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Abstract. Many ordinary differential equation and differential algebraic equation codes termi-
nate the nonlinear iteration for the corrector equation when the difference between successive iterates
(the step) is sufficiently small. This termination criterion avoids the expense of evaluating the non-
linear residual at the final iterate. Similarly, Jacobian information is not usually computed at every
time step, but only when certain tests indicate that the cost of a new Jacobian is justified by the
improved performance in the nonlinear iteration. In this paper, we show how an out-of-date Jacobian
coupled with moderate ill-conditioning can lead to premature termination of the corrector iteration
and suggest ways in which this situation can be detected and remedied. As an example, we consider
the method of lines solution of Richards’ equation, which models flow through variably-saturated
porous media. When the solution to this problem has a sharp moving front, and the Jacobian is even
slightly ill-conditioned, the corrector iteration used in many integrators can terminate prematurely,
leading to incorrect results. While this problem can be solved by tightening the tolerances for the
solvers used in the temporal integration, it is more efficient to modify the termination criteria of the
nonlinear solver and/or recompute the Jacobian more frequently. Of these two, recomputation of
the Jacobian is the more important. We propose a criterion based on an estimate of the norm of the
time derivative of the Jacobian for recomputation of the Jacobian and a second criterion based on a
condition estimate for tightening of the termination criteria of the nonlinear solver.
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1. Introduction. This paper is motivated by some numerical observations made
in [15] and [23]. In those papers, we considered a method of lines (MOL) solution of
Richards’ equation, [20], which is a model of variably-saturated porous media flow.
The method of lines uses an ordinary differential equation (ODE) or differential al-
gebraic equation (DAE) solver for temporal integration of a time-dependent partial
differential equation that has been discretized in space. Our work to date has focused
on backward differentiation formula (BDF) methods that use a predictor-corrector
approach. The termination criterion and convergence rate estimator for the corrector
iteration in many codes have been designed, at least in part, with the method of lines
in mind, and they work well for most problems. For the initial boundary value prob-
lem considered in this paper, however, even moderate ill-conditioning coupled with
rapid temporal variation of the Jacobian can lead to premature termination of the
corrector iteration. In turn, incorrect results may be produced for the entire integra-
tion unless one is willing to specify a tight tolerance for the local truncation error.
In this paper we give two estimates (2.7) and (2.8) that quantify these effects. We
suggest two remedies, recomputation of Jacobians and tightening of the termination
criterion for the nonlinear corrector iteration, and criteria for their application. Of
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the two, more frequent recomputation of the approximation to the Jacobian of the
corrector equation J, which we apply based on either an estimate of ||d.J/dt||/||J|| or
consideration of the Newton step, has the most significant effect. Tightening of the
termination criterion for the nonlinear solver, the criterion which is an estimate of the
condition number, has a less significant, but still noticeable, effect.

While our numerical results, motivation, and suggested modifications in the fre-
quency of Jacobian evaluation and termination of the corrector iteration are related to
a particular problem, the analysis in § 2 is problem independent and the modifications
may be more broadly applicable as well.

The application of concern in this work is Richards’ equation (RE), which is used
to describe variably-saturated water flow in a rigid porous media. RE results from a
mass conservation law for a two-fluid system (water and gas) in which the assumption
of constant gas-phase pressure has been applied. This assumption is justified for many
systems because a very small gas-phase pressure gradient is needed to support the
flow of a gas phase compared to the pressure gradient needed to support an equal
volumetric flow of an aqueous phase. Constitutive relations are required to close the
conservation law; we detail this formulation below.

The pressure head form of RE in one space dimension is [6]

oy 0 o
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where 1) is pressure head; c(¢)) = 96/0% is the specific moisture capacity; (1) is the
volumetric fraction of the water phase; S is the specific storage, which accounts for
the slight compressibility of water; S, () = 6(¢))/n is the aqueous-phase saturation;
n is the porosity of the porous media; and K (v) is the variably-saturated hydraulic
conductivity. In this formulation, the z axis is the vertical direction oriented posi-
tively upward. In order to close (1.1), relations among 1, 6(¢), and K (1)) must be
specified. The relations used in this work are the van Genuchten [24] and Mualem [16]
relationships. First, we define the effective saturation, S., using the van Genuchten
relation:

64,
~8,—6,

(1.2) Se(¥) = (1 + |a,|™) ™
where 6, is the residual volumetric water content, , is the saturated volumetric water
content, «, is an experimentally-determined coefficient that is related to the mean
pore size, n, is an experimentally-determined coefficient related to the variation in
pore sizes, and m, =1 — 1/n,,.

The variably-saturated hydraulic conductivity is defined using Mualem’s model:

(1.3) K(y) = K,S}/? [1— (1_53/%)%}2

where K is the water-saturated hydraulic conductivity. The parameters in the con-
ductivity and saturation influence the speed and slope of moving fronts in the solution
and thereby make the problem more or less difficult.

In [15] and [23], we used the DAE code DASPK, [5], [2], [18], with the direct
solver option, for temporal integration of RE in one space dimension. In these papers,
we showed experimentally that if certain modifications were made to the nonlinear
iteration for the corrector phase of the integration, then the MOL was both more
efficient and more robust than several alternative methods commonly used in the
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hydrology community. The purpose of this paper is to analyze those modifications in
more detail and provide guidance on how they can be adapted automatically to the
problem.

Our approach to the MOL in [15] and [23] treated (1.1) as a DAE because the
coefficient ¢(¢) + SsS,(¢) that multiplies the time derivative can become very small,
making the Jacobian ill-conditioned in many backward difference implicit time inte-
gration schemes for ordinary differential equations. We examined two porous media
types (problems A and B in § 3). We found that the MOL performed best if the termi-
nation criteria in DASPK was tightened and Jacobians reevaluated at each time step.
Our numerical results here, based on more detailed experimentation, show that only
the more difficult of the two problems benefits from a tightened termination criterion
for the nonlinear iteration and that, for the easier of the two problems, the Jacobian
need not be reevaluated at every time step. Of course, equally accurate results can be
obtained by tightening the user-supplied relative and absolute local truncation errors,
but solving the problems in this way reduced the efficiency of the MOL solution [23].

2. The Corrector Equation. We will suppress the spatial variable z and let
u(t) be the continuous solution at time ¢. Similarly, u, will denote the spatially
discretized solution at time step n, which will correspond to time ¢,. Given the
solution u,,, DASPK and many other ODE and DAE codes form a nonlinear equation
for the solution at the next time step t,+1 = t,, +d,. This corrector equation is solved
by a variation of Newton’s method with a predictor formula used to provide the initial
iterate.

We write the corrector equation as

(2.1) F(tni1) = 0.

DASPK and similar codes solve (2.1) with the modified Newton or chord method
[11]. F may depend on values of the solution at earlier time steps, but we suppress
that dependence here. We will denote the iterates for the solution of (2.1) by zy, to
distinguish them from the solution of the PDE of interest u.

Having formed a predictor zg (usually not u,) to the solution u,41 of (2.1) and
an approximate Jacobian A ~ F'(x), we attempt to compute z* = up,4; with the
chord iteration

Tyl = Tp — AilF(Cﬂk).

2.1. Termination of the Corrector Iteration. Nonlinear iterations in the
DAE and ODE integrators mentioned above terminate based upon convergence esti-
mates that are a function of the chord step-length taken

(2.2) sp = —A""F(zy)

as estimates of the errors e, = zp — x* for k > 0. If direct methods are used to
solve linear systems, it is efficient to use a factorization of an approximate Jacobian
A for as many nonlinear iterations and values of ¢ as possible so as to avoid matrix
factorizations and evaluations.

Typically, A is the Jacobian of F for some previous iterate but not necessarily
at the current time step, and when A is recomputed, the Jacobian for the current
values of = and ¢ is used. In this case, if the Jacobians vary rapidly in ¢ then one
should recompute Jacobians whenever ¢ is changed. If this action is not taken, g-linear
convergence may not take place at all or may be very slow. DASPK and related codes
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decide whether to reevaluate the Jacobian by examining the norms of the chord steps.
If these norms decrease slowly or not at all, then §,, is reduced and/or the Jacobian is
recomputed. We refer the reader to [2] for more detail. However, [23], an early step
in the chord method with an inaccurate and/or ill-conditioned Jacobian can be much
smaller than the actual error. In this case, both the test for successful termination
of the nonlinear iteration and the error test for local truncation can be incorrectly
passed. A partial remedy [23] is to recompute the Jacobian at each time step.

2.2. Convergence Rates. In this section, we review the convergence rate es-
timates for the chord method for solution of a nonlinear equation F(z) = 0. The
dependence on the relative error in the Jacobian, the normalized Lipschitz constant
for the Jacobian, and the error in the initial iterate are clearly exposed.

If the standard assumptions [11] (Lipschitz continuity and nounsingularity of F’
near z*, a root of F') for local quadratic convergence of Newton’s method hold, and
if £y and A are sufficiently good approximations to z* and F'(z*) then the chord
method is g-linearly convergent, [11], [8], [17]. This means that there is p € (0,1)
such that

(2.3) lext1ll < pllexll

forall £ > 0. In (2.3) e = z — z*, and p is called the g-factor. It is known, [22], that a
priori knowledge of the g-factor leads to an effective termination criterion that does
not require a costly evaluation of F' at the terminating iterate. However, estimates
of the g-factor that depend on the norms of the chord steps can lead to premature
termination in the problems we consider here.

We will briefly review the analysis that leads to (2.3) with a view toward quan-
tifying how the conditioning of A and F', the Lipschitz constant v of F’, and the
quality of the predictor influence the size of the g-factor. As a byproduct of this anal-
ysis, we will see how reliable the step is as an indicator of the size of the error. Our
expression of this idea in (2.8) differs from the standard results in [8], [11], and [17]
because of its emphasis on the relative error and condition number of the approximate
Jacobian rather than on absolute error estimates, which are all that are needed for a
conventional convergence proof.

The notation is standard. We set E = A — F'(z*). We will let z. denote a
current approximation to z*, xy = . — A"'F(z.), the subsequent chord iteration,
and s = —A"1F(x.) the chord step. We begin with the simple observation that
§S=1Ty — T, =¢€4 — €. and so

[Is +ecll _ llel

leell lecll”

(2.4)

Hence the relative accuracy of approximating ||e.|| by ||s|| is roughly equal to the
g-factor. We can conclude, as in [21], that termination on small steps is an effective

approach only if the convergence is fast.
Now if A is nonsingular, and z. is near enough to z*, then

1 1
ey :eCfA’l/ F'(z* +tec)ecdt:A’1/ (A—F'(z* +te;)) e dt
0 0

(2.5)

=AY (A - F'(z%))e, + A’l/ (F'(z*) — F'(z* + te.)) e. dt
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and

(2.6) lewll < IATHIAEN + llecll/2) el

The estimate (2.6) is the one usually used to prove local convergence of Newton’s
method and the chord method. Now, if e, # 0,

el 1Bl el
27 o] < <) (W * 2||A||) '

Therefore, using (2.4) and (2.7)

s~ lleel)]  lls + el fleal (IIEII vnecn)
2.8 < = <k(A) | — + )
28 Teal el = Je <" 2

Equation (2.7) estimates the g-factor in terms of the condition number x(A) of A,
the relative error || E||/||A|| in A, and the product of the normalized Lipschitz constant
~v/|A|| with the norm of the current iterate.

Similarly (2.8) relates these quantities to the relative accuracy of ||s|| as an ap-
proximation to ||e|| and shows that even a moderately ill-conditioned A, when coupled
with an out-of-date Jacobian (large ||E||), can imply that s is a poor approximation
to the error and that convergence is slow even when e itself is small. Note that if only
one of the two problems, moderate ill-conditioning or an inaccurate Jacobian, takes
place, the estimate (2.7) can still imply that convergence is fast and therefore s is a
good approximation to e.

2.3. Termination. If one has a priori knowledge of p, or at least an upper
bound, then (2.3) implies that

(2.9) (I =p)llexll < llerll = llexsall < [lskll,

for £ > 0. Hence |leg+1]| < pllsk]l/(1 — p). This inequality was used in [22] and in
many papers thereafter to argue that one could terminate the iteration when

(2.10) il < oe,

and conclude that ||eg41]| < € without needing to evaluate ||F(zg+1)||- The quantity
o € (0,1) in (2.10) is a safety factor (called the discount in [22]), and is a guard against
the possibility that the estimate for the g-factor is too low. The value o = 0.33 is
used in many codes [3], [5], [18].

2.4. Estimation of the g-factor. In the context of ODE and DAE integration,
where one expects to perform only a small number of expensive nonlinear corrector
iterations, the savings of a single function evaluation that results from termination on
small steps, rather than small residuals, is very valuable. It is important, therefore,
that the estimate of p be accurate and crucial that it not be a gross underestimate.

Typical estimates of p include [4], [18]

1/k

skl [0l

In some codes [18], the estimate for p may be carried over from previous values of ¢,
a valid decision if the Jacobian varies slowly as function of ¢t. In the work reported
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in [23], the Jacobian varied rapidly as a function of ¢, and we found it advantageous
to recompute Jacobians at each time step in order to accurately estimate the g-factor
and terminate the iteration correctly. If ||sg|| & ||ek||, then either estimate in (2.11)
will provide an acceptable estimate. The danger here is that if K(A) and ||E| are
both large, s may be a poor approximation to e and, therefore, the g-factor estimates
in (2.11) will be poor as well. Hence, these g-factor estimates should not be used to
test the accuracy of s as an approximation to e.

2.5. Problems with the Termination Criteria. From (2.8) we see that if
both k(A)||E||/||Al| and ||e|| are not sufficiently small, then it is possible that ||s]| can
be small enough to terminate the nonlinear iteration while ||e]| is still unacceptably
large. Moreover, the tests for local truncation error may not detect this failure, since
both the estimate for p and ||zg — 2|| could be small enough to satisfy the tests for a
good predictor and small local truncation error. This situation seems to apply to the
problems discussed in [15] and [23].

In [23], we found that best performance could be obtained by

e reevaluating (and therefore refactoring) Jacobians at each time step as a
response to the rapid variation in the Jacobian and
e reducing the discount o as a response to ill-conditioning in the Jacobian

In § 3, we consider two RE problems with different material properties. The
strategy used in [23] of reducing the discount and reevaluating the Jacobian at each
time step is unnecessary for some problems but very appropriate for others. In view of
this observation, we advocate a scheme that monitors approximations to the temporal
derivative and the condition number of the Jacobian and makes reevaluation decisions
and adjusts the discount based on this information.

3. Adaptive Scheme and Numerical Results. In this section, we present
numerical results for two different test problems. Each of these problems models a
different porous media type and represents varying degrees of numerical difficulty.
The physical parameters used in the constitutive laws given in § 1 for K, ¢, and S
and the boundary and initial conditions used for these two problems are presented
in Table 3.1. Problem A is the easier of the two with a less sharp and more slowly
moving front.

We will denote the Jacobian of the corrector equation by .J and the approximate
Jacobian by A. In DASPK, A is also the Jacobian for the corrector equation, but
perhaps from a previous time step.

We used the standard finite difference discretization in space that was employed
in [23] and the direct solver mode of DASPK for temporal integration. The relative,
rtol, and absolute, atol, local truncation error tolerances in DASPK were set to the
same value, which we will denote as tol, for these experiments. The spatial domain
was the interval 0 < z < 10 with z = 10 being the surface. The time interval
and boundary /initial conditions for each test problem are given in Table 3.1. In the
Table, v is the initial condition for the pressure head, and ¢ = ¥(z = 0,t) and
1o = 1(z = 10,t) are the left and right Dirichlet boundary conditions.

From (2.7) and (2.8) we see that k(A) and || E|| can have an effect both on conver-
gence rates and on the accuracy of ||s|| as an approximation to ||e]|. When k(A) and
[|[E|| become even moderately large, it may be necessary to make changes to the non-
linear solver to maintain the accuracy of the solution. We propose a scheme whereby
the discount factor, o, is decreased when x(A) is sufficiently large. We also give two
criteria for updating the Jacobian, one based on an estimate of ||d.J/dt||, indicating a
likelihood that || E|| is not sufficiently small, and the other based on how, after a new
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TABLE 3.1

Model parameter values for Problem A and Problem B.

Variable Problem A Problem B
6, 1.02x 107" 930 x 10~
6 3.68 x 107" 3.01 x 107!
a, (m™1) 3.35 x 10° 5.47 x 10°
n, 2.00 x 10° 4.26 x 10°
K, (m/day) 7.97 x 10° 5.04 x 10°
Ss (m™1) 0.00 x 10°  1.00 x 106
z (m) [0, 10] [0, 10]

t (days) [0, 10] [0, 0.2]
Az (m) 0.0125m 0.0125m
Init At (days) | 1.16 x 10®  1.00 x 107
o (m) —1.00 x 10! —z

Y1 (m) —1.00 x 10" 0.00 x 10°
¥y (m) -7.50x 107" 1.00 x 107!

Jacobian has been evaluated and factored, the computed Newton step is affected by
that change. The amount of reduction in ¢ and the specific tests and thresholds for
changing ¢ and recomputing the Jacobian will be specified later.

Before implementing a scheme to automatically handle the changes in the nonlin-
ear solver, numerical experiments on the two test problems were done to examine the
effect of reducing o by a constant factor and recalculating Jacobians at every time
step. The solution for Problem B is shown in Figure 3.1. The plots are similar for the
other test problem. In the figure, the upper left plot is of the solution (pressure head)
as a function of space in the region near the moving front. The steeper plots corre-
spond to the finer meshes. The meshes were h = 1/80,...,1/2560 and the tolerances
in DASPK were set to tol = 1.d — 8. We will refer to these solutions as the “tight
tolerance” solutions. In the other plots larger tolerances were used in an attempt to
reduce the cost of the computation. The tight tolerance solutions with A = 1/80 and
h =1/160 (solid lines) are used to compare to loose tolerance solutions with a spatial
mesh of h = 1/80. The dashed lines correspond to solutions with tol = 1.d — 3 (left)
and tol = 2.d — 3 (right).

In the upper right plot, Jacobians are updated with every time step, and the
standard discount ¢ = 0.33 is used; in the lower left plot ¢ = 0.033, the value used
n [23], and the default Jacobian update method is used; in the lower right plot, both
modifications are used. One can see that both modifications together lead to results
that are nearer the tight tolerance solution but not necessarily nearer the solution
with the finer spatial mesh.

Since not all problems are as difficult as problem B, it is desirable to have an
adaptive scheme that detects when it is necessary to make the changes outlined above.
A direct approach measures the change in the Jacobian matrix itself. To do this we
used the estimate

lldJ/dt|| _ sup; |(Almew));; —
/1l Sup;; ‘(A(new))i”(tnew

(AletD)) 1 _ A
- told)

(3.1)

in order to detect the possibility of large ||F|| (in the relative sense) and the need
to reevaluate the Jacobian. In (3.1), A("®) is the current Jacobian computed at
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Fi1G. 3.1. Dune Sand Problem (problem B)

Of ——
r,’_
1t
ol
3|
—4!
4.46 4.48 4.5 4.52 4.4 4.5 4.6 4.7
Solutions, various meshes Reevaluate Jacobians
or
1t
-
3|
4t
4.4 4.;15 4:5 4.4 4.;15 4:5
Discount=0.033 Discount=0.033, Reevaluate Jacobians

current time t,,04,, and A4 is the previous Jacobian computed at time t,;4. If dA is

sufficiently large, we compute a new Jacobian at the next time point. For our tests,
we recompute Jacobians when

(3.2) dA > 0.73.

We will call this approach matrix-based updating. Later in this section we will report
on some experiments with some small DAE test problems from [13]. Those results
indicate that the matrix-based approach can become too conservative when large
changes in the Jacobian do not result in correspondingly large changes in the Newton
step.

In order to determine when a rapid change in the Jacobian would affect the
corrector iteration in a significant way, we measure the effect of that change on the
computed Newton step. To do this we keep a factored form of A in memory, and
when a new Jacobian, A("¢®) s factored, the first Newton step is computed using
Alld) and Amew)  If we denote the steps by s(?4) and s("¢®) respectively, then we
define,

(3.3) dA = ||s'D — s ||y pars

where ||-||wrwms is the weighted (in terms of the relative and absolute error tolerances
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input to the code) root mean square norm in DASSL. In view of the weighting, we
can assume that if dA > 1.0 then we must update the Jacobian on the next step. A
more conservative approach, which we found to be more effective in our testing, is to
update the Jacobian on the next step if

(3.4) dA > 0.1.

We call this method step-based updating and, in view of our RE results and results
on a suite of test problems [13], recommend it over matrix-based updating for general
use. However, matrix-based updating was somewhat better for the RE problems. It
should be noted that either of these updating methods are intended to be added to
the existing Jacobian update strategy in DASPK and are not replacements.

For the problems in one space dimension that we consider in this work, x(A)
was found using the LAPACK condition estimator [1]. For problems in more space
dimensions, one could use methods such as those discussed in [7], [12], or [14]. Based
upon numerical experimentation, we reduce the discount when x(4) > 10° using

o { 0.33 if K(A) < 10°

(3:5) 0.33/(1 + 2(n k(A) — I 105)) if K(A) > 10°

The condition number threshold is not particularly large but is large enough to affect
the convergence rate and relative error estimates in (2.5) and (2.8).

When we combine the adjustment in the discount with either the matrix-based or
step-based updating scheme for the Jacobian we get two different adaptive methods,
which we refer to as AdaptM when matrix-based Jacobian updating is used and
AdaptS when step-based updating is used. In Table 3.2 we report on a comparison
of the two adaptive methods, the default DASPK scheme, and the best combination
of recomputing Jacobians at every step and/or reducing the discount. This best,
or tuned, estimate was based upon extensive numerical experimentation, but does
necessarily represent optimal values.

The Jacobian in DASPK will change in a benign way if the order or step size
is changed by the integrator. This change will be small and should not, by itself,
activate either step-based or matrix-based updating. We did test this by deactivating
our Jacobian updating methods after a step size or order change. Our experiments
indicate that step size and order changes had little effect on our decisions to update
the Jacobian.

TABLE 3.2
Results of the adaptive scheme for the two test problems.

Ave % Jacs Func Jac Coarse  Dense
tol o Recalc Calls Calls Error Error
Def 2.0e-4 0.33 27.2 4065 526  6.10e-3 9.37e-2
A | Tuned 4.0e-4 0.33 100.0 2681 1343 1.86e-3 8.94e-2
AdaptM | 3.0e-4 0.33 56.0 3311 905 6.02e-3 9.36e-2
AdaptS | 3.0e-4 0.33 69.3 2979 1041 1.92e-2 1.07e-1
Def 8.0e-5 0.33 36.5 33698 5419 9.21e-3 8.62e-2
B | Tuned 1.0e-3 0.033 100.0 14437 6358 5.04e-3 8.97e-2
AdaptM | 8.0e-4 0.054 100.0 14136 6289 7.97e-3 8.71e-2
AdaptS | 2.0e-4 0.058 91.8 18041 7712 1.48e-2 8.13e-2

In Table 3.2, the tolerance was chosen so that the method was accurate and
efficient, meaning that the numerical solution had reached spatial truncation error
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and further reduction of the tolerance would not improve the quality of the solution.
The average o is just an arithmetic average of the discount factor o throughout the
iteration, where the default value is 0.33. The next column shows the percentage of
the times possible where the Jacobian is updated. The next two columns show how
many function and Jacobian calls are executed, and the last two columns are error
measures. The coarse error is defined by

1 Np —1
N Z lui — ug |
=0

where n,, is the number of nodes in the spatial discretization, u¢ is the solution on
the same mesh as u; with tol= 1.0e-8, and the dense error is defined by

1
N Z Ui — u |
i=0
where ud is the injection of the tight tolerance solution with a spatial mesh width of

1/2560 onto the mesh with Az = 1/80.

The results from Table 3.2 indicate that the default strategy for the corrector
equations requires that the tolerances be set more tightly (with a significant cost in
function/Jacobian evaluations) than either hand-tuning or using the adaptive strate-
gies proposed here. For the harder of the two problems, we found that it was better
to reduce the discount factor o. For both of the problems, it is better to recalculate
Jacobians more often than the default strategy does.

Although the adaptive schemes described in this paper were designed solely to
improve the results for RE, we also implemented the schemes on a set of ODEand
DAE test problems, [13]. To be consistent with the test set results we used the code
DASSL, rather than the direct solver mode of DASPK, to solve the problems. The
test set contains ODE’s and index one and higher DAE’s. We compared DASSL
with the default discount and Jacobian updating rule with AdaptM and AdaptS
for the ODE and index one DAE test problems. As expected, for most of the test
problems there was very little difference between the default method and either of the
adaptive methods. However we saw significant differences in two of the problems. For
test problem #4, a system of equations for a ring modulator [10], AdaptM updated
Jacobians far too frequently and was much less efficient than the default. AdaptS was
much less aggressive in updating the Jacobian and, while less efficient, was within
10% of the default method.

For test problem # 6, a model of a transistor amplifier from [9] and [19], all three
methods (default, AdaptS, AdaptM) showed inconsistency in the relation of work and
accuracy to the input tolerances in that a reduction in rtol and atol did not imply
either a more accurate or more costly integration. For this reason, we considered a
variety of tolerances and looked at averages. With AdaptS we saw a approximately a
30 % average decrease in work for the step-based adaptive scheme as opposed to the
default scheme, both methods giving similar accuracy. With AdaptM we saw a 10%
in accuracy and a 50 % decrease in work.

The results on the DAE test problems lead us to prefer for AdaptS, which was far
superior to AdaptM on problem #4 in the test suite and close to it in performance
the two RE test problems and on problem #6 in the test suite.
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