
The Future Fast Fourier Transform? ∗

Alan Edelman † Peter McCorquodale ‡ Sivan Toledo §

Abstract

It seems likely that improvements in arithmetic speed will continue to outpace
advances in communications bandwidth. Furthermore, as more and more problems are
working on huge datasets, it is becoming increasingly likely that data will be distributed
across many processors because one processor does not have sufficient storage capacity.
For these reasons, we propose that an inexact DFT such as an approximate matrix-
vector approach based on singular values or a variation of the Dutt-Rokhlin fast-
multipole-based algorithm [9] may outperform any exact parallel FFT. The speedup
may be as large as a factor of three in situations where FFT run time is dominated by
communication. For the multipole idea we further propose that a method of “virtual
charges” may improve accuracy, and we provide an analysis of the singular values that
are needed for the approximate matrix-vector approaches.

1 Introduction

In future high-performance parallel computers, improvements in floating-point performance
are likely to continue to outpace improvements in communication bandwidth. Therefore
important algorithms for the future may trade off arithmetic for reduced communication.
Indeed, with the increasing popularity of networks of workstations and clusters of symmetric
multiprocessors, even on present machines it may be worthwhile to make this tradeoff.

Traditional research into algorithmic design for the Fast Fourier Transform focuses
on memory and cache management and organization. All such algorithms are in effect
variations of the original algorithm of Cooley and Tukey [7]. A few important variants
are the Stockham framework [5], the Bailey method [3], Swarztrauber’s method [13] and
the recent algorithm by Cormen and Nicol [6]. Also see Briggs and Henson [4], and Van
Loan [14].

In our distributed-memory model, we assume that the input and output vectors are
stored in natural order. In this model, the standard approach to the parallel FFT is known
as the “six-step framework” [14, pages 173–174], consisting of: (1) a global bit reversal or
shuffle, (2) local FFTs, (3) a global transpose, (4) multiplication by twiddle factors, (5)
local FFTs, (6) a global shuffle or bit reversal. The global shuffles in steps (1) and (6) each
require an amount of communication equivalent to the transpose in step (3). They may be
saved if the order is not important. The communication pattern is as indicated in Figure 1.

∗The first and second authors were supported by NSF grants 9501278-DMS and 9404326-CCR.
†Department of Mathematics Room 2-380, Massachusetts Institute of Technology, Cambridge, MA 02139-

4307, edelman@math.mit.edu, WWW page http://www-math.mit.edu/~edelman.
‡Department of Mathematics Room 2-333, Massachusetts Institute of Technology, Cambridge, MA 02139-

4307, petermc@math.mit.edu.
§Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304,

toledo@parc.xerox.com. The work was done while this author was at the IBM T.J. Watson Re-
search Center, Yorktown Heights, NY.

1

2

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

0
4
8

12
16
20
24
28

1
5
9

13
17
21
25
29

2
6

10
14
18
22
26
30

3
7

11
15
19
23
27
31

0
16
8

24
4

12
20

28

2
18
10
26
6

22
14
30

1
17
9

25
5

21
13
29

3
19
11
27
7

23
15
31

bit reversalcyclic to block

T
4

F
8

I
4

F
8

I

(6) (5) (4) (3) (2) (1)

Fig. 1. Communication pattern in parallel FFT of length 32 over 4 processors, using the six-

step framework based on the factorization F32 = (F4 ⊗ I8)T (I4 ⊗ F8)Π of equation (3) in section 4.

The step numbers are indicated at the bottom of the figure.

This paper presents a method which can save up to a factor of three in communication
cost, by using an approximate algorithm that essentially combines the three global
transposes into one. Accuracy can be extended to full machine precision with negligible
effect on communication complexity.

The main contributions of this work are:
• the proposal that these algorithms in the parallel context may in fact be faster than

the traditional algorithms;

• a mathematical analysis of the why these methods work in terms of singular values
and their connection to the prolate matrix;

• a portable prototype MPI code that demonstrates the accuracy of the algorithm;

• an improvement of the Dutt-Rokhlin algorithm [9] that our experiments show can
yield two additional digits of accuracy in the equispaced case.

2 Mathematical Insights

The operators that represent the relationship between the input on one processor and the
output on another processor are nearly rank-deficient, thus allowing for speedups on parallel
supercomputers.

The DFT of x ∈ Cn is y = Fnx, where

(Fn)jk = exp(−2πijk/n) (0 ≤ j, k ≤ n− 1).

The normalized matrix 1√
n
Fn is unitary.

Let Fn|p denote the top left m × m submatrix of the unitary matrix 1√
n
Fn, where

m = n/p is an integer. Then the singular values of Fn|p are at most 1. These singular values

3

have an interesting property closely linked to the eigenvalues of the prolate matrix [15], and
suggested by the plot in Figure 2:

0 64 128 192 256
0

0.2

0.4

0.6

0.8

1

Fig. 2. Singular values of F1024|4, computed with Matlab.

Theorem 2.1. For fixed p and 0 < ε < 1
2 , let Sn(a, b) represent the number of singular

values of Fn|p in the interval (a, b). Then asymptotically, with m = n/p:

Sn(0, ε) ∼ 1

p
m, Sn(ε, 1− ε) ∼ O(logn), and Sn(1− ε, 1) ∼ (1− 1

p
)m.

3 Algorithm 1: A Matrix-Vector Algorithm

Our first algorithm for the DFT involves matrix-vector multiplication by SVD matrices. In
the equation y = Fnx, if we write Fn as p2 blocks of size m = n/p and if p2 divides n, then




y(0 : m−1)
y(m : 2m−1)
...
y(n−m : n−1)




=
√
n




Fn|p DFn|p · · · Dp−1Fn|p
Fn|pD DFn|pD · · · Dp−1Fn|pD
...

...
...

Fn|pDp−1 DFn|pDp−1 · · · Dp−1Fn|pDp−1







x(0 : m−1)
x(m : 2m−1)
...
x(n−m : n−1)




(1)

where D = diag(1, η, η2, . . . , ηm−1) and η = exp(−2πi/p). Since the number of significant
singular values of Fn|p is asymptotically only m/p, this suggests the idea of using
compression to reduce communication.

The singular-value decomposition of Fn|p is written Fn|p = UΣV ∗,
where U and V are m×m unitary matrices, and Σ is a diagonal matrix of singular values.
Let Σk denote the matrix consisting of the first k rows of Σ, containing the k largest singular
values. The value of k depends on the accuracy desired, but for fixed accuracy and fixed
p, the results of the previous section tell us k = m/p+O(logm).

Let Uk be the first k columns of U . Then

Fn|p ≈ UkΣkV
∗.(2)

Our matrix-vector algorithm uses this approximation in equation (1).
The arithmetic complexity of the matrix-vector algorithm is 16mkp = 16m2 +

O(m logm) flops per processor. Communication consists of an all-to-all personalized
communication with each processor sending k scalars to each other processor. The total
number of scalars sent by each processor is (p− 1)k = m(1− 1/p) +O(logm).

The Fast Fourier Transform, by comparison, has each processor sending 3m(1 − 1/p)
scalars but uses only 5m lgn flops. The matrix-vector multiplication algorithm using the

4

SVD saves as much as a factor of 3 in communication at the cost of greater arithmetic. In
the next section, we show how a different algorithm using the fast multipole method can
reduce the arithmetic but maintain this saving in communication.

4 Algorithm 2: Fast Multipole Approach

The fast multipole algorithm is based on the work of Dutt and Rokhlin [9]. They compute
the DFT for nonequispaced points serially. We treat the equispaced case in parallel.

For parallel FFT computations on p processors, the standard “6-step framework” [14,
pages 173–174] is based on the radix-p splitting [14, eqn. 2.1.5], factoring

Fn = (Fp ⊗ Im)T (Ip ⊗ Fm)Π(3)

where again m = n/p and T is a diagonal matrix of twiddle factors,

T = diag(Im,Ω,Ω
2, . . . ,Ωp−1), Ω = diag(1, ω, ω2, . . . , ωm−1), ω = exp(−2πi/n),

and Π is a block-to-cyclic permutation.
Our algorithm uses the factorization Fn = (Ip ⊗ Fm)(Fp ⊗ Im)MΠ.

Using the fact that Ip ⊗ Fm and Fp ⊗ Im commute, we obtain

(Fp ⊗ Im)T (Ip ⊗ Fm)Π = Fn = (Fp ⊗ Im)(Ip ⊗ Fm)MΠ(4)

which gives

M = (Ip ⊗ Fm)−1T (Ip ⊗ Fm) = diag(Im, C
(1), . . . , C(p−1))(5)

where the matrices C(s) = (c
(s)
jk) have elements c

(s)
jk = ρ(s)[cot(πm(k − j + s

p)) + i], with

ρ(s) = 1
m exp(−iπs/p) sin(πs/p).

For fast multiplication by C(s), we can use the one-dimensional fast multipole method
of Dutt, Gu and Rokhlin [8]. We view each of these p− 1 transformations as a mapping of
m charges on a circle to values of the potential due to these charges, at points on the circle.

Dutt and Rokhlin [9] showed how the non-equispaced Fourier transform can be
computed using the fast multipole method. In this article, we are restricted to an equispaced
DFT but we use a different set of interpolating functions that offer greater accuracy in this
restricted case. We also compute it in parallel, using the method of Greengard and Gropp
[10] and Katzenelson [11].

The number of interpolation coefficients, t, must also be chosen high enough to obtain
sufficient accuracy. In general, t will depend on the size of the problem and the number of
particles in each box. Finite machine precision, however, will also provide an upper limit
on t beyond which improvements in accuracy are not obtained.

Dutt and Rokhlin [9] use Chebyshev polynomials to interpolate potentials. We use an
approximation by the potentials due to t “virtual charges” located at fixed positions within
each box. In practice, the virtual-charge approximation is found to be more accurate.

5

Figure 3 shows the maximum rela-
tive 2-norm error in computation of Fnx
as a function of the number of coeffi-
cients used in expansions. Results are
indicated for odd numbers only, because
the error for even t is actually greater
than that for t− 1.

The authors have also found that
when using double-precision arithmetic,
accuracy is not improved for increasing t
above 15, because of the effects of round-
off error. In fact, with t = 15 for vir-
tual charges or t = 17 for Chebyshev,
the computed maximum error for a prob-
lem of size 32K is less than the error of
3×10−13 that one obtains using random
data in Matlab.

7 9 11 13 15 17
E−14

E−12

E−10

E−08

E−06

E−04

Number of coefficients

E
rr

or

Virtual−charge interpolation

Chebyshev interpolation

Fig. 3. Maximum relative 2-norm er-
ror as a function of number of coefficients
used, with Chebyshev polynomial interpolation
(dashed line) and virtual-charge interpolation
(solid line). The problem size is n = 32768,
with p = 4 processors.

In the fast-multipole-based DFT algorithm, the total number of flops per processor is
bounded above by

n

p
[5 lgn+ (1− 1

p
)(10 + 55t)] + 12t2(2 lg p− 7)(p− 1).(6)

The total number of scalars sent by each processor is

(p− 1)[m/p+ 64 + t(4 lgm+ lg p− 29)].(7)

The number of messages required to be sent from each processor is at most 2p+ 5 lg p− 8.

5 Experimental Results

We have implemented both our new algorithm and a conventional high-performance parallel
FFT algorithm in order to assess the accuracy and performance of the new algorithm. We
use our implementation to show below that the new algorithm is accurate and that it can
outperform the performance of conventional FFT algorithms.

The experiments are intended to show that the performances of the two algorithms
are within a small factor of each other, and that the relative speed of the two algorithms
is determined by the communication-to-computation-rates ratio of the parallel computer
on which they are executed. When the ratio is high, the conventional algorithm is faster.
When the ratio is low, the new algorithm is faster. Our experiments are not intended to
show that either of our implementations is a state-of-the-art code that is better than other
parallel FFT codes. We do believe, however, that if both implementations are improved to
a state-of-the-art level, our new algorithm would still prove faster on machines with fast
processors and relatively slow communication network.

5.1 Performance Results

This section compares the performance of our implementations of the new algorithm and a
conventional high-performance FFT algorithm. Both algorithms are coded in Fortran 77.
We use a publicly available FFT package, FFTPACK [12], for local FFTs on individual
processors, and MPI for interprocessor communication, thereby obtaining portable software.

6

Experiments were conducted on an IBM SP2 parallel computer [2]. The machine was
configured with so-called thin nodes with 128 Mbytes of main memory. Thin nodes have a
66.7 MHz POWER2 processor [16], 64 Kbytes 4-way set associative level-1 data-cache, no
level-2 cache, and a 64-bit-wide main memory bus. They have smaller data paths between
the cache and the floating-point units than all other POWER2-based SP2 nodes.

The computation-to-communication balance of the SP2 can be summarized as follows.
The peak floating-point performance of POWER2-based nodes is 266 million operations
per seconds (Mflops). While many dense matrix operations run on these nodes at close to
peak performance [1], FFT codes run at lower rates. Large power-of-two one-dimensional
FFTs from FFTPACK run at 20–30 Mflops, and similar routines from IBM’s Engineering
and Scientific Subroutine Library (ESSL) run at 75–100 Mflops.

Table 1

A comparison of the performance of the two algorithms on an SP2 parallel computer using three

communication mechanisms. The table compares the running time TC of a conventional parallel

FFT with the running time TN of the new approximate DFT algorithm. Running times are in

seconds. The three communication mechanisms that were used are user-space communication over

the High-Performance Switch (US-HPS, 41 Mbytes/sec per node), internet protocol over the High-

Performance Switch (IP-HPS, 31 Mbytes/sec per node), and internet protocol over ethernet (IP-EN,

1.25 Mbytes/sec for all nodes combined). The last two rows give the ratios of the actual timings to

what one would expect from equation (8) for TC , or (9) for TN .

US-HPS IP-HPS IP-EN
p n TC TN TC TN TC TN

2 32768 0.113 0.199 0.164 0.219 0.769 0.443
65536 0.220 0.399 0.301 0.432 1.526 0.857

131072 0.471 0.833 0.633 0.888 3.083 1.725
262144 1.043 1.761 1.354 1.869 6.250 3.535
524288 2.545 3.987 3.154 4.197 12.976 7.479

4 32768 0.059 0.128 0.109 0.152 1.213 0.602
65536 0.116 0.268 0.199 0.302 2.368 1.198

131072 0.220 0.563 0.355 0.614 5.928 2.528
262144 0.469 1.171 0.719 1.264 11.474 4.902
524288 1.033 2.441 1.504 2.605 18.540 8.726

1048576 2.608 5.355 3.540 5.778 37.020 17.000
8 32768 0.031 0.077 0.061 0.101 1.708 1.263

65536 0.070 0.150 0.114 0.179 3.166 2.117
131072 0.140 0.296 0.266 0.358 7.225 3.196
262144 0.265 0.593 0.446 0.681 12.983 5.691
524288 0.556 1.288 0.866 1.410 22.165 10.097

1048576 1.172 2.704 1.770 2.924 42.093 17.827
2097152 2.823 5.926 3.926 6.320 85.428 33.783

min ratio 5.503 4.984 3.482 4.597 1.193 1.356
max ratio 10.060 6.890 5.405 6.087 1.639 1.918

Our results are summarized in Table 1 using t = 16 coefficients. We see that the
conventional algorithm is faster with the two faster communication mechanisms, and that
the new algorithm is faster with the slowest communication mechanism, IP over ethernet.
The absolute running times using ethernet are very slow. Ethernet is also the only
communication mechanism that does not allow additional processors to reduce the absolute
running times, since it is a broadcast mechanism in which the total bandwidth does not grow

7

with the number of processors. The High-Performance Switch allows additional processors
to decrease the absolute running times of both algorithms.

With a flop rate of FR (in flops per second) and a communications bandwidth of BW
(in bytes per second), the times we would expect are:

TC = [5
n

p
lgn+ 6

n

p
]/FR + [3

n

p
(1− 1

p
)] · (16 bytes)/BW(8)

TN = [5
n

p
lg
n

p
+ 890

n

p
(1− 1

p
)]/FR + [(p− 1)(

n

p2
+ 64 lgn− 48 lg p− 400)] · (16 bytes)/BW(9)

The last two rows of Table 1 show the minimum and maximum ratio of the actual times
recorded to the times expected with FR = 266 Mflops and the maximum bandwidth for
the particular communication mechanism.

5.2 Extrapolation to Other Machines

We saw that with Ethernet interconnect, our algorithm outperforms a conventional FFT.
While Ethernet is not an appropriate communication medium for high-performance scien-
tific computing, high-performance machines with similar communication-to-computation-
rates ratio do exist and are likely to be popular platforms in the future.

Consider a cluster of symmetric multiprocessors connected with a fast commodity
network. Sun Ultra Enterprise servers with 8 UltraSparc processors each, connected by an
ATM switch are an example. The peak floating-point performance of each node is about
2.5 Gflops. Measurements by Bobby Blumofe with Sun Sparc workstations connected by a
Fore ATM switch have shown that the application-to-application communication bandwidth
of the switch is about 5 Mbytes per second per node in one direction (the nominal peak
bandwidth of this network is 155 Mbits per second). Even if the network can support
5 Mbytes/sec in both directions, the communication-to-computation-rates ratio is only
0.002 bytes/flop.

The ratio in our SP2 experiments with ethernet is about 0.0022 bytes/flop when we
use 2 nodes, 0.0010 with 4 nodes, and 0.0005 with 8 nodes. The peak performance of
each node is 266 Mflops and the measured communication bandwidths are about 580, 270,
and 132 Kbytes per second per node with 2, 4, and 8 nodes. Since the new algorithm
outperformed the conventional FFT by a large margin even on two processors, when the
ratio is 0.0022 bytes/flop, it seems safe to predict that the new algorithm would outperform
a conventional FFT on the above-mentioned clusters whose ratios are even lower.

If we assume that tuning both algorithms would improve the performance of their local
computations by a factor of 3, say, then the new algorithm would outperform a conventional
FFT even if the networks of the clusters improved by a similar factor. This assumption is
supported by the fact that a tuned high-performance local FFT routine (in ESSL) is about
3.75 times faster than the publicly available package that we used (FFTPACK).

6 Conclusions

The results of our experiments on the SP2 have shown that when the communication-to-
computation-rates ratio is low, the new algorithm outperforms a conventional parallel FFT
by more than a factor of 2. Quantitative performance extrapolation indicates that the new
algorithm would also be faster on state-of-the art clusters of symmetric multiprocessors.

The new algorithm is faster when communication dominates the running time of
conventional parallel FFTs. When communication is so expensive, both conventional and
the new algorithms are not likely to be very efficient when compared to a uniprocessor FFT.

8

That is, their speedups are likely to be modest. There are at least two reasons to believe
that the new algorithm would prove itself useful even when speedups are modest. First, in
many applications the main motivation to use parallel machines is the availability of large
memories, and not necessarily parallel speedups. In other words, it may be necessary to
compute FFTs on multiple nodes because the data does not fit within the main memory of
one node. Second, an FFT with a small or no speedup can be a part of a larger application
which exhibits a good overall speedup. The application might include, for example, FFTs
as well as grid computations, which require less communication per floating-point operation
than the FFTs. In both cases, accelerating the parallel FFTs contributes to the performance
of the application, whereas switching to a single-node FFT is not a viable option.

References

[1] R. C. Agarwal, F. G. Gustavson, and M. Zubair, Exploiting functional parallelism of POWER2
to design high-performance numerical algorithms, IBM J. Res. Dev., 38 (1994), pp. 563–576.

[2] T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M. Dias, and M. Snir, SP2 system
architecture, IBM Systems Journal, 34 (1995), pp. 152–184.

[3] D. H. Bailey, FFTs in external or hierarchical memory, Journal of Supercomputing, 4 (1990),
pp. 23–35.

[4] W. L. Briggs and V. E. Henson, The DFT: an owner’s manual for the Discrete Fourier
Transform, SIAM, Philadelphia, 1995.

[5] W. T. Cochrane, J. W. Cooley, J. W. Favin, D. L. Helms, R. A. Kaenel, W. W. Lang,
G. C. Maling, D. E. Nelson, C. M. Rader, and P. D. Welch, What is the Fast Fourier
Transform?, IEEE Trans. Audio and Electroacoustics, AU-15 (1967), pp. 45–55.

[6] T. H. Cormen and D. M. Nicol, Performing Out-of-Core FFTs on Parallel Disk Systems, Tech.
Report PCS-TR96-294, Dartmouth College, 1996.

[7] J. W. Cooley and J. W. Tukey, An Algorithm for the Machine Calculation of Complex Fourier
Series, Math. Comput., 19 (1965), pp. 297–301.

[8] A. Dutt, M. Gu, and V. Rokhlin, Fast algorithms for polynomial interpolation, integration and
differentiation, Research Report YALEU/DCS/RR-977, Yale University, 1993.

[9] A. Dutt and V. Rokhlin, Fast Fourier transforms for nonequispaced data, II, Applied and
Computational Harmonic Analysis, 2 (1995), pp. 85–100.

[10] L. Greengard and W. D. Gropp, A parallel version of the fast multipole method, Computers
Math. Applic., 20 (1990), pp. 63–71.

[11] J. Katzenelson Computational structure of the N-body problem, SIAM J. Sci. Stat. Comput.,
10 (1989), pp. 787–815.

[12] P. N. Swarztrauber, Vectorizing the FFT, in Parallel Computations, Academic Press, New
York, 1982.

[13] P. N. Swarztrauber, Multiprocessor FFTs, Parallel Computing, 5 (1987), pp. 197–210.
[14] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, Philadelphia,

1992.
[15] J. M. Varah, The Prolate Matrix, Lin. Alg. Appl., 187 (1993), pp. 269–278.
[16] S. W. White and S. Dhawan, POWER2: next generation of the RISC System/6000 family,

IBM J. Res. Dev., 38 (1994), pp. 493–502.

	TOC:

