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A SPARSE APPROXIMATE INVERSE PRECONDITIONER

FOR NONSYMMETRIC LINEAR SYSTEMS

MICHELE BENZI � AND MIROSLAV T�UMA y

Abstract� This paper is concerned with a new approach to preconditioning for large� sparse linear

systems� A procedure for computing an incomplete factorization of the inverse of a nonsymmetric matrix

is developed� and the resulting factorized sparse approximate inverse is used as an explicit preconditioner

for conjugate gradient�type methods� Some theoretical properties of the preconditioner are discussed� and

numerical experiments on test matrices from the Harwell�Boeing collection and from Tim Davis� collection are

presented� Our results indicate that the new preconditioner is cheaper to construct than other approximate

inverse preconditioners� Furthermore� the new technique insures convergence rates of the preconditioned

iteration which are comparable with those obtained with standard implicit preconditioners�

Key words� Preconditioning� approximate inverses� sparse linear systems� sparse matrices� incomplete

factorizations� conjugate gradient�type methods�

AMS�MOS� subject classi�cation� ��F	
� ��F��� ��F�
� ��Y
� �

�� Introduction� In this paper we consider the solution of nonsingular linear systems

of the form

Ax � b���

where the coe�cient matrix A � IRn�n is large and sparse� In particular� we are concerned

with the development of preconditioners for conjugate gradient	type methods� It is well	

known that the rate of convergence of such methods for solving ��� is strongly in
uenced by

the spectral properties of A� It is therefore natural to try to transform the original system

into one having the same solution but more favorable spectral properties� A preconditioner

is a matrix that can be used to accomplish such a transformation� If G is a nonsingular
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matrix which approximates A�� �G � A���� the transformed linear system

GAx � Gb���

will have the same solution as system ��� but the convergence rate of iterative methods

applied to ��� may be much higher� Problem ��� is preconditioned from the left� but right

preconditioning is also possible� Preconditioning on the right leads to the transformed linear

system

AGy � b����

Once the solution y of ��� has been obtained� the solution of ��� is given by x � Gy�

The choice between left or right preconditioning is often dictated by the choice of the

iterative method� It is also possible to use both forms of preconditioning at once �split

preconditioning�� see �� for further details�

Note that in practice it is not required to compute the matrix product GA �or AG�

explicitly� because conjugate gradient	type methods only necessitate the coe�cient matrix

in the form of matrix	vector multiplies� Therefore� applying the preconditioner within a

step of a gradient	type method reduces to computing the action of G on a vector�

Loosely speaking� the closer G is to the exact inverse of A� the higher the rate of

convergence of iterative methods will be� Choosing G � A�� yields convergence in one

step� but of course constructing such a preconditioner is equivalent to solving the original

problem� In practice� the preconditioner G should be easily computed and applied� so that

the total time for the preconditioned iteration is less than the time for the unpreconditioned

one� Typically� the cost of applying the preconditioner at each iteration of a conjugate

gradient	type method should be of the same order as the cost of a matrix	vector multiply

involving A� For a sparse A� this implies that the preconditioner should also be sparse with

a density of nonzeros roughly of the same order as that of A�

Clearly� the e�ectiveness of a preconditioning strategy is strongly problem and architec	

ture dependent� For instance� a preconditioner which is expensive to compute may become

viable if it is to be reused many times� since in this case the initial cost of forming the

preconditioner can be amortized over several linear systems� This situation occurs� for in	

stance� when dealing with time	dependent or nonlinear problems� whose numerical solution

gives rise to long sequences of linear systems having the same coe�cient matrix �or a slowly

varying one� and di�erent right	hand sides� Furthermore� preconditioners that are very e�	

cient in a scalar computing environment may show poor performance on vector and parallel

machines� and conversely�
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A number of preconditioning techniques have been proposed in the literature �see� e�g��

����� and the references therein�� While it is generally agreed that the construction of ef	

�cient general	purpose preconditioners is not possible� there is still considerable interest in

developing methods which will perform well on a wide range of problems and are well	suited

for state	of	the	art computer architectures� Here we introduce a new algebraic precondi	

tioner based on an incomplete triangular factorization of A��� This paper is the natural

continuation of ��� where the focus was restricted to symmetric positive de�nite systems

and to the preconditioned conjugate gradient method �see also �������

The paper is organized as follows� In x� we give a quick overview of implicit and explicit

preconditioning techniques� considering the relative advantages as well as the limitations of

the two approaches� In x� we summarize some recent work on the most popular approach

to approximate inverse preconditioning� based on Frobenius norm minimization� In x� we

introduce the new incomplete inverse triangular decomposition technique and describe some

of its theoretical properties� A graph	theoretical characterization of �ll	in in the inverse

triangular factorization is presented in x�� In x� we consider the use of preconditioning

on matrices which have been reduced to block triangular form� Implementation details

and the results of numerical experiments are discussed in xx� and �� and some concluding

remarks and indications for future work are given in x�� Our experiments suggest that the

new preconditioner is cheaper to construct than preconditioners based on the optimization

approach� Moreover� good rates of convergence can be achieved by our preconditioner�

comparable with those insured by standard ILU	type techniques�

�� Explicit vs� implicit preconditioning� Most existing preconditioners can be

broadly classi�ed as being either of the implicit or of the explicit kind� A preconditioner

is implicit if its application� within each step of the chosen iterative method� requires the

solution of a linear system� A nonsingular matrix M � A implicitly de�nes an approximate

inverse G �� M�� � A��� and applying G requires solving a linear system with coe�cient

matrix M � Of course� M should be chosen so that solving a system with matrix M is easier

than solving the original problem ���� Perhaps the most important example is provided by

preconditioners based on an Incomplete LU �ILU� decomposition� Here M � �L �U where
�L and �U are sparse triangular matrices which approximate the exact L and U factors of

A� Applying the preconditioner requires the solution of two sparse triangular systems �the

forward and backward solves�� Other notable examples of implicit preconditioners include

the ILQ� SSOR and ADI preconditioners� see ���
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In contrast� with explicit preconditioning a matrix G � A�� is known �possibly as the

product of sparse matrices� and the preconditioning operation reduces to forming one �or

more� matrix	vector product� For instance� many polynomial preconditioners belong to this

class ���� Other explicit preconditioners will be described in the subsequent sections�

Implicit preconditioners have been intensively studied� and they have been successfully

employed in a number of applications� In spite of this� in the last few years an increasing

amount of attention has been devoted to alternative forms of preconditioning� especially of

the explicit kind� There have been so far two main reasons for this recent trend� In the �rst

place� shortly after the usage of modern high	performance architectures became widespread�

it was realized that straightforward implementation of implicit preconditioning in conjugate

gradient	like methods could lead to severe degradation of the performance on the new

machines� In particular� the sparse triangular solves involved in ILU	type preconditioning

were found to be a serial bottleneck �due to the recursive nature of the computation�� thus

limiting the e�ectiveness of this approach on vector and parallel computers� It should be

mentioned that considerable e�ort has been devoted to overcoming this di�culty� As a

result� for some architectures and types of problems it is possible to introduce nontrivial

parallelism and to achieve reasonably good performance in the triangular solves by means

of suitable reordering strategies �see� e�g�� ������������ However� the triangular solves

remain the most problematic aspect of the computation� both on shared memory ��� and

distributed memory ��� computers� and for many problems the e�cient application of an

implicit preconditioner in a parallel environment still represents a serious challenge�

Another drawback of implicit preconditioners of the ILU	type is the possibility of break	

downs during the incomplete factorization process� due to the occurrence of zero or exceed	

ingly small pivots� This situation typically arises when dealing with matrices which are

strongly unsymmetric and�or inde�nite� even if pivoting is applied �see ��������� and in

general it may even occur for de�nite problems unless A exhibits some degree of diagonal

dominance� Of course� it is always possible to safeguard the incomplete factorization pro	

cess so that it always runs to completion� producing a nonsingular preconditioner� but there

is also no guarantee that the resulting preconditioner will be of acceptable quality� Fur	

thermore� as shown in ���� there are problems for which standard ILU techniques produce

unstable incomplete factors� resulting in useless preconditioners�

Explicit preconditioning techniques� based on directly approximating A��� have been

developed in an attempt to avoid or mitigate such di�culties� Applying an explicit precon	

ditioner only requires sparse matrix	vector products� which should be easier to parallelize
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than the sparse triangular solves� and in some cases the construction of the preconditioner

itself is well	suited for parallel implementation� In addition� the construction of an approxi	

mate inverse is sometimes possible even if the matrix does not have a stable incomplete LU

decomposition� Moreover� we mention that sparse incomplete inverses are often used when

constructing approximate Schur complements �pivot blocks� for use in incomplete block

factorization and other two	level preconditioners� see ��������������

Of course� explicit preconditioners are far from being completely trouble	free� Even if

a sparse approximate inverse G is computed� care must be exercised to ensure that G is

nonsingular� For nonsymmetric problems� the same matrix G could be a good approximate

inverse if used for left preconditioning and a poor one if used for right preconditioning�

see ��� p� ������� p� �������� Furthermore� explicit preconditioners are sometimes not

as e�ective as implicit ones at reducing the number of iterations� in the sense that there

are problems for which they require a higher number of nonzeros in order to achieve the

same rate of convergence insured by implicit preconditioners� One of the reasons for this

limitation is that an explicit preconditioner attempts to approximate A��� which is usually

dense� with a sparse matrix� Thus� an explicit preconditioner is more likely to work well if

A�� contains many entries which are small �in magnitude�� A favorable situation is when A

exhibits some form of diagonal dominance� but for such problems implicit preconditioning

is also likely to be very e�ective� Hence� for problems of this type� explicit preconditioners

can be competitive with implicit ones only if explicitness is fully exploited� Finally� explicit

preconditioners are usually more expensive to compute than implicit ones� although this

di�erence may become negligible in the common situation where several linear systems with

the same coe�cient matrix and di�erent right	hand sides have to be solved� In this case

the time for computing the preconditioner is often only a fraction of the time required for

the overall computation� It is also worth repeating that the construction of certain sparse

approximate inverses can be done� at least in principle� in a highly parallel manner� whereas

the scope for parallelism in the construction of ILU	type preconditioners is more limited�

�� Methods based on Frobenius norm minimization� A good deal of work has

been devoted to explicit preconditioning based on the following approach� the sparse ap	

proximate inverse is computed as the matrix G which minimizes kI � GAk �or kI � AGk

for right preconditioning� subject to some sparsity constraint �see ��� Ch� � of �����������

��������������������� Here the matrix norm is usually the Frobenius norm or a weighted

variant of it� for computational reasons� With this choice� the constrained minimization

problem decouples into n independent linear least squares problems �one for each row� or
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column of G�� the number of unknowns for each problem being equal to the number of

nonzeros allowed in each row �or column� of G� This immediately follows from the identity

kI �AGk�F �
nX
i��

kei � Agik
�
�

where ei is the ith unit vector and gi is the ith column of G� Clearly� there is considerable

scope for parallelism in this approach� The resulting sparse least squares problems can

be solved� in principle� independently of each other� either by direct methods �as in ����

�������� or iteratively ����������

In early papers �e�g� ����������� the sparsity constraint was imposed a priori� and the

minimizer was found relative to a class of matrices with a predetermined sparsity pattern�

For instance� when A is a band matrix with a good degree of diagonal dominance� a banded

approximation to A�� is justi�ed� see ���� However� for general sparse matrices it is very

di�cult to guess a good sparsity pattern for an approximate inverse� and several recent

papers have addressed the problem of adaptively de�ning the nonzero pattern of G in order

to capture �large� entries of the inverse �������� Indeed� by monitoring the size of each

residual kei � Agik� it is possible to decide whether new entries of gi are to be retained or

discarded� in a dynamic fashion� Moreover� the information on the residuals can be utilized

to derive rigorous bounds on the clustering of the singular values of the preconditioned

matrix and therefore to estimate its condition number ���� It is also possible to formulate

conditions on the norm of the residuals which insure that the approximate inverse will

be nonsingular� Unfortunately� such conditions appear to be of dubious practical value�

because trying to ful�ll them could lead to a very dense approximate inverse ��������

A disadvantage of this approach is that symmetry in the coe�cient matrix cannot be

exploited� If A is symmetric positive de�nite �SPD�� the sparse approximate inverse will

not be symmetric in general� Even if a preset� symmetric sparsity pattern is enforced� there

is no guarantee that the approximate inverse will be positive de�nite� This could lead to a

breakdown in the conjugate gradient acceleration� For this reason� Kolotilina and Yeremin

������� propose to compute an explicit preconditioner of the form G � GT
LGL where GL

is lower triangular� The preconditioned matrix is then GLAG
T
L� which is SPD� and the

conjugate gradient method can be applied� The matrix GL is the solution of a constrained

minimization problem for the Frobenius norm of I � LGL where L is the Cholesky factor

of A� In ��� it is shown how this problem can be solved without explicit knowledge of

any of the entries of L� using only entries of the coe�cient matrix A� The same technique

can also be used to compute a factorized approximate inverse of a nonsymmetric matrix by
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separately approximating the inverses of the L and U factors� As it stands� however� this

technique requires that the sparsity pattern of the approximate inverse triangular factors

be speci�ed in advance� and therefore is not suitable for matrices with a general sparsity

pattern�

There are additional reasons for considering factorized approximate inverses� Clearly�

with the approximate inverse G expressed as the product of two triangular factors it is

trivial to insure that G is nonsingular� Another argument in favor of this approach is given

in ���� where it is observed that factorized forms of general sparse matrices contain more

information for the same storage than if a single product was stored�

The serial cost for the construction of this type of preconditioner is usually very high�

although the theoretical parallel complexity can be quite moderate �������� The results of

numerical experiments reported in ��� demonstrate that factorized sparse approximate in	

verse preconditioners can insure rapid convergence of the preconditioned conjugate gradient

�PCG� iteration when applied to certain �nite element discretizations of �D PDE problems

arising in elasticity theory� However� in these experiments the preconditioning strategy is

not applied to the coe�cient matrix directly� but rather to a reduced system �Schur comple	

ment� which is better conditioned and considerably less sparse than the original problem�

When the approximate inverse preconditioner is applied directly to the original sti�ness

matrix A� the rate of convergence of the PCG iteration is rather disappointing�

A comparison between a Frobenius norm	based sparse approximate inverse precondi	

tioner and the ILU��� preconditioner on a number of general sparse matrices has been made

in ���� The reported results show that the explicit preconditioner can insure rates of con	

vergence comparable with those achieved with the implicit ILU	type approach� Again� it is

observed that the construction of the approximate inverse is often very costly� but amenable

to parallelization�

Factorized sparse approximate inverses have also been considered by other authors� for

instance by Kaporin ������������ whose approach is also based on minimizing a certain ma	

trix functional and is closely related to that of Kolotilina and Yeremin� In the next sections

we present an alternative approach to factorized sparse approximate inverse preconditioning

which is not grounded in optimization� but is based instead on a direct method of matrix

inversion� As we shall see� the serial cost of forming a sparse approximate inverse with this

technique is usually much less than with the optimization approach� while the convergence

rates are still comparable� on average� with those obtained with ILU	type preconditioning�
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�� A method based on inverse triangular factorization� The optimization ap	

proach to constructing approximate inverses is not the only possible one� In this section we

consider an alternative procedure based on a direct method of matrix inversion� performed

incompletely in order to preserve sparsity� This results in a factorized sparse G � A���

Being an incomplete matrix factorization method� our procedure resembles classical ILU	

type implicit techniques� and indeed we can draw from the experience accumulated in years

of use of ILU	type preconditioning both at the implementation stage and when deriving

theoretical properties of the preconditioner G� This paper continues the work in ��� where

the symmetric positive de�nite case was studied �see also �������

The construction of our preconditioner is based on an algorithm which computes two

sets of vectors fzig
n
i��� fwig

n
i��� which are A	biconjugate� i�e� such that wT

i Azj � � if and

only if i �� j� Given a nonsingular matrix A � IRn�n � there is a close relationship between

the problem of inverting A and that of computing two sets of A	biconjugate vectors fzig
n
i��

and fwig
n
i��� If

Z � z�� z�� � � � � zn�

is the matrix whose ith column is zi and

W � w�� w�� � � � � wn�

is the matrix whose ith column is wi� then

WTAZ � D �

�
BBBB�
p� � � � � �

� p� � � � �
���

���
� � �

���

� � � � � pn

�
CCCCA

where pi � wT
i Azi �� �� It follows that W and Z are necessarily nonsingular and

A�� � ZD��WT �
nX
i��

ziw
T
i

pi
����

Hence� the inverse of A is known if two complete sets of A	biconjugate vectors are known�

Note that there are in�nitely many such sets� Matrices W and Z whose columns are A	

biconjugate can be explicitly computed by means of a biconjugation process applied to the

columns of any two nonsingular matrices W ���� Z��� � IRn�n � A computationally convenient

choice is to let W ��� � Z��� � In�n � the biconjugation process is applied to the unit basis

vectors� In order to describe the procedure� let aTi and cTi denote the ith row of A and AT �
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respectively �i�e�� ci is the ith column of A�� The basic A	biconjugation procedure can be

written as follows�

THE BICONJUGATION ALGORITHM

��� Let w
���
i � z

���
i � ei �� � i � n�

��� for i � �� �� � � �� n

for j � i� i � �� � � � � n

p
�i���
j �� aTi z

�i���
j 	 q

�i���
j �� cTi w

�i���
j

end

if i � n go to �
�

for j � i � �� � � � � n

z
�i�
j �� z

�i���
j �

�
p
�i���
j

p
�i���
i

�
z
�i���
i 	 w

�i�
j �� w

�i���
j �

�
q
�i���
j

q
�i���
i

�
w

�i���
i

end

end

�
� Let zi �� z
�i���
i � wi �� w

�i���
i and pi �� p

�i���
i � for � � i � n�

Return Z � z�� z�� � � � � zn�� W � w�� w�� � � � � wn� and D �

�
BBB�
p� � � � � �

� p� � � � �
���

���
� � �

���

� � � � � pn

�
CCCA �

This algorithm is essentially due to L� Fox� see Ch� � of ���� Closely related methods

have also been considered by Hestenes and Stiefel ��� pp� ������������ and by Stewart ����

A more general treatment is given in the recent paper ���� Geometrically� the procedure

can be regarded as a generalized Gram	Schmidt orthogonalization with oblique projections

and nonstandard inner products� see �������

Several observations regarding this algorithm are in order� In the �rst place we note

that the above formulation contains some redundancy� since in exact arithmetic

pi � wT
i Azi � zTi A

Twi � qi�

Therefore� at step i the computation of the dot product q
�i���
i � cTi w

�i���
i may be replaced

by the assignment q
�i���
i �� p

�i���
i � Another observation is the fact that the procedure� as

it stands� is vulnerable to breakdown �division by zero�� which occurs whenever any of the
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quantities p
�i���
i �� q

�i���
i � happens to be zero� It can be shown that in exact arithmetic� the

biconjugation algorithm will not break down if and only if all the leading principal minors of

A are nonzero �see below�� For any nonsingular matrix A there exists a permutation matrix

P �or Q� such that the procedure applied to PA �or to AQ� will not break down� As in

the LU decomposition with pivoting� such permutation matrices represent row �or column�

interchanges on A which can be performed� if needed� in the course of the computation�

If the biconjugation process can be carried to completion without interchanges� the

resulting Z and W matrices are upper triangular�� they both have all diagonal entries equal

to one� and satisfy the identity

A � W�TDZ������

We recognize in ��� the familiar LDU decomposition A � LDU � where L is unit lower

triangular� U is unit upper triangular and D is the diagonal matrix with the pivots down

the main diagonal� Because this factorization is unique� we have that the biconjugation

algorithm explicitly computes

W � L�T � Z � U��

and the matrix D� which is exactly the same in ��� and in A � LDU � Hence� the process

produces an inverse triangular decomposition of A or� equivalently� a triangular decompo	

sition �of the UDL type� of A��� The pi�s returned by the algorithm are the pivots in the

LDU factorization of A� If we denote by �i the ith leading principal minor of A �� � i � n�

and let �� � �� the identity ��� implies that

pi �
�i

�i��
�i � �� � � � � n�

showing that the biconjugation algorithm can be performed without breakdowns if and only

if all leading principal minors of A are non	vanishing� In �nite precision arithmetic� pivoting

may be required to promote numerical stability�

Once Z� W and D are available� the solution of a linear system of the form ��� can be

computed� by ���� as

x � A��b � ZD��WTb �
nX
i��

�
wT
i b

pi

�
zi����

� Note that this is not necessarily true when a matrix other than the identity is used at the outset� i�e� if

Z����W ��� �� In�n�
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In practice� this direct method for solving linear systems is not used on account of its cost�

for a dense n � n matrix� the biconjugation process requires about twice the work as the

LU factorization of A� Notice that the cost of the solve phase using ��� is the same as for

the forward and backward solves with the L and U factors�

If A is symmetric� the number of operations in the biconjugation algorithm can be

halved by observing that W must equal Z� Hence� the process can be carried out using

only the rows of A� the z	vectors and the p
�i���
j � The columns of the resulting Z form a set

of conjugate directions for A� If A is SPD� no breakdown can occur �in exact arithmetic��

so that pivoting is not required and the algorithm computes the LTDL factorization of

A��� This method was �rst described in ���� Geometrically� it amounts to Gram	Schmidt

orthogonalization with inner product hx� yi �� xTAy applied to the unit vectors e�� � � � � en�

It is sometimes referred to as the conjugate Gram�Schmidt process � The method is still

impractical as a direct solver because it requires about twice the work of Cholesky for dense

matrices� However� as explained in �� and ��� the same algorithm can also be applied to

nonsymmetric systems� resulting in an implicit LDU factorization where only Z � U�� and

D are computed� Indeed� it is possible to compute a solution to ��� for any right	hand

side using just Z� D and part of the entries of A� This method has the same arithmetic

complexity as Gaussian elimination when applied to dense problems� When combined with

suitable sparsity	preserving strategies the method can be useful as a sparse direct solver� at

least for some types of problems �see �������

For a sparse symmetric and positive de�nite A� the Z matrix produced by the algorithm

tends to be dense �see the next section�� but it can be observed experimentally that very

often� most of the entries in Z have small magnitude� If �ll	in in the Z matrix is reduced by

removing suitably small entries in the computation of the z	vectors� the algorithm computes

a sparse matrix �Z and a diagonal matrix �D such that

G �� �Z �D�� �ZT � A��

�i�e�� a factorized sparse approximate inverse of A�� Hence� G can be used as an explicit

preconditioner for the conjugate gradient method� A detailed study of this preconditioning

strategy for SPD problems can be found in ��� where it is proven that the incomplete

inverse factorization exists if A is an H	matrix �analogously to ILU	type factorizations��

The numerical experiments in �� show that this approach can insure fast convergence of the

PCG iteration� almost as good as with implicit preconditioning of the incomplete Cholesky

type� The construction of the preconditioner itself� while somewhat more expensive than the

computation of the incomplete Cholesky factorization� is still quite cheap� This is in contrast
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with the least squares approach described in the previous section� where the construction of

the approximate inverse is usually very time consuming� at least in a sequential environment�

In the remainder of this paper we consider an explicit preconditioning strategy based

on the biconjugation process described above� Sparsity in the Z and W factors of A�� is

preserved by removing �small� �ll in the z	 and w	vectors� A possibility would be to drop

all newly added �ll	in elements outside of a preset sparsity pattern above the main diagonal

in Z and W  however� for general sparse matrices it is very di�cult to guess a reasonable

sparsity pattern� and a drop tolerance is used instead� A trivial extension of the results

in �� shows that the incomplete biconjugation process �incomplete inverse factorization�

cannot break down� in exact arithmetic� if A is an H	matrix� For more general matrices

it is necessary to safeguard the computation in order to avoid breakdowns� This requires

pivot modi�cations and perhaps some form of pivoting !we postpone the details to x��

The incomplete biconjugation algorithm computes sparse unit upper triangular matrices
�Z � Z� �W � W and a nonsingular diagonal matrix �D � D such that

G �� �Z �D�� �WT � A��

is a factorized sparse approximate inverse of A which can be used as an explicit precondi	

tioner for conjugate gradient	type methods for the solution of ����

We conclude this section with a few remarks on properties of the approximate inverse

preconditioner G just described� If A is not an H	matrix� as already mentioned� the con	

struction of the preconditioner could break down due to the occurrence of zero or extremely

small pivots� However� following ���� we note that there always exists � � � such that

A"�I is diagonally dominant� and hence an H	matrix� Therefore� if the incomplete bicon	

jugation algorithm breaks down� one could try to select � � � and re	attempt the process

on the shifted matrix A� � A"�I � Clearly� � should be large enough to insure the existence

of the incomplete inverse factorization� but also small enough so that A� is close to A� This

approach has several drawbacks� for ill	conditioned matrices� the quality of the resulting

preconditioner is typically poor furthermore� the breakdown that prompts the shift may

occur near the end of the biconjugation process� and the preconditioner may have to be

recomputed several times before a satisfactory value of � is found� A better strategy is to

perform diagonal modi�cations only as the need arises� shifting pivots away from zero if

their magnitude is less than a speci�ed threshold �see x� for details��

If A is an M	matrix� it follows from the results in �� that G is a nonnegative matrix�
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Moreover� it is easy to see that componentwise the following inequalities hold�

D��
A � G � A�����

where DA is the diagonal part of A� Furthermore� if G� and G� are two approximate

inverses of the M	matrix A produced by the incomplete biconjugation process and the drop

tolerance used for G� is greater than or equal to the drop tolerance used for G�� then

D��
A � G� � G� � A������

The same is true if sparsity patterns are used to determine the nonzero structure in �Z and
�W and the patterns for G� include the patterns for G�� This monotonicity property is

shared by other sparse approximate inverses� see for example Ch� � in ��� We note that

property ��� is important if the approximate inverse is to be used within an incomplete

block factorization of an M	matrix A� because it insures that all the intermediate matrices

produced in the course of the incomplete factorization preserve the M	matrix property �see

�� pp� ����������

Finally� after discussing the similarities� we point to a di�erence between our incomplete

inverse factorization and the ILU	type factorization of a matrix� The incomplete factoriza	

tion of an M	matrix A induces a splitting A � �L �U � R which is a regular splitting� and

therefore convergent� ��I � �U�� �L��A� � �� where ��B� denotes the spectral radius of a

matrix B �see ��������� The same is not true� in general� for our incomplete factorization�

If one considers the induced splitting A � G���S �where S � G���A� this splitting need

not be convergent� An example is given by the symmetric M	matrix

A �

�
B�

� �� �

�� � ��

� �� �

�
CA �

For this matrix� the incomplete inverse factorization with a drop tolerance T � ��� �whereby

intermediate �ll	in is dropped if smaller than T in absolute value� produces an approximate

inverse G such that ��I�GA� � ����� � �� This shows that the approximate decomposition

A � �W�T �D �Z��

cannot be obtained� in general� from an incomplete factorization of A� In this sense� the

incomplete inverse factorization is not algebraically equivalent to an incomplete LDU fac	

torization performed on A�
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�� Fill�in in the biconjugation algorithm� In this section we give a characteriza	

tion of the �ll	in occurring in the factorized inverse obtained by the biconjugation algorithm�

These results may serve as a guideline to predict the structure of the factorized approximate

inverse� and have an impact on certain aspects of the implementation�

It is well	known that structural nonzeros in the inverse matrix A�� can be characterized

by the paths in the graph of the original matrix A �see ��������� The following lemma states

necessary and su�cient conditions for a new entry ��ll	in� to be added in one of the z	vectors

at the ith step of the biconjugation algorithm� A similar result holds for the w	vectors� We

make use of the standard no	cancellation assumption�

Lemma ���� Let � � i � j � n� � � l � n� Then

z
�i���
lj � � � z

�i�
lj �� �

if and only if l � i� z
�i���
li �� � and� at the same time� at least one of the two following

conditions holds�

	 aij �� ��

	 �
k � i��aik �� � � z
�i���
kj �� ���

Proof� Suppose that z
�i���
lj � � � z

�i�
lj �� �� Directly from the update formula for the

z	vectors we see that z
�i���
li �� � and l � i� since z

�i���
pi � � for p � i� Also� if z

�i�
lj becomes

nonzero in the ith step then clearly p
�i���
j must be nonzero� But

p
�i���
j � aTi z

�i���
j � aij "

X
k�i

z
�i���
kj aik

and we get the result� The opposite implication is trivial� �

Figures ��� through ��� provide an illustration of the previous lemma� Figure ��� shows

the nonzero structure of the matrix FS��� � of order n � ��� from the Harwell	Boeing

collection ���� Figures ����� show the structure of the factor Z at di�erent stages of the

biconjugation algorithm� These pictures show that in the initial steps� when most of the

entries of Z are still zero� the nonzeros in Z are induced by nonzeros in the corresponding

positions of A� A similar situation occurs� of course� for the process which computes W �

In Figure ��� we show the entries of Z which are larger �in absolute value� than ����� and

in Figure ��� we show the incomplete factor �Z obtained with drop tolerance T � ������ It

can be seen how well the incomplete process is able to capture the �large� entries in the

complete factor Z� The �gures were generated using the routines for plotting sparse matrix

patterns from SPARSKIT ����
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Figure ������ Structure of the matrix FS	
� � �left and of the factor Z

�right after �� steps of the biconjugation process�

Figure ������ Structure of Z after 	� steps �left and ��� steps �right

of the biconjugation process�
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Figure ����
� Structure of Z after ��� steps �left and 	
� steps �right

of the biconjugation process�

Figure ��	��� Structure of entries in Z larger than ����� �left and structure

of incomplete factor �Z with drop tolerance T � ����� �right�
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A su�cient condition to have a �ll	in in the matrix Z after some steps of the biconju	

gation algorithm is given by the following Lemma�

Lemma ���� Let B � �R�C�E� be a bipartite graph with jRj � jCj � n and such that

for � � j� k � n

frj� ckg � E �� �ajk �� � j � k��

If for some indices il� � � l � p� � � i� � � � � � ip � j � n there is a path �cj� ri�� ci� � � � � � rip�

cip� in B� then z
�ip�
ipj

�� ��

Proof� We use induction on p� Let p � �� Since fri� � cjg � E then ai�j �� �� Of course�

z
�i����
i�i�

� � �� � and from Lemma ��� we get z
�i��
i�j

�� ��

Suppose now that Lemma ��� is true for all l � p� Then� z
�ip�����
ip��j

�� �� But also

aipip�� �� � since frip � cip��g � E� Then z
�ip���
ipj

�� � and using the no	cancellation assumption

we also have z
�ip�
ipj

�� �� �

The following theorem gives a necessary and su�cient condition for a nonzero entry to

appear in position �l� j�� l � j� in the inverse triangular factor�

Theorem ���� Let � � l � j � n� Then zlj �� � if and only if for some p � � there are

indices ik� lk� � � k � p� such that � � i� � � � � � ip � j � �� lq � iq for � � q � p � ��

lp � l� ai�j �� �� aik��lk �� � for � � k � p� � and zlkik �� � for � � k � p�

Proof� We �rst show that the stated conditions are su�cient� By Lemma ���� the nonzeros

ai�j and zl�i� imply that z
�i��
l�j

is also nonzero� If p � � we are done� Otherwise� z
�i����
l�j

�� �

and ai�l� �� � imply p
�i����
j �� �� Taking into account that zl�i� �� � we get that z

�i��
l�j

is

nonzero� Repeating these arguments inductively we �nally get z
�ip�
lpj

�� �� Consequently�

z
�i�
lj �� ��

Assume now that zlj �� �� Lemma ��� implies that at least one of the following two

conditions holds� either there exists i�� � � i� � i such that ai�j �� � and zli� �� �� or there

exist indices i��� � � i�� � i and k � i�� such that ai��k �� �� z
�i�����
kj �� � and zli�� �� �� In the

former case we have the necessary conditions� In the latter case we can apply Lemma ���

inductively to z
�i�����
kj � After at most j inductive steps we obtain the conditions� �

Clearly� the characterization of �ll	in in the inverse triangular factorization is less trans	

parent than the necessary and su�cient condition which characterize nonzeros in the non	

factorized inverse�
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	� Preconditioning for block triangular matrices� Many sparse matrices arising

in real	world applications may be reduced to block triangular form �see Ch� � in ����� In

this section we discuss the application of preconditioning techniques to linear systems with

a block �lower� triangular coe�cient matrix� closely following ����

The reduction to block triangular form is usually obtained with a two	step procedure�

as outlined in ���� In the �rst step� the rows of A are permuted to bring nonzero entries on

the main diagonal� producing a matrix PA� In the second step� symmetric permutations

are used to �nd the block triangular form ���� The resulting matrix can be represented as

Q�PA�QT �

�
BBBB�
A�� � � � � �

A�� A�� � � � �
���

���
� � �

���

Ak� Ak� � � � Akk

�
CCCCA

where the diagonal blocks Aii are assumed to be irreducible� Because A is nonsingular� the

diagonal blocks Aii must also be nonsingular�

Suppose that we compute approximate inverses of the diagonal blocks A��� � � � � Akk with

the incomplete biconjugation algorithm� so that A��ii � Gii �� �Zii
�D��
ii

�WT
ii � � � i � k� Then

the inverse of A is approximated as follows �cf� �����

A�� � G � QT

�
BBBB�
G��
�� � � � � �

A�� G��
�� � � � �

���
���

� � �
���

Ak� Ak� � � � G��
kk

�
CCCCA

��

QP�

The preconditioning step in a conjugate gradient	type method requires the evaluation

of the action of G on a vector� i�e� the computation of z � Gd for a given vector d� at each

step of the preconditioned iterative method� This can be done by a back	substitution of the

form

�zi � Gii

�
� �di �

i��X
j��

Aij �zj

�
A � i � �� � � � � k

where

�d �

�
B�

�d�
���
�dk

�
CA � �z �

�
B�

�z�
���

�zk

�
CA � z � QT �z� �d � QPd�
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with the partitioning of �z and �d induced by the block structure of Q�PA�QT � The com	

putation of y � GT c� which is required by certain preconditioned iterative methods� is

accomplished in a similar way�

With this approach� �ll	in is con�ned to the approximate inverses of the diagonal blocks�

often resulting in a more sparse preconditioner� Notice also that the approximate inverses

Gii can be computed in parallel� The price to pay is the loss of part of the explicitness

when the approximate inverse preconditioner is applied� as noted in ����

For comparison purposes� we apply the same scheme with ILU preconditioning� Specif	

ically� we approximate A as

A �M � PTQT

�
BBBB�

�L�� �U�� � � � � �

A��
�L�� �U�� � � � �

���
���

� � �
���

Ak� Ak� � � � �Lkk
�Ukk

�
CCCCAQ�

where each diagonal block Aii is approximated by an ILU decomposition �Lii
�Uii� Applying

the preconditioner requires the solution of a linear system Mz � d at each step of the

preconditioned iteration� This can be done with the back	substitution

�Liiyi �

�
� �di �

i��X
j��

Aij �zj

�
A � �Uii�zi � yi� i � �� � � � � k

where

�d � QPd� z � QT �z�

with the same partitioning of �z and �d as above� The use of transposed ILU preconditioning

is similar�

With this type of ILU block preconditioning we introduce some explicitness in the

application of the preconditioner� Again� note that the ILU factorizations of the diagonal

blocks can be performed in parallel�

We will see in the section on numerical experiments that reduction to the block triangu	

lar form in
uences the behavior of the preconditioned iterations in di�erent ways depending

on whether approximate inverse techniques or ILU	type preconditioning are used�
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� Implementation aspects� It is possible to implement the incomplete inverse fac	

torization algorithm in x� in at least two distinct ways� The �rst implementation is similar in

spirit to the classical submatrix formulation of sparse Gaussian elimination as represented�

for instance� in �������� This approach relies on sparse incomplete rank	one updates of

the matrices �Z and �W � applied in the form of outer vector products� These updates are

the most time	consuming part of the computation� In the course of the updates� new �ll	in

elements whose magnitude is less than a prescribed drop tolerance T are dropped� In this

approach� dynamic data structures have to be used for the �Z and �W matrices� Note that

at step i of the incomplete inverse factorization� only the ith row aTi and the ith column cTi

are required� The matrix A is stored in static data structures both by rows and by columns

�of course� a single array is needed for the numerical values of the entries of A��

For this implementation to be e�cient� some additional elbow room is necessary� For

instance� in the computation of the incomplete �Z factor the elbow room was twice the

space anticipated for storing the nonzeros in the factor itself� As we are looking for a

preconditioner with about the same number of nonzeros as the original matrix� the estimated

number of nonzeros in �Z is half the number of nonzeros in the original matrix A� For each

column of �Z we give an initial prediction of �ll	in based on the results of x�� Thus� the

initial structure of �Z is given by the structure of the upper triangular part of A� Of course�
�W is handled similarly� If the space initially allocated for a given column is not enough� the

situation is solved in a way which is standard when working with dynamic data structures�

by looking for a block of free space at the end of the active part of the dynamic data

structure large enough to contain the current column� or by a garbage collection �see �����

Because most of the �ll	in in �Z and �W appears in the late steps of the biconjugation process�

we were able to keep the amount of dynamic data structure manipulations at relatively low

levels� In the following� this implementation will be referred to as the DDS implementation�

Despite our e�orts to minimize the amount of symbolic manipulations in the DDS im	

plementation� some of its disadvantages such as the nonlocal character of the computations

and a high proportion of non	
oating	point operations still remain� This is an important

drawback of submatrix �right	looking� undelayed� algorithms using dynamic data structures

when no useful structural prediction is known and no e�cient block strategy is used� Even

when all the operations are performed in	core� the work with both the row and column

lists in each step of the outer cycle is rather irregular� Therefore� for larger problems� most

operations are still scattered around the memory and are out	of	cache� As a consequence�

it is di�cult to achieve high e�ciency with the code� and any attempt to parallelize the
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computation of the preconditioner in this form will face serious problems �see ��� for a

discussion of the di�culties in parallelizing sparse rank	one updates��

For these reasons we considered an alternative implementation �hereafter referred to

as SDS� which only makes use of static data structures� based on a left	looking� delayed

update version of the biconjugation algorithm� This amounts to a rearrangement of the

computations� as shown below� For simplicity we only consider the Z factor� and assume

no breakdown occurs�

��� Let z
���
� � e�	 p

���
� � a��

��� for i � �� � � � � n

z
���
i � ei

for j � �� � � � � i� �

p
�j���
i �� aTj z

�j���
i

z
�j�
i �� z

�j���
i �

�
p
�j���
i

p
�j���
j

�
z
�j���
j

end

p
�i���
i �� aTi z

�i���
i

end

This procedure can be implemented with only static data structures� at the cost of in	

creasing the number of 
oating	point operations� Indeed� in our implementation we found

it necessary to recompute the dot products p
�j���
i � aTj z

�j���
i if they are used more than

once for updating subsequent columns� This increase in arithmetic complexity is more or

less pronounced� depending on the problem and on the density of the preconditioner� On

the other hand� this formulation greatly decreases the amount of irregular data structure

manipulations� It also appears better suited to parallel implementation� because the dot

products and the vector updates in the innermost loop can be done in parallel� Notice that

with SDS� it is no longer true that a single row and column of A are used at each step of the

outer loop� It is worth mentioning that numerically� the DDS and SDS implementations of

the incomplete biconjugation process are completely equivalent�

The SDS implementation is straightforward� Suppose the �rst j � � steps have been

completed� In order to determine which columns of the already determined part of �Z play
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a role in the rank	one updates used to form the jth column of �Z we only need a linked

list scanning the structure of the columns of A� This linked list is coded similarly to the

mechanism which determines the structure of the jth row of the Cholesky factor L in the

numerical factorization in SPARSPAK �see ���������

In addition to the approximate inverse preconditioner� we also coded the standard row

implementation of the classical ILU��� preconditioner �see� e�g�� ����� We chose a no	�ll

implicit preconditioner because we are mostly interested in comparing preconditioners with

a nonzero density close to that of the original matrix A�

On input� all our codes for the computation of the preconditioners check whether the

coe�cient matrix has a zero	free diagonal� If not� row reordering of the matrix is used

to permute nonzeros on the diagonal� For both the ILU��� and the approximate inverse

factorization� we introduced a simple pivot modi�cation to avoid breakdown� Whenever

some diagonal element in any of our algorithms to compute a preconditioner was found to

be small� in our case less in absolute value than the IEEE machine precision � � ��� � ������

we increased it to ���	� We have no special reasons for this choice� other than it worked well

in practice� It should be mentioned that in the numerical experiments� this safeguarding

measure was required more often for ILU��� than for the approximate inverse factorization�

For the experiments on matrices which can be nontrivially reduced to block triangular

form� we used the routine MC��D from MA�� ��� to get the block triangular form�

�� Numerical experiments� In this section we present the results of numerical ex	

periments on a range of problems from the Harwell	Boeing collection ��� and from Tim

Davis� collection ���� All matrices used were rescaled by dividing their elements by the

absolute value of their largest nonzero entry� No other scaling was used� The right	hand

side of each linear system was computed from the solution vector x� of all ones� the choice

used� e�g�� in ����

We experimented with several iterative solvers of the conjugate gradient type� Here we

present results for three selected methods� which we found to be su�ciently representative�

van der Vorst�s Bi	CGSTAB method �denoted BST in the tables�� the QMR method of

Freund and Nachtigal� and Saad and Schultz�s GMRES �restarted every �� steps� denoted

G���� in the tables� with Householder orthogonalization ���� See �� for a description of

these methods� and the report �� for experiments with other solvers�
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The matrices used in the experiments come from reservoir simulation �ORS#� PORES��

SAYLR# and SHERMAN#�� chemical kinetics �FS������ network 
ow �HOR����� circuit

simulation �JPWH���� MEMPLUS and ADD#�� petroleum engineering �WATT# matrices�

and incompressible 
ow computations �RAEFSKY#� SWANG��� The order N and number

NNZ of nonzeros for each test problem are given in Table �� together with the number

of iterations and computing times for the unpreconditioned iterative methods� A y means

that convergence was not attained in ���� iterations for Bi	CGSTAB and QMR� and ���

iterations for GMRES�����

Its Time

MATRIX N NNZ BST QMR G���� BST QMR G����

ADD�� ���� ����� ��� ��� y ���� ���� y

ADD�� ���� ����� �� �� ��� ���� ���� ����

FS���� ��� ���� ��� ��� y ���� ���� y

HOR��� ��� ���� y y y y y y

JPWH��� ��� ���� �� �� �� ���� ���� ����

MEMPLUS ����� ����� y ��� y y ���� y

ORSIRR� ���� ���� y ��� y y ���� y

ORSIRR� ��� ���� ��� ��� y ���� ���� y

ORSREG� ���� ����� ��� ��� ��� ���� ���� ����

PORES� ���� ���� y y y y y y

RAEFSKY� ���� ������ ��� ��� y ���� ���� y

RAEFSKY� ���� ������ ��� y �� ���� y ����

SAYLR� ���� ���� ��� ��� y ���� ���� y

SAYLR� ���� ����� y y y y y y

SHERMAN� ���� ���� y ��� y y ���� y

SHERMAN� ���� ����� y y y y y y

SHERMAN� ���� ���� �� ��� y ���� ���� y

SHERMAN� ���� ����� y y y y y y

SWANG� ���� ����� �� �� �� ���� ���� ����

WATT� ���� ����� �� ��� �� ���� ���� ����

WATT� ���� ����� y ��� �� y ���� ����

Table �� Test problems �N� order of matrix� NNZ� nonzeros in matrix and convergence

results for the iterative methods without preconditioning�
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All tests were performed on a SGI Crimson workstation with RISC processor R����

using double precision arithmetic� Codes were written in standard Fortran �� and compiled

with the optimization option �O�� CPU time is given in seconds and it was measured using

the standard function dtime�

The initial guess for the iterative solvers was always x� � �� The stopping criterion

used was jjrkjj� � ���
� where rk is the �unpreconditioned� updated residual� Note that

because r� � b � Ax�� we have that � � jjr�jj� � nzr where nzr denotes the maximum

number of nonzeros in a row of A�

The following tables present the results of experiments with the ILU��� preconditioner

and with the approximate inverse preconditioner based on the biconjugation process �here	

after referred to as AIBC�� Observe that the number of nonzeros in the ILU��� precondi	

tioner is equal to the number NNZ of nonzeros in the original matrix� whereas for the AIBC

preconditioner �ll	in is given by the total number of nonzeros in the factors �Z � �W and �D�

In the tables� the number of nonzeros in AIBC is denoted by Fill� Right preconditioning

was used for all the experiments�

The comparison between the implicit and the explicit preconditioner is based on the

amount of �ll and on the rate of convergence as measured by the number of iterations�

These two parameters can realistically describe the scalar behavior of the preconditioned

iterative methods� Of course� an important advantage of the inverse preconditioner� its

explicitness� is not captured by this description�

The accuracy of the AIBC preconditioner is controlled by the value of the drop tolerance

T � Smaller drop tolerances result in a more dense preconditioner and very often �but not

always� in a higher convergence rate for the preconditioned iteration� For our experiments

we consider relatively sparse preconditioners� In most cases we were able to adjust the

value of T so as to obtain an inverse preconditioner with a nonzero density close to that

of A �and hence of the ILU��� preconditioner�� Due to the scaling of the matrix entries�

the choice T � ��� was very often the right one� We also give results for the approximate

inverse obtained with a somewhat smaller value of the drop tolerance� in order to show how

the number of iterations can be reduced by allowing more �ll	in in the preconditioner� For

some problems we could not �nd a value of T for which the number of nonzeros in AIBC

is close to NNZ� In these cases the approximate inverse preconditioner tended to be either

very dense or very sparse�
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In Table � we give the timings for the preconditioner computation� iteration counts and

timings for the three iterative solvers preconditioned with ILU���� The same information is

given in Table � for the approximate inverse preconditioner AIBC� For AIBC we give two

timings for the construction of the preconditioner� the �rst for the DDS implementation

using dynamic data structures and the second for the SDS implementation using only static

data structures�

ILU � Its ILU � Time

MATRIX P	time BST QMR G���� BST QMR G����

ADD�� ����� ��� ��� ��� ���� ���� ����

ADD�� ����� �� �� �� ���� ���� ����

FS���� ����� � � � ���� ���� ����

HOR��� ����� �� �� �� ���� ���� ����

JPWH��� ����� �� �� �� ���� ���� ����

MEMPLUS ����� ��� ��� y ���� ���� y

ORSIRR� ����� �� �� �� ���� ���� ����

ORSIRR� ����� �� �� �� ���� ���� ����

ORSREG� ����� �� �� �� ���� ���� ����

PORES� ����� �� �� �� ���� ���� ����

RAEFSKY� ����� �� �� ��� ���� ���� ����

RAEFSKY� ����� � � � ���� ���� ����

SAYLR� ����� �� �� �� ���� ���� ����

SAYLR� ����� �� �� �� ���� ���� ����

SHERMAN� ����� �� �� �� ���� ���� ����

SHERMAN� ����� �� �� ��� ���� ���� ����

SHERMAN� ����� �� �� �� ���� ���� ����

SHERMAN� ����� �� �� �� ���� ���� ����

SWANG� ����� � �� �� ���� ���� ����

WATT� ����� � �� � ���� ���� ����

WATT� ����� �� �� �� ���� ���� ����

Table �� Time to form the ILU�� preconditioner �P�time� number of iterations and time

for Bi�CGSTAB� QMR and GMRES��� with ILU�� preconditioning�
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P�time AIBC � Its AIBC � Time

MATRIX Fill DDS SDS BST QMR G��
� BST QMR G��
�

ADD�
 ��

 
�� 	��� �� � � ��
� ��� ��

���� 
�� 	��
 � 	� 	 
��� 
��� 
���

ADD�� ��� 	��� ���	 � �	 � ��
� ��	� ����

	���� 	��� ���� � 		 		 
�	 	�� 	���

FS�	 	�� 
��
 
�	� �� � �� 
��� 
�� 
���

��
 
�� 
�	� 	
 	� 	� 
�	
 
��� 
��


HOR	�	 �
�� 
��� 
�	� �	 � � 
��	 
��
 	�
�

��� 
�� 
��
 �� � �� 
��� 
��� 
���

JPWH��	 �
�� 
��	 
��� 	� �� �� 
�� 
��� 
���

		��	 
��� 
��	 	� � �� 
��� 
��	 
��

MEMPLUS ���� ���� ���� 	�� �� 	�� �	�� 	�� 		
�

	�	��� 	��� ���� �� �
 �	 ���� 	��� �
�	

ORSIRR	 ��	� 
��� 
�� �� � � 
�� 	�	 	���

	�		� 
��� 
��	 	� �� � 
��	 
��� 
���

ORSIRR� ��� 
��� 
��
 �� � � 
��� 	�
� 	��	

	��� 
��� 
��� �
 �� � 
��� 
��� 
���

ORSREG	 		��� 
�� 
��� �� �� �	 	�		 ��	 ����

�� 
��
 	�
� �� � �� 
��� ��	� ����

PORES� 	���	 
��� 
��
 � 	
� y ���� �� y

����� 
��� 
��� �� 	
� y ���� ��� y

RAEFSKY	 ���
� ��� 	��� �� �� y 	��� ��� y

	���	 	��� ���	 �� �� y 	��� ���� y

RAEFSKY� ���
 ��	 	
�	  � � 
��� ��� 	��

	

	
 ��
 	
�� �   
��� 	��� 	��

SAYLR� ���
 
�	� 
��
 
 �� �� 
�� 	�	� ��	


		

� 
�� 
�� �� ��  
�� 
��� 	��


SAYLR ���� 
��� ���� ��  � �� ���	 ����

���� 
��� ���� �� � � ���	 ���� ����

SHERMAN	 ���
 
�	� 
��
 
 �� �
 
�� 	�	� ��
�

���� 
�� 
��� �� �� � 
�� 
��� 	��


SHERMAN� ��� 
��� ��		 �� 	�
 �� ��
	 	� ����

����� 
��� ���
 �� 	

 
� ���� 	��� ����

SHERMAN ���� 
��
 
��� �� �
 	�� ���� 	�
� ����

��� 
��
 
�	� �� � 	� 
�
 	�
� ���


SHERMAN� �	��� 
��� ���� �� �� 	�	 	�� ��� 	���

���� 
��� ��� �
 � �� 	��
 �� 	
��

SWANG	 ���� 
��	 	�� � 	� 	� 
��� 
��� 
���

	���� 
�� 	��� � 	
 	
 
��
 
��	 
���

WATT	 	
�	� 
��� 
��� � �	 	� 
��	 	�� 
���

	���� 
�� 
��� � 	� 	
 
��� 	�
� 
��

WATT� 	
	� 
�	 
��� �� �	 	� ���� ��� 
��

	��� 
�� 
��� �� �� 		 ��� ��	� 
��

Table �� Time to form the AIBC preconditioner �P�time using DDS and SDS implemen�

tations� number of iterations and time for Bi�CGSTAB� QMR and GMRES��� with AIBC

preconditioning�
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It appears from these results that the ILU��� and AIBC preconditioners are roughly

equivalent from the point of view of the rate of convergence� with ILU��� having a slight

edge� On many problems the two preconditioners give similar results� There are a few cases�

like PORES�� for which ILU��� is much better than AIBC� and others �like MEMPLUS�

where the situation is reversed� For some problems it is necessary to allow a relatively

high �ll in the approximate inverse preconditioner in order to have a convergence rate

comparable with that insured by ILU��� �cf� SAYLR��� but there are cases where a very

sparse AIBC gives excellent results �see the ADD or the RAEFSKY matrices�� It follows

that the timings for the iterative part of the solution process are pretty close� on average�

for the two preconditioners�

We also notice that using a more dense approximate inverse preconditioner �obtained

with a smaller value of T � nearly always reduces the number of iterations� although this

does not necessarily mean a reduced computing time since it takes longer to compute the

preconditioner and the cost of each iteration is increased�

Concerning the matrix PORES�� for which our method gives poor results� we observed

that �ll	in in the �W factor was very high� We tried to use di�erent drop tolerances for the

two factors �the one for �W being larger than the one used for �Z� but this did not help� It

was observed in ��� that �nding a sparse right approximate inverse for PORES� is very

hard and a left approximate inverse should be approximated instead� Unfortunately� our

method produces exactly the same approximate inverse �up to transposition� for A and

AT � therefore we were not able to cope with this problem e�ectively� We experienced a

similar di�culty with the �W factor for the matrix SHERMAN�� On the other hand� for

SHERMAN� we did not face any of the problems reported in ��� and convergence with the

AIBC preconditioner was smooth�

As for the time required to compute the preconditioners� it is obvious that ILU��� can be

computed more quickly� On the other hand� the computation of the AIBC preconditioner is

not prohibitive� There are problems for which computing AIBC is only two to three times

more expensive than computing ILU���� More important� our experiments with AIBC

show that the overall solution time is almost always dominated by the iterative part� unless

convergence is extremely rapid� in which case the iteration part takes slightly less time than

the computation of the preconditioner�

This observation suggests that our approximate inverse preconditioner is much cheaper

to construct� in a sequential environment� than approximate inverse preconditioners based
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on the Frobenius norm approach described in x�� Indeed� if we look at the results presented

in ��� we see that the sequential time required to construct the preconditioner accounts for a

huge portion� often in excess of ��$� of the overall computing time� It is worth emphasizing

that the approach based on Frobenius norm minimization and the one we propose seem to

produce preconditioners of similar quality� in the sense that they are both comparable with

ILU��� from the point of view of �ll	in and rates of convergence� at least on average�

As for the di�erent implementations of AIBC� we see from the results in Table � that for

larger problems� the e�ect of additional 
oating	point operations in the SDS implementation

is such that the DDS implementation is actually faster� Nevertheless� as already observed

the implementation using static data structures may better suited for parallel architec	

tures� Because in this paper we only consider a scalar implementation� in the remaining

experiments we limit ourselves to the timings for the DDS implementation of AIBC�

In all the experiments �excluding the ones performed to measure the timings presented

in the tables� we monitored also the �true� residual jjb�Axkjj�� In general� we found that

the discrepancy between this and the norm of the updated residual was small� However�

we found that for some very ill	conditioned matrices in the Harwell	Boeing collection �not

included in the tables� this di�erence may be very large� For instance� for some of the LNS#

and WEST# matrices� we found that jjrkjj� � ���
jjb�Axk jj� for the �nal value of rk� This

happened both with the ILU��� and with the approximate inverse preconditioner� and we

regarded this as a failure of the preconditioned iterative method�

We present in Tables � and � the results of some experiments on matrices which have

been reduced to block lower triangular form� We compared the number of iterations of

the preconditioned iterative methods and their timings for the block approximate inverse

preconditioner and for the block ILU��� preconditioner as described in x�� Since some of

the matrices have only trivial block lower triangular form �one block� or two blocks with one

of the blocks of dimension one for some matrices� we excluded them from our experiments�

In Table � we give for each matrix the number NBL of blocks and the results of experi	

ments with ILU���� In Table � we give analogous results for the AIBC preconditioner� The

amount of �ll	in �denoted by Fill� for AIBC is computed as the �ll	in in the approximate

inverses of the diagonal blocks plus the number of nonzero entries in the o�	diagonal blocks�
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Block ILU � Its Block ILU � Time

MATRIX NBL P�time BST QMR G���� BST QMR G����

JPWH��� ��� ����� �� �� �� ���� ��
� ����

SAYLR
 
�� ����� �� �� �
 ���� ���� ����

SHERMAN� 
�� ����� �� �� �
 ���� ���� ����

SHERMAN
 ���� ����� ��� ��� 
�� ���� ��
� ����

SHERMAN� ��� ����� �� 

 �� ���� ���� ����

SHERMAN� ���� ����� �� 
� �� ���� ���� ����

WATT� ��� ����� �� �� � ��
� ���� ��
�

WATT� �� ����
 � 
� � ���� ���� ����

Table �� Time to compute the block ILU preconditioner �P�time� number of iterations and

time for Bi�CGSTAB� QMR and GMRES��� with block ILU�� preconditioning�

Block AIBC � Its Block AIBC � Time

MATRIX Fill P�time BST QMR G���� BST QMR G����

JPWH��� ���
 ���� �� y �� ��
� y ����

����� ���� �� y �� ���� y ����

SAYLR
 

�� ��
� �� �� �� ���� ���� ����

���� ���� �� 

 
� ��

 ���� ����

SHERMAN� ���� ��
� 

 �� �� ���� ���� ����

���� ���� �
 
� �� ��
� ���� ����

SHERMAN
 ����� ���� �
 ��� y ��
� ���� y


���� ���� �� ��� ��� ���� ���� ����

SHERMAN� �
�� ���� 
� �� ��� ���� ���� ����

���� ���� �� �� �
 ���
 ���� ����

SHERMAN� ����� ���� �� �� �� ���� 
��� ����


���� ���� �� 
� �
 ���� 
��� ����

WATT� ����� ���
 � �� �� ���� ���� ����

����� ���� � �� � ���� ���� ���


WATT� ���� ���� � �� � ���� ���� ��
�

�
��� ���� � �� � ���� ���� ��
�

Table �� Time to compute the block AIBC preconditioner �P�time � number of iterations and

time in seconds for Bi�CGSTAB� QMR and GMRES��� with block AIBC preconditioning�

It is clear that in general the reduction to block triangular form does not lead to a

noticeable improvement in the timings� at least in a sequential implementation� We observe

that when the block form is used� the results for ILU��� are sometimes worse� This can
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probably be attributed to the permutations� which are known to cause in some cases a

degradation of the rate of convergence of the preconditioned iterative method ���� A

notable exception is the matrix WATT�� for which the number of iterations is greatly

reduced� On the other hand� the results for the block approximate inverse preconditioner

are mostly unchanged or somewhat better� Again� matrix WATT� represents an exception�

this problem greatly bene�ts from the reduction to block triangular form� In any case�

permutations did not adversely a�ect the rate of convergence of the preconditioned iterative

method� This fact suggests that perhaps the approximate inverse preconditioner is more

robust than ILU��� with respect to reorderings�

To gain more insight on how permutations of the original matrix can in
uence the

quality of both types of preconditioners� we did some experiments where the matrix A was

permuted using the minimum degree algorithm on the structure of A " AT �see ����� We

applied the resulting permutation to A symmetrically to get PAPT � in order to preserve

the nonzero diagonal� Tables � and � present the results for the test matrices having trivial

block triangular form� The corresponding preconditioners are denoted by ILU���	MD and

AIBC	MD� respectively�

ILU	MD � Its ILU	MD � Time

MATRIX P	time BST QMR G���� BST QMR G����

ADD�� ����� �� �� �� ���� ���� ����

ADD�� ����� �� �� �� ���� ���� ����

HOR��� ����� �� �� �� ���� ���� ����

MEMPLUS ����� ��� ��� y ���� ��� y

ORSIRR� ����� ��� ��� ��� ���� ���� ����

ORSIRR� ����� ��� ��� ��� ���� ���� ����

ORSREG� ����� ��� ��� ��� ���� ���� ����

PORES� ����� ��� ��� y ���� ���� y

RAEFSKY� ����� �� �� y ���� ���� y

RAEFSKY� ����� � � � ���� ���� ����

SAYLR� ����� ��� ��� y ���� ���� y

SWANG� ����� � �� � ���� ���� ����

Table 
� Time to compute the ILU�� preconditioner �P�time for A permuted according

to minimum degree algorithm on A " AT � number of iterations and time for Bi�CGSTAB�

QMR and GMRES��� with ILU���MD preconditioning�
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AIBC	MD � Its AIBC	MD � Time

MATRIX Fill P	time BST QMR G���� BST QMR G����

ADD�� ���� ���� �� �� �� ���� ���� ����

���� ���� � �� �� ���� ���� ����

ADD�� ����� ���� �� �� �� ���� ���� ����

����� ���� � �� �� ���� ���� ����

HOR��� ���� ���� �� �� �� ���� ���� ����

���� ���� �� �� �� ���� ���� ����

MEMPLUS ����� ���� �� �� �� ���� ���� ����

����� ���� �� �� �� ���� ���� ����

ORSIRR� ���� ���� �� �� �� ���� ���� ����

����� ���� �� �� �� ���� ���� ����

ORSIRR� ���� ���� �� �� �� ���� ���� ����

����� ���� �� �� �� ���� ���� ����

ORSREG� ����� ���� �� �� �� ���� ���� ����

����� ���� �� �� �� ���� ���� ����

PORES� ����� ���� �� �� y ���� ���� y

����� ���� ��� �� y ���� ���� y

RAEFSKY� ����� ���� �� �� y ���� ���� y

������ ���� �� �� y ���� ���� y

RAEFSKY� ����� ���� � � � ���� ���� ����

����� ���� � � � ���� ���� ����

SAYLR� ����� ���� �� �� ��� ���� ���� ����

����� ���� �� �� ��� ���� ���� ����

SWANG� ���� ���� � �� �� ���� ���� ����

����� ���� � �� �� ���� ���� ����

Table 	� Time to compute the AIBC preconditioner �P�time for A permuted by the mini�

mum degree algorithm on A " AT � number of iterations and time for Bi�CGSTAB� QMR

and GMRES��� with AIBC�MD preconditioning�

The results in Table � show that for some problems� especially those coming from PDEs�

minimum degree reordering has a detrimental e�ect on the convergence of the iterative

solvers preconditioned with ILU���� In some cases we see a dramatic increase in the number

of iterations� This is in analogy with the observed fact �see� e�g�� ���� that when the

minimum degree ordering is used� the no	�ll incomplete Cholesky decomposition of an SPD
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matrix is a poor approximation of the coe�cient matrix� at least for problems arising from

the discretization of �D PDEs� The convergence of the conjugate gradient method with such

a preconditioner �ICCG���� is much slower than if the natural ordering of the unknowns

was used� Here we observe a similar phenomenon for nonsymmetric linear systems� Note

the rather striking behavior of matrix ADD��� which bene�ts greatly from the minimum

degree reordering �this matrix arises from a circuit model and not from the discretization

of a PDE��

It was also observed in ��� that the negative impact of minimum degree on the rate

of convergence of PCG all but disappears when the incomplete Cholesky factorization of

A is computed by means of a drop tolerance rather than by position� It is natural to ask

whether the same holds true for the approximate inverse preconditioner AIBC� which is

computed using a drop tolerance� The results in Table � show that this is indeed the case�

For most of the test problems the number of iterations was nearly una�ected �or better�

and in addition we note that the minimum degree ordering helps in preserving sparsity in

the incomplete inverse factors� While this is usually not enough to decrease the computing

times� the fact that it is possible to reduce storage demands for the approximate inverse

preconditioner without negatively a�ecting the convergence rates might become important

for very large problems�

We conclude this section with some observations concerning the choice of the drop

tolerance T � In all our experiments we used a �xed value of T throughout the incomplete

biconjugation process� However� relative drop tolerances� whose value is adapted from step

to step� could also be considered �see ��� for a thorough discussion of the issues related to

the choice of drop tolerances in the context of ILU�� We have observed that the amount of

�ll	in is distributed rather unevenly in the course of the approximate inverse factorization� A

large proportion of nonzeros is usually concentrated in the last several columns of �Z and �W �

For some problems with large �ll� it may be preferable to switch to a larger drop tolerance

when the columns of the incomplete factors start �lling	in strongly� Conversely� suppose

we have computed an approximate inverse preconditioner for a certain value of T � and we

�nd that the preconditioned iteration is converging slowly� Provided that enough storage is

available� one could then try to recompute at least some of the columns of �Z and �W using

a smaller value of T � Unfortunately� for general sparse matrices there is no guarantee that

this will result in a preconditioner of improved quality� Indeed� allowing more nonzeros in

the preconditioner does not always result in a reduced number of iterations�
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Finally� it is worthwhile to observe that a dual threshold variant of the incomplete

inverse factorization could be adopted� see ���� In this approach� a drop tolerance is

applied but a maximum number of nonzeros per column is speci�ed and enforced during

the computation of the preconditioner� In this way� it is possible to control the maximum

storage needed by the preconditioner� which is important for an automated implementation�

This approach has not been tried yet� but we hope to do so in the near future�

�� Conclusions and future work� In this paper we have developed a sparse approx	

imate inverse preconditioning technique for nonsymmetric linear systems� Our approach is

based on a procedure to compute two sets of biconjugate vectors� performed incompletely

to preserve sparsity� This algorithm produces an approximate triangular factorization of

A��� which is guaranteed to exist if A is an H	matrix �similar to the ILU factorization��

The factorized sparse approximate inverse is used as an explicit preconditioner for

conjugate gradient	type methods� Applying the preconditioner only requires sparse matrix	

vector products� which is of considerable interest for use on parallel computers�

The new preconditioner was used to enhance the convergence of di�erent iterative

solvers� Based on extensive numerical experiments� we found that our preconditioner can

insure convergence rates which are comparable� on average� with those from the standard

ILU��� implicit preconditioner� While the approximate inverse factorization is more time	

consuming to compute than ILU���� its cost is not prohibitive� and is typically dominated by

the time required by the iterative part� This is in contrast with other approximate inverse

preconditioners� based on Frobenius norm minimization� which produce similar convergence

rates but are very expensive to compute�

It is possible that in a parallel environment the situation will be reversed� since the

preconditioner construction with the Frobenius norm approach is inherently parallel� How	

ever� there is some scope for parallelization also in the inverse factorization on which our

method is based� for instance� the approximate inverse factors �Z and �W can be computed

largely independent of each other� Clearly� this is a point which requires further research�

and no conclusion can be drawn until parallel versions of this and other approximate inverse

preconditioners have been implemented and tested�

Our results point to the fact that the quality of the approximate inverse preconditioner

is not greatly a�ected by reorderings of the coe�cient matrix� This is important in practice

because it suggests that we may use permutations to increase the potential for parallelism or

to reduce the amount of �ll in the preconditioner� without spoiling the rate of convergence�



�� Michele Benzi and Miroslav Tuma

The theoretical results on �ll	in in x� provide guidelines for the use of pivoting strategies for

enhancing the sparsity of the approximate inverse factors� and this is a topic that deserves

further research�

Based on the results of our experiments� we conclude that the technique introduced

in this paper has the potential to become a useful tool for the solution of large sparse

nonsymmetric linear systems on modern high	performance architectures� Work on a parallel

implementation of the new preconditioner is currently under way� Future work will also

include a dual threshold implementation of the preconditioner computation�
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