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Abstract. This paper presents asymptotically stable schemes for patching of nonoverlapping
subdomains when approximating the compressible Navier–Stokes equations given on conservation
form. The scheme is a natural extension of a previously proposed scheme for enforcing open boundary
conditions and as a result the patching of subdomains is local in space. The scheme is studied in
detail for Burgers’s equation and developed for the compressible Navier–Stokes equations in general
curvilinear coordinates.

The versatility of the proposed scheme for the compressible Navier–Stokes equations is illustrated
for quasi-one-dimensional transonic nozzle flows and for flows around an infinitely long circular
cylinder.
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1. Introduction. In the last decade, spectral collocation methods have been
applied extensively for solving nonshocked nonlinear partial differential equations,
often yielding results superior to those obtained by other methods. However, as
the position of the grid points in the computational grid is predetermined, it has
proven difficult to apply spectral methods to problems in complex geometries. For
this reason, domain decomposition techniques, where the full computational domain
is constructed by several geometrically simple subdomains, have been given increased
attention. Besides the geometric flexibility, the multidomain approach also allows for
efficiently resolving strongly localized features without overresolving smooth regions of
the solution, and the approach lends itself to parallelization on contemporary parallel
computer architectures with distributed memory.

In part I of this paper [1], we developed a novel set of open boundary condi-
tions for the compressible Navier–Stokes equations leading to a well-posed continuous
problem. We then proposed a penalty method to implement these boundary condi-
tions and were able to prove asymptotic stability of the semidiscrete scheme when
using a Legendre collocation method as the spatial approximation scheme. Through
several numerical experiments we showed that these results carry over to Chebyshev
collocation methods. The purpose of part II is to extend the use of these boundary
conditions to act as local patching conditions when doing multidomain simulations
of the unsteady, compressible Navier–Stokes equations. The emphasis will be on es-
sentially one-dimensional patching schemes. However, by writing the Navier–Stokes
equations in general curvilinear coordinates we show that the scheme is applicable also
to multidimensional problems when patching is required along one general coordinate
axis only. As a way of explaining the scheme, we first develop it for Burgers’s equa-
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tion and exemplify the method for Navier–Stokes equations by quasi-one-dimensional
transonic Laval flows and two-dimensional unsteady flows around a circular cylinder.

The development of spectral multidomain methods has traditionally been centered
around schemes for incompressible flows. Examples of such methods are the spectral
element method [2] and the flux conservation method [3]. For a general review of
alternative methods for incompressible flows we refer to [4]. For compressible flows,
the emphasis until recently has been on methods for the inviscid Euler equations,
where noniterative schemes [5, 6], iterative schemes [7], and spectral element methods
[8, 9] have been proposed. For viscous compressible flows, several methods have
recently appeared [10, 11, 12] although the emphasis has been on methods for steady
state problems. All previous methods for viscous flows are based on a treatment of
the inviscid part of the equation, in most cases by applying methods known from the
Euler equations, and a separate treatment of the viscous part of the equation. This
second contribution is then applied as a correction to the result obtained from the
inviscid patching.

The main difference between previously proposed methods and the one introduced
here is that we develop a patching scheme which accounts for the inviscid and viscous
part of the equation simultaneously. This approach is made possible by implementing
the interface conditions using a penalty term, hence allowing for boundary conditions
of a general type. In the inviscid limit the proposed algorithm is shown to be equivalent
to schemes known from the Euler equations. Emphasis is directed toward developing
methods that can handle general unsteady flows and we apply high-order explicit time
integration schemes to verify that the proposed methods are well suited for simulating
unsteady flows.

The paper is organized as follows. In section 2 we review some well-known results
on Chebyshev polynomials and collocation methods which will be used extensively in
the remaining part of the paper. We have also included a more detailed discussion on
the advantages of domain decomposition. This leads to section 3 where we develop
a multidomain scheme for solving Burgers’s equation, study convergence, and com-
pare the performance of the proposed scheme with that of alternative multidomain
methods. Section 4 develops a novel scheme for performing one-dimensional patching
of nonoverlapping domains when solving the compressible Navier–Stokes equations in
general curvilinear coordinates. The scheme is based on a penalty method approach,
and we argue that the global scheme is asymptotically stable. As examples of the
performance of the scheme, we compute quasi-one-dimensional transonic nozzle flows
at medium Reynolds numbers (Re ≤ 1000) and unsteady flow around an infinitely
long circular cylinder. Section 5 contains a brief conclusion and suggestions for future
work.

2. General concepts. Prior to discussing the multidomain schemes we will
review a few well-known results, which will be useful in the following sections.

2.1. Chebyshev polynomials and collocation methods. The schemes pre-
sented in this paper are all based on Chebyshev collocation methods, which, due to
their superior approximation properties, are widely used when solving nonlinear par-
tial differential equations. This choice is not unique and the methods proposed in this
paper may be used equally well in connection with other classical polynomial families
or even finite difference schemes.

The Chebyshev polynomial of order k is defined as

Tk(x) = cos( k cos−1 x ),
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where |x| ≤ 1. In the following sections we will consider collocation methods, where
the N + 1 collocation points are chosen to be the Chebyshev–Gauss–Lobatto points
found as the roots of the polynomial (1 − x2)T ′

N (x), i.e.,

xi = ÷ cos
(

iπ

N

)
, 0 ≤ i ≤ N.

Associated with the Gauss–Lobatto points is a quadrature formula, stating that for a
polynomial f(x) of maximum degree 2N − 1, one has the exact result

π

N

N∑

i=0

f(xi)
ci

=
∫ 1

−1

f(ξ)√
1 − ξ2

dξ,

where c0 = cN = 2 and ci = 1 for 1 ≤ i ≤ N − 1. The quadrature rule leads to the
definition of the discrete weighted L2-norm as we will use it in this paper:

L2(f) = ‖f‖2 =
∫ 1

−1

f2(ξ)√
1 − ξ2

dξ ≤ π

N

N∑

i=0

f2(xi)
ci

≤ 2‖f‖2.(1)

Proof for the inequalities may be found in [13]. For further details on the properties
of the Chebyshev polynomials, we refer to [14].

When applying a Chebyshev collocation method, the function f(x) is approxi-
mated by a grid function fi = f(xi), where the grid points are the Gauss–Lobatto
points. We construct a global Nth-order Chebyshev interpolant IN to obtain the
approximation of the function

(INf)(x) =
N∑

i=0

fi gi(x),

where the interpolating Chebyshev–Lagrange polynomials are given as

gi(x) =
(1 − x2)T ′

N (x) (−1)i+1+N

ciN2(x − xi)
.

It is easily verified that by construction

(INf)(xi) = fi.

To seek approximate solutions (INf)(x) to a partial differential equation, we need to
obtain values of the spatial derivatives at the collocation points. This is accomplished
by approximating the continuous differential operator by a matrix operator with the
entries given as

Dij = g′
j(xi),

implying that the derivative of f at a collocation point xi is approximated as

df

dx
(xi) ≈ d(INf)

dx
(xi) =

N∑

j=0

Dij f(xj),

and likewise for higher derivatives. For the explicit expressions of the entries of the
matrix operator and further details on collocation methods, we refer to [13, 14].
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Filtering of the solution may be used for reasons of increased stability. In the
implementation of the schemes to be presented later, we employ an exponential filter
of the type

σi =






1, 0 ≤ i ≤ Nc,

exp
[
−α

(
i−Nc
N−Nc

)γ]
, Nc < i ≤ N,

(2)

where Nc is a cutoff mode number, γ is the order of the filter, and α = − ln εM with
εM being the machine accuracy. This choice of filter function is by no means unique
and alternatives may be found in [4]. The filtering may conveniently be expressed as
a matrix operator F with the entries

Fij =
2

cjN

N∑

k=0

σk

ck
Tk(xi)Tk(xj).

We emphasize that the use of filters in the present work is motivated only by the
request for a large time-step. The schemes to be presented all remain stable in the
absence of filters, albeit at the expense of a smaller maximum time-step.

2.2. One domain versus multidomain collocation schemes. The high ac-
curacy, which may be obtained when approximating smooth solutions using a one-
domain spectral method, is gained at the cost of introducing several disadvantages.
Since the collocation points are given a priori there is little room for local grid re-
finement through smooth grid mappings; see, e.g., [4]. Thus, if the solution contains
strongly localized features we need a large number of modes (N) in order to properly
resolve such features. Since the evaluation of derivatives is an O(N2) operation this
results in significant computational requirements. In the case where an FFT may be
used for this computation, the operation count reduces to O(N log N). However, for
the sake of simplicity we assume in the following that all derivatives are calculated
using matrix–vector products as no qualitative differences are introduced in the dis-
cussion when using an FFT. For hyperbolic problems the Courant–Friedrichs–Lewy
(CFL) condition requires ∆t ∝ N−2 [15], resulting in a severe time-step restriction
for explicit time-integration schemes at high resolution. Consequently, such prob-
lems are computationally intensive. Additionally, the high accuracy that one expects
from such a scheme may not be obtained after all. As was recently shown [16, 17],
the Chebyshev collocation differentiation matrix is very ill conditioned, leading to
severe degradation of the results at high resolution due to roundoff errors. This is
particularly true for problems with high-order spatial derivatives.

Most of these disadvantages may be diminished or even eliminated by applying
a multidomain approach. In the present paper we split the computational domain
Ω into K nonoverlapping connected domains Ωk such that Ω =

⋃K
k=1 Ωk and the

subdomain boundaries Γk are defined as Γk = Ωk ∩ Ωk+1 for 1 ≤ k ≤ K − 1. The
outer boundaries are termed Γ0 and ΓK , respectively.

The advantages of this approach may be summarized as follows:
• Independent choice of resolution in each subdomain allows for treating strongly

localized solutions without overresolving smooth regions of the solution.
• Splitting the domain into K similar subdomains, each with N/K modes,

allows for using a time-step ∆t ∝ K−1(N/K)−2 as opposed to ∆t ∝ N−2

when applying explicit time integration of hyperbolic problems.
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• The operations needed for evaluation of a global spatial derivative may be
reduced to O(K(N/K)2) as compared to O(N2).

• The effect of round-off error when evaluating a first derivative may be reduced
significantly from O(εMN2) to O(εM (N/K)2), with εM being the machine
accuracy [16, 17].

• Assuming that the patching of subdomains is local in space, the scheme is well
suited for implementation on contemporary parallel computer architectures
with distributed memory.

Through a variational argument, due to Gottlieb [18], we may gain further insight
into the relation between accuracy and computational workload when considering a
multidomain approach.

If we assume the solution to be smooth, we may expect the approximation error
E(N, K) to scale as

E(N, K) ∝
(

πk

KN

)N

,

where k is the maximum wavenumber in the function and N is the number of modes in
each of the K subdomains. When approximating the solution we require the maximum
absolute error to be bounded as

E = exp(−γ) ≤ ε.

The computational work required to compute, e.g., the flux of a variable in a time-
dependent problem, may be estimated as

W (N, K) = c1KN2 + c2KN,

where c1 and c2 are problem-specific constants. Our aim is to minimize the work
required to obtain a solution with a specified maximum error ε. Thus, by introducing
a Lagrange multiplier λ we construct the functional F (N, K, λ) as

F (N, K, λ) = c1KN2 + c2KN + λ

[
N ln

(
πk

KN

)
+ γ

]
.

From this we obtain (see, e.g., [19, Chap. IV]) the optimal values of N and K as

Nopt =
1
2

(
γ +

√
γ2 + 4

c2

c1

)
' γ,

and

Kopt =
πk

Nopt
exp

(
γ

Nopt

)
.

One immediately observes that high accuracy may be obtained only by using a large
number of modes N and not, as one could expect, by applying many subdomains, each
with a low number of modes. This reflects the well-known property that a minimum
of π modes is needed in a Chebyshev expansion to properly resolve a single wave [20].
We may conclude that for very smooth and regular solutions, where k is small, a
multidomain solution is not the method of choice. Contrary to that, if the solution
exhibits strongly localized phenomena, i.e., k is large, one should introduce several
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domains in order to minimize the computational work. When taking into account the
effects of round-off error, decreasing the number of modes in each subdomain becomes
even more important. Although these arguments are not very strict in nature they
still lead to the observation that an optimal choice of N and K seems to be a few larger
subdomains, each with a not too small number of modes in order to maintain high
spatial accuracy. Similar observations were made by Wasberg [16] when comparing
one-domain and multidomain Chebyshev approximation of simple functions. In the
next section we shall return to these speculations and compare with actual numerical
results obtained for Burgers’s equation.

3. Burgers’s equation. Let us consider Burgers’s equation

∂U

∂t
+ U

∂U

∂x
= ε

∂2U

∂x2 , |x| ≤ 1, t > 0,(3)

with ε ≥ 0 and the initial condition

U(x, 0) = f(x),

with boundary conditions of the form

αU(−1, t) − βε
∂U

∂x

∣∣∣∣
x=−1

= g1(t),(4)

γU(1, t) + δε
∂U

∂x

∣∣∣∣
x=1

= g2(t),

where α, β, γ, and δ are nonnegative constants.
As was shown in [21] and used extensively in [1], it is sufficient to consider the

linearized, constant coefficient version of Burgers’s equation

∂U

∂t
+ U0

∂U

∂x
= ε

∂2U

∂x2 , |x| ≤ 1, t > 0(5)

when addressing the issue of wellposedness of the problem. Here U0 is the uniform
solution around which we have linearized.

The four constants in (4) may not be chosen arbitrarily. We will use the following
result.

LEMMA 3.1. Assume there exists a solution U to (5) subject to boundary condi-
tions as given in (4). The problem is well posed if α, β, γ, and δ are chosen as

U0 ≥ 0 :α = U0, β = 1, γ = 0, δ = 1,

U0 < 0 :α = 0, β = 1, γ = |U0|, δ = 1.

Proof. The proof follows directly from Lemma 3.1 in [1].
In [1] we found this choice of open boundary conditions to perform well and to

maintain spectral accuracy. When considering a multidomain approach, the important
observation to make is that we may equally well treat a subdomain boundary as an
open boundary. However, it is a very special open boundary since we may obtain
accurate boundary conditions from the neighboring subdomains. This observation
leads to the scheme proposed in the following section.
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3.1. The multidomain scheme. We wish to solve (3) using a multidomain
Chebyshev collocation method where the collocation points are the Chebyshev–Gauss–
Lobatto points. In each subdomain Ωk this approach involves finding a Nkth degree
polynomial uk(xk, t) satisfying

∂uk

∂t
+ uk ∂uk

∂xk
= ε

∂2uk

∂(xk)2
at xk = xk

i , i ∈ [1, . . . , Nk − 1],

in the interior, where xk
i ∈ Ωk are the collocation points in the kth subdomain with

Nk modes. The boundary operator in each subdomain is given as

αuk
0 − βε

∂uk
0

∂xk
= gk

1 (t),

γuk
N + δε

∂uk
N

∂xk
= gk

2 (t),

where gk
1 (t) and gk

2 (t) are the boundary conditions at each subdomain boundary and
we have introduced the symbol uk

i = uk(xk
i , t).

The penalty method, as introduced in [1], for the implementation of open bound-
ary conditions generalizes straightforwardly to the multidomain approach, leading us
to propose the following scheme for a multidomain solution of Burgers’s equation:

∀k :
∂uk

∂t
+ uk ∂uk

∂xk
= ε

∂2uk

∂(xk)2
(6)

− τk
1 Q−

k (xk
i )
[
αuk

0 − βε
∂uk

0
∂xk

− gk
1 (t)

]

− τk
2 Q+

k (xk
i )
[
γuk

N + δε
∂uk

N

∂xk
− gk

2 (t)
]

,

where

Q−
k (xk

i ) = δi0, Q+
k (xk

i ) = δiNk .

Here δij is the Kronecker delta function with subscript i corresponding to the collo-
cation point xk

i . Thus, the two penalty terms are zero except at the two boundary
points. We now need to specify the boundary conditions gk

1 (t) and gk
2 (t) at the sub-

domain boundaries. Following the result in Lemma 3.1, we observe that the type of
boundary condition depends on the sign of U0. The general form of the boundary
conditions at the subdomain boundaries becomes

gk
1 (t) = αuk−1

N − βε
∂uk−1

N

∂xk−1 ,(7)

gk
2 (t) = γuk+1

0 + δε
∂uk+1

0
∂xk+1 .

At the two limiting boundaries Γ0 and ΓK , the boundary conditions are obtained
from (4), i.e.,

g1
1(t) = g1(t), gK

2 (t) = g2(t).

Hence, the patching scheme begins by determining the sign of Uk
0 . In the examples to

be presented later, we have used uk at the boundary, obtained at the previous time-
step, to linearize around, i.e., Uk

0 = uk(Γk, t). Once the sign of Uk
0 is determined,
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the proper type of boundary operator is found through Lemma 3.1, and information
is taken from the neighboring subdomain to calculate the appropriate value at the
boundary point.

For simplicity, consider the boundary Γk and assume that Uk
0 > 0. The equation

solved at Γk in the left domain Ωk becomes

∂uk
N

∂t
+ uk

N
∂uk

N

∂xk
= ε

∂2uk
N

∂(xk)2
− τk

2 ε

(
∂uk

N

∂xk
− ∂uk+1

0
∂xk+1

)
.

Likewise, the equation solved at Γk in the right domain Ωk+1 yields

∂uk+1
0
∂t

+ uk+1
0

∂uk+1
0

∂xk+1 = ε
∂2uk+1

0
∂(xk+1)2

−τk+1
1

(
Uk

0 (uk+1
0 − uk

N ) − ε

(
∂uk+1

0
∂xk+1 − ∂uk

N

∂xk

))
.

Thus, the patching enforces continuity of the function u and its first derivative across
the subdomain boundary, but only in a weak sense. Nevertheless, as we shall see
shortly, the global spectral accuracy of the multidomain scheme is maintained.

To complete the description of the algorithm, we need to determine τk
1 and τk

2
such that the overall scheme is stable. However, we observe that the scheme in each
subdomain is equivalent to the one-domain scheme proposed in [1]. Thus, asymptotic
stability of the scheme in each subdomain may be assured by choosing τk

1 and τk
2 as

derived in [1], where details of the one-domain proof may be found. Hence, asymptotic
stability is ensured provided

∀k :τk
1 =

1
ωεβ

[
ε + 2κ1 − 2

√
κ2

1 + εκ1 − 1/2εω|Uk
0 |
]

2
Lk

,(8)

τk
2 =

1
ωεδ

[
ε + 2κ2 − 2

√
κ2

2 + εκ2 − 1/2εω|Uk+1
0 |

]
2

Lk
,

where

ω =
(

1
Nk

)2

, κ1 =
αω

β
, κ2 =

γω

δ
,

and Lk is the length of the kth subdomain. Reduced expressions for the penalty
parameters for different choices of α, β, γ, and δ are given in [1]. In the actual
implementation of the scheme, it is possible to reduce the parameters given in (8) by
a factor of four while maintaining stability, as discussed extensively in [1]. This allows
for time-stepping the scheme with an optimal time-step and results in the parameters
being used in all numerical tests presented in the following paragraphs.

In the following examples we have employed an adaptive fourth order Runge–
Kutta method for time-stepping, with the global time-step ∆t being calculated as

∆t = CFL × min
i,k

[
|uk

i |
∆ixk

+
ε

(∆ixk)2

]−1

,(9)

where ∆ixk = xk
i − xk

i−1 is the local grid spacing and uk
i = uk(xk

i , t). The boundary
conditions and the subdomain patching are enforced at the intermediate time-steps in
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the Runge–Kutta method, and we enforce continuity of the global solution. Following
each complete cycle of the Runge–Kutta scheme, we apply a high-order exponential
filter as given from (2) in each subdomain in order to slightly smooth the global
solution. We recall that the filter is applied only to increase the maximum allowable
time-step as the scheme remains stable also in the absence of the filter. In all test
cases presented later, the use of the filter allows for an average two-fold increase of
the maximum time-step.

Although the scheme may seem rather complicated at first, a few things are useful
to realize. As we are using spectral methods, the derivatives at the boundaries are
calculated when evaluating the flux at the interior points. Thus, very few computa-
tions are required to perform the patching as described by (6)–(8) if the gradients
at the boundary points Γk are stored while calculating the flux. Additionally, since
all calculations in the subdomains are independent and the patching is local in space
and time, the scheme is well suited for parallelization. This may not be of importance
for simple one-dimensional problems as the Burgers’s equation. However, for more
complex sets of equations, like the compressible Navier–Stokes equations, this is of
significant importance, particularly when addressing multidimensional problems.

3.2. Numerical tests. In order to assess the accuracy of the proposed scheme,
we have performed detailed studies of the evolution of two separate initial conditions
to Burgers’s equation. In the first part of this section we investigate the conver-
gence properties of the scheme for the traveling wave solution and discuss further the
problem of an optimal choice of number of modes and subdomains as mentioned in
section 2.2. Following that, we compare the performance of the scheme with that of
alternative multidomain methods for a viscous stationary shock.

3.2.1. Traveling wave solution. Burgers’s equation, (3), has a rightward trav-
eling wave solution (see, e.g., [21]) of the form

U(x, t) = −a tanh
(

a
x − ct

2ε

)
+ c, x ∈ [−∞,∞], t ≥ 0,(10)

where the free-stream values

lim
x→−∞

U(x, t) = b−∞, lim
x→∞

U(x, t) = b∞

are associated with the wave speed c and the constant a ≥ 0 as

c =
b−∞ + b∞

2
, a =

b−∞ − b∞
2

.

Since we know the exact solution, the boundary conditions (4) at the outer boundaries
may be given exactly at all times and we use the free-stream values b−∞ and b∞ to
linearize around.

We have employed a standard Chebyshev collocation method in each subdomain
when implementing the multidomain approach discussed in the previous section. In
Fig. 1 we show a four-domain solution at equidistant times with N = 8, L = 0.5 in
each subdomain, and ε = 0.1. This clearly demonstrates the ability of the proposed
scheme to perform the patching, and we observe no spurious reflections from the
subdomain boundaries. Here, like in all subsequent simulations of Burgers’s equation,
we have applied an exponential filter (2) to the solution with Nc = N/2 and γ = 6.
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FIG. 1. Four-domain solution of the traveling wave solution to Burgers’s equation with b−∞ =
2.0, b∞ = 0.0, and ε = 0.1. The dots at the initial wave represent the collocation points in each
subdomain. The waves are separated by 0.25 in time.
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FIG. 2. (a) The global L2-error (1) of the traveling wave solution to Burgers’s equation with
parameters as in Fig. 1. The solution is obtained for various combinations of numbers of subdomains
(K) and modes in each subdomain (N). (b) Estimated number of operations needed to integrate
Burgers’s equation to T = 1.0 for combinations of K and N as a function of the global L2-error (1)
at T = 1.0. ∆t is found using (9) with CFL = 3.0.

In order to study the convergence properties of the proposed scheme, we have done
a large number of simulations with varying number of subdomains K and number of
modes in each subdomain N .

We clearly observe in Fig. 2(a), where we plot the global L2-error (1) as a func-
tion of K and N , that the multidomain scheme preserves the spectral convergence.
In the terminology of finite elements (see, e.g., [22]), we observe that the scheme pre-
serves global spectral p-convergence (constant K in Fig. 2(a)) as well as h-convergence
(constant N in Fig. 2(a)).
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In section 2.2 we briefly discussed how to choose the optimal number of sub-
domains and number of modes in each subdomain. We observed that if very high
spatial accuracy is required only few domains with many modes should be used. This
is clearly confirmed by the results in Fig. 2(a). However, we note that for the one
domain solution K = 1 the convergence rate decays for very large N . This is a conse-
quence of round-off error caused by ill conditioning of the Chebyshev differentiation
matrix [17].

When considering time-dependent problems, it is natural also to take into account
the maximum allowable time-step while considering the optimal choice of K and N .
When using a fourth-order Runge–Kutta method with a filtered solution, we estimate
the work for advancing one time-step to be

W ∼ 9KN2 + 21KN.

In Fig. 2(b) we plot ∆t−1W as an estimate of the work needed for advancing to
T = 1.0 as a function of the global L2-error (1) at T = 1.0. This figure clearly
illustrates the existence of an optimal choice of Kopt ' 4–8 unless very high accuracy
is required. This conforms well with the results quoted in section 2.2.

3.2.2. Stationary viscous shock. We now consider the dynamical evolution
of Burgers’s equation subject to Dirichlet boundary conditions

U(±1, t) = 0,

with the initial conditions being

U(x, 0) = − sin(πx)

and ε = 0.01/π in (3). For this initial condition, the wave steepens to a sawtooth
wave with a very sharp, although smooth, profile centered around x = 0.0. There
exists an analytical solution to this problem [23], thus allowing for tests of the ability
of the scheme to resolve sharp gradients.

This test case has previously been used as a benchmark for validating various dis-
cretization methods, including one-domain Fourier, Chebyshev, and finite difference
methods [23], spectral element methods [23, 24], and an alternative, nonoverlapping
local spectral multidomain method [12].

Here we choose to split the computational domain into four subdomains given as
Ω1 = [−1.0,−0.05], Ω2 = [−0.05, 0.0], Ω3 = [0.0, 0.05], and Ω4 = [0.05, 1.0] and with
the same number of modes N in each subdomain. This splitting of the domain is
equivalent to what was used in [12, 23]. In Fig. 3(a) we show the evolution of the
initial condition at equidistant times. We note that the profile remains smooth due
to the fine resolution around the sharp gradient. In Fig. 3(b) we show the calculated
gradient of the solution around x = 0.0 and observe that also the gradient of the
solution remains smooth and continuous across the subdomain boundaries.

By monitoring the maximum gradient of the viscous shock we may judge the
ability of the multidomain scheme to accurately capture this. In Table 1 we compare
the calculated maximum value of ∂u/∂x and the time at which it occurs with that
obtained from the analytical solution and from using one-domain Chebyshev methods.

We observe excellent agreement with the analytic solution, confirming that the
scheme maintains spectral convergence of the gradient, despite the use of several
domains. Comparing the accuracy by which we find the gradient and the correct time
with that found by other methods [12, 23, 24], it is clear that the scheme proposed here
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FIG. 3. (a) Viscous shock solution of Burgers’s equation. The dots on the initial conditions
represent the collocation points in the four-domain solution. (b) First derivative of the four-domain
solution shown in (a).

TABLE 1
Comparison of the accuracy of the solution of the viscous shock problem. Here N is the number

of Chebyshev modes in each of the K subdomains. The gradient of the shock is monitored, and
the maximum steepness, ∂u

∂x |max, is found at tmax. The schemes have been time-stepped with a
fourth-order Runge–Kutta method with CFL = 3.0 in (9). The marked numbers are obtained from
[23].

N K ∂u
∂x |max π tmax

128 1 −68.86944 1.5807
256 1 −112.76781 1.5952
512∗ 1 −145.87700 1.6000

10 4 −155.67851 1.6339
12 4 −150.27248 1.6039
14 4 −151.63657 1.5983
16 4 −152.03909 1.6026
18 4 −152.00051 1.6041
24 4 −152.00438 1.6037

Analytic∗ −152.00516 1.6037

performs at least as well as all other methods, and in some cases significantly better. It
is also clear that resolving such a strong gradient using a one-domain method requires
a very large number of modes, thus rendering such an approach ill suited for practical
purposes.

4. The compressible Navier–Stokes equation. In this section we develop a
multidomain scheme for the three-dimensional, compressible Navier–Stokes equations
on conservation form. Although we consider the three-dimensional case, we require
at present that the patching is done along one general coordinate axis only.

Consider the nondimensional, compressible Navier–Stokes equations in general
curvilinear coordinates
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∂q
∂t

+
∂F
∂ξ

+
∂G
∂η

+
∂H
∂ζ

=
1

Reref

(
∂Fν

∂ξ
+

∂Gν

∂η
+

∂Hν

∂ζ

)
.(11)

The curvilinear coordinates are defined as

ξ = ξ(x, y, z), η = η(x, y, z), ζ = ζ(x, y, z),

and are related to the Cartesian coordinates (x, y, z) through the Jacobian transfor-
mation

J =
∣∣∣∣
∂(x, y, z)
∂(ξ, η, ζ)

∣∣∣∣ .

The state vector q and the inviscid flux vectors are defined

q = Jq,

and

F = J (Fξx + Gξy + Hξz) ,

G = J (Fηx + Gηy + Hηz) ,

H = J (Fζx + Gζy + Hζz) ,

where

q =





ρ
ρu
ρv
ρw
E




, F =





ρu
ρu2 + p

ρuv
ρuw

(E + p)u




, G =





ρv
ρuv

ρv2 + p
ρvw

(E + p)v




, H =





ρw
ρuw
ρvw

ρw2 + p
(E + p)w




.

Here ρ is the density, u, v, w are the three Cartesian velocity components, E is the
total energy, and p is the pressure. In the following we will use (x, y, z) and (x1, x2, x3)
interchangeably to denote the Cartesian coordinates and likewise we use both (u, v, w)
and (u1, u2, u3) to identify the Cartesian velocity components. The total energy

E = ρ

(
T +

1
2
(
u2 + v2 + w2)

)

and the pressure are related through the ideal gas law

p = (γ − 1)ρT,

where T is the temperature field and γ = cp/cv is the ratio between the heat capacities
at constant pressure (cp) and volume (cv), respectively, and is assumed constant.

The viscous flux vectors are defined as

Fν = J (Fνξx + Gνξy + Hνξz) ,

Gν = J (Fνηx + Gνηy + Hνηz) ,

Hν = J (Fνζx + Gνζy + Hνζz) ,
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with

Fν =





0
τxx

τyx

τzx

τxxu + τyxv + τzxw + γk
Pr

∂T
∂x




, Gν =





0
τxy

τyy

τzy

τxyu + τyyv + τzyw + γk
Pr

∂T
∂y




,

Hν =





0
τxz

τyz

τzz

τxzu + τyzv + τzzw + γk
Pr

∂T
∂z




.

Considering only Newtonian fluids, the stress tensor elements are given as

τxixj = µ

(
∂ui

∂xj
+

∂uj

∂xi

)
+ δijλ

3∑

k=1

∂uk

∂xk
,

where δij is the Kronecker delta function. Here µ is the dynamic viscosity, λ is the
bulk viscosity, and k is the coefficient of thermal conductivity. The velocity flux is
obtained as

∂ui

∂xj
=

∂ui

∂ξ
ξxj +

∂ui

∂η
ηxj +

∂ui

∂ζ
ζxj ,

and spatial derivatives of the temperature become

∂T

∂xi
=

∂T

∂ξ
ξxi +

∂T

∂η
ηxi +

∂T

∂ζ
ζxi .

The equations are normalized using the reference values uref = u0, ρref = ρ0, pref =
ρ0u2

0, Tref = u2
0/cv, and a reference length L, where (ρ0, u0) is a given characteristic

state. This gives a Reynolds number as Re = ρ0u0L/µ0 and a Prandtl number as
Pr = cpµ0/k0. Note that the Reynolds number in (11), Reref , based on the reference
values, in general is different from Re. In the remaining part of the paper we shall refer
to the latter as the Reynolds number unless clarification is deemed necessary. With
this normalization we need to specify the Mach number M , the Reynolds number Re,
the length scale L, and a dimensional temperature T0.

We consider only atmospheric air and take γ = 1.4 and Pr = 0.72 in all problems
to be considered later. To model the temperature dependence of the dynamic viscosity
we use Sutherland’s viscosity law [26]

µ(T )
µs

=
(

T

Ts

)3/2 Ts + S

T + S
,

where µs = 1.716× 10−5 kg/m sec, Ts = 273◦K, and S = 111◦K for atmospheric air.
Assuming that the Prandtl number is constant allows for modeling the temperature
dependency of the coefficient of thermal conductivity similarly and we adopt Stokes’s
hypothesis (see, e.g., [26]) to obtain λ = − 2

3µ.
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4.1. The multidomain scheme. The aim is to develop a multidomain scheme
for patching along the ξ-direction. We follow the approach developed in [1] and split
the viscous fluxes into a parabolic term and two mixed terms

Fν = Fξ + Fη + Fζ = Πξ,ξ + Πξ,η + Πξ,ζ ,

Gν = Gη + Gξ + Gζ = Πη,η + Πη,ξ + Πη,ζ ,

Hν = Hζ + Hξ + Hη = Πζ,ζ + Πζ,ξ + Πζ,η,

where the general vector Πα,β = JΠα,β is defined as

Πα,β =
1
ρ





0
µ∇α · ∇β ∂u

∂β + λαx∇β · uβ + µβx∇α · uβ

µ∇α · ∇β ∂v
∂β + λαy∇β · uβ + µβy∇α · uβ

µ∇α · ∇β ∂w
∂β + λαz∇β · uβ + µβz∇α · uβ

µ(∇β · u)(∇α · uβ) + λ(∇α · u)(∇β · uβ) + (∇α · ∇β)(µu · uβ + γk
Pr

∂T
∂β )




.

Here we have introduced the vector

uβ =
(

∂u

∂β
,
∂v

∂β
,
∂w

∂β

)
.

We continue by introducing the transformation derivative of the inviscid flux vector
F as

A =
∂F
∂q

.

Linearizing A = A(q0) allows for diagonalization through a similarity transform as
Λ = S−1A S, where the right eigenvector matrix S and the left eigenvector matrix
S−1 are given in the appendix.

The entries in the diagonal matrix Λ are found as

λ1 = u0 · n̂ + c0, λ2 = λ3 = λ4 = u0 · n̂, λ5 = u0 · n̂ − c0,

and correspond to the velocities of the characteristic waves for the Euler equations.
Additionally, we obtain the characteristic functionsR=S−1q=J [R1, R2, R3, R4, R4]T
as

R = J





(m − ρu0) · n̂ + γ−1
c0

(
E + 1

2ρu0 · u0 − u0 · m
)

(mv − ρv0)n1 − (mu − ρu0)n2

ρ − γ−1
c2
0

(
E + 1

2ρu0 · u0 − u0 · m
)

(mw − ρw0)n1 − (mu − ρu0)n3

−(m − ρu0) · n̂ + γ−1
c0

(
E + 1

2ρu0 · u0 − u0 · m
)





,(12)

where

u = (u, v, w), m = (mu, mv, mw) = (ρu, ρv, ρw), c =
√

γp

ρ

is the velocity and momentum vector and the speed of sound, respectively. We have
also introduced the unit vector n̂ pointing along ∇ξ as

n̂ = (n1, n2, n3) =
∇ξ√

∇ξ · ∇ξ
=

(ξx, ξy, ξz)√
ξ2
x + ξ2

y + ξ2
z

.



A PENALTY METHOD FOR NAVIER–STOKES EQUATIONS II 673

The viscous patching vector G introduced in [1] as a correction to the purely in-
viscid characteristic wave may likewise be derived in general curvilinear coordinates.
Introducing the transformation derivative

Bα,β = S−1 ∂Πα,β

∂qβ

S,

with

qβ =
∂q
∂β

,

we obtain, by straightforwardly generalizing the results obtained in [1], the viscous
patching vector as

G = Bξ,ξ
∂R
∂ξ

+ (Bξ,η + Bη,ξ)
∂R
∂η

+ (Bξ,ζ + Bζ,ξ)
∂R
∂ζ

.(13)

The explicit entries of Bα,β may be found in the appendix. The entries of G encompass
information about the heat flux and the normal and tangential stress at the boundary.

We will note but not show that with this formulation it is possible to show that
the full three-dimensional compressible Navier–Stokes equations on conservation form
is symmetrizable even when given in general curvilinear coordinates. As this was the
single most important property utilized in [1] we argue that the result establishing
wellposedness and stability in Cartesian coordinates generalizes to curvilinear coordi-
nates.

With the scheme successfully developed for Burgers’s equation in mind, we are
now ready to state the general scheme for solving the compressible Navier–Stokes
equation using a multidomain approach. In each subdomain Ωk we propose to solve

∂qk

∂t
+

∂F
k

∂ξk
+

∂G
k

∂ηk
+

∂H
k

∂ζk
=

1
Reref

(
∂F

k
ν

∂ξk
+

∂G
k
ν

∂ηk
+

∂H
k
ν

∂ζk

)
(14)

− τk
1 Q−

k (ξk
i )S

[
R−

k−1(R
k
0 − R

k−1
N ) − 1

Reref
G−(Gk

0 − G
k−1
N )

]

− τk
2 Q+

k (ξk
i )S

[
R+

k (Rk
N − R

k+1
0 ) +

1
Reref

G+(Gk
N − G

k+1
0 )

]
,

where R
k
i = R(ξk

i , ηk, ζk) and G
k
i = G(ξk

i , ηk, ζk). To construct the correct boundary
operator, we define the matrix operators

R−
k =





λk
1 0 0 0 0
0 λk

2 0 0 0
0 0 λk

3 0 0
0 0 0 λk

4 0
0 0 0 0 αλk

5




, G− =





1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




,

where λk
i = λi(Γk). We use α = 0 for subsonic conditions and α = 1 for supersonic

inflow conditions. Likewise we define

R+
k =





0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 β|λk

5 |




, G+ =





0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




,

where β = 1 for subsonic conditions and β = 0 for supersonic outflow conditions.



674 J. S. HESTHAVEN

Note that the scheme given in (14) assumes that the velocity (u0 · n̂) is posi-
tive, i.e., inflow at Γk−1 and outflow at Γk. However, in [1] stability was proven at
inflow and outflow independently, and we may thus choose any combination of inflow–
outflow interface conditions consistent with the flow realization while maintaining the
asymptotic stability.

Similar to what we noted for the scheme for Burgers’s equations, we observe that
continuity of the characteristic functions and the viscous correction vector is enforced
only weakly.

In order to complete the description of the scheme we need to choose the penalty
parameters τk

1 and τk
2 such that the scheme is asymptotically stable. By noting

that the proposed scheme in each subdomain is equivalent to the one-domain scheme
discussed in [1], we argue that asymptotic stability is ensured by choosing the penalty
parameters according to Lemma 5.2 in [1]. Thus, we use

subsonic and supersonic inflow : τk
1 ≥ 1

ωκ

(
1 + κ −

√
1 + κ

) 2
Lk

,

subsonic outflow : τk
2 ≥ 1

ωκ

(
1 + κ −

√
1 + κ

) 2
Lk

,

supersonic outflow : τk
2 ≥ 1

ω

(
1 −

√
1
κ

)
2

Lk
,

(15)

where

ω =
(

1
Nk

)2

, κ =
1
2ω

γk0

RerefPrρ0|u0 · n̂| ,

and Lk is the length of the kth subdomain along ξ.
Although the proof in [1] was done for Legendre methods, we showed by numer-

ical experiments that this result carries over to Chebyshev methods. Alternatively,
the proposed scheme can be implemented as a Chebyshev–Legendre method, as in-
troduced by Don and Gottlieb [27], thereby maintaining the advantage of using the
Chebyshev polynomials while at the same time establishing the asymptotic stability.
Such an implementation may be proven stable using the techniques discussed in [27].

In the calculation of the characteristic functions (12) and the viscous correction
vector (13) needed for the scheme given by (14), we use the value of the state vector
at the previous time-step as the linearization variable at the subdomain boundaries.

Similar to what was found for Burgers’s equation, we note that the scheme is
local in space and that only a small number of operations, relative to what is needed
for calculation of the complete flux, is required to perform the patching.

It is instructive to observe that the boundary conditions are enforced through
the characteristic variables as proposed by Gottlieb, Gunzburger, and Turkel [25] for
reasons of stability. One should also note that in the limit of vanishing viscosity, the
interface conditions become equivalent to those proposed by Kopriva [5] for the Euler
equations, although we enforce them in a different way.

At open boundaries we have to supply proper boundary conditions. In the nota-
tion of (14) these should have the form

R
−1
N = S−1g1,R

K+1
0 = S−1g2,

yielding conditions on the value of the state vector at the boundaries and

G
−1
N = Bξ,ξS−1 ∂g1

∂ξ + (Bξ,η + Bη,ξ) S−1 ∂g1
∂η + (Bξ,ζ + Bζ,ξ) S−1 ∂g1

∂ζ ,

G
K+1
0 = Bξ,ξS−1 ∂g2

∂ξ + (Bξ,η + Bη,ξ) S−1 ∂g2
∂η + (Bξ,ζ + Bζ,ξ) S−1 ∂g2

∂ζ ,
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where g1 = Jg1(ξ, η, ζ, t) and g2 = Jg2(ξ, η, ζ, t) are used to introduce information
about the gradients of the state vector outside of the boundary. In most cases, very
little is known about this, and for exterior flows one is often forced to approximate the
gradients by zero. In this case the boundary conditions become equivalent to those
proposed in [1].

We have used an adaptive fourth-order Runge–Kutta scheme for integration of
the Navier–Stokes equations. The global time-step ∆t is found as [29]

∆t = CFL × min
i,j,l,k

[
|vk · uk| + ck

√
vk · vk +

2γ

PrReref

µk

ρk
vk · vk

]−1

,

where CFL represents a generalized CFL number and uk = uk(ξk
i , ηk

j , ζk
l ), ck =

ck(ξk
i , ηk

j , ζk
l ), µk = µk(ξk

i , ηk
j , ζk

l ), and ρk = ρk(ξk
i , ηk

j , ζk
l ) signify the local values of

the velocity, the sound speed, the dynamic viscosity, and the density, respectively. We
have defined the local curvilinear vector as

vk =
|∇ξ|
∆iξk

+
|∇η|
∆jηk

+
|∇ζ|
∆lξk

,

where ∆iξk, ∆jηk, and ∆lζk are the grid size along the three coordinate axes with
respect to the indices (i, j, l). Also |∇ξ| = (|ξx|, |ξy|, |ξz|) and likewise for |∇η| and
|∇ζ|.

4.2. Example 1. Quasi-one-dimensional nozzle flows. As a first example of
the performance of the patching scheme for the compressible Navier–Stokes equations,
we consider the flow in a quasi-one-dimensional Laval nozzle. The dynamics of the
fluid is then described by a simplified set of equations as

∂q
∂t

+
∂F
∂x

+ H =
1

Reref

∂Fν

∂x
, |x| ≤ 1 , t > 0 .(16)

Here we have

q =




ρA
ρuA
EA



 , F =




ρuA

(ρu2 + p)A
(E + p)uA



 ,

Fν =




0

Aτxx

Auτxx + Aγk
Pr

∂T
∂x



 , H =




0

−pdA
dx

0



 .

This set of equations is obtained from (11) by using ξ = x and η = ζ = 0, thus
cancelling all v- and w-components and η- and ζ-derivatives. Additionally, we use
that for a slowly varying area variation A(x) the quasi-one-dimensional divergence of
a vector function f = (f, 0) may be approximated by

∇ · f =
∂fA

∂x
.

As reference values for nondimensionalizing the equations, we use the values at the
throat.

For this problem the wave speeds of the characteristic waves become

λ1 = u0 + c0, λ2 = u0, λ3 = u0 − c0,
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and the characteristic functions (12) are given as

R = S−1q =




R1

R2

R3



 = A(x)





ρu − u0ρ + γ−1
c0

(
E + 1

2ρu2
0 − ρuu0

)

ρ − γ−1
c2
0

(
E + 1

2ρu2
0 − ρuu0

)

−(ρu − u0ρ) + γ−1
c0

(
E + 1

2ρu2
0 − ρuu0

)



 .

For inviscid flows, the three characteristic functions correspond to a copropagating
sound wave, an entropy wave, and a counter propagating sound wave, respectively. For
simulations of inviscid flows, specification of these characteristic functions whenever
they enter the computational domain leads to a well-posed problem.

The viscous correction vector G from (13) becomes

G =




G1

G2

G3



 =
1

2ρ0





k0(γ−1)
Pr

∂ζ1
∂x + (λ0 + 2µ0)∂ζ2

∂x

−k0(γ−1)
c0Pr

∂ζ1
∂x

k0(γ−1)
Pr

∂ζ1
∂x − (λ0 + 2µ0)∂ζ2

∂x



 ,

where we introduce

ζ1 = R1 + R3 − 2c0

γ − 1
R2, ζ2 = R1 − R3.

The terms with ∂ζ1/∂x is a consequence of the normal heat flux at the boundary,
while ∂ζ2/∂x accounts for the normal stress.

4.2.1. Numerical tests. As a test case for the proposed multidomain scheme
we have chosen a symmetric converging–diverging Laval nozzle with a cross-sectional
area variation given as

A(x) = 1 − 0.8x(1 − x) , 0 ≤ x ≤ 1,

and a ratio between the stagnation pressure and the back pressure of 0.78. This
results in a choked flow through the nozzle with the supersonic flow being terminated
by a stationary shock in the divergent part of the nozzle. In the inviscid limit, this
problem has an analytic solution (see, e.g., [28]) containing a shock at x ' 0.773 with
a shock Mach number, Ms = 1.32.

We have chosen the length of the nozzle L = 0.1m, the stagnation temperature
T0 = 300◦K, and M = 1.0 as the flow is choked.

Although the transonic nozzle flow leads to a steady state solution, we have
implemented the scheme as for a fully unsteady problem using a fourth-order Runge–
Kutta method. Additionally, we have in all simulations applied an exponential fil-
ter with γ = 10 and Nc = 0 to the solution to allow for increasing the time-
step.

As initial condition we use the inviscid solution, smoothed by a fourth-order
exponential filter; i.e., it is far from the steady state solution. As boundary conditions
at the open inflow and outflow boundaries we use the inviscid solution, which, at least
at high Reynolds numbers, is a very good approximation.

In Fig. 4(a) we show the steady state solutions obtained for Re = 100 and Re =
250, and we observe good agreement between the one- and the four-domain solutions.
As a way of testing the accuracy and asymptotic stability of the multidomain scheme
we calculate the residual in the weighted L2-norm (1) as

Residual(f(t + ∆t)) =
‖f(t + ∆t) − f(t)‖2

‖f(t)‖2 .
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FIG. 4. (a) Steady state solution of the Mach profile for the viscous transonic nozzle flow. For
the one-domain solutions (full line) at Re = 100, N = 32 collocation points were used, whereas
N = 48 were used at Re = 250. The solutions symbolized by the dots represent the four-domain
solution with the subdomains being equally sized and with N/4 modes in each. CFL = 3.0 was used
in all simulations. (b) History of convergence of the Mach number for the one- and the four-domain
solutions.

In Fig. 4(b) we show the corresponding residuals of the Mach number. The results for
the other variables are similar. We find that the one domain as well as the multidomain
solution converges to machine precision with the same rate of convergence. The slight
difference in the actual physical time of convergence is a consequence of the accuracy
of the initial approximation. As we use the same total number of modes in the one-
domain and the four-domain solutions and both solutions converge at approximately
the same physical time, we obtain a significant decrease in wallclock time by employing
the multidomain approach. In this case the multidomain scheme is more than 10 times
faster than the one-domain approach.

As final evidence of the performance of the scheme, we show in Fig. 5 the steady
state solutions of the transonic nozzle flow at increasing Reynolds number, compared
with the analytic purely inviscid solution. All viscous solutions are obtained using a
five-domain solution, with the domains clustered around the viscous shock.

We observe that for low Reynolds number, the flow becomes purely subsonic
and consequently the Mach profile changes upstream as well as downstream of the
inviscid shock. For transonic flows, the steady state profiles are similar to the inviscid
solution except in the highly viscous region in the neighborhood of the shock. For
high Reynolds numbers (Re ≥ 500) we find that the solution converges to the inviscid
solution as Re−1/2, as expected. All viscous steady state profiles are computed with
an L2-residual less than 10−10.

4.3. Example 2. Flow around a circular cylinder. As a second test case for
validating the proposed scheme, we have chosen unsteady compressible flow around
an infinitely long circular cylinder. This flow is one of the most well-documented
examples of simple exterior flows for which there exists an abundant amount of ex-
perimental results (see [30] and references therein). For Re < 6, where Re is based on
the free-stream values of the state vector and the diameter of the cylinder, the flow
is completely dominated by viscous effects and the flow pattern remains symmetric.
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FIG. 5. Steady state Mach profile for the transonic viscous nozzle flow at Re = 100, 250, 500,
1000 and Re = ∞. All solutions for finite Reynolds number are obtained as five-domain solutions
with CFL = 3.0.

Increasing Re leads to separation of the flow rear of the cylinder and a symmetric
pair of separation bubbles appear. For Re > 44 an instability is excited, resulting
in a laminar flow pattern where vortices are shed alternately and periodically. For
Re < 180 this pattern is very structured and the vortices retain their size and spacing
downstream of the cylinder. The flow may, however, still be considered strictly two-
dimensional and is known as the von Karman street. Increasing Re further leads to
the appearance of three-dimensional effects and finally, at very high Re, the flow be-
comes fully turbulent. Thus, despite the geometric simplicity of the flow, the observed
flow patterns may be very complex.

We wish to simulate the unsteady flow in the von Karman shedding region and
it is therefore sufficient to develop a two-dimensional model. The dynamics of the
flow is described by the two-dimensional, compressible Navier–Stokes equations as
given in (11), which we have normalized using the free-stream values of the flow. To
simulate the dynamics of the flow we apply a multidomain approach, where the full
computational domain Ω is constructed by several nonoverlapping concentric annular
subdomains.

Each annular subdomain is mapped onto a rectangular computational domain
(ξ, η) ∈ [0, 2π] × [−1, 1]. The branch cut, across which periodicity is enforced, is
chosen at ξ = 0, such that the physical grid relates to the computational grid as

x = r(η) cos θ(ξ), y = r(η) sin θ(ξ),

where (x, y) are the Cartesian coordinates, (r, θ) are the corresponding polar coordi-
nates, and (ξ, η) are the general curvilinear coordinates. Here r(η) simply maps the
standard interval [−1, 1] onto the radial extension of the grid whereas we have applied
an azimuthal mapping [31] as

θ(ξ) = tan−1
[

(1 − β2) sin ξ

(1 + β2) cos ξ − 2β

]
.
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This mapping has the effect of clustering the grid points around ξ = 0, with the
amount of clustering being controlled by |β| ≤ 1. As a consequence of the geometry of
the problem it is natural to choose a Fourier collocation method in ξ and a Chebyshev
collocation scheme in η.

By writing the problem in general curvilinear coordinates we obtain that although
we treat a two-dimensional problem, we need only to give boundary conditions and
perform domain patching in the η-direction as boundary conditions in ξ are given
through periodicity. Thus, the proposed one-dimensional approach for patching may
be applied when solving this problem.

Following the approach developed in the previous sections, we need to derive
the inviscid and viscous patching vectors for this particular case. From the general
expressions given in section 4 we obtain the characteristic functions, (12)

R = J





(m − ρu0) · n̂ + γ−1
c0

(
E + 1

2ρu0 · u0 − u0 · m
)

(mv − ρv0)n1 − (mu − ρu0)n2

ρ − γ−1
c2
0

(
E + 1

2ρu0 · u0 − u0 · m
)

−(m − ρu0) · n̂ + γ−1
c0

(
E + 1

2ρu0 · u0 − u0 · m
)




,

where

n̂ = (n1, n2) =
∇η√

∇η · ∇η
=

(ηx, ηy)√
η2

x + η2
y

is a unit vector pointing in the radial direction. The four corresponding eigenvalues
are

λ1 = u0 · n̂ + c0, λ2 = λ3 = u0 · n̂, λ4 = u0 · n̂ − c0,

yielding the wave speed of the copropagating sound wave, the vorticity wave, the
entropy wave, and the counter-propagating sound wave, respectively.

Following (13) we obtain the viscous patching vectors G = J(G1, G2, G3, G4)T as

G1 =
1

ρ0r

[
(γ − 1)k0

2Pr
∂(rζ1)

∂r
+

2
3

µ0
∂(rζ2)

∂r
− 1

3
µ0

∂R2

∂θ

]
,

G2 =
µ0

ρ0r

[
∂(rR2)

∂r
− 1

6
∂ζ2

∂θ

]
,

G3 = − (γ − 1)k0

Pr
1

2c0ρ0

1
r

∂(rζ1)
∂r

,

G4 =
1

ρ0r

[
(γ − 1)k0

2Pr
∂(rζ1)

∂r
− 2

3
µ0

∂(rζ2)
∂r

+
1
3
µ0

∂R2

∂θ

]
,

where, for convenience, we have introduced the symbols

ζ1 = R1 + R4 − 2c0

γ − 1
R3, ζ2 = R1 − R4.

The terms associated with ζ1 account for effects of the normal heat flux across the
boundary, while the remaining terms are related to the normal and tangential stress
at the boundary.
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FIG. 6. Five-domain grid used for computation of flow around a cylinder in a computational
domain of 20 cylinder diameters (L). The subdomain boundaries are positioned at r = 1.25L, r =
2.75L, r = 5.75L, and r = 11.75L. The box shows a blowup of the grid close to the cylinder.

The radial and azimuthal derivatives of a function f(ξ, η) are found as

∂f

∂r
=

∂f

∂η

∂η

∂r
,

∂f

∂θ
=

∂f

∂ξ

∂ξ

∂θ
.

At the subdomain boundaries we use the values of the state vector at the previous
time-step as linearization parameters and at the open boundary ΓK we use the free-
stream values. At the solid cylinder wall we assume no-slip, isothermal boundaries,
i.e., q(Γ0) = (ρ, 0, 0, ρT∞)T , where ρ is determined numerically.

The solution has been integrated using an adaptive, explicit fourth-order Runge–
Kutta with the boundary conditions and the subdomain patching being enforced at
intermediate time-steps, where we also enforce continuity of the global solution and
apply a filter with Nc = 0 and γ = 10. All simulations to be presented were done
with CFL = 3.0.

4.3.1. Numerical tests. We have performed tests with a cylinder of diameter
L = 0.1m, a free-stream Mach number M = 0.2, and a stagnation temperature
T0 = 300◦K.

In Fig. 6 we show a typical grid layout used for simulating the unsteady compress-
ible flow around a cylinder. Note that the grids in the domains are nonconforming and
we use periodic cubic spline interpolation between the different grids. The accuracy
of this approach has been tested by comparing the results with Fourier interpolation,
which is possible to use only in the absence of the mapping, and the spline interpola-
tion is found to introduce only negligible errors. Using this grid, we have performed
simulations at various Reynolds numbers. In Fig. 7 we show contour plots of the nor-
malized density, normalized pressure, vorticity, and local Mach number. This clearly
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FIG. 7. Contour plot of the normalized density ρ/ρ0, the normalized pressure p/p0, the vorticity
∇ × u, and the local Mach number at T = 107, corresponding to 18 shedding cycles at Re = 100.
The circles represent the subdomain boundaries.

TABLE 2
Comparison of Strouhal number computed and reported from experiments [30].

Re St St
computed experiment [30]

75 0.149 0.149
100 0.165 0.164
125 0.177 0.175

shows the well-known von Karman street behind the cylinder. We observe that the
contour lines are continuous across subdomain boundaries, and we note that the vor-
tices propagate undisturbed across the subdomain boundaries without any reflections
from the artificial boundaries. Continuity of the contour lines in the plot of the
vorticity distribution confirms that the scheme enforces continuity of the first-order
derivatives also.

To evaluate the performance of the algorithm quantitatively, we have performed
several computations at various Reynolds numbers. In Table 2 we compare the com-
puted Strouhal number, i.e., the nondimensional shedding frequency St = ωL/u0,
with that found in experiments [30]. The Strouhal number is calculated from time
traces of the pressure in the wake of the cylinder. We observe very close agreement
between computational and experimental results.

These comparisons lead us to conclude that the scheme performs well and is
applicable also for fully unsteady, multidimensional flows.
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5. Concluding remarks. In this paper we have presented a further develop-
ment of the well-posed and asymptotically stable open boundary conditions, proposed
in [1], such that these can be used also as interface conditions for patching across sub-
domain boundaries. This led us to propose a unified approach for dealing with open
boundaries as well as subdomain boundaries for performing multidomain solutions of
dissipative, wave-dominated problems. Special attention has been given to the com-
pressible Navier–Stokes equations given on conservation form with several examples
of the specific details of the implementation.

The multidomain scheme that we propose may be proven asymptotically stable
and, as we have shown, is well suited for performing simulations of steady as well as
unsteady compressible flows.

Although we have only considered one- and two-dimensional examples, we are
confident that the scheme may be applied for three-dimensional problems as well.
However, the analysis of a patching scheme, based on general hexahedrals, for three-
dimensional, compressible flows is more involved than discussed here and will be the
subject of the final paper in this trilogy [32].

Appendix. Similarity transform and viscous transformation derivative
for the three-dimensional, compressible Navier–Stokes equations in general
curvilinear coordinates. Introduce the transformation derivative of the inviscid
flux vector F as

A =
∂F
∂q

.

Linearizing A = A(q0) allows for diagonalizing through a similarity transform as
Λ = S−1A S, where the right eigenvector matrix S and the left eigenvector matrix
S−1 are given as

S =





α 0 1 0 α
α(u + cn1) −n2 u −n3 α(u − cn1)
α(v + cn2) n1 v 0 α(v − cn2)
α(w + cn3) 0 w n1 α(w − cn3)

α(H + cu · n̂) vn1 − un2
1
2c2M2 wn1 − un3 α(H − cu · n̂)




,

S−1 =





β
(

1
2c2M2 − c u·n̂

γ−1

)
−β(u − cn1

γ−1 ) −β(v − cn2
γ−1 ) −β(w − cn3

γ−1 ) β

un2 − vn1 −n2 n1 0 0
1 − 1

2 (γ − 1)M2 γ−1
c2 u γ−1

c2 v γ−1
c2 w −γ−1

c2

un3 − wn1 −n3 0 n1 0
β
(

1
2c2M2 + c u·n̂

γ−1

)
−β(u + cn1

γ−1 ) −β(v + cn2
γ−1 ) −β(w + cn3

γ−1 ) β




.

Here

α =
1
2c

, β =
γ − 1

c
,

and

H =
E + p

ρ

is the enthalpy.
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For the general viscous transformation derivative

Bα,β = S−1 ∂Πα,β

∂qβ

S,

with

qβ =
∂q
∂β

,

we obtain the entries Bij = ρ(Bα,β)ij ,

B11 = B55 = 1
2

[
(µ + λ)(∇α · n̂)(∇β · n̂) + (∇α · ∇β)

(
µ + (γ−1)k

Pr

)]
,

B12 = −B52 = λ(∇α · n̂)(n1βy − n2βx) + µ(∇β · n̂)(n1αy − n2αx),

B13 = B53 = −(∇α · ∇β)c k
Pr ,

B14 = −B54 = λ(∇α · n̂)(n1βz − n3βx) + µ(∇β · n̂)(n1αz − n3αx),

B15 = B51 = 1
2

[
−(µ + λ)(∇α · n̂)(∇β · n̂) + (∇α · ∇β)

(
−µ + (γ−1)k

Pr

)]
,

B21 = −B25 = 1
2 [µ(∇α · n̂)(n1βy − n2βx) + λ(∇β · n̂)(n1αy − n2αx)] ,

B22 = µ(∇α · ∇β)(n2
1 + n2

2) + (λ + µ)(n2αx − n1αy)(n2βx − n1βy),

B24 = µ(∇α · ∇β)(n2n3) + λ(n2αx − n1αy)(n3βx − n1βz)

+ µ(n3αx − n1αz)(n2βx − n1βy),

B31 = B35 = −(∇α · ∇β)γ−1
2c

k
Pr ,

B33 = (∇α · ∇β) k
Pr ,

B41 = −B45 = 1
2 [µ(∇α · n̂)(n1βz − n3βx) + λ(∇β · n̂)(n1αz − n3αx)] ,

B42 = µ(∇α · ∇β)(n2n3) + λ(n3αx − n1αz)(n2βx − n1βy)

+ µ(n2αx − n1αy)(n3βx − n1βz),

B44 = µ(∇α · ∇β)(n2
1 + n2

3) + (λ + µ)(n3αx − n1αz)(n3βx − n1βz),

B23 = B32 = B34 = B43 = 0,

where α = (ξ, η, ζ) and β = (ξ, η, ζ) and the unit vector n̂ is defined as

n̂ = (n1, n2, n3) =
∇ξ√

∇ξ · ∇ξ
=

(ξx, ξy, ξz)√
ξ2
x + ξ2

y + ξ2
z

.

Note that in the special case of orthogonal curvilinear coordinates we may use

∇ξ · ∇η = ∇η · ∇ζ = ∇ζ · ∇ξ = 0,

to simplify the mixed terms (α 0= β) considerably.
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