
TERMINATION OF NEWTON/CHORD ITERATIONS AND THEMETHOD OF LINES �C. T. KELLEYy, C. T. MILLERz, AND M. D. TOCCIyAbstract. Many ordinary di�erential equation and di�erential algebraic equation codes termi-nate the nonlinear iteration for the corrector equation when the di�erence between successive iterates(the step) is su�ciently small. This termination criterion avoids the expense of evaluating the non-linear residual at the �nal iterate. Similarly, Jacobian information is not usually computed at everytime step, but only when certain tests indicate that the cost of a new Jacobian is justi�ed by theimproved performance in the nonlinear iteration. In this paper, we show how an out-of-date Jacobiancoupled with moderate ill-conditioning can lead to premature termination of the corrector iterationand suggest ways in which this situation can be detected and remedied. As an example, we considerthe method of lines solution of Richards' equation, which models 
ow through variably-saturatedporous media. When the solution to this problem has a sharp moving front, and the Jacobian is evenslightly ill-conditioned, the corrector iteration used in many integrators can terminate prematurely,leading to incorrect results. While this problem can be solved by tightening the tolerances for thesolvers used in the temporal integration, it is more e�cient to modify the termination criteria of thenonlinear solver and/or recompute the Jacobian more frequently. Of these two, recomputation ofthe Jacobian is the more important. We propose a criterion based on an estimate of the norm of thetime derivative of the Jacobian for recomputation of the Jacobian and a second criterion based on acondition estimate for tightening of the termination criteria of the nonlinear solver.Key words. termination of nonlinear iterations, Richards' equation, method of linesAMS subject classi�cations. 65H10, 65M20, 65N40, 76S051. Introduction. This paper is motivated by some numerical observations madein [15] and [23]. In those papers, we considered a method of lines (MOL) solution ofRichards' equation, [20], which is a model of variably-saturated porous media 
ow.The method of lines uses an ordinary di�erential equation (ODE) or di�erential al-gebraic equation (DAE) solver for temporal integration of a time-dependent partialdi�erential equation that has been discretized in space. Our work to date has focusedon backward di�erentiation formula (BDF) methods that use a predictor-correctorapproach. The termination criterion and convergence rate estimator for the correctoriteration in many codes have been designed, at least in part, with the method of linesin mind, and they work well for most problems. For the initial boundary value prob-lem considered in this paper, however, even moderate ill-conditioning coupled withrapid temporal variation of the Jacobian can lead to premature termination of thecorrector iteration. In turn, incorrect results may be produced for the entire integra-tion unless one is willing to specify a tight tolerance for the local truncation error.In this paper we give two estimates (2.7) and (2.8) that quantify these e�ects. Wesuggest two remedies, recomputation of Jacobians and tightening of the terminationcriterion for the nonlinear corrector iteration, and criteria for their application. Of�Version of April 20, 1997. This research was supported by Army Research O�ce grant#DAALA03-92-G-0111, a Cray Research Corporation Fellowship, National Science Foundation grant#DMS-9321938, US Army contract #DACA39-95-K-0098, and a U. S. Department of EducationGAANN fellowship. Computing activity was partially supported by an allocation from the NorthCarolina Supercomputing Center.y North Carolina State University, Center for Research in Scienti�c Computation and De-partment of Mathematics, Box 8205, Raleigh, N. C. 27695-8205, USA (Tim Kelley@ncsu.edu,mdtocci@unity.ncsu.edu).z Department of Environmental Sciences and Engineering, 104 Rosenau Hall, University of NorthCarolina, Chapel Hill, NC 27599-7400 (casey miller@unc.edu).1



2 C. T. KELLEY, C. T. MILLER AND M. D. TOCCIthe two, more frequent recomputation of the approximation to the Jacobian of thecorrector equation J , which we apply based on either an estimate of kdJ=dtk=kJk orconsideration of the Newton step, has the most signi�cant e�ect. Tightening of thetermination criterion for the nonlinear solver, the criterion which is an estimate of thecondition number, has a less signi�cant, but still noticeable, e�ect.While our numerical results, motivation, and suggested modi�cations in the fre-quency of Jacobian evaluation and termination of the corrector iteration are related toa particular problem, the analysis in x 2 is problem independent and the modi�cationsmay be more broadly applicable as well.The application of concern in this work is Richards' equation (RE), which is usedto describe variably-saturated water 
ow in a rigid porous media. RE results from amass conservation law for a two-
uid system (water and gas) in which the assumptionof constant gas-phase pressure has been applied. This assumption is justi�ed for manysystems because a very small gas-phase pressure gradient is needed to support the
ow of a gas phase compared to the pressure gradient needed to support an equalvolumetric 
ow of an aqueous phase. Constitutive relations are required to close theconservation law; we detail this formulation below.The pressure head form of RE in one space dimension is [6][c( ) + SsSa( )]@ @t = @@z �K( )�@ @z + 1��(1.1)where  is pressure head; c( ) = @�=@ is the speci�c moisture capacity; �( ) is thevolumetric fraction of the water phase; Ss is the speci�c storage, which accounts forthe slight compressibility of water; Sa( ) = �( )=n is the aqueous-phase saturation;n is the porosity of the porous media; and K( ) is the variably-saturated hydraulicconductivity. In this formulation, the z axis is the vertical direction oriented posi-tively upward. In order to close (1.1), relations among  , �( ), and K( ) must bespeci�ed. The relations used in this work are the van Genuchten [24] and Mualem [16]relationships. First, we de�ne the e�ective saturation, Se, using the van Genuchtenrelation: Se( ) = � � �r�s � �r = (1 + j�� jn� )�m�(1.2)where �r is the residual volumetric water content, �s is the saturated volumetric watercontent, �� is an experimentally-determined coe�cient that is related to the meanpore size, n� is an experimentally-determined coe�cient related to the variation inpore sizes, and m� = 1� 1=n� .The variably-saturated hydraulic conductivity is de�ned using Mualem's model:K( ) = KsS1=2e h1� �1� S1=m�e �m�i2(1.3)where Ks is the water-saturated hydraulic conductivity. The parameters in the con-ductivity and saturation in
uence the speed and slope of moving fronts in the solutionand thereby make the problem more or less di�cult.In [15] and [23], we used the DAE code DASPK, [5], [2], [18], with the directsolver option, for temporal integration of RE in one space dimension. In these papers,we showed experimentally that if certain modi�cations were made to the nonlineariteration for the corrector phase of the integration, then the MOL was both moree�cient and more robust than several alternative methods commonly used in the



TERMINATION 3hydrology community. The purpose of this paper is to analyze those modi�cations inmore detail and provide guidance on how they can be adapted automatically to theproblem.Our approach to the MOL in [15] and [23] treated (1.1) as a DAE because thecoe�cient c( ) +SsSa( ) that multiplies the time derivative can become very small,making the Jacobian ill-conditioned in many backward di�erence implicit time inte-gration schemes for ordinary di�erential equations. We examined two porous mediatypes (problems A and B in x 3). We found that the MOL performed best if the termi-nation criteria in DASPK was tightened and Jacobians reevaluated at each time step.Our numerical results here, based on more detailed experimentation, show that onlythe more di�cult of the two problems bene�ts from a tightened termination criterionfor the nonlinear iteration and that, for the easier of the two problems, the Jacobianneed not be reevaluated at every time step. Of course, equally accurate results can beobtained by tightening the user-supplied relative and absolute local truncation errors,but solving the problems in this way reduced the e�ciency of the MOL solution [23].2. The Corrector Equation. We will suppress the spatial variable z and letu(t) be the continuous solution at time t. Similarly, un will denote the spatiallydiscretized solution at time step n, which will correspond to time tn. Given thesolution un, DASPK and many other ODE and DAE codes form a nonlinear equationfor the solution at the next time step tn+1 = tn+�n. This corrector equation is solvedby a variation of Newton's method with a predictor formula used to provide the initialiterate.We write the corrector equation asF (un+1) = 0:(2.1)DASPK and similar codes solve (2.1) with the modi�ed Newton or chord method[11]. F may depend on values of the solution at earlier time steps, but we suppressthat dependence here. We will denote the iterates for the solution of (2.1) by xk, todistinguish them from the solution of the PDE of interest u.Having formed a predictor x0 (usually not un) to the solution un+1 of (2.1) andan approximate Jacobian A � F 0(x), we attempt to compute x� = un+1 with thechord iteration xk+1 = xk �A�1F (xk):2.1. Termination of the Corrector Iteration. Nonlinear iterations in theDAE and ODE integrators mentioned above terminate based upon convergence esti-mates that are a function of the chord step-length takensk = �A�1F (xk)(2.2)as estimates of the errors ek = xk � x� for k � 0. If direct methods are used tosolve linear systems, it is e�cient to use a factorization of an approximate JacobianA for as many nonlinear iterations and values of t as possible so as to avoid matrixfactorizations and evaluations.Typically, A is the Jacobian of F for some previous iterate but not necessarilyat the current time step, and when A is recomputed, the Jacobian for the currentvalues of x and t is used. In this case, if the Jacobians vary rapidly in t then oneshould recompute Jacobians whenever t is changed. If this action is not taken, q-linearconvergence may not take place at all or may be very slow. DASPK and related codes



4 C. T. KELLEY, C. T. MILLER AND M. D. TOCCIdecide whether to reevaluate the Jacobian by examining the norms of the chord steps.If these norms decrease slowly or not at all, then �n is reduced and/or the Jacobian isrecomputed. We refer the reader to [2] for more detail. However, [23], an early stepin the chord method with an inaccurate and/or ill-conditioned Jacobian can be muchsmaller than the actual error. In this case, both the test for successful terminationof the nonlinear iteration and the error test for local truncation can be incorrectlypassed. A partial remedy [23] is to recompute the Jacobian at each time step.2.2. Convergence Rates. In this section, we review the convergence rate es-timates for the chord method for solution of a nonlinear equation F (x) = 0. Thedependence on the relative error in the Jacobian, the normalized Lipschitz constantfor the Jacobian, and the error in the initial iterate are clearly exposed.If the standard assumptions [11] (Lipschitz continuity and nonsingularity of F 0near x�, a root of F ) for local quadratic convergence of Newton's method hold, andif x0 and A are su�ciently good approximations to x� and F 0(x�) then the chordmethod is q-linearly convergent, [11], [8], [17]. This means that there is � 2 (0; 1)such that kek+1k � �kekk(2.3)for all k � 0. In (2.3) e = x�x�, and � is called the q-factor. It is known, [22], that apriori knowledge of the q-factor leads to an e�ective termination criterion that doesnot require a costly evaluation of F at the terminating iterate. However, estimatesof the q-factor that depend on the norms of the chord steps can lead to prematuretermination in the problems we consider here.We will brie
y review the analysis that leads to (2.3) with a view toward quan-tifying how the conditioning of A and F 0, the Lipschitz constant 
 of F 0, and thequality of the predictor in
uence the size of the q-factor. As a byproduct of this anal-ysis, we will see how reliable the step is as an indicator of the size of the error. Ourexpression of this idea in (2.8) di�ers from the standard results in [8], [11], and [17]because of its emphasis on the relative error and condition number of the approximateJacobian rather than on absolute error estimates, which are all that are needed for aconventional convergence proof.The notation is standard. We set E = A � F 0(x�). We will let xc denote acurrent approximation to x�, x+ = xc � A�1F (xc), the subsequent chord iteration,and s = �A�1F (xc) the chord step. We begin with the simple observation thats = x+ � xc = e+ � ec, and so ks+ eckkeck = ke+kkeck :(2.4)Hence the relative accuracy of approximating keck by ksk is roughly equal to theq-factor. We can conclude, as in [21], that termination on small steps is an e�ectiveapproach only if the convergence is fast.Now if A is nonsingular, and xc is near enough to x�, thene+ = ec �A�1Z 10F 0(x� + tec)ec dt = A�1Z 10 (A� F 0(x� + tec)) ec dt= A�1(A� F 0(x�))ec +A�1Z 10 (F 0(x�)� F 0(x� + tec)) ec dt(2.5)



TERMINATION 5and ke+k � kA�1k(kEk+ 
keck=2)keck:(2.6)The estimate (2.6) is the one usually used to prove local convergence of Newton'smethod and the chord method. Now, if ec 6= 0,ke+kkeck � �(A)�kEkkAk + 
keck2kAk� :(2.7)Therefore, using (2.4) and (2.7),j(ksk � keck)jkeck � ks+ eckkeck = ke+kkeck � �(A)�kEkkAk + 
keck2kAk� :(2.8)Equation (2.7) estimates the q-factor in terms of the condition number �(A) of A,the relative error kEk=kAk in A, and the product of the normalized Lipschitz constant
=kAk with the norm of the current iterate.Similarly (2.8) relates these quantities to the relative accuracy of ksk as an ap-proximation to kek and shows that even a moderately ill-conditioned A, when coupledwith an out-of-date Jacobian (large kEk), can imply that s is a poor approximationto the error and that convergence is slow even when e itself is small. Note that if onlyone of the two problems, moderate ill-conditioning or an inaccurate Jacobian, takesplace, the estimate (2.7) can still imply that convergence is fast and therefore s is agood approximation to e.2.3. Termination. If one has a priori knowledge of �, or at least an upperbound, then (2.3) implies that(1� �)kekk � kekk � kek+1k � kskk;(2.9)for k � 0. Hence kek+1k � �kskk=(1 � �). This inequality was used in [22] and inmany papers thereafter to argue that one could terminate the iteration when�1� �kskk � ��;(2.10)and conclude that kek+1k � � without needing to evaluate kF (xk+1)k. The quantity� 2 (0; 1) in (2.10) is a safety factor (called the discount in [22]), and is a guard againstthe possibility that the estimate for the q-factor is too low. The value � = 0:33 isused in many codes [3], [5], [18].2.4. Estimation of the q-factor. In the context of ODE and DAE integration,where one expects to perform only a small number of expensive nonlinear correctoriterations, the savings of a single function evaluation that results from termination onsmall steps, rather than small residuals, is very valuable. It is important, therefore,that the estimate of � be accurate and crucial that it not be a gross underestimate.Typical estimates of � include [4], [18]�Pk = kskkksk�1k and �Lk = �kskkks0k�1=k :(2.11)In some codes [18], the estimate for � may be carried over from previous values of t,a valid decision if the Jacobian varies slowly as function of t. In the work reported



6 C. T. KELLEY, C. T. MILLER AND M. D. TOCCIin [23], the Jacobian varied rapidly as a function of t, and we found it advantageousto recompute Jacobians at each time step in order to accurately estimate the q-factorand terminate the iteration correctly. If kskk � kekk, then either estimate in (2.11)will provide an acceptable estimate. The danger here is that if �(A) and kEk areboth large, s may be a poor approximation to e and, therefore, the q-factor estimatesin (2.11) will be poor as well. Hence, these q-factor estimates should not be used totest the accuracy of s as an approximation to e.2.5. Problems with the Termination Criteria. From (2.8) we see that ifboth �(A)kEk=kAk and kek are not su�ciently small, then it is possible that ksk canbe small enough to terminate the nonlinear iteration while kek is still unacceptablylarge. Moreover, the tests for local truncation error may not detect this failure, sinceboth the estimate for � and kx0�xkk could be small enough to satisfy the tests for agood predictor and small local truncation error. This situation seems to apply to theproblems discussed in [15] and [23].In [23], we found that best performance could be obtained by� reevaluating (and therefore refactoring) Jacobians at each time step as aresponse to the rapid variation in the Jacobian and� reducing the discount � as a response to ill-conditioning in the JacobianIn x 3, we consider two RE problems with di�erent material properties. Thestrategy used in [23] of reducing the discount and reevaluating the Jacobian at eachtime step is unnecessary for some problems but very appropriate for others. In view ofthis observation, we advocate a scheme that monitors approximations to the temporalderivative and the condition number of the Jacobian and makes reevaluation decisionsand adjusts the discount based on this information.3. Adaptive Scheme and Numerical Results. In this section, we presentnumerical results for two di�erent test problems. Each of these problems models adi�erent porous media type and represents varying degrees of numerical di�culty.The physical parameters used in the constitutive laws given in x 1 for K, c, and Sand the boundary and initial conditions used for these two problems are presentedin Table 3.1. Problem A is the easier of the two with a less sharp and more slowlymoving front.We will denote the Jacobian of the corrector equation by J and the approximateJacobian by A. In DASPK, A is also the Jacobian for the corrector equation, butperhaps from a previous time step.We used the standard �nite di�erence discretization in space that was employedin [23] and the direct solver mode of DASPK for temporal integration. The relative,rtol, and absolute, atol, local truncation error tolerances in DASPK were set to thesame value, which we will denote as tol, for these experiments. The spatial domainwas the interval 0 � z � 10 with z = 10 being the surface. The time intervaland boundary/initial conditions for each test problem are given in Table 3.1. In theTable,  0 is the initial condition for the pressure head, and  1 =  (z = 0; t) and 2 =  (z = 10; t) are the left and right Dirichlet boundary conditions.From (2.7) and (2.8) we see that �(A) and kEk can have an e�ect both on conver-gence rates and on the accuracy of ksk as an approximation to kek. When �(A) andkEk become even moderately large, it may be necessary to make changes to the non-linear solver to maintain the accuracy of the solution. We propose a scheme wherebythe discount factor, �, is decreased when �(A) is su�ciently large. We also give twocriteria for updating the Jacobian, one based on an estimate of kdJ=dtk, indicating alikelihood that kEk is not su�ciently small, and the other based on how, after a new



TERMINATION 7Table 3.1Model parameter values for Problem A and Problem B.Variable Problem A Problem B�r 1:02� 10�1 9:30� 10�2�s 3:68� 10�1 3:01� 10�1�� (m�1) 3:35� 100 5:47� 100n� 2:00� 100 4:26� 100Ks (m/day) 7:97� 100 5:04� 100Ss (m�1) 0:00� 100 1:00� 10�6z (m) [0, 10] [0, 10]t (days) [0, 10] [0, 0.2]�z (m) 0:0125m 0:0125mInit �t (days) 1:16� 10�8 1:00� 10�7 0 (m) �1:00� 101 �z 1 (m) �1:00� 101 0:00� 100 2 (m) �7:50� 10�1 1:00� 10�1Jacobian has been evaluated and factored, the computed Newton step is a�ected bythat change. The amount of reduction in � and the speci�c tests and thresholds forchanging � and recomputing the Jacobian will be speci�ed later.Before implementing a scheme to automatically handle the changes in the nonlin-ear solver, numerical experiments on the two test problems were done to examine thee�ect of reducing � by a constant factor and recalculating Jacobians at every timestep. The solution for Problem B is shown in Figure 3.1. The plots are similar for theother test problem. In the �gure, the upper left plot is of the solution (pressure head)as a function of space in the region near the moving front. The steeper plots corre-spond to the �ner meshes. The meshes were h = 1=80; : : : ; 1=2560 and the tolerancesin DASPK were set to tol = 1:d � 8. We will refer to these solutions as the \tighttolerance" solutions. In the other plots larger tolerances were used in an attempt toreduce the cost of the computation. The tight tolerance solutions with h = 1=80 andh = 1=160 (solid lines) are used to compare to loose tolerance solutions with a spatialmesh of h = 1=80. The dashed lines correspond to solutions with tol = 1:d� 3 (left)and tol = 2:d� 3 (right).In the upper right plot, Jacobians are updated with every time step, and thestandard discount � = 0:33 is used; in the lower left plot � = 0:033, the value usedin [23], and the default Jacobian update method is used; in the lower right plot, bothmodi�cations are used. One can see that both modi�cations together lead to resultsthat are nearer the tight tolerance solution but not necessarily nearer the solutionwith the �ner spatial mesh.Since not all problems are as di�cult as problem B, it is desirable to have anadaptive scheme that detects when it is necessary to make the changes outlined above.A direct approach measures the change in the Jacobian matrix itself. To do this weused the estimate kdJ=dtkkJk � supij j(A(new))ij � (A(old))ij jsupij j(A(new))ij j(tnew � told) = dA(3.1)in order to detect the possibility of large kEk (in the relative sense) and the needto reevaluate the Jacobian. In (3.1), A(new) is the current Jacobian computed at



8 C. T. KELLEY, C. T. MILLER AND M. D. TOCCIFig. 3.1. Dune Sand Problem (problem B)
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Discount=0.033, Reevaluate Jacobianscurrent time tnew , and A(old) is the previous Jacobian computed at time told. If dA issu�ciently large, we compute a new Jacobian at the next time point. For our tests,we recompute Jacobians when dA > 0:73:(3.2)We will call this approach matrix-based updating. Later in this section we will reporton some experiments with some small DAE test problems from [13]. Those resultsindicate that the matrix-based approach can become too conservative when largechanges in the Jacobian do not result in correspondingly large changes in the Newtonstep.In order to determine when a rapid change in the Jacobian would a�ect thecorrector iteration in a signi�cant way, we measure the e�ect of that change on thecomputed Newton step. To do this we keep a factored form of A(old) in memory, andwhen a new Jacobian, A(new), is factored, the �rst Newton step is computed usingA(old) and A(new). If we denote the steps by s(old) and s(new) respectively, then wede�ne, dA = ks(old) � s(new)kWRMS(3.3)where k�kWRMS is the weighted (in terms of the relative and absolute error tolerances



TERMINATION 9input to the code) root mean square norm in DASSL. In view of the weighting, wecan assume that if dA > 1:0 then we must update the Jacobian on the next step. Amore conservative approach, which we found to be more e�ective in our testing, is toupdate the Jacobian on the next step ifdA > 0:1:(3.4)We call this method step-based updating and, in view of our RE results and resultson a suite of test problems [13], recommend it over matrix-based updating for generaluse. However, matrix-based updating was somewhat better for the RE problems. Itshould be noted that either of these updating methods are intended to be added tothe existing Jacobian update strategy in DASPK and are not replacements.For the problems in one space dimension that we consider in this work, �(A)was found using the LAPACK condition estimator [1]. For problems in more spacedimensions, one could use methods such as those discussed in [7], [12], or [14]. Basedupon numerical experimentation, we reduce the discount when �(A) > 105 using� = � 0:33 if �(A) < 1050:33=(1 + 2(ln�(A)� ln 105)) if �(A) � 105(3.5)The condition number threshold is not particularly large but is large enough to a�ectthe convergence rate and relative error estimates in (2.5) and (2.8).When we combine the adjustment in the discount with either the matrix-based orstep-based updating scheme for the Jacobian we get two di�erent adaptive methods,which we refer to as AdaptM when matrix-based Jacobian updating is used andAdaptS when step-based updating is used. In Table 3.2 we report on a comparisonof the two adaptive methods, the default DASPK scheme, and the best combinationof recomputing Jacobians at every step and/or reducing the discount. This best,or tuned, estimate was based upon extensive numerical experimentation, but doesnecessarily represent optimal values.The Jacobian in DASPK will change in a benign way if the order or step sizeis changed by the integrator. This change will be small and should not, by itself,activate either step-based or matrix-based updating. We did test this by deactivatingour Jacobian updating methods after a step size or order change. Our experimentsindicate that step size and order changes had little e�ect on our decisions to updatethe Jacobian. Table 3.2Results of the adaptive scheme for the two test problems.Ave % Jacs Func Jac Coarse Densetol � Recalc Calls Calls Error ErrorDef 2.0e-4 0.33 27.2 4065 526 6.10e-3 9.37e-2A Tuned 4.0e-4 0.33 100.0 2681 1343 1.86e-3 8.94e-2AdaptM 3.0e-4 0.33 56.0 3311 905 6.02e-3 9.36e-2AdaptS 3.0e-4 0.33 69.3 2979 1041 1.92e-2 1.07e-1Def 8.0e-5 0.33 36.5 33698 5419 9.21e-3 8.62e-2B Tuned 1.0e-3 0.033 100.0 14437 6358 5.04e-3 8.97e-2AdaptM 8.0e-4 0.054 100.0 14136 6289 7.97e-3 8.71e-2AdaptS 2.0e-4 0.058 91.8 18041 7712 1.48e-2 8.13e-2In Table 3.2, the tolerance was chosen so that the method was accurate ande�cient, meaning that the numerical solution had reached spatial truncation error



10 C. T. KELLEY, C. T. MILLER AND M. D. TOCCIand further reduction of the tolerance would not improve the quality of the solution.The average � is just an arithmetic average of the discount factor � throughout theiteration, where the default value is 0:33. The next column shows the percentage ofthe times possible where the Jacobian is updated. The next two columns show howmany function and Jacobian calls are executed, and the last two columns are errormeasures. The coarse error is de�ned by1�z nn�1Xi=0 jui � uci jwhere nn is the number of nodes in the spatial discretization, uc is the solution onthe same mesh as ui with tol= 1.0e-8, and the dense error is de�ned by1�z nn�1Xi=0 jui � udi jwhere ud is the injection of the tight tolerance solution with a spatial mesh width of1=2560 onto the mesh with �z = 1=80.The results from Table 3.2 indicate that the default strategy for the correctorequations requires that the tolerances be set more tightly (with a signi�cant cost infunction/Jacobian evaluations) than either hand-tuning or using the adaptive strate-gies proposed here. For the harder of the two problems, we found that it was betterto reduce the discount factor �. For both of the problems, it is better to recalculateJacobians more often than the default strategy does.Although the adaptive schemes described in this paper were designed solely toimprove the results for RE, we also implemented the schemes on a set of ODEandDAE test problems, [13]. To be consistent with the test set results we used the codeDASSL, rather than the direct solver mode of DASPK, to solve the problems. Thetest set contains ODE's and index one and higher DAE's. We compared DASSLwith the default discount and Jacobian updating rule with AdaptM and AdaptSfor the ODE and index one DAE test problems. As expected, for most of the testproblems there was very little di�erence between the default method and either of theadaptive methods. However we saw signi�cant di�erences in two of the problems. Fortest problem #4, a system of equations for a ring modulator [10], AdaptM updatedJacobians far too frequently and was much less e�cient than the default. AdaptS wasmuch less aggressive in updating the Jacobian and, while less e�cient, was within10% of the default method.For test problem # 6, a model of a transistor ampli�er from [9] and [19], all threemethods (default, AdaptS, AdaptM) showed inconsistency in the relation of work andaccuracy to the input tolerances in that a reduction in rtol and atol did not implyeither a more accurate or more costly integration. For this reason, we considered avariety of tolerances and looked at averages. With AdaptS we saw a approximately a30 % average decrease in work for the step-based adaptive scheme as opposed to thedefault scheme, both methods giving similar accuracy. With AdaptM we saw a 10%in accuracy and a 50 % decrease in work.The results on the DAE test problems lead us to prefer for AdaptS, which was farsuperior to AdaptM on problem #4 in the test suite and close to it in performancethe two RE test problems and on problem #6 in the test suite.
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