
Geometric Mesh Partitioning:
Implementation and Experiments

John R. Gilbert* Gary L. Miller’ Shang-Hua Teng:

Abstract
We investigate a method of dividing an irregular mesh into
equal-sized pieces with few interconnecting edges. The
method’s novel feature is that it exploits the geometric coor-
dinates of the mesh vertices. It is based on theoretical work of
Miller, Teng, Thurston, and Vavasis, who showed that certain
classes of “well-shaped” finite element meshes have good
separators. The geometric method is quite simple to imple-
ment: we describe a Matlab code for it in some detail. The
method is also quite efficient and effective: we compare it
ui ith some other methods, including spectral bisection.

1 Introduction
Solving a large problem on a parallel computer with dis-
tributed memory usually requires that the data for the prob-
lem be partitioned somehow among the processors. The
quality of the partition affects the speed of solution; a good
partition divides the work up evenly and requires as little
communication as possible.

Many problems can be modeled as graphs. Examples
are both direct and iterative methods for sparse linear sys-
tem solution [19, 381, and, more generally, many situations
in which partial differential equations are solved in physical
simulation and modeling. Partitioning such a problem typi-
cally amounts to dividing the vertices of the graph into sets
of equal size with few edges joining vertices in different sets.
Graph partitioning has been an active field of research for
several years, both theoretically [2,9, 16,20,30,3 1,321, and
experimentally [l , 14. 15, 18, 26, 28, 35, 37, 401. Optimal
partitioning is an NP-hard problem, and finding good graph
partitions in practice can be very expensive.

Graphs from large-scale problems in scientific comput-
ing are often defined geometrically. They are meshes of el-

‘Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto,
California 94304-1714 (&ert@parc.xerox.com). Copyright @ 199495
by Xerox Corporation. All rights reserved.

t School of Computer Science, Camegie Mellon University, Pittsburgh,
Pennsylvania 1521 ~(glmiller~~ilory.cs.cmu.edu). This author’s work was
supportedin part by National Sience Foundation grants DCR-87 13489 and
CCX-90 1664 1.

:This author was apostdoctoral scientist at the Xerox Palo Alto Research
Center when this work was done. Resent address: Department of Com-
puter Science, University of Minnesota, Mmneapolis, Minnesota 55455
(teng@cs.umn.edu).

ements in d-dimensional Euclidean space (typically d = 2
or 3). This paper reports on experiments with a geomet-
ric mesh partitioner, which is based on theoretical work of
Miller, Teng, Thurston, and Vavasis that we summarize in
Section 2. The method partitions a d-dimensional mesh by
finding a suitable sphere in d-space, and dividing the ver-
tices into those interior and exterior to the sphere. The cutting
sphere is found by a randomized algorithm that involves a
conformal mapping of the points on the surface of a sphere in
(d+ 1)-space. If the mesh elements are well-shapedin a suit-
able sense, the theoretical algorithm provides a strong guar-
antee on the quality of the partition it generates [33, 34, 391.
In practice, our implementation produces partitions that are
better than the theoretical guarantees and are competitive
with those produced by other modem methods.

The goal of this paper is to convince the reader of three
things. First, though the theory behind the geometric par-
titioner is fairly complicated, the algorithms themselves are
quite simple and easy to implement. Second, the implemen-
tation can be made quite efficient. Third, the partitions pro-
duced are quite good. As evidence for the first point, Sec-
tion 3 discusses the engineering that makes the theoretical al-
gorithm efficient in practice, and describes a Matlab imple-
mentation in some detail. We present experimental evidence
for the second and third points in Section 4.

2 Theory of geometric partitioning
We now briefly review Miller, Teng, Thurston, and Vava-
sis’s theoretical work on separators in geometrically defined
graphs. For details and proofs, see their papers [33, 34, 391.

The partitioning algorithm maps the d-dimensional
mesh into a (d+ 1)-dimensional space. Our descriptions (and
code) are correct for any d 2 2, but our terminology cor-
responds to d = 2. Thus “circle” and “disk” mean “sphere
in Etd” and “ball in Rd”, while “sphere” and “plane” mean
“sphere in IRd+’” and “d-dimensional hyperplane”.

2.1 Overlap graphs
Computational meshes are often composed of elements that
are well-shaped in some sense, such as having bounded as-
pect ratio or having angles that are not too small or too large.
Miller et al. define a class of so-called overlap graphs to
model this kind of geometric constraint.

1063-7133/95 $4.00 E) 1995 IEEE
418

An overlap graph starts with a neighborhood system,
which is a set of closed disks in d-dimensional Euclidean
space and a parameter k that restricts how deeply they can
intersect.

Definition 1. A le-ply neighborhood system in d dimen-
sions is a set { D1, . . . , Dn} of closed disks in IRd, such that
no point in IRd is strictly interior to more than k of the disks.

A neighborhood system and another parameter a define an
overlap graph. There is a vertex for each disk. For a = 1, an
edge joins two vertices whose disks intersect. For a > 1, an
edge joins two vertices if expanding the smaller of their two
disks by a factor of a would make them intersect.

Definition2. Let a 2 I, and let {&, . . . , Dn} be a k-
ply neighborhood system. The (a , L)-overlap graph for the
neighborhoodsystem is the graph with vertex set { 1, . . . , n }
and edge set

We make an overlap graph into a mesh in d-space by locating
each vertex at the center of its disk.

Overlap graphs are good models of computational
meshes because every mesh of bounded-aspect-ratio ele-
ments in two or three dimensions is contained in some over-
lap graph (for suitable choices of the parameters Q and k).
Also, every planar graph is an overlap graph. Therefore, any
theorem about partitioning overlap graphs implies a theorem
about partitioningmeshes of bounded aspect ratio and planar
graphs.

2.2 Separators for overlap graphs
The central theorem about overlap graphs is that they have
good separators, that is, small sets of vertices whose removal
divides them approximately in half. A regular cubic mesh in
d-space, with n vertices in an array nild on a side, can be
divided in half by removing the n(d- l I / d vertices on a (d -
1)-dimensional slice through the middle of the array. Up to a
constant factor that depends on a, le, and d, an overlap graph
in 0 dimensions has as good a separator as the cubic mesh.

Theorem 1 (Geometric Separators [U]). Let G be an n-
vertex (a, k) -overlap graph in d dimensions. Then the ver-
tices of G can be partitioned into three sets A4, B. and C,
such that: no edgejoins A and B ; A and B each have at most
(d i l) / (d 1 2) . n vertices; ;mdG has onlyO(ak' ldn(d-l
vertices.

Miller et al. gave a randomized algorithm to find the sep-
arator in the theorem, which runs in linear time on a sequen-
tial machine or in constant time on a PRAM with n proces-
sors. The separator is defined by a circle (that is, a sphere

in Etd). The algorithm chooses the separating circle at ran-
dom, from a distribution that is carefully constructed so that
the separator will satisfy the conclusions of Theorem 1 with
high probability. The distribution is described in terms of a
stereographic projection and conformal map ing on the sur-

Here is an outline of the algorithm. Figures 1 to 6 show
the steps in partitioning the 2-dimensional mesh in Figure 1.

0 Project Up. Project the input points stereographically
from Rd to the unit sphere centered at the origin in
Etd+'. Point p E Wd is projected to the sphere along the
line through p and the "north pole" (0, . . . , 0 , l) . (See
Figure 3 .)

0 Find Centerpoint. Compute a centerpoint of the pro-
jected points in Etd+'. This is a special point in the in-
terior of the unit sphere, as described below. (See Fig-
ure 3.)

0 Conformal Map: Rotate and Dilate. Move the pro-
jected points in IRd+l on the surface of the unit sphere
in two steps. First, rotate the projected points about the
origin in Etd+' so that the centerpoint becomes a point
(0, . . . , 0, T) on the (d + 1)-st axis. Second, dilate the
points on the surface of the sphere so that the center
point becomes the origin. The dilation can be described
as a scaling in Etd: project the rotated points stereo-
graphically down to Rd; scale the points in IRd by a fac-
tor of J(1 - T) / (1 + T) ; and project the scaled points
up to the unit sphere in Etd+' again. (See Figure 4.)

0 Find Great Circle. Choose a random great circle (i.e.,
d-dimensional unit sphere) on the unit sphere in Etd+'.
(See Figure 4.)

0 Unmap and Project Down. Transform the great circle
to a circle in Rd by undoing the dilation, rotation, and
stereographic projection. (See Figure 5.)

a Convert Circle to Separator. The vertex separator C
consists of the vertices whose disks in the neighborhood
representation (in Etd) either (i) intersect the separat-
ing circle, or (ii) are smaller than the separating circle
and would intersect it if expanded by a factor of a. The
two sets A and B are the remaining vertices whose disks
lie inside and outside the circle respectively. (Figure 6
shows an edge separator rather than a vertex separator.)

A cenrerpoinr of a given set of points is a point (not
necessarily one of the given points) such that every (hy-
per)plane through the centerpoint divides the given points ap-
proximately evenly (in the ratio d: 1 or better, in Rd). Every
finite point set in Etd has a centerpoint, which can be found by
linear programming [13, Section 41. After the projection and
conformal mapping, the origin of Rd+' is a centerpoint for

face of a sphere one dimension higher, in IR %+ 1 .

419

FLntte Elanent M a h Conformalty Mapped RoJected Point8

Figure 1. The input mesh.

uah p O l ~ l " (h P U ~

. 4

. .: . .

.

.:.:.:: ' ' ,
:I . , , . .
0 2

.

Figure 2. The mesh pomts.

Po~nts Fmjecled mto me Sphere

'1

Figure 3. Projected mesh points. The large dot is the centerpoint.

Figure 4. Conformally mapped points. with separating great circle.
The centerpoint is now at the origin.

Mnll Pdn(, I" (h P Y n

. , . . ::::.:;: '

. : : : 1 : . : . : . , : /

J
I

Figure 5 . The separating circle projected back to the plane.

42 cut m d p s

Figure 6. The edge separator induced by the separating circle. A
vertex separator can also be extracted. as explained in the text.

420

the mesh points. Therefore the mapped points are divided ap-
proximately evenly by every plane through the origin-that
is, by every great circle on the unit sphere in Rdtl.

Every great circle determines a separator C that satis-
fies all the conclusions of Theorem 1 except the last one, on
the size of the separator. Miller et al. show that the average
size of the separators determined by all the great circles is as
stated in the theorem, and therefore that a randomly chosen
great circle probably gives a separator within a constant fac-
tor of the desired size.

3 Practical implementation
3.1 The mesh and its separators
The geometric separator theorem guarantees the quality of a
partition if the mesh satisfies a geometric condition such as a
bound on the aspect ratio of its elements. However, the geo-
metric conditions only appear in the guarantee, not in the al-
gorithm itself. The algorithm can be run on any mesh, with
no requirements on its geometry. In practice, we observe
that it generates good partitions even for meshes with badly-
shaped elements. Somewhat surprisingly, it even does a rea-
sonably good job of partitioning “2 $-dimensional” meshes,
which are meshes of triangular elements that approximate the
surface of an object in 3-space.

The theorem describes a vertex separator in terms of
the disks of a neighborhood system that defines the mesh.
The implementation takes a simpler approach that doesn’t re-
quire the neighborhood system. It just divides the vertices
into those insideand those outside the separating circle. Such
a vertex partition (or an edge separator, which is the set of
edges that cross the cut) is often the goal in applications to
parallel computation.

For applications like nested dissection that require a ver-
tex separator, we compute the vertex separator from the edge
separator as follows. Consider thegraph G consisting only of
the separating edges and their endpoints. Any vertex cover
of G (that is, any set of vertices that includes at least one
endpoint of every edge in GI is a vertex separator for the
mesh. Since G is bipartite, we can compute the smallest ver-
tex cover efficiently by bipartite matching [121.

The algorithm can be used to find other kinds of separa-
tors as well (though our software only includes vertex sep-
arators and edge separators). A separating set of mesh el-
ements can be found directly from the Separating circle. A
partition of the mesh elements into two equal-size sets with
small boundary can be found either from the separating cir-
cle, or by applying the geometric separator algorithm CO a ge-
ometric dual of the mesh.

The separating circle does not necessarily split the mesh
exactly in half. In theory, the centerpoint construction guar-
antees a splittingrationo worse than (d-t 1): 1; as described in

Section 3.3, we actually use an approximate centerpoint con-
struction with an even weaker guarantee. However, we ob-
serve that our approximate centerpoints nearly always lead to
splits much better than the theory predicts. We almost never
see splits as bad as 2: 1 in three dimensions, and most splits
are less than 20% away from even.

We modify the splits to be exactly even, within one ver-
tex. We do this by shifting the separating plane (in RdS1)
away from the origin, in the direction normal to the plane, un-
til it evenly splits the mapped points on the sphere. Thus the
separator is a circle, but not a great circle, on the unit sphere
in JRd+l; this still projects back to a circle in Rd. Our exper-
iments show that this balancing usually affects the separator
size very little. Intutitively, this is because the local geom-
etry of a well-shaped mesh changes relatively smoothly, so
a small change in the cut does not dramatically change the
number of edges that cross it.

3.2 Representations
Our implementation uses very simple data structures. We
never need to represent the neighborhood system or the over-
lap graph per se, nor do we ever use the overlap-graph param-
eters IC and a. Most of the algorithm does not even need to
know the edges of the mesh, but just manipulates the coor-
dinates of the vertices as points in Rd and RdS1 (that is, as
vectors). The original input points in Rd are scaled (isotrop-
ically) and translated to have coordinates between - 1 and 1.

The implementation never actually computes a sepa-
rating circle, line, or hyperplane (except to draw pictures).
Rather, we represent a separating plane by its unit normal
vector. If v is the normal vector and p l , . . . , pn are the points
(as row vectors), then the partition is into those points for
which the inner product vpT is less than its median value and
those for which it is greater.

We do keep a representation of the graph (as a sparse ad-
jacency matrix), but we only use it to measure the quality of
a partition (which is the number of edges that cross the even
cut), and to construct an explicit edge separator or vertex sep-
arator from a separating circle.

3.3 Centerpoints
The proof that every finite point set has a centerpoint yields
a linear-programming algorithm that theoretically finds one
in polynomial time, but would be very slow in practice. In-
stead, we use a version of a heuristic that was suggested by
Miller and Teng and was analyzed by Clarkson et al. [lo].
The heuristic uses randomization and runs in linear time in
the number of sample points. It finds an approximate center-
point by repeatedly finding Radon points of small point sets.

Point q is a Radon point [111 of a set P of points in IRd
if P can be partitioned into two disjoint subsets Fl and P2
such that q lies in the intersection of the convex hull of Pl

42 1

i i

Figure 7. Radon points in two and three dimensions. The small
point is the Radon point of the large points.

and the convex hull of P2. Such a partition is called a Radon
partition. Figure 7 shows examples of Radon points in two
and three dimensions. Every set of d + 2 points in Etd has a
Radon point. Moreover, it can be found efficiently by com-
puting a null vector of a (2 + 1 by d -t 2 matrix.

The idea of the centerpoint heuristic is to repeatedly re-
place randomly chosen groups of d + 2 points with their
Radon points. Eventually the set is reduced to a single
point, which is the approximate centerpoint. (Since a d-
dimensional mesh uses a centerpoint in d + 1 dimensions,
the Radon reduction actually uses groups of d + 3 points.)
Section 3.8 discusses two versions of this.

3.4 Geometric sampling
We use geometric sampling to reduce the size of the center-
point problem for efficiency. That is, we run the centerpoint
heuristic on a randomly chosen sample of the input points.
Theoretically, the size of the sample necessary for a good
approximation should depend on the dimension but not on
the number of mesh points [34]. We find empirically that a
sample of about a thousand points suffices in two or three
dimensions. We find separators for a few different approx-
imate centerpoints, derived from different random samples,
and keep the best one. Since our centerpoint approximation
seems very good in practice, and since it is an expensive part
of the computation, we let the number of approximate cen-
terpoints grow only logarithnlically with the total number of
random separator trials.

3.5 Greatcircles

After the points in IRd are mapped to the surface of the sphere
in Rdf’, we expect a random great circle to induce a good
partition. In fact, it pays to spend some effort looking for
an above-average circle. For each approximate centerpoint,
we generate several circles at random and use the best one.
A convenient way to generate great circles uniformly at ran-
dom is to choose normally distributed random coefficients
for the vector orthogonal to the plane of the great circle [29,
Sec. 3.4.1 1 .

A special case of a separating circle is a separating line:
a line in IRd is the projection of a circle through the north pole

of the unit sphere in Ed+’. Our implementation searches ex-
plicitly for a separating line as well as for a separating cir-
cle; this improves its performance on some regular meshes.
The coordinate bisection methods of Heath, Raghavan, and
others [24,37,40] also use separating lines. Teng [39, Sec-
tion 5.41 gives an example of a mesh that has a good separat-
ing circle but no good separating line.

We let the user specify how many randomly generated
separators to try. Of the specified number t of trials, we allo-
cate a number proportional to td’(d+’) to separating lines and
the rest to separating circles. The default is to use 30 trials,
whichincludes (in two dimensions) 6 lines and 2 centerpoints
with 12 circles each.

3.6 Inertial weighting
The random choice of a separating circle or line can be im-
proved by biasing the normal vector in the direction of the
moment of inertia of the points. The idea of inertial weight-
ing (in one form or another) has been suggested in conjuction
with geometric coordinate bisection by several people [14,
401. Gremban, Miller, and Teng [23] proved that one ver-
sion of inertial weighting reduces the expected size of the
separators in Theorem 1. We use inertial weighting (much
more aggressively than the version analyzed by Gremban et
al.) in choosing both the separating great circles in Etd+’
and the separating lines in Etd . For great circles, we simply
weight our random choice of normal vector by the square of
the inertial matrix P T P , where P is the matrix whose rows
are the coordinates of the points after conformal mapping on
the unit sphere in Etd+’. Thus we generate a random unit
vector U , and take our separating hyperplane to be normal to
(P T P) 2 ~ . For separating lines in Rd, we weight according
to a power of the matrix of coordinates that goes as the in-
verse of the number of choices we make-if we choose only
one line, it is exactly normal to the moment of Inertia, which
is the first singular vector of the coordinate matrix.

3.7 Matlab implementation notes

Most of our partitioner’s basic operations are from linear al-
gebra, which makes Matlab a natural choice of language for
experimental implementation. Matlab’s interpreted environ-
ment and visualization tools make it easy to experiment with
variations of the algorithm. The code is written in a data-
parallel ‘’vectorized” style for efficiency (since explicit loops
are slow in the interpreter); this also simplifies the process of
porting the code to a parallel machine. Versions of this code
have been translated to NESL [6] and Connection Machine
Fortran.

To illustrate how the pieces of the partitioner fit together,
and to assist the experimentally inclined reader, we discuss
some of the details of the code in this section A technical

422

report [21] gives more detail; the Appendix describes how to
obtain the complete code by anonymous ftp.

Data structures. A point in lRd is a row vector, and a set of
n points is an n x d matrix. A partitioning line or plane is
represented by its normal vector.

The mesh edges are represented by the adjacency matrix
A of the graph. Matlab supplies sparse data structures and
operations for this matrix invisibly to the user [22].
Null vectors. Each Radon reduction computes a null vector
of a small matrix. The null vector comes from the built-in
Matlab function null, which computes a null space basis by
singular value decomposition.

Householder matrias. The conformal mapping on the
sphere in (d + 1)-space consists of an orthogonal transfor-
mation and two stereographic projections with a scaling in
between. The orthogonal transformation is a Householder re-
flection, computed by Matlab’s Q R factorization. The rest is
matrix arithmetic.

Random directions, inertial weighting, and SVD. We gen-
erzte uniformly distributed random directions for separat-
ing lines or planes by generating vectors with independent
normally distributed components. We implement inertial
weighting by multiplying the random direction by a power of
the inertia matrix M = PT P , where P is the matrix whose
rows are the points. For separating planes in (d + 1)-space,
we use the second power and compute M directly. For sep-
arating lines in d-space, the exponent depends on the number
of trial lines. In this case we compute a fractional power of
M from the singular value decomposition of P .
Sparse matrix manipulation. The sparse adjacency matrix
A enters the partitioningcomputation only when we compare
the quality of the randomly generated trial separators. (If we
only made one trial, we wouldn’t need A at all.) The only
reference to A is the one-liner that counts the crossing edges
by counting nonzeros in rows from set a and columns from
set b, namely “cutsize = nnz(A(a,b))”.
From edge to vertex separators. We convert the partition
into a vertex separator for the graph by finding a minimum
vertex cover as described in Section 3.1. We compute the
cover from Matlab’s built-in Dulmage-Mendelsohn decom-
position, dmperm.

3.8 Possible improvements
Finally, we list some ideas that could lead to further improve-
ment of the geometric partitioner.

Variants of fast centerpoint. Our Matlab experiments sug-
gest that the simplest implementation of approximate center-
point is the method of choice both for speed and quality. We
choose a random sample of the input points (without repeti-
tion), place them onto a queue, and then repeatedly remove

the fust d + 3 points from the queue and add their Radon point
to the end of the queue. This performs a (d + 3) - q tree of
Radon reductions, with the sample points at the leaves and
the approximate centerpoint at the root. The sample size is
at most (d + 3)4 (that is, 625 ford = 2 or 1296 for d = 3),
and is congruent to 1 (modulo d + 2).

The theoretical results of Clarkson et al. [lo] suggest
that the probability of returning a bad centerpoint decreases
double-exponentially in the height of the tree of Radon re-
ductions. We use four levels. A five-level tree would need
3125 points for d = 2 or 7776 points for d =I 3. We ex-
perimented with a variant (suggested by Clarkson et al.) that
allows more levels of reduction without using more sample
points. The idea is to reduce according to a directed acyclic
graph instead of a complete (d+ 3)-ary tree. Let PO be a sam-
ple of L points. To construct P h , choose L random (d + 3) -
tuples from p h - 1 (with replacement) and let Ph be the set
of Radon points of these L tuples. Our experiments suggest
1000 5 L 5 1200and4 5 h 5 8 workwell. Whilethis
doesn’t seem to beat the simpler method in Matlab, it may
be useful in some settings.

From sorting to median finding. To force an even partition,
we need to find the median of the dot products of the points
with the normal to the partitioning plane. Our implementa-
tion uses Matlab’s built-in median function, which is based
on sorting. Theoretically, this is overkill, since a median can
be found in linear time. In some settings (especially on par-
allel machines), it may be best to use a randomized median-
finding algorithm [17,271. One could even find an approxi-
mate median with the one-dimensional version of the approx-
imate centerpoint algorithm [lo], which amounts to repeated
median-of-three reduction.

Faster quality testing. We measure the quality of a trial sep-
arating sphere by counting the number of graph edges that
cross the cut it induces. This is the only phase of the algo-
rithm that needs to manipulate the edges (as opposed to the
vertex coordinates), and it typically takes about half to two
thirds of the total time.

One idea for speeding this up is to use geometric sam-
pling again. For example, instead of examining all the edges
we could look only at a random sample of IEl l / (a t l) log [El
of them. This idea could be used in both sequential and par-
allel implementations.

A second possibility is to represent the mesh more com-
pactly. For example, an overlap graph could be represented
as a neighborhood system, and a quality test could be imple-
mented by just counting intersections between neighborhood
disks and the separating sphere.

Local optimization for great circles. Once the centerpoint
is determined and the points are conformally mapped on the
unit sphere in Etd+’, each trial separating circle is selected

423

Mesh
TAPIR
AIRFOIL2
TRIANOLE
AIRFOIL3
PWT
BODY
WAVE

Description
Cartoon animal

Three-elcment airfoil
Equilateral triangle
Four-element airfoil
Pressurizcdwind tunnel
Automobile body
Space around airplane

Mesh l)fpe
2-D triangles. sharp angles
2-D triangles
2-D triangles. all same size
2-D triangles
Thin shell in 3-space
3-D volumes and surfaces
3-D volumes and surfaces

Grading
8.5 x 10’
1.3 x 10’
1.0 x loo
3.0 x 10‘
1.3 x lo2
9.5 x lo2
3.9 x l o b

Vertices
1024
4720
5050

15606
36519
45087

156317

Table 1. Test problems. “Grading” is the ratio of longest to shortest edge lengths.

independently at random (from an inertially biased distribu-
tion). Instead, one can imagine trying to improve each trial
circle locally. Consider the quality of a trial circle, as a func-
tion of its normal vector. This is a real-valued function de-
fined on the surface of the unit sphere in (d + l)-space. The
functionis not smooth-in fact, it is piecewise constant-but
it might be possible to smooth it on a fine scale and then use
continuous optimization methods to find a local minimum on
a coarser scale. Our preliminary experiments show that this
idea often improves the quality of a partition, sometimes by
a significant amount.

Another local improvement would be to use a combi-
natorial method like Kernighan-Lin [28] on the final vertex
partition. Our preliminary experiments suggest that this does
not often give much improvement.
Relaxing the 50-50 split. Most applications do not require
the vertex partition to be exactly even. It may be worth-
while to search in the vicinity of an exact cut-for example,
bj shifting the cutting hyperplane or dilating the separating
circle-for a cut whose balance is slightly uneven but whose
overall quality is higher. The user would probably have to
supply the definition of “overall quality”, since the tradeoff
between load balancing (even partition) and communication
cost (small cut) depends on the application.

4 Experimental results
To assess the quality of the geometric algorithm’s partitions,
we compared them to coordinate bisection [24, 37,401 and
to spectral bisection [3,25,35] on several sample meshes.

Table 1 lists the meshes. TAPIR is a test case from a
21) mesh generation algorithm of Bem, Mitchell, and Rup-
pert [5] that produces mangles with sharp angles but no ob-
tuse angles. AIRFOIL2 and AIRFOII.~ are highly graded
meshes of well-shaped 2D triangles around cross sections of
iurfoils, from Barth and Jesperson [4] TRIANGLE is a 2D
mesh of equilateral triangles, all the same size, generated in
Matlab. PWT is a mesh of 3D elements that discretize a thin
shell. We expect this to be difficult for the geometric algo-
rithm to separate well, because its best separators should be

TAPIR

TRIANGLE
AIRFOIL2

AIRFOIL3
PWT

BODY
WAVE

59
117
154
174
362
456

13706

Coordinate
Bisection

55
172
142
230
562
95 3
982 1

Edges
2846

13722
14850
45878

144794
163734

1059331

Default
Geometric

37
100
144
152
529
834

10377

--

Best
Geometric

32
93
142
148
499
768
9773

Table 2. Cut size for two-way partitions.

like those of a 2D mesh but the algorithm treats it as a 3D
mesh. BODY is another 3D mesh with some ‘‘thin shell”
parts. We obtained these two meshes from Horst Simon at
NASA. WAVE is a highly graded mesh that fills the space
around an object in 3D, which we obtained from Steve Ham-
mond at NCAR.

Table 2 shows the number of edges cut for a balanced
two-way split, as found by each of the three methods. We
used Matlab to implement coordinate bisection, and we used
Hendrickson and Leland’s Chaco package [25] to find the
spectral bisections. (Chaco also implements several other bi-
section methods that we did not use here.) A parameter to the
geometric algorithm is the number of random trials of great
circles to make. The “default geometric” column reports r e
sults for 30 trials, which is the default of our Matlab code;
“best geometric” reports the results for 7000 trials. (Each
“default geometric” number is actually the median result of
31 separate experiments of 30 trials each.)

The results indicate that the geometric cuts are consis-
tently smaller than the coordinate-bisection cuts. In most
cases, the geometric cuts are also smaller than the spectral
ones. The significant exceptions are PWT and BODY, the thin
shells in 3D. These may be difficult cases for the geomet-
ric algorithm because they really should be treated as two-
dimensional meshes in some sense.

It is hard to make meaningful comparisons of the run-

424

I Mesh 1 After 1 After I Last 1
10 Trials 100 Trials Improvement

Mesh Spectral Coordinate Default
Bisection Geometric

TAPIR

TRIANGLE
AIRFOIL2

AIRFOIL3
PWT

BODY
WAVE

1.28
1.22
1.07
1.20
I .06
1.14
1.16

1 .oo
1.04
1.01
1 .oo
1.05
1.02
1.06

49
1636
109
58

4927
2989
498

Table 3. Relative cut size with increasing number of t r ia ls .

ning times of the various algorithms, since there are many
different versions and choices of parameters for all of them,
and also because the Matlab implementation runs in an in-
terpreted environment. For a rough comparison, we note
that finding a 2-way partition for the AIRFOIL3 mesh takes
46 seconds with the default Matlab geometric code, 5.9 sec-
onds with a similar C geometric code, 0.83 seconds with a
C geometric code that only computes one cutting circle, and
10 1 seconds with a good C spectral code.’

We do not mean to suggest that the geometric algorithm
is the last word in mesh partitioning; several researchers have
proposed refinements to spectral partitioning [7,8] and some
purely combinatorial methods such as Hendrickson and Le-
land’s multilevel Kemighan-Lin [26] look very promising.
However, we believe this data shows that geometric parti-
tioning is at least competiuve with other modem graph par-
titioning methods.

The data in Table 2 suggest that 30 random trials are
usually enough to get close to the best separator that the geo-
metric method will find. Table 3 explores this in more detail.
For each mesh, we ran 6OOO random trials. The table reports
the smallest cut seen in the first 10 trials, the smallest cut seen
in the first IO0 trials, and the number of the first trial in which
the smallest cut was seen (“last improvement”). The sizes are
normalized so that the smallest cut had size 1. All the meshes
are within 6% of the 6000-trial minimum after 100 mals.

Table 4 shows the total number of edges cut by using
the three algorithms recursively to split the mesh into 128
pieces. For the geometric algorithm, we used the default of
30 random mals. It is striking that, for most of the problems,
the cuts from the various methods differ much less in qual-
it) Vor 128-way than for 2-way partitions. The geometric and

The Matlab code used the default 30 mals, mcludmg two centerpolnts
The “ s d a r ” C code also used 30 tnals with two centerpomts. The spec-
tral m e is from Chaco, usmg its multilevel RQYSymmlq eigensolver and
no Kermghan-Lm postprocessing. ”he expenments were mu on an un-
loaded Spa-10 All tunes are tbe meLan of three runs, and do not include
mpuIJoutput

-

TAPIR

TRIANGLE
AIRFOIL2

AIRFOIL3
PWT

BODY

WAVE

1278
2826
2989
4893
13495
12077
143015

1387
327 1
2907
6131
14220
22497
162833

1239
2709
2912
4822
13769
19905
145 155

Table 4. Cut size for 128-way partitions.

spectral algorithms give extremely similar sizes for all but the
BODY mesh (for which we don’t have an explanation of the
difference) .

Tables 5 and 6 illustrate “geometric nested dissection,”
which uses balanced 2-way geometric partitioning recur-
sively to order a symmetric, positive definite matrix for
Cholesky factorization. We tabulate both the fill, which mea-
sures the amount of storage needed for the Cholesky factor,
and the height in vertices of the elimination tree, which is the
number of parallel elimination steps to compute the factor
with an unlimited number of processors. “Default geomet-
ric” uses the geometric algorithm to partition the graph all the
way down to fragments of 3 vertices or less; “partial geomet-
ric” uses the geometric algorithm down to fragments of 100
vertices and then uses minimum degree on the fragments. We
also tabulate fill and height for Sparspak’s nested dissection
routine [181, for Matlab’s minimum degree routine [22], and
for nested dissection with separators from spectral partition-
ing as described by Pothen et al. [36]. Sparspak’s nested dis-
section routine uses a fast but fairly simple partitioningalgo-
rithm, which generally does not perform as well as the newer
methods for either height or fill. For most of the large geo-
metric problems there is little to choose between minimum
degree and nested dissection in terms of fill, but nested dis-
section with the newer partitioners usually gives better height
than minimum degree. Among the various spectral and geo-
metric partitioners there is no clear winner for either height
or fill.

5 Conclusions
We have described a geometric partitioning algorithm that is
fairly simple to implement and seems to give excellent re-
sults on meshes from graded finite-element discretizations of
2- and 3-space. Our reference implementation is in Matlab,
which makes experimenting with different versions of the al-
gorithm quite easy. We have also implemented versions of
the geometric partitioner in C and Fortran.

A chief application of graph partitioning is to distribute

425

Mesh

TAPIR
AIRFOIL2
TRIANGLE
AIR FOIL^
PWT

Minimum Spmpak Spectral Coordinate Default Partial
hgrce Biscction Geometric Geometric
7786 15402 12214 12282 10314 10094

103207 146894 102248 124075 96901 103163
130587 128995 127785 122539 123560 130106
409392 657687 418840 472222 389232 405918
1424987 1631592 1441153 1545975 1503498 1576271

a computational mesh across a distributed-memory parallel
machine. Can the partition itself can be found in parallel?
This is challenging because most partitioners make heavy
use of the edges of the graph, and therefore require a lot of
communication unless most adjacent vertices share the same
processor-that is, unless a good partition is already known.
We expect the geometric partitioner to be reasonably efficient
in parallel, because almost none of the data manipulation in-
volves the edges. (Coordinate bisection shares this desirable
property, as Heath and Raghavan's parallel implementation
shows [24].) We have implemented parallel versions of the
geometric partitioner in NFSL [6] and Connection Machine
Fortran.

An open problem is how best to handle such 2;-
dimensional meshes as our example PWT. One possibility is
to combine the geometric and spectral partitioningmethods,
as recently suggested by Chan, Gilbert, and Teng [7].

Mesh Minimum Sparspak 1 Spectral Coordinate Default Partial
I Bisection Geometric Geometric

TAPIR 82 83 66 68
AIRFOIL2 287 192 20 1

223 226 23 1
440 32 1 329

p ~ T F TRIAVGLE tyi 269 i 233 189
AIR FOIL^ 526 837 346
PWT 960 822 618 713 65 1 668
L-

Appendix: Obtaining the codes
In addition to the code for geometric partitioning, the Mesh
Partitioning Toolbox contains Matlab implementations of
spectral bisection [35] and geometric spectral bisection [7].
It includes both edge and vertex separators, recursive bipar-
tition, nested dissection ordering, visualizations and demos,
and some sample meshes. The complete toolbox is avail-
able by anonymous ftp from machine ftp.parc.xerox.com
as file /pub/gilbert/meshpart.uu. A longer version of
this paper [21] is available on the same machine as file
/pub/gilbeNcsl94l3.ps.Z.

References
[l] A. Agrawal and P. Klein. Cutting down on fill us-

ing nested dissection: Provably good elimination order-
ings. In A. George, J. R. Gilbert, and J. W. H. Liu,
eds., Graph Theory and Sparse Matrix Computation,
Springer-Verlag, 1993.

[2] N. Alon, P. Seymour, and R. Thomas. A separator the-
orem for graphs with an excluded minor and applica-
tions. Proc. 22nd Symp. Theory of Comp. ACM, 1990.

[3] S . T. Bamard and H. D. Simon. A fast multilevel imple-
mentation of recursive spectral bisection for partition-
ing unstructured problems. Tech. Rep. RNR-92433,
NASA Ames Research Center, 1992.

[4] T. J. Barth and D. C. Jespersen. The design and applica-
tion of upwind schemes on unstructured meshes. 27th
Aerospace Sciences Meeting. AIAA, 1989.

Linear-size
nonobtuse triangulation of polygons. Proc. 10th Symp.
Computational Geometry, pp. 22 1-230. ACM, 1994.

[6] G. E. Blelloch. Vector Models for Data-Parallel Com-
puting. MIT Press, Cambridge, Mass., 1990.

[7] T. E Chan, J. R. Gilbert, and S.-H. Teng. Geometric
spectral bisection. Tech. Rep. CSL 94-15. Xerox Palo
Alto Research Center, 1994.

[8] T. E Chan and W. K. Szeto. A sign cut version of the re-
cursive spectral bisection graph partitioning algorithm.
Proc. 5th SIAM Conf. Applied Linear AIR., pp. 562-
566,1994.

[5] M. Bem, S. Mitchell, and J. Ruppert.

426

http://ftp.parc.xerox.com

F. R. K. Chung and S.-T. Yau. A near optimal algorithm
for edge separators. Proc. 26th Symp. Theory of Comp.
ACM, 1994.
K. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant,
and S.-H. Teng. Approximating center points with and
without linear programming. h c . 9th ACM Symp.
computational Geometry, pp. 91-98, 1993.
L. Danzer, J. Fonlupt, and V. Klee. Helly's theorem and
its relatives. Proc. Symposia in Pure Math., American
Mathematical Society, 7:lOl-180,1963.
A. L. Dulmage and N. S. Mendelsohn. Coverings of
bipartitegraphs. Canadian J. Math., 105 17-534,1958.
H. Edelsbrunner. Algorithms in Combinatorial Geom-
etry. Springer-Verlag, NY, 1987.
C. Farhat and M. Lesoinne. Automatic partitioning of
unstructured meshes for the parallel solution of prob-
lems in computational mechanics. Int. J. Num. Meth.
Enn.. 36:745-764.1993.

[26] B. Hendrickson and R. Leland. A multilevel algorithm
for partitioning graphs. Tech. Rep. SAND93-1301,
Sandia National Labs., Albuquerque, NM, 1993.

[27] C. A. R. Hoare. Algorithm 63 (PARTITION) and Algo-
rithm 65 (FIND). Comm. ACM, 4:321,1961.

[28] B. W. Kernighan and S. Lin. An effective heuristic pro-
cedure for partitioninggraphs. Bell System Tech. J., pp.
291-308, February 1970.

[29] D. E. Knuth. Seminumerical Algorithms, volume 2 of
The A n of Computer Programming. Addison-Wesley,
second edition, 1981.

An approximate max-
flow min-cut theorem for uniform multicommodity
flow problems with applications to approximation algo-
rithms. 29th Symp. Foundations of Computer Science,
pp. 422431,1988.

[3 11 R. J. Lipton and R. E. Tarjan. A separator theorem for
planar graphs. SIAM J. Appl. Math., 36: 177-189,1979.

[30] E T. Leighton and S. Rao.

" I

[32] G. L. Miller. Finding small simple cycle separators for
2-connected planar graphs. J. Comp. Sys. Sci., 32:265-
279,1986.

[33] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vava-
sis. Finite element meshes and geometric separators.
Submitted for publication.

1 C. M. Fiduccia and R. M. Mattheyses. A linear-time
heuristic for improving network partitions. Tech. Rep.
82CRD130, General Electric, 1982.

[161 M. Fiedler. Algebraic connectivity of graphs. Czech.
Math. J., 23:298-305, 1973.

[17] R. W. Floyd and R. L. Rivest. Expected time bounds
for selection. CO". ACM, 18:165-172,1975.

[18 1 A. George and J. W. H. Liu. An automatic nested dis-
section algorithm for irregular finite element problems.
SIAMJ. Num. Anal., 151053-1069,1978.

[19) J. A. George and J. W. H. Liu. Computer Solution of
Large Sparse Posirive Definite Systems. Rentice-Hall,
1981.

[20] J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan. A sep-
arator theorem for graphs of bounded genus. J. Algo-
rithms, 5:391-407,1984.

Geo-
metric mesh partitioning: Implementation and experi-
ments. Tech. Rep. CSL-94-13, Xerox Palo Alto Re-
search Center, 1994.

[22] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse ma-
trices in Matlab: Design and implementation. SIAM J.
MatrixAnal. Appl., 13:333-356, 1992.

[231 K. D. Gremban, G. L. Miller, and S.-H. Teng. Moments
of inertia and graph separators. Proc. Fifrh ACM-SIAM
Symp. Discrete Algorithms, pp. 452-461. SIAM, 1994.

[24 I M. Heath and P. Raghavan. A Cartesian parallel nested
dissection algorithm, 1994. To appear in SIAM J. Ma-
trix Anal. Appl.

[25] B. Hendrickson and R. Leland. The Chaco user's guide,
Version 1.0. Tech. Rep. SAND93-2339, Sandia Na-
tional Labs., Albuquerque, NM, 1993.

[21 I J. R. Gilbert, G. L. Miller, and S.-H. Teng.

[34] G. L. Miller, S.-H. Teng, W. Thurston, and S . A. Vava-
sis. Automatic mesh partitioning. In A. George,
J. R. Gilbert, and J. W. H. Liu, eds., Graph Theory and
Sparse Matrix Computation, Springer-Verlag, 1993.

[35] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning
sparse matrices with eigenvectors of graphs. SIAM J.
Marrix Anal. Appl., 1 I :430-452, 1990.

[36] A. Pothen, H. D. Simon, and L. Wang. Spectral nested
dissection. Tech. Rep. CS-92-01, Penn. State U. De-
partment of Computer Science, 1992.

[37] H. D. Simon. Partitioningof unstructured problems for
parallel processing. Computing Systems in Eng., 2: 135-
148,1991.

[38] G. Strang and G. J. Fix. An Analysis of the Finite Ele-
ment Method. RenticeHall, 1973.

[39] S.-H. Teng. Points, Spheres, and Separarors: A Uni-
fied Geometric Approach to Graph Partitioning. PhD
thesis, Carnegie-Mellon University, August 199 1.

[40] R. D. Williams. Performance of dynamic load bal-
ancing algorithms for unstructured mesh calculations.
Concurrency: Practice and Experience, 3:457481,
1991.

427

