coordinate transformation is essentially guaranteed to be harmless. With this choice for �, in
the limit as N !1, � = 1� c=N2 with

c =
1

2
jln �j2: (14)

If we substitute this into (12) and assume that jln �j � �, this gives a minimum grid point spacing
of

�xmin �
�

N jln �j : (15)
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N � �
Njln �j

�xmin(�) �xmin(0)
�xmin(�)

�xmin(0)

16 0.25532 0.00601064 0.01964 0.0192 1.02
32 0.63778 0.00300532 0.005756 0.004815 1.19
64 0.88252 0.00150266 0.002086 0.0012045 1.73
96 0.94477 0.00100177 0.001245 0.0005354 2.32
128 0.96830 0.00075133 0.0008835 0.0003012 2.93
256 0.99191 0.00037567 0.0004067 0.0000753 5.40
512 0.99797 0.00018783 0.0001952 0.00001883 10.37
1024 0.99950 0.00009392 0.0000956 0.00000471 20.32

Table 2: �;�xmin;�xmin(�);�xmin(0) and their ratio as a function of N with � = 6:5� 10�15

In table 2, � is shown as a function of N for a �xed accuracy � = 6:5 � 10�15, which is the
machine precision of the Cray C-90. It also lists several values for equation (15), the minimum
spacing with and without mapping and their relative size for each �(N).

Equation (15) implies that �t = O(�xmin) is inversely proportional to jln �j. Hence, larger �t
can only be achieved by reducing the accuracy � of the interpolation. This situation might not
be acceptable for those problems demanding high accuracy in the solution. However, Table 2 also
clearly shows that one can still get a slightly larger time step without any degradation of accuracy
of the approximation. In this paper, we are interested not on the issue of stability but on the
accuracy. This allows us to �x the accuracy requirement � to be the machine precision and choose
� to be a function of N alone.

5 Estimates of the roundo� error

In this section we discuss two estimates of the roundo� error. In [5, section 4] we constructed
the following estimate of the roundo� error: We ignored all of the rounding errors except those
that occurred when the function vector u is stored in single precision. Further, we assumed that
those errors occurred randomly. Speci�cally, we assumed that they were uncorrelated, zero-mean,
and that their variance (i.e., their rms average value) was the machine precision. Under these
assumptions, the average roundo� error in the i-th component of the derivative is

e2i � average
n
j(Du)exact; i � (Du)computed; ij2

o

= �2
NX
k=0

D2
ik

= �2(DtD)ii: (16)

The average L2 norm of the error is
jej2 = �2

X
i;j

D2
ij; (17)

and a reasonable estimate of the maximum error is

emax = sup
i

ei: (18)
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We can see that if echeb; i is the average roundo� error for the Chebyshev collocation derivative,
then

eTal�Ezer; i =Miiecheb; i (19)

is the corresponding error for the derivative when using the mapping. Since Mii is small near the
edges of the grid where echeb; i is large, we expect the mapping to reduce the roundo� error.

Usually the error will be larger than this because of the other rounding errors that happen
during the computation. Occasionally it will be smaller because of a lucky cancelation of errors.

This estimate is useful as a lower bound. If an algorithm for computing Du is able to come
close to it, then there is no use in trying to improve the algorithm. Many algorithms for computing
the derivative are able to approach this bound.

The other estimate for the roundo� error is a heuristic estimate based on the minimum grid
point spacing. In �nite di�erence methods with equally spaced points, the formula for the k-th
derivative is

u
(k)
i =

kX
j=0

(�1)k�x�kpjkui+j�k=2 (20)

where the pjk are the numbers in Pascal's triangle and are O(2k) in size. We see from the size
of the coe�cients that rounding errors can be multiplied by roughly (2=�x)k. We claim that the
situation is the same for spectral approximations of the derivative. Therefore a rough estimate of
max norm of the error is

emax = �(
2

�xmin

)
k
: (21)

Taking the value of �xmin from equation (15), this gives

emax � �(
2

�
N jln �j)k: (22)

The corresponding error for the unmapped Chebyshev derivative is

echeb;max = �(
2N

�
)
2k
: (23)

6 Numerical Results on the mapped Chebyshev methods

In this section we compute the higher derivatives using the Chebyshev collocation with and without
the mapping technique. We use the test function u(x) = sin(mx) for this purpose. We also
tested other functions, e.g. y = exp(mx); exp(�xm); y = xm, with similar results. The relative
and absolute error between the exact and numerical results are computed by the L1 (pointwise
maximum) norm.

Here we note that there are two ways to computing the k-th derivative using Chebyshev collo-
cation methods with a mapping. One way is the multiply the matrix D = MD by the vector �!u
k times, i.e. �!u (k)

= Dk�!u or �!u (k)

= D(D(: : :(Du)) : : :). The other way is to form an expression
involving Dlu(�) and gl(�; �); l = 1; : : : ; k by di�erentiating u(g(x)) k times. For example,

�!u 000

= �!g 03

D�!u + 3�!g 0�!g 00

D2�!u +�!g 000

D3�!u (24)

where �!g j = g(�j; �). In numerical experiments, both techniques gave exactly the same results. In
this paper, we used the �rst method because of its simplicity in programming.
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No Mapping with Mapping
MV FFT CFT MV FFT CFT

N First Derivative

16 0.58E-12 0.11E-11 0.95E-12 0.13E-11 0.44E-12 0.12E-11
32 0.83E-12 0.18E-11 0.58E-11 0.85E-12 0.15E-11 0.12E-10
64 0.41E-11 0.66E-11 0.79E-10 0.23E-11 0.28E-11 0.23E-10
128 0.17E-10 0.71E-10 0.46E-09 0.68E-11 0.15E-10 0.24E-09
256 0.91E-10 0.23E-09 0.44E-08 0.39E-10 0.15E-10 0.72E-09
512 0.35E-09 0.58E-09 0.69E-07 0.72E-10 0.78E-10 0.55E-08
1024 0.31E-08 0.54E-08 0.38E-06 0.83E-10 0.85E-10 0.16E-07

N Second Derivative

16 0.44E-10 0.12E-09 0.48E-10 0.10E-09 0.55E-10 0.91E-10
32 0.47E-09 0.58E-09 0.22E-08 0.20E-09 0.45E-09 0.32E-08
64 0.62E-08 0.47E-08 0.11E-06 0.20E-08 0.95E-09 0.17E-07
128 0.71E-07 0.33E-06 0.24E-05 0.13E-07 0.29E-07 0.46E-06
256 0.35E-05 0.36E-05 0.91E-04 0.21E-06 0.22E-07 0.28E-05
512 0.98E-05 0.49E-04 0.59E-02 0.33E-06 0.72E-06 0.47E-04
1024 0.13E-02 0.20E-02 0.13E+00 0.21E-05 0.15E-05 0.28E-03

N Third Derivative

16 0.14E-08 0.72E-08 0.11E-08 0.47E-08 0.31E-08 0.39E-08
32 0.11E-06 0.11E-06 0.45E-06 0.44E-07 0.79E-07 0.51E-06
64 0.55E-05 0.27E-05 0.91E-04 0.93E-06 0.35E-06 0.69E-05
128 0.25E-03 0.95E-03 0.76E-02 0.15E-04 0.32E-04 0.51E-03
256 0.51E-01 0.36E-01 0.12E+01 0.55E-03 0.33E-04 0.68E-02
512 0.78E+00 0.28E+01 0.31E+03 0.10E-02 0.37E-02 0.23E+00
1024 0.32E+03 0.44E+03 0.28E+05 0.27E-01 0.14E-01 0.28E+01

N Fourth Derivative

16 0.21E-07 0.30E-06 0.10E-06 0.15E-06 0.11E-06 0.11E-06
32 0.17E-04 0.16E-04 0.63E-04 0.55E-05 0.95E-05 0.58E-04
64 0.35E-02 0.13E-02 0.52E-01 0.30E-03 0.10E-03 0.20E-02
128 0.63E+00 0.21E+01 0.17E+02 0.12E-01 0.25E-01 0.40E+00
256 0.50E+03 0.28E+03 0.11E+05 0.98E+00 0.15E+00 0.11E+02
512 0.37E+05 0.11E+06 0.11E+08 0.23E+01 0.13E+02 0.83E+03
1024 0.51E+08 0.65E+08 0.41E+10 0.21E+03 0.93E+02 0.20E+05

Table 3: Absolute maximum error for the �rst four derivative of u(x) = sin(2x).
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In Table 3, we computed the maximum absolute error of the 1st, 2nd, 3rd and 4th derivative of
the function sin(2x). The computations used a Cray C90, whose machine precision is about 6:5�
10�15 in single precision. We used three di�erent algorithms, namely, Matrix-Vector Multiplication,
FFT-Recursion and CFT-Recursion with and without the mapping g(�; �). The Cosine transform-
recursion algorithm is computed using the forward and inverse cosine transform subroutines FCR
and FCRINV from LARCLIB. This is a library local to NASA Langley Research Center, but
the source code is available. Both CFT and FFT algorithm are based on the same RFFTMLT
subroutine in the Cray Scienti�c Library Routine. The Matrix-Vector Multiplication algorithm
(MV) used the MXM subroutine in the same library package.

Based on Table 3, We can see that the solutions using the mapped Chebyshev methods are
uniformly better than standard one for all four di�erentiations. Another observation is that the
CFT algorithm is uniformly worse than both the MV and FFT algorithm in either the standard
or mapped category, especially for third and fourth derivative and large N . Moreover, the Matrix-
Vector Multiply (MV) algorithm and FFT Recursion algorithm (FFT) had a similar order of error.
We will concentrate our discussion on the data obtained by MV algorithm alone.

In Figure 1 we compare the roundo� error of the mapped Chebyshev derivative with the error
estimates in equations (18) and (22) for the test function u(x) = cos(4x) + sin(4x). The vertical
axis of the graph is (Max error)=�. We see that the actual error comes fairly close to the lower
bound. We can also see that the heuristic error estimate is fairly close to real error and the lower
bound, although the dependence on k is not exactly right.
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100 1000
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Figure 1: Maximum error vs. number of grid points for k-th derivative. Lower bound is equation
(18) and error estimate is equation (22). Error has been scaled by machine precision, i.e., the
vertical axis is (max err)=�, with � = 6:5� 10�15.
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N k = 1 k = 2 k = 3 k = 4

No Mapping

16 0.13E-07 0.22E-05 0.18E-03 0.89E-02
32 0.47E-11 0.93E-09 0.33E-06 0.58E-04
64 0.63E-10 0.85E-07 0.68E-04 0.38E-01
128 0.13E-09 0.50E-06 0.11E-02 0.18E+01
256 0.39E-09 0.95E-05 0.11E+00 0.95E+03
512 0.10E-08 0.62E-04 0.26E+01 0.83E+05
1024 0.69E-08 0.31E-02 0.72E+03 0.12E+09

With Mapping

16 0.50E-07 0.83E-05 0.63E-03 0.30E-01
32 0.54E-11 0.29E-08 0.62E-06 0.83E-04
64 0.17E-10 0.65E-08 0.11E-05 0.50E-03
128 0.17E-10 0.15E-07 0.14E-04 0.11E-01
256 0.54E-10 0.33E-06 0.87E-03 0.15E+01
512 0.13E-09 0.89E-06 0.38E-02 0.13E+02
1024 0.78E-09 0.16E-04 0.17E+00 0.12E+04

Table 4: Absolute maximum error for the k-th derivative of u(x) = exp(xk=�) + cos(mx); m = k =
2; � = 0:9.

6.1 Accuracy for Functions with Boundary Layers

It is well known that the Chebyshev method has good resolution power for functions with boundary
layers. How well does the mapped Chebyshev method do on such functions? We tested functions
of the type

u(x) = exp(xk=�) + cos(mx) :

The gradient of the boundary layer can be adjusted by varying the parameter � > 0. The smaller
the � becomes, the steeper the gradient will be near the boundary. The other parameters k and m

were set to be m = k = 2. We computed the derivatives for two di�erent � = 0:9 and � = 0:3.
Table 4 showed the absolute maximum error for case of � = 0:9. The gradient in this case is not

very large. The data showed that both algorithms performed equally well for small N . However, for
large N > 32 and higher derivatives, the mapped Chebyshev method outperforms the unmapped
one.

Table 5 shows the absolute and relative maximum error for case of � = 0:3. As seen in Table
5, the unmapped Chebyshev method performs better for small N � 32. We speculate that this
is because the mapped Chebyshev method will need more points to resolve such high gradient
near the boundary. It is quite self-evident that once the function is well resolved at N � 64, the
mapped Chebyshev methods again perform better. For higher derivatives, since the error is masked
by the large functional value, we examined the error in the relative sense for the third and fourth
derivatives. The relative accuracy using the mapping is rather good. The fourth derivative with
N = 512 has only :15% error with the mapping rather than 430% error of the standard Chebyshev
methods.
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Absolute Error Relative Error

N k = 1 k = 2 k = 3 k = 4 k = 3 k = 4

No Mapping

16 0.91E-03 0.16E+00 0.13E+02 0.66E+03 0.11E-02 0.62E-02
32 0.98E-10 0.72E-08 0.32E-05 0.60E-03 0.17E-09 0.55E-08
64 0.72E-09 0.12E-05 0.10E-02 0.59E+00 0.85E-07 0.55E-05
128 0.17E-08 0.66E-05 0.14E-01 0.19E+02 0.11E-05 0.17E-03
256 0.78E-08 0.20E-03 0.25E+01 0.21E+05 0.21E-03 0.19E+00
512 0.40E-08 0.27E-03 0.12E+02 0.47E+06 0.95E-03 0.43E+01
1024 0.68E-07 0.20E-01 0.33E+04 0.34E+09 0.32E-01 0.32E+04

With Mapping

16 0.15E-02 0.25E+00 0.19E+02 0.98E+03 0.16E-02 0.89E-02
32 0.13E-07 0.71E-05 0.18E-02 0.28E+00 0.15E-06 0.26E-05
64 0.19E-09 0.54E-07 0.12E-04 0.11E-01 0.98E-09 0.10E-06
128 0.16E-08 0.17E-05 0.13E-02 0.81E+00 0.65E-07 0.74E-05
256 0.85E-09 0.32E-05 0.11E-01 0.21E+02 0.89E-06 0.19E-03
512 0.37E-08 0.19E-04 0.66E-01 0.16E+03 0.55E-05 0.15E-02
1024 0.29E-08 0.63E-04 0.69E+00 0.56E+04 0.58E-04 0.51E-01

Table 5: Absolute and relative maximum error for the k-th derivative of u(x) = exp(xk=�) +
cos(mx); m = k = 2; � = 0:3.

7 Eigenvalue Spectrum of the Di�erentiation Matrix

In this section, we analyze the eigenvalue spectrum of both the standard and mapped Chebyshev
Matrices D and D respectively, subject to the Dirichlet boundary conditions u(1) = 0. It is
equivalent to deleting the �rst row and column of the matrix D and D. Their eigenvalues are
computed by the IMSL subroutine EVLRG.

It is an important issue because the (time-) stability condition (�t �xed; t ! 1) of any
explicit time marching scheme, for example, Runge-Kutta or Adams-Bashford scheme, is controlled
by its largest eigenvalues.

The eigenvalues of D and D can be separated into two groups; Those with large imaginary
parts, i.e. larger than O(N) which we will call outliers, and all the others. The outliers are
stable to perturbations of the matrix. In [3], Trefethen and Trummer found that the non-outlying
eigenvalues of D were extremely sensitive to perturbations of the matrix elements, and simply
storing the elements of the matrix in single or double precision would completely change the
spectrum of the matrix. The changed eigenvalues would have large negative real parts of order
O(N2), as N !1. However, they showed that for any given precision �, then for non-outlying
eigenvalues � with negative real part Re� < �1

2
jln �j, all relative precision of those eigenvalues are

lost. In [3], they simulated the perturbation by lowering the precision of the arithmetic. Here the
perturbation comes from representing the matrix elements in �nite precision.

For N = 64, �gures (2.a) and (2.b), show the eigenvalue spectrum of the standard Chebyshev
di�erentiation matrix D in 32 and 64 bits precision arithmetic respectively. Both cases exhibited
spurious eigenvalues with large negative real part in the form of an arc to the left of 1

2
ln �. However,

the largest negative real part computed by 32 bits precision is much larger than those computed
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with 64 bits precision. For any �xed N , the only way to eliminate those spurious eigenvalues is
to use much higher precision arithmetic. This is undesirable and impractical for the numerical
solution of PDEs.

However, the eigenvalues of the mapped Chebyshev di�erentiation matrix D with the Dirichlet
boundary conditions behave very di�erently. For N = 64, �gures (2.c) and (2.d), showed the
eigenvalue spectrum of the standard Chebyshev di�erentiation matrix D in 32 and 64 bits precision
arithmetic respectively. For the 32-bit precision matrix, there are a few eigenvalues of D to the
left of the line Re� = 1

2
ln �. in the form of a small arc. For the 64-bits precision, there are none.

There are a few (less than 10) eigenvalues that have negative real part � that are less than 1
2
ln �.

Hence we can conclude that the stability of the numerical scheme based on the mapped Chebyshev
collocation methods is much less sensitive to the precision of the arithmetic than the unmapped
method.

An important observation is that even for N = 64, the largest eigenvalues are considerably
smaller in the mapped case than in the unmapped case. Also the largest eigenvalue of the single-
precision-mapped matrix is smaller than the largest eigenvalue for the double-precision-mapped
matrix. The largest eigenvalue of D is (�91:9;�351:977) and its absolute value is e1 = 363:777.
The largest eigenvalue of D is (�52:1;�207:987) and its absolute value is e2 = 214:426. The ratio
e1
e2
= 1:696, which is very close to the value 1:732 in Table 2 for N = 64.
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(a) 32 bits precision
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(b) 64 bits precision
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(d) 64 bits precision

Figure 2: Eigenvalues spectrum of the standard and mapped Chebyshev di�erentiation matrix D

(a,b) and D (c,d) respectively, in 32 (a,c) and 64 (b,d) bits precision arithmetic. N = 64, the � of
the mapping computed using the di�erent values of � for the 32-bit and 64-bit precision matrices.

As seen in table 6, the most negative eigenvalue of D lying on the real axis grows like O(N1:25),
at least for the values of N in the table. This is substantially smaller than the O(N2) growth seen
when using the standard di�erentiation matrix D.

This result of O(N1:25) is actually quite surprising, for the following reason: recall that the trace
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Detail of spectrum of single precision mapped derivative matrix

Figure 3: Trajectories of some eigenvalues of the mapped Chebyshev derivative matrix as the size
of perturbations of the matrix increases from �double precision to �single precision The � is computed
according to a 32-bit precision �, N = 96. All computations are in IEEE double precision.

N 64 128 256 512 1024

�0 -15.1 -36.5 -92.0 -212.6 -480.0

r 1.27 1.33 1.20 1.18

Table 6: The most negative eigenvalue of D lying on the real axis, �0 and the local exponent of its
growth, i.e., O(N r).
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of a matrix is de�ned as tr(M) =
P

iMii, and that tr(M) =
P

i �i, where f�ig are the eigenvalues
of M .

Both D and D are anti-centrosymmetric (ACS) matrices, i.e., they satisfy equation (4). The
trace of an ACS matrix can easily be shown to be zero. Suppose we modify these matrices by
throwing away the �rst row and column, and call these matrices ~D and ~D. Then

tr( ~D) = �D00 = �
2N2 + 1

6
; (25)

and

tr( ~D) = �D (26)

= �M00D00 (27)

= �sin
�1�

p
1� �2

�

2N2 + 1

6
: (28)

Since M00 is supposed to be small, the mapping forces the eigenvalues of D to be closer to the
imaginary axis than those of D. Letting � = sech(jln �j=N), and taking the limit as N !1,

tr( ~D) � ��
6
N jln �j+ 1

3
jln �j2: (29)

The trace of ~D is real, so
P

i Im�i = 0, and

tr( ~D) =
X
i

Re�i: (30)

Also, the eigenvalues of ~D are experimentally always found to be in the left half-plane. If some of
them were not, it would make D useless for solving parabolic PDEs, so for the rest of the section,
we will assume that

Re�i � 0; 8i (31)

Now we can use our knowledge of tr( ~D) to say some things about the spectrum of ~D.
Let us consider two extreme arrangements of eigenvalues which satisfy equations (30) and (31).

First, suppose all of the eigenvalues but one lay on the imaginary axis. Then the real part of
the remaining one would be tr( ~D). This maximizes maxi Re(��i). Next, suppose that all of the
eigenvalues have the same real part, so Re�i = tr( ~D)=N; 8i. This minimizes maxiRe(��i). The
reality falls between these extremes, so

max
i

Re(��i) � �tr( ~D) � �

6
N jln �j (32)

� �tr(
~D)

N
� �

6
jln �j: (33)

If the O(N1:25) growth rate for the eigenvalues of ~D lying on the real axis shown in table 6 holds
for all N then for some large enough N , it will exceed the limit given by equation (32). Therefore
the O(N1:25) growth rate cannot be the asymptotic rate as N ! 1. The asymptotic growth rate
of the real part of any eigenvalue of D can be at most O(N). In table 6, we see that r is decreasing.
Presumably, as N!1, r approaches 1.

In the case of the Legendre derivative matrix, Trefethen and Trummer found that the sensitivity
of the eigenvalues of that matrix e�ectively raised its spectral radius from O(N) to O(N2). In
in�nite precision, the spectrum of the Legendre matrix is similar to that of the Chebyshev matrix,
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except that it doesn't have the O(N2) outliers. Heuristically, we expect that the mapping reduces
the spectral radius of ~D toO(N jln �j). A reasonable thing to fear is that eigenvalue sensitivity might
create eigenvalues with large negative real parts, increasing the spectral radius above O(N jln �j).
This cannot happen, at least not by generating eigenvalues with large negative real parts. Equation
(32) prevents any eigenvalue from having real part bigger than O(N jln �j).

>From equation (33), at least some of the eigenvalues have to be to the left of the line Re� =
�1

2
jln �j. It is not clear if this means that some of the eigenvalues have to be changed by roundo�

error, since the eigenvalues farthest to the left appear to be the outliers, which are stable anyway.
In Figure 3 we show how the eigenvalues of the mapped derivative matrix change as the matrix

perturbations increase in size. We computed the eigenvalues of the matrix

~Dt = ~D + tE (34)

where the entries of the matrix E are random numbers, uniformly distributed in the interval
[�1

2
; 1
2
]. the curves shown in Figure 3 are the paths taken by the eigenvalues of ~Dt in the complex

plane as t went from from 10�15 to 5 � 10�8. The mapping used a value of � consistent with
� = 5 � 10�8. All of the computations were done in IEEE double precision using the LAPACK
subroutine DGEEVX. The ends of the curves with the diamond are the small-t ends. Only the
non-outlying eigenvalues with non-negative imaginary part are shown. It can be clearly seen that
at least a few of the eigenvalues are e�ected by roundo� error. The diamonds that don't appear
to have a curve attached to them are eigenvalues which are not a�ected by perturbations.

This contradicts the statement in [4], that the eigenvalues of the mapped Chebyshev matrix
will not be a�ected by the roundo� error. They are, but much less than for the unmapped matrix.

8 Resolution power of the mapped Chebyshev methods

The standard Chebyshev method requires at least � points per wave before it begins to resolve an
oscillatory function like sin(m�x). How many points does the mapped Chebyshev method require?
In the limit as �! 1, the grid points become equally spaced, the Chebyshev polynomials become
cosine functions, and resolution requires two points/wave. However �, as a function of N , never
reaches one, so its not clear what really happens.

We claim (without proof) that the grid begins to resolve a function when the density of points
reaches two points per wave in the center of the domain, where the density of points is lowest. This
implies that

N

g0(0; �)
>

m

�
(35)

if the function u(x) = cos(mx) is to be resolved. In the limit as N !1, this means that 2 +
�jln �j=(4N) points per wave are required.

We computed the normalized L2 Error of the function cos(mx) for many m and N in �gure
4. The x axis represents the inverse of the wave number m=� which is normalized by the factor
N=(�g0(0; �)). >From the previous section, we have � = sech((ln �)=N) and g0(0; �) = �= sin�1 �.

Examining the data carefully, for any �xed wave number m=�, the error decays exponentially
fast to � asN increases and as soon as N=(mg0(0; �))> 1. This implies that a minimum of g0(0; �)�
points is needed to resolve a wave. Table 7 shows some typical values of g0(0; �)� for various sample
N . � is �xed at 6:5� 10�15. For large N , only about two points per wave are needed. This is close
to the performance of Fourier methods.
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Figure 4: The normalized L2 Error of the function cos(mx) for many m and N

N 32 64 128 256 512 1024

g0(0; �)� 2.90 2.56 2.31 2.16 2.08 2.04

Table 7: Number of points/wave vs. N
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9 How not to compute the derivative

Since computing the k-th derivative with k and N large can result in very large roundo� errors, it
is worthwhile to work extra-hard to minimize them. In this section we discuss several non-obvious
sources of roundo� error and show how to avoid them.

9.1 Ill-conditioning of the computations associated with the mapping

Recall that the grid transformation function is

x = g(�) = ��1 sin�1(��) (36)

where � = sin�1 �. and then the mapped grid points are xi = g(�i), where �i = cos(�i=N) are the
unmapped Chebyshev grid points. The derivative of g(�) is

g0(�) =
�

�
p
1� �2�2

: (37)

When j��j is near 1, jg0(�)j is large. This can be a problem. The roundo� errors associated with
storing the �i in single precision will result in errors in xi of size O(�g

0(�i)). The largest values of
j�ij is 1, and as N ! 1, � ! 1. The computation of the transformation derivative Mii is also
ill-conditioned. To avoid excessive errors resulting from these problems, both xi and Mii need to
be computed in extended precision before being stored in single precision. Failure to do this can
result in loss of about 1 digit of precision for N larger than about 100.

9.2 Ill-conditioning of the matrix multiply used to form D
k

The most obvious way to obtain the k-th derivative matrixDk is by constructing the �rst derivative
matrix D and doing k � 1 matrix multiplications. This is a bad idea; the matrix multiplication is
ill-conditioned. The sum that must be evaluated to obtain the entries of the 2nd derivative matrix
is

D
(2)
ij = (�1)i+j ci

cj

NX
k=0

1

s(i+k) s(i�k) s(k+j) s(k�j)

where s(i) = sin �
2N
(i), and ignoring the k = i and k = j terms in the sum. The terms in the sum

change sign twice; when k = i and again when k = j. This is a problem. It means that the partial
sums can be much larger than the �nal sum. The roundo� error is basically proportional to the
size of the partial sums, see [6]. This can be partially �xed by adding up the terms in the sum in
random order, rather than in order of increasing k. But a better idea is simply to use closed-form
expressions for the entries of the matrix. Of course, there are no closed-form expressions for the
entries of the matrix (MD)k. This is a strong argument in favor of using the long form of the
mapped derivative matrix, i.e., according to equation (24).

9.3 Cosine transform Algorithms

There are other algorithms for computing this matrix-vector product. One involves doing a discrete
cosine transform on u, doing O(N) operations on the transformed data, and then an inverse cosine
transform. One way of computing the cosine transform is to symmetrically extend u into a vector
of length 2n and do an FFT on the longer vector.
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Two faster alternative are the algorithms described in Dollimore [8], and in Cooley, Lewis, and
Welch [7]. They both involves an O(N) preprocessing step, an FFT on a vector of length n, and an
O(N) post-processing step. Unfortunately the pre- and post-processing steps are ill-conditioned,
and these algorithms haveO(N�) roundo� error, compared to O(�) roundo� error for the symmetric
extension algorithm. When used to compute the Chebyshev derivative, this gives O(N3�) roundo�
error rather than O(N2�).

Swarztrauber [9] describes a cosine transform which appears to be free of roundo� error prob-
lems, and at least as fast as the Dollimore algorithm. However, there are many publicly-available
subroutines which encode the Dollimore algorithm, and we have not been able to �nd any examples
of Swarztrauber's algorithm.
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