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ARE BILINEAR QUADILILATERALS BETTER

THAN LINEAR TRIANGLES?

• E.F. D'Azevedo

Abstract

This paper compares tile theoretical effectiveness of bilinear approximation over quadri-

laterals with linear approximation over triangles. Anisotropic mesh transformation is used

to generate asymptotically optimally efficient meshes for piecewise linear interpolation over

triangles and bilinear interpolation over quadrilaterals. The theory and numerical results

suggest triangles may have a slight advantage over quadrilaterals for interpolating con-

vex data function but bilinear approximation may offer a higher order approximation for

saddle-shaped functions on a well-designed mesh.
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1. Introduction

This paper compares the theoretical effectiveness of bilinear approximation over quadrilaterals

with linear approximation over triangles. The novelty is in the use of anisotropic mesh trans-

" formation to generate asymptotically optimally efficient meshes in the comparison. This work

is a basic study on optimal meshes with the intention of gaining insight into the more complex

meshing problems in finite element analysis. The theory and numerical results suggest trian-

gles may have a slight advantage over quadrilaterals for interpolating convex data functions but

bilinear approximation.may offer a higher order approximation for saddle-shaped functions on

a well-designed mesh.

We consider the problem of interpolating a given smooth data function with continuous

piecewise linear triangles or bilinear quadrilaterals over a domain to satisfy a given error tol-

erance. A mesh that achieves this error tolerance with the fewest elements is defined to be

optimally efficient. Intuitively, one would expect smaller and denser elements in legions where

the function has sharp peaks or large variations. Since each convex quadrilateral can be split

across either one of the diagonals into two triangles, one can imagine embedding a refined

triangular mesh within the quadrilateral mesh. A question arises as to whether the bilinear

approximation over quadrilaterals or linear approximation over triangles is more effective.

To make a fair comparison, we need to compare bilinear approximation over an "optimal"

. quadrilateral mesh versus linear approximation over an "optimal" triangular mesh. Indeed,

§5 contains an example where the way quadrilaterals are decomposed into triangles may yield

different interpolation accuracies. Provably optimal triangular meshes [2,4] have been produced

by anisotropic mesh transformation.

Anisotropic mesh transformation is emerging as an effective technique for unstructured grid

generation where the vertex distribution is highly non-uniform. The central idea is to control

the element shapes and sizes by specifying a symmetric metric tensor that measures the ap-

proximation error. The metric tensor determines the corresponding anisotropic transformation.

The anisotropic mesh is then the image of a uniform mesh of optimal shape elements under the

anisotropic transformation. Simpson [8] gives a survey on auisotropic meshes.

Nadler [6], D'Azevedo and Simpson [3,4], and D'Azevedo [2] have studied local anisotropic

transformation for the generating of optimally efficient triangular meshes. Peraire et al. [7]

applied anisotropic transformation in mesh generation for dynamic remeshing in solving com-

pressible flow problems. In these works, piecewise linear approximation of a quadratic function

is used as the model for local analysis. In this paper we extend a similar analysis to bilinear

approximation on quadrilateral patches.

An outline of the paper follows. In §2, we review the key ideas in [2] for generating optimally

efficient triangular meshes. In §3, we consider error properties of bilinear interpolation. We
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consider the optimal geometry for quadrilateral patches in §4. We compare the effectiveness

of quadrilaterals versus triangular meshes using the local quadratic model in §5. Section 6

contains extensions to hexahedral bricks in three dimensions. Numerical experiements and the

results are described in §7. Finally §8 gives a brief summary.

2. Triangular Patch

In this section, we review the basic techniques in determining optimal triangle geometry used

in [2]. We show a linear transformation of a regular mesh of optimal-shape triangles yields an

optimally efficient mesh for interpolating a quadratic function.

2.1. Quadratic Model

Given the data values at the three vertices of a triangle, the piecewise linear intert _lant

pt(x,y) = po + Plx WP2Y, Pt(xi,Yi) = fi

can be determined by solving tlm 3 × 3 system of linear equations,

xi yl po [
1 Ii

!

1 x2 Y2 Pl = [ f2

1 x3 Y3 P2 [ fz

Note the determinant of the above matrix is two times the area of the triangle, hence we have

a nonsingular system for a nondegenerate triangle.

We shall consider a local analysis where we assume the data function f(x, y) is well approx-

imated by its quadratic Taylor expansion,

l[dx,dy]g(x,y)[dx,dy]t (1)f(x q- dx, y q- dy) ._ f(x, y) + Vf(x, y)[dx, dy] -t- _

Let the error formula be ET(x,y) = pt(x,y)- f(x,y). By our assumption, E_(x,y) is a

quadratic function and level curves for ET(X, y) = c form a family of conics with a common

center at (xc, Yc). They form a family of ellipses if det(H) > 0, and hyperbolas if det(H) < 0.

Note by the interpolation condition, the curve ET(X, y) = 0 passes through ali vertices of the

triangle. If det(H) > 0 (conic is ellipse) then ET(X, y) attains the local maximum at the center

(xc,yc); otherwise, det(H) < 0 (conic is hyperbola) the maximum error is attained at the

midpoint of an edge. The error at a displacement from the center is given by

l[dx,dy]g[dx, dy]t, _T = ET(xc,yc) (2)
ET(Xe + dx, Yc + dy) = ,_.T-- "_
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The key insight in [2] is in interpreting the Hessian matrix H ill (2) as a symmetric metric

tensor. Let the symmetric Hessian matrix be diagonalizable as

H = Q' AIO A20]Q=St [ 10 0]S'e wheree=sign(det(H)),

s = [ Ix/iXTi o0 Q' (3)

Under this transformation S, the expression [dz, dy]H[dx, dy] t reduces to (d_') 2 + e(dg) 2, where

[_, 9]t = S[z, y]t. The error function can be rewritten as

1

ET(Z_ + dz,yc +dy) = £T-- 7[dz,dylH[dx,dy]'

1 ((d_:)2 + e(dg)_ ) (4)= eT--
= + 9°+ dg),

where ET(_, 9) dc,aotes the corresponding error function under transformation S in (_, 9)-space.

The error expression ET(Z, 9) Ims no preferred direction hence we shall call the (_, 9)-space the

"isotropic" space.

2.2. Optimal shape

In the following, we shall determined the best triangle shape that minimizes the interpolation

error. We can determine the "efficiency" of the elements by computing their ratio of Error

to Area. A small ratio indicates a more efficient element, i.e. one can achieve a lower error

tolerance and rile'the domain with about the same number of elements.

We consider first the case f(z, y) is convex (der(H) > 0, e = 1) and level curves or contours

of ET(_:, 9) are concentric circles given by

1 ((d_)-" + (dg)") (5)ET(_'e + d_:, 9c +dg) = vet -- _

Let T be the transformed of triangle T over the isotropic space, with vertices at (_1,91), (_2, .02)

and (_:a, 93). The circumcircle of T corresponds to tlm level curve of value zero. Hence the

radius of this circumcircle is sqrt(21£TI) and relates directly to the maximum error attainable

(at the center). We can easily see that an equilateral triangle covers the most area for a fixed

• circumcircle; therefore an equilateral triangle for 7_ is of optimal-shape.

Consider next the case where f(z, y) is not convex but has a saddle-shaped graph (der(H) <
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0, e = -1), then we have

1 ((d2")2 (d._)2) (6)= Cr-_

1 )_= Cr-_((_-_0)_-(_-_o ).

We note that the error function ET(X, Y) is a harmonic function and attains its extrema on the

boundary ofT. By calculus, we can show that the local extrema along edge (xi, .Yi), ($j, Yj) is

attained at the midpoint with value

-2 ' 2 - 8 - "

The details for finding the optimal-shape triangle ill this case are found ill [4]. The optimal-

shape triangle geometry that minimizes the efficiency ratio (Error/Area) is not unique. The

same maximum error is attained at the mid-point of each edge.

From the above two results on optimal-shape triangles, we see that a regular mesh of optimal-

shape triangles over the isotropic (k, O)-space corresponds to an optimally efficient mesh over

the original (x,y)-space. Every triangle attains the same maximum error; moreover, these

triangles cover the most area for the error attained and so are optimally efficient. Since the

linear transformation S is basically a rotation followed by a rescaling of coordinate axes, we

find the areas of triangles are scaled accordingly. Hence the inverse transformation S -1 , maps

this regular mesh to produce an optimally efficient mesh in the original (x, y)-space.

2.3. Differential Geometry

The constant Hessian Matrix H in (1) determines the coordinate transformation S that maps

[_, _)]t= SIx, y]t so that

[dx,dy]g[dx,dy]'- (dk 2 + edit2).

More generally, we may view H as a metric tensor for measuring the interpolation ,.rror

[dz,dy]H[dz,dy] t. Thus we need to determine (k(x,y),_(x,y)), a continuous transformation

that satisfies [dx, dy]H[dx, dy] t = dk 2 + edit _. The conditions for finding the anisotropic coordi-

nate transformation (5:(z, y), _)(z, y)) are given by a classical result in differential geometry for

characterizing a "flat" space [9]: that the Riemann-Christoffel tensor formed from the metric

tensor H is identically zero. In our case, a sufficient condition is for H = {hij} to satisfy

Klhll + K2h12 + K3h..2 = 0
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for some constants K1, K2, K3. The coordinate transformation (_.(x, y), _l(x, y)) may be found

by solving an initial value ordinary differential equation. Again, the inverse transformation

. (x(_, .0), y(x, y)) maps a regular mesh of optimal shaped triangles to yield an optimally efficient

mesh.

v

3. Quadrilateral Patch

In this section, we derive the error term for bilinear approximation of a quadratic data function.

We first consider a rectangle (zi,yi), i = 1...4 with sides aligned along the coordinate axes.

To evaluate the bilinear interpolant pl(x, y), we compute

x -- xi x-- x2 Y- Yl Y- Y2

P = x4-xl x3--x2 q-- Y4-Yl Y3-Y2

pt(x,y) -" (1--p)[qf4-t-(1-q)fl].p[qf3.(1-q)f2], wherefi : f(zi,yi).

Note the existence of xy terms from pq and pl(x, y) is linear on each side. The linear function

is determined by the function values at the corresponding vertices.

For a general quadrilateral, it is impossible to find a polynomial in x and y which reduces

to an arbitrary linear form along the four sides [5]. tlence simply solving for the undetermined

coefficients in pl(x, y) = po+plx+puy+pl_.:r.y as done for triangles by imposing the interpolation

condition

i.

1 x_ Y2 x_y_ Pl fs

1 x3 Y3 x3Y3 P2 f3

1 z4 Y,a z,ty4 Pl_ f4

might fail with a singular matrix.

To overcome this limitation, we shall use the isoparametric formulation (commonly used in

finite element analysis) by considering basis functions over the normalized (p, q)-space over the

unit square, 0 < p, q < 1. Basis functions are

¢l(p,q)-(1-p)(1-q), ¢2(p,q)-p(1-q), (7)
¢3(V, q) - vq, ¢4(P, q) - (1 - p)q

Note that ¢1(0, 0) -- 1, ¢1(P, q) = 0 at the other corners and the basis functions sum to one,
i--4 ¢,(p,q)= 1.
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Mapping from (p, q) to the original (z, y)-space is by

z(p,q) - xl¢l(p,q) + z2¢2(P,q)+ za¢3(P,q) + z4dP4(P,q) (8) ,

y(p,q) "- Yl¢l(P,q) + Y2¢2(P,q)+ Y3¢3(P,q) + Y4¢4(P,q)

that maps vertex (0,0) to (Zl,yl), vertex (1,0) to (z2, y_), (1,1) to (z3, y3) and (0,1) to

(z4, y4). The bilinear interpolant (over (p, q)-space) is given by

pt(z(p,q),y(p,q)) = fl¢l(p,q) + f2¢_(p,q) + faCa(p,q) + f4¢4(p,q), fl = f(zl,yi)

3.1. Restriction to Parallelogram

The isoparametric formulation maps from the canonical (p, q)-space to tile original (z, y)-space.

For a general quadrilateral patch, it may be difficult to generate the inverse transformation

(p(z,y),q(z,y)) from the original (z,y) space to the canonical (p,q) space. From (7) and (8),

_.vehave

x(p,q) = (xl-z_+za--z4) q+(z2--xl)p+(z4-zl)q+zl ,

and a similar expression for y(p, q). The isoparametric map is an affine transformation if and

ifl(zl - z2 + z3 - z4) =0land ](Yl - Y_ + Ya- V4) =01, i.e. the quadrilateral patch hasonly
i

parallel sides. Let the parallel sides be

try Y2 -- Yl 93 -- Y4 Vy Y4 -- Yl Y3 -- Y2

then (8) simplifies to the affine tranfformation

x(p, q) u_ v_ P + . (9)
y(p,q) uy vy q Yl

The affine transformation is well defined since the area of the quadrilateral patch is

Since we intend to apply coordinate transformation to a regular" quadrilateral mesh in the

generation of asymptotically optimal meshes, the consideration of only parallelograms is not a

severe restriction. .
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4. Optimal Shape

In the following, we shall determine the best parallelogram shape that minimizes the interpo-
*

lation error. The error function for quadratic interpolation is

EQ(p,q) -" pt(x(p,q),y(p,q))- f(x(p,q),y(p,q))
1

= eQ-_(#u,dp 2+#u2dq s) , (10)

where [Pc,qc]= [I/2,I/2],

I

,_.Q -- EQ(pc,qc)- _ (#ul "4"#US)

o0 "- EQ(pc,qc) = -_qEQ(pc,qc) (11)

#Ul = [u=,u,]H[u.,uy]t, #us= [vx,%]H[v_,vv]', .

For a convex function (det(H) > 0), #Ul and #us are positive, hence the maximum error is

attained at the center [pc, qc].

Under the aniso*ropic transformation, we have

[,_.,_,]' = S[u.,._]' [_. _]' = S[v.,v_]'
' ' (12)

-s L 2, #Us= v= + vy#Ul= ft_ + u v = -2 -2 = L'_

The area of the quadrilateral in isotropic space is

" A = fL=f_ - fiy_'x = L1Lssin(9) , (13)

where 8 is the angle at corner [_1,.01]. Since the anisotropic transformation S is a rotation

followed by a rescaling of coordinate axis (3),

s = v/_ 0 ]0 Q'

the area of quadrilateral over isotropic space is sqrt(IA1Asl)= sqrt(I det(n)l) times the area of

the quadrilateral over the original (x, y) space,

• .4 = A Ix/_A21=Ax/Idet(H)[.

Note that det(H) is intrinsic to the data function f(z, y).

A square (in any orientation) with L1 = Ls and sin(8) = 1 minimizes the efficiency ratio
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(Error/Area),

OCQ 1 Pl+P_ 1 L_+L_ 1
"-_ = 8 L1L_sin(O) = 8 L1L_sin(O) <- "4 '

and hence is of optimal shape.

If I(z, y) is saddle-shaped (det(H) < O) the error expression is still

1 1

EQ(p,q) = g(Pl + P2)- _(pldP 2 + p2dq _) .
;. ,

Under the anisotropic transformation S,

= =

Both pl and Ps vanish for

[fir,flu] = [L,L], [vx,v_] = [-L,L], (14)

which correspond to a square rotated by r/4. The above indicates an "exact fit" (EQ(p, q) = O)

if Pl = #2 = 0. This suggests bilinear approximation is a better interpolant than simple linear

interpolation and the simple quadratic model is inadequate to fully capture the error properties

in this case.

To summarize, a square over the isotropic space in any orientation is optimal for the elliptic

case, and a square rotated by _r/4 is optimal for the hyperbolic case.
:.

5. Comparison of quadrilaterals versus triangles

In this section, we apply the geometric interpretation of the maximum interpolation error over

the transformed isotropic space. We recall that over tile isotropic space and for a convez data

function (det(H) > 0), the maximum error (£T) for a triangle is attained at the center of its

circum-circle with OCT= R_/2, where R is radius of the circum-circle. The maximum error (OCQ)

for a parallelogram is attained at its centroid with OCQ= (L_ + L_)/8 where L1, L2 are lengths

of the sides.

Case 1. Consider the quadrilateral produced by merging two equilateral triangles of length

L (see Fig. 1). Radius of circumcircle of AABC is R = L/v3, thus

OCT = R2/2 = L2/6, OCQ(L2 + L2)/8 = L2/4 .

Thus OCQ> OCT, SO triangles are more accurate.
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Figure 1: Quadrilateral con,posed of two equilateral triangles.

Figure 2: Diagonal BD chosen to decompose quadrilateral.
J,
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An earlier work [3] has shown the optimal triangulation incidence is given by the Delaunay

triangulation over the isotropic space. If we consider the same quadrilateral with the "wrong"

decomposition with diagonal BD (see Fig. 2), the maximum error ABCD is attained at vertex

E with value _'T. Note vertex A is the center of circumcircle for ABCD with radius L. The

error attained at vertex E is

-" CT -- l(dx2 +
& d_ 2)

1

= 2)= 3LV8.

Thus _T = 3L2/8 > L2/4 = CO, and the quadrilateral is more accurate.

Figure 3: Decomposition of a square.

Case 2. Consider the triangulation produced by decomposing the optimal square configu-

ration for quadrilaterals (see Fig. 3). Radius of circumcircle is R = L/v/'2,

CQ = (L _ + L2)/s= L2/4' CT= R2/2= L_/4 .

Thus Co = CT.

In fact we can show a stronger result that the refined triangulation will always produce

better accuracy for approximating a convex function. Consider the parallelogram in Fig. 4

with LI = ]BC], L_ = IABI, [.ABC = 01 + 62 < 7r/2 and vertex O is center of circumcircle for
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• oe., 4

- L
D

''''°.. , , . . . . , .. e .. oOee'o'*e

Figure 4: Triangulating a general parallelogram.

AABC with radius R. By tile sine rule over AOBC and AOAB,

R L1 R _ L._
" sin(Ol"---"_= sin(Tr-= 201)' sin(#_) - sin(Tr- 20..)'

2Rcos(91) = LI, 2Rcos(#2) = L_ (15)

The error for this quadrilateral is

gQ = (L_ + L])/8

-  (cos2(O )- + cos2(O2)) by (15)

-- _T(COS2(01)+COS2(02)) .

Now 0 < 01 +0_ _<_r/2, and 1 < (cos_(01) + cos2(0_)) < 2, so that £T <_£Q <_ 2£T.

From the above, (the area of equilateral triangle .AT is vf3L2/4), we obtain an efficiency

ratio of
• £T L2/6- =2v/9 0385

.AT vf3L2/4

, Area of optimal square configuration is L_, thus the ratio is 1/4 = 0.25. Hence for an element
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by element comparison, the quadrilateral is more efficient. In other words, if we were to

approximate a function with either N quadrilaterals or N triangles, quadrilaterals are preferred.

On the other hand, triangles may have advantages over quadrilaterals for finite element

computations. Matrix assembly and the solution of the sparse linear equations are commonly

the most intensive calculations. If we decompose a quadrilateral mesh into triangles as done

above, no extra nodes are introduced. There will be twice as many triangular elements but

the resulting assembled matrix has the identical sparsity pattern and the same number of

unknowns. Matrix assembly with a general convex quadrilateral usually requires multiple costly

evaluations of the Jacobian distortion in numerical quadrature over the isoparametric space,

whereas only one preassembled element table is repeatedly reused for ali triangles. Thus matrix

assembly with triangles may be competitive with assembly with general quadrilaterals. In other

words, if computation with N quadrilaterals is as costly as using 2N triangles, then triangles

are preferred. The actual computation costs may depend on the implementation of the finite

element code.

Case 3. Consider the approximation of a saddle-shaped function by a square (unrotated)

over the isotropic space. The error formula gives

1 1 1 1
EQ(pc + dp, qc + dq) = "_(_I + I-t2)- _(pldp _ + i.t2dq2), (pc,qc) = (z' 2)

1(dp2L2 _ dq2L2) ' where tr1 L2= -_ = =-tr2, . (16)

The maximum error is attained at the mid-point of each edge. Let (dp, dq) = (1/2, 0), then

£Q = L2/8. This gives an efficiency ratio of 1/8 = 0.125. One optimal triangle shape for

saddle-shaped function is the triangle with vertices at (0, 0), (L, 0), (1/2L, V_/2L) over the

isotropic space [2], which has area v_L2/4. The maximum error is L2/8 and attained at the

mid-point of each edge. This gives an efficiency ratio of 1/(2V/5) _ 0.224. Thus a mesh with N

quadrilaterals should yield roughly the same accuracy as 2N triangles. This is verified in the

numerical experiments.

6. Extensions to three dimensions

The previous results for quadrilaterals easily extend to trilinear interpolation over hexahedral

bricks in three dimensions. Again we consider the isoparametric formulation,

i=8 i=8

z(p,q,r) = E zi¢i(p,q,r), pt(P,q,r)=_'_fi¢i(p,q,r). (17) .
i=1 i=1

Note that a deformed brick may not have planar faces since the first three points of a face de-

termine a plane and the fourth corner vertex may not in general lie on this plane. Isoparametric
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coordinate mapping (x(p, q, r), y(p, q, r), z(p, q, r)) in (17) is affine if the hexahedral brick has

parallel sides (and hence planar faces). Let the parallel sides be [u_, Uy, uz], [v_, vy, vz], and

• [wx, wy, wz]. The error term has the familiar fo,'m

Eo(p, q, r) - EQ(p¢ + dp, q¢ -I-dq, rc -i- dr)

-- pt(p,q,r)- f(x(p,q,r),y(p,q,r),z(p,q,r))
1

= CO - _(pldp 2 + la_dq_ +/_3dr 2) (18)

where

1

[Pc,qc, rc] = [1/2,1/2,1/2], oeQ= EQ(pc,qc, rc) = _(/J1 +/_2 +/Ja),

0 -- Eo(pc,qc, rc) = EQ(pc,qc, rc) = -_rEQ(pc,qc, rt). (19)

., = [=_,=_,u_]U[=_,=_,uz]', .2 =[v_,v_,.zlH[._,._,.z]',

For a convex data function (det(H) > 0), maximum error is attained at the center [Pc, qc, rc]

and the optimal shape is a cube.

For a saddle-shaped function (det(H) < 0),

-2 - -2 -2 _ tv_z. !_1 = u_+u_-_, IJ2=v_,+vy

-2 -2 -- _2,_3 = wx + wy

over the isotropic space. The hexahedral with coordinates

[_,_,,_] = [L,0,LI, [_,_,,_1= [-L/_,-v_L/_,LI,
[a,_,_, _1 = I-L/2,v_/2,L] (20)

has Pl = P2 =/_3 = 0 with maximal volume of 3vf3/2L 3 ,_ 2.598L 3, hence is of optimal shape.

Direct compariso, with tetrahedrai meshes as performed in §5 is more complicated since

the optimal regular tetrahedron cannot tile 3D-space, and a cube can be decomposed in several

ways into 5 or 6 tetrahedra. However, it is still relatively easy to show that the subdivision of a

cube into 5 tetrahedra over the isotropic space yields the same maximum error in approximating

a convex function.

tl
i !
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7. Numerical Experiments

In this section, we demonstrate that a well designed mesh for bilinear interpolation of a saddle-

shaped function may give substantial improvements over a triangular mesh. The examples are

taken from [2]. The procedure in [2] for generating optimal triangular meshes is modified to

generate optimal quadrilateral meshes. Only elements entirely interior to the unit square are

generated to simplify the presentation.

Example 1. Exponential increase along x-axis,

f(x, y) -- exp(5x) sin(5y) .

Example 2. A near singularity at (x0, Y0) "- (0.5,-0.2),

(x - xo)2 - (Y- Yo_:f(x,y) - ((x - xo) 2 + (y- Yo )2 •

Example 3. A more severe near singularity,

- + - yo) )- - - yo)I(_,y) ((x- x0)2+ (y_ y0)2p

Example 4. Example 4 is Example 2 modified by a rescaling of y-axis,

f(x,y) = (x- ::0)2- (v_y - yo)_
((x- _0)2+ (vff-6y-y0)2)2

The results of the experiments are summarized in Figures 5-8 and Tables 1-4. Mesh I is

generated by optimal squares over the isotropic space. Mesh II is generated by optimal squares

with a _r/4 rotation over the isotropic space to capture the "super-convergence" behavior.

Both meshes have similar element size, element shape and density and differ only in their

orientation. The meshes are displayed in Figures 9-16. Results for optimal triangular meshes

produced in [2] are included for comparison. Mesh I produces an almost level error profile.

This indicates an equilibration of interpolation error evenly over all elements. Error profile

for Mesh I is comparable to an optimal triangular mesh with about twice as many triangles.

Mesh II displays the "super-convergence" behavior by consistently achieving an error 10-20

times smaller than Mesh I.

Table 5 shows the effect of generating finer meshes over the isotropic space. If we consider

the median error, Mesh I shows the expected O(h 2) convegence. From the efficiency ratio

(Error/Area), we can also predict the decrease oferror is proportional to the number of elements.

Results in Mesh II clearly display the higher than O(h _) "super-convergence" behavior.

It can be shown [1] the coordinate lines in the isotropic space are mapped to eigen-trajectories
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Error Profile
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Figure 5" Error profiles for Example 1.

Table 1: Summary of results for Example 1.
u

I1 Minimum Media|_ 90 Maximum Number oferror error percentile error elements

Triangle 5.27E-2 5.39E-2 5.50E-2 5.74E-2 2923
Mesh I 5.75E-2 5.76B-2 5.78E-2 5.79E--2 1488
Mesh II 2.29E-4 4.62E-4 8.30E-4 3.04E-3 1480

of the Hessian matrix. Thus as the curved element boundaries are poorly approximated by

straight edges, the resulting quadrilateral will no longer have parallel sides (Fig. 13, 14). The

simple analysis in §3 for parallelograms may not be adequate and this leads to an anomalous

increase in the error displayed ill Example 3 of a severe singularity (Fig. 7).

8. Summary

We have used a simple locally quadratic model to develop a geometric interpretation of theQ

interpolation error. We determine the optimal element shapes and their efficiency ratio (Er-

ror/Area) over the isotropic space. The analysis shows for approximating convex data functions,
G

bilinear quadrilaterals are more efficient. However, for finite element computations, triangles

I
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Error Profile
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Figure 7: Error profiles for Example 2.



- 17-

Error Profile
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Figure 8: Error profiles for Example 3.

. Table 2: Summary of results for Example 2.

II Minimum Median 90 Maximum Number of

i! error error percentile error elements
........

Triangle 1.87E-2 2.01E-2 2.16E-2 2.57E-2 1072
Mesh I 2.13E-2 2.15E-2 2.17E-2 2.21E-2 550
Mesh II 2.82E-4 4.69E-4 7.33E-4 1.38F_,-3 546

Table 3: Summary of results for Example 3.

l] Minimum Median 90 Maximum Numberoferror error percentile error elements
, .....

• Triangle 1.02 1.16 1.32 1.70 650
Mesh I 1.11 1.14 1.16 1.23 349
Mesh II 1.80E-2 3.94E-2 6.75E-2 3.16E-1 352

....
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Table 4: Summary of results for Example 4.

li Minimum Median 90 Maximum Numberof

II error error percentile error elements

Triangle 2.91E-2 3.68E-2 4.61E-2 6.46E-2 608
Mesh I 3.81E-2 4.00E-2 4.24E-2 4.61E-2 284
Mesh II 9.36E-4 1.76E-3 3.04E-3 6.13E-3 286

Table 5: Convergence test on Example 3.

11Minimum Median 90 Maximum Numberoferror error percentile error elements
.........

Mesh I ll.IE-1 11.4E-1 ll.6E-1 12.3E-1 349
Mesh I 3.22E-1 3.23E-1 3.24E-1 3.26E-1 1223
Mesh I 8.03E-2 8.07E-2 8.12E-2 8.23E-2 5063
Mesh I 1.99E-2 2.02E-2 2.04E-2 2.08E-2 20603

.....

Mesh II 1.80E-2 3.94E-2 6.75E-2 3.16E-1 352
Mesh II 2.35E-3 4.22E-3 9.16E-3 6.35E-2 1260
Mesh II 3.10E-4 7.20E-4 1.29E-3 9.41E-3 5244
Mesh II 5.19E-5 1.79E-4 3.78E-4 1.24E-3 21389

Figure 9: Mesh I for Example 1.
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Figure 10: Mesh II for Example 1.

Figure 11: Mesh I for Example 2.
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Figure 12: Mesh II for Example 2.

o

Figure 13: Mesh I for Example 3.
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Figure 14: Mesh II for Example 3.

I

Figure 15: Mesh I for Example 4.
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Figure 16: Mesh II for Example 4.

may have a slight advantage. For approximating saddle-shaped data functions, a well designed

quadrilateral mesh may show substantial improvements over a triangular mesh. Numerical ex-

periments 3how good agreemcnt with the analysis. The experiments also show grid orientation

may have a significant effect on approximation accuracy.

I
|



- 23 -

9. References

[1] E. F. D'AZEVEDO, On Optimal Triangulation for Piecewise Linear Approzimation, PhD

thesis, Department of Computer Science, University of Waterloo, Waterloo, Ontario,

Canada, 1989.
ii

[2] _, Optimal triangular mesh generation by coordinate transformation, SIAM J. Set.

Statist. Comput., 12 (1991), pp. 755-786.

[3] E. F. D'AZEvEDo AND R. B. SIMPSON, On optimal interpolation incidences, SIAM J. Sci.

Statist. Comput., 10 (1989), pp. 1063-1075.

[4] _, On optimal triangular meshes for minimizing the gradient error, Numer. Math., 59

(1991), pp. 321-348.

[5] A. R. MITCHELL AND R. WAIT, The Finite Element Methods in Partial Differential Equa-

tions, Wiley-Interscience Publication, 1977.

[6] E. NADLER, Piecewise linear best l_ approzimation on triangulations, in Approximation

Theory V, C. K. Chui, L. L. Schumaker, and J. D. Ward, eds., Boston, 1986, Academic

Press, pp. 499-502.

[7] J. PERAIRE, M. VAHDATI, K. MORGAN, AND O. C. ZIENKIEWICS, Adaptive remeshing

,, for compressible flow computations, J. Comput. Phys., 72 (1987), pp. 449-466.

[8] R.. B. SIMPSON, Anisotropic mesh transformations and optimal error control, Applied Nu-
,i

merical Mathematics, (1992). Speical issue as the proceedings of the US Army sponsored

Workshop for Adaptive Methods for Partial Differential Equations, Rensselaer Polytechnical

Institute (accepted).

[9] I. S. SOKOLNIKOFF, Tensor Analysis, Theory and Applications to Geometry and Mechanics

of Continua, John Wiley, New York, second cd., 1964.



- 25 -

ORNL/TM-12388

INTERNAL DISTRIBUTION

¢

1. V. Alexiades 23-27. R. C. Ward

2. B. R. Appleton 28. D. W. Walker

3-4. T. S. Darland 29. Central Research Library
5-9. E. F. D'Azevedo 30. ORNL Patent Office

10. J. B. Drake 31. K-25 Applied Technology
11. R. E. Flanery Library
12. C. E. Oliver 32. Y-12 Technical Library

13-17. S. A. Raby 33. Laboratory Records - RC
18-22. R. F. Sincovec 34-35. Laboratory Records Department

EXTERNAL DISTRIBUTION

30. Christopher R. Anderson, Department of Mathematics, University of California,
Los Angeles, CA 90024

37. I. Babuska, Department of Mathematics and the Institute for Physical Science
and Technology, University of Maryland, College Park, MD 20742

38. David C. Bader, Atmospheric and Climate Research Division, Office of Health and
Environmental Research, Office of Energy Research, ER-?6, U.S. Department of

° Energy, Washington, DC 20585

39. David H. Bailey, NASA Ames, Mail Stop 258-5, NASA Ames Research Center,
Moffet Field, CA 94035

40. Dr. R. E. Bank, University of California/San Diego, Department of Mathematics,
C-012, La Jolla, CA 92093

41. Edward H. Barsis, Computer Science and Mathematics, P. O. Box 5800, Sandia
National Laboratory, Albuquerque, NM 87185

42. Colin Bennett, Department of Mathematics, University of South Carolina, Columbia,
SC 29208

43. Dominique Bennett, CERFACS, 42 Avenue Gustave Coriolis, 31057 Toulouse
Cedex, FRANCE

44. Marsha J. Berger, Courant Institute of Mathematical Sciences, 251 Mercer Street,
New York, NY 10012

45. Mike Berry, Department of Computer Science, University of Tennessee, 107 Ayres
° Hall, Knoxville, TN 37996-1301

46. Ake Bjorck, Department of Mathematics, Linkoping University, S-581 83 Linkop-
• ing, Sweden



- 26-

47. John II. Bolstad, Lawrence Livermore National Laboratory, L-16, P. O. Box 808,
Livermore, CA 94550

48. George Bourianoff, Superconducting Super Collider Laboratory, 2550 Beckleymeade
Avenue, Suite 260, Dallas, TX 75237-3946

49. Roger W. Brockett, Wang Professor of EE and CS, Division of Applied Sciences,
Harvard University, Cambridge, MA 02138

50. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

51. Captain Edward A. Carmona, Parallel Computing Research Group, U. S. Air
Force Weapons Laboratory, Kirtland AFB, NM 87117

52. Peter Campbell, Environmental Science Division, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, IL 60439

53. Dr. Jose Castillo, Department of Mathematical Sciences, San Diego State Univer-
sity, San Diego, CA 92182

54. John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical
Sciences, Office of Energy Research, U.S. Department of Energy, Washington, DC
20585

55. Professor I-Liang Chem, Department of Mathematics, National Taiwan University,
Taipei, Taiwan, R.O.C.

56. Ray Cline, Sandia National Laboratories, Livermore, CA 94550

57. Alexandre Chorin, Mathematics Department, Lawrence Berkeley Laboratory, Berke- °
Icy, CA 94720

58. James Corones, Ames Laboratory, Iowa State University, Ames, IA 50011

59. Jean Cot_, RPN, 2121 Transcanada Highway, Suite 508, Dorval, Quebec HgP 1J3,
CANADA

60. William Dannevik, Lawrence Livermore National Laboratory, P. O. Box 808, L-16,
Livermore, CA 94550

61. John J. Doming, Department of Nuclear Engineering Physics, Thornton Hall,
McCormick Road, University of Virginia, Charlottesville, VA 22901

62. Donald J. Dudziak, Department of Nuclear Engineering, 110B Burlington Engi-
neering Labs, North Carolina State University, Raleigh, NC 27695-7909

63. Iain S. Duff, Atlas Centre, Rutherford Appleton Laboratory, Didcot, Oxon OXll
0QX, England

64. John Dukowicz, Los Alamos National Laboratory, Group T-3, Los Alamos, NM
87545

65. Richard E. Ewing, Department of Mathematics, Texas A&M University, College
Station, TX 77843

66. Gerald Farin, Department of Computer Science, Arizona State University, Temple,
AZ 85287



- 27 -

67. Joseph Flaherty, Department of Computer Science, Rensselaer Polytechnic Insti-
tute, Troy, New York 12180-3590

68. Ian Foster, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Argonne, IL 60439

" 69. Geoffrey C. Fox, NPAC, 111 College Place, Syracuse University, Syracuse, NY
13244-4100

70. Dr. R. Francis, Div. of Information Technology, CSIRO, 723 Swanston Street,
Carlton, Vic. 3053, AUSTRALIA

71. Paul O. Frederickson, ACL, MS B287, Los Alamos National Laboratory, Los
Alamos, NM 87545

72. J. Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, CANADA N2L 3G1

73. James Glimm, Department of Mathematics, State University of New York, Stony
Brook, NY 11794

74. Gene Golub, Computer Science Department, Stanford University, Stanford, CA
94305

75. John Gustafson, 236 Wilhelm, Ames Laboratory, Iowa State University, Ames, IA
50011

76. Phil Gresho, Lawrence Livermore National Laboratory, L-262, P. O. Box 808,
Livermore, CA 94550

77. William D. Gropp, Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

, 78. Eric Grosse, AT&T Bell Labs 2T-504, Murray Hill, NJ 07974

79. James J. Hack, National Center for Atmospheric Research, P. O. Box 3000, Boul-
der, CO 80307

80. Michael T. Heath, Center for Supercomputing Research and Development, 305
Talbot Laboratory, University of Illinois, 104 South Wright Street, Urbana, IL
61801-2932

81. Michael Henderson, Los Alamos National Laboratory, Group T-3, Los Alamos,
NM 87545

82. Dr. Fred Howes, Office of Scientific Computing, ER-7, Applied Mathematical
Sciences, Office of Energy Research, U. S. Department of Energy, Washington,
DC 2O585

83. Dr. Barry Joe, Department of Computer Science, University of Alberta, Edmon-
ton, Alberta, Canada T6G 2Hl

I

84. Dr. Gary Johnson, Office of Scientific Computing, ER-7, Applied Mathematical
Sciences, Office of Energy Research, U. S. Department of Energy, Washington,

, DC 20585

85. Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA
02142-1214



- 28-

86. J. Jortner, Sandia National Labs, Division 1424, P.O. Box 5800, Albuquerque,
NM 87185

87. J.R. Jump, ECE Dept., Rice University, P.O. Box 1892, Houston, TX 77251

88. Malvyn Kalos, Cornell Theory Center, Engineering and Theory Center Bldg.,
Cornell University, Ithaca, NY 14853-3901 "

89. Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Argonne, IL 60439

90. Alan H. Karp, IBM Scientific Center, 1530 Page Mill Road, Palo Alto, CA 94304

91. Kenneth Kennedy, Department of Computer Science, Rice University, P. O. Box
1892, Houston, Texas 77001

92. Tom Kitchens, ER-7, Applied Mathematical Sciences, Scientific Computing Staff,
Office of Energy Research, Office G-437 Germantown, Washington, DC 20585

93. Peter D. Lax, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012

94. James E. Leiss, Rt. 2, Box 142C, Broadway, VA 22815

95. Rich Loft, National Center for Atmospheric Research, P. O. Box 3000, Boulder,
CO 80307

96. Michael C. MacCracken, Lawrence Livermore National Laboratory, L-262, P. O.
Box 808, Livermore, CA 94550

97. Norman D. Mahnuth, Science Center, Rockwell International Corporation, 1049
Camino Dos Rios, P.O. Box 1085, Thousand Oaks, CA 91358

98. Robert Malone, C-DO/ACL, MS B287, Los Alamos National Laboratory, Los
Alamos, NM 87545

99. Len Margolin, Los Alamos National Laboratory, Los Alamos, NM 87545

100. Hal Marshall Laboratory for Scientific Computation, Rm. 271 Cooley Bid., Uni-
versity of Michigan, Ann Arbor, MI 48109-2104

101. Dr. Wayne Mastin, Department of Mathematics, Drawer A, Mississippi State
University, Mississippi State, Mississippi 39762

102. Frank McCabe, Department of Computing, Imperial College of Science and Tech-
nology, 180 Queens Gate, London SW7 2BZ, ENGLAND

103. James McGraw, Lawrence Livermore National Laboratory, L-306, P. O. Box 808,
Livermore, CA 94550

104. L. David Meeker, Mathematics Department, University of New Hampshire, Kings-
bury Hall, Durham, NH 03824 ,

105. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E.
California Blvd. Pasadena, CA 91125 w

106. Neville Moray, Department of Mechanical and Industrial Engineering, University
of Illinois, 1206 West Green Street, Urbana, IL 61801



- 29-

107. Dr. David Nelson, Director of Scientific Computing, ER-7, Applied Mathematical
Sciences Office of Energy Research U. S. Department of Energy Washington, DC

' 20585

108. V.E. Oberacker, Department of Physics, Vanderbilt University, Box 1807, Station
o B, Nashville, TN 37235

109. J. T. Oden, Texas Institute for Computational Mechanics, University of Texas at
Austin, Austin, Texas 78712

110. Joseph Oliger, Computer Science Department, Stanford University, Stanford, CA
94305

111. Robert O'Malley, Department of Mathematical Sciences, Rensselaer Polytechnic
Institute, Troy, NY 12180-3590

112. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

113. Ron Peierls, Applied Mathematical Department, Brookhaven National Labora-

tory, Upton, NY 11973

114. Richard Pelz, Dept. of Mechanical and Aerospace Engineering, Rutgers University,
Piscataway, NJ 08855-0909

115. Paul Pierce, Intei Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

116. Robert J. Plemmons, Departments of Mathematics and Computer Science, North
Carolina State University, Raleigh, NC 27650

117. Jesse Poore, Computer Science Department, University of Tennessee, Knoxville,

• TN 37996-1300

118. Andrew Priestley, Institute for Computational Fluid Dynamics, Reading Univer-
sity, Reading RG6 2AX, ENGLAND

119. Lee Riedinger, Director, The Science Alliance Program, University of Tennessee,
Knoxville, TN 37996

120. Patrick Roache, Ecodynamics Research Associates Inc., P.O. Box 8172, Albu-

querque, New Mexico 87198

121. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore National
Laboratory, Livermore, CA 94550

122. Ahmed Sameh, Department of Computer Science, 200 Union Street, S.E., Univer-
sity of Minnesota, Minneapolis, MN 55455

123. Dave Schneider, University of Illinois at Urbana-Champaign, Center for Supercom-

, puting Research and Development, 319E Talbot - 104 S. Wright Street Urbana,
IL 61801

124. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
' ton, OR 97006

I
I



- 30-

125. Mark Shephard, Department of Civil Engineering, Mechanical Engineering and
Rensselaer Design Research Center, Rensselaer Polytechnic Institute, Troy, New
York 12180-3590 '

126. Dr. Bruce Simpson, Department of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G 1

127. William C. Skamarock, 3973 Escuela Court, Boulder, CO 80301

128. Richard Smith, Los Alamos National Laboratory, Group T-3, Mail Stop B2316,
Los Alamos, NM 87545

129. Peter Smolarkiewicz, National Center for Atmospheric Research, MMM Group,
P. O. Box 3000, Boulder, CO 80307

130. Royce W. Soanes, Benet Laboratories, U.S. Army Armament Research, Develop-
ment and Engineering Center, Close Combat Armaments Center, Watervliet, New
York 12189

131. Stanly Steinberg, Department of Mathematical Statistics, University of New Mex-
ico, Albuquerque, New Mexico, 87131

132. Jurgen Steppeler, DWD, Frankfurterstr 135, 6050 Offenbach, WEST GERMANY

133. Rick Stevens, Mathematics and Computer Science Division, Argonne National

Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

134. Paul N. Swarztrauber, National Center for Atmospheric Research, P. O. Box 3000,
Boulder, CO 80307

135. Barna A. Szabo, Center for Computational Mechanics, Washington University, St.
Louis, Missouri 63130

136. Wei Pal Tang, Department of Computer Science, University of Waterloo, Water- *
loo, Ontario, Canada N2L 3G1

137. Harold Trease, Los Alamos National Laboratory, Mail Stop B257, Los Alamos,
NM 87545

138. Robert G. Voigt, National Science Foundation, Room 417, 1800 G Street N.W.,
Washington, DC, 20550

139. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P. O. Box
1892, Houston, TX 77251

140. Andrew B. White, Los Alamos National Laboratory, P. O. Box 1663, MS-265, Los
Alamos, NM 87545

141. David L. Williamson, National Center for Atmospheric Research, P. O. Box 3000,
Boulder, CO 80307

142. Samuel Yee, Air Force Geophysics Lab, Department LYP, Hancom AFB, Bedford,
MA 01731

143. O. C. Zienkiewics, Institute for Numerical Methods in Engineering, University 0
College of Swansea, Swansea, SA2 8PP, Wales, United Kingdom



-31 -

144. Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P. O. Box 2001, Oak Ridge, TN
37831-8600

145-146. Office of Scientific & Technical Information, P. O. Box 62, Oak Ridge, TN 37831



r -ml

+t - •




