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Abstract. In this paper we study the problem of two-dimensional adaptive mesh generation
using a variational approach and, specifically, the effect that the monitor function has on the resulting
mesh behavior. The basic theoretical tools employed are Green’s function for elliptic problems and
the eigendecomposition of symmetric positive definite matrices. Based upon this study, a general
strategy is suggested for how to choose the monitor function, and numerical results are presented
for illustrative purposes. The three-dimensional case is also briefly discussed. It is noted that the
strategy used here can be applied to other elliptic mesh generation techniques as well.
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1. Introduction. One of the major tasks in solving partial differential equations
(PDEs) is the adaptive generation of the mesh, or grid. In two (or higher) spatial
dimensions, this mesh generation and adaptation is commonly done using the vari-
ational approach, specifically, by minimizing a functional of the coordinate mapping
ξ = ξ(x, y), η = η(x, y) between the physical domain Ωp with variables x, y and the
computational domain Ωc with variables ξ, η. The functional is chosen so that the
minimum is suitably influenced by the desired properties of the solution of the PDE
itself. In most applications, this involves balancing several critical properties; e.g.,
mesh concentration in areas needing high resolution of the physical solution, mesh
alignment to some prescribed vector fields, and preservation of the smoothness and
the orthogonality of the mesh lines; e.g., see [3, 4, 20]. Obviously, different meshes are
generated depending upon how the functional is formulated and how the minimization
problem is solved. Due to the complexity of the mesh generation process, and also
the fact that the shapes of the physical and computational domains themselves can
have a strong effect on the behavior of the coordinate mapping, it is usually very hard
to predict the overall resulting mesh behavior from the functional itself. This has
led to a situation where a preponderance of mesh generation approaches have been
developed in the past, e.g., see [3, 4, 8, 14, 19, 20, 21], yet the understanding of these
approaches is relatively limited.

The functionals used in existing variational approaches for mesh generation and
adaptation can usually be expressed in the form [3, 11, 14, 19, 21]
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STUDY OF MONITOR FUNCTIONS FOR MESH ADAPTATION 1979

I[ξ, η] =
1

2

∫
Ωp

dxdy
(∇ξTG−1

1 ∇ξ +∇ηTG−1
2 ∇η

)
,(1.1)

where G1 = G1(x, y) and G2 = G2(x, y) are symmetric positive definite matrices,
referred to as the monitor functions, and ∇ = ( ∂

∂x ,
∂
∂y )T . For simplicity, we consider

in this paper the simpler yet still fairly general class of functionals of the form

I[ξ, η] =
1

2

∫
Ωp

dxdy
(∇ξTG−1∇ξ +∇ηTG−1∇η) ,(1.2)

where G = G(x, y) is a symmetric positive definite matrix. As will be clear later,
our strategy used for understanding (1.2) can be straightforwardly applied to (1.1).
With (1.2), the coordinate transformation and the mesh are determined from the
Euler–Lagrange equation

∇ · (G−1∇ξ) = 0,

∇ · (G−1∇η) = 0(1.3)

or its transformed form (via interchanging the roles of the dependent and independent
variables) [

∂

∂ξ

(
1

gJ
~xTηG~xη

)
− ∂

∂η

(
1

gJ
~xTξ G~xη

)]
~xξ

+

[
− ∂

∂ξ

(
1

gJ
~xTηG~xξ

)
+

∂

∂η

(
1

gJ
~xTξ G~xξ

)]
~xη = 0,(1.4)

supplemented with suitable boundary conditions. Here, ~x = (x, y)T is the physical
coordinate, g = det(G), and J = xξyη − xηyξ is the Jacobian of the coordinate trans-
formation. Functional (1.2) includes as particular examples Winslow’s well-known
method and the method based upon harmonic maps. The functional for Winslow’s
method is

I[ξ, η] =
1

2

∫
Ωp

dxdy
1

w(x, y)

(
|∇ξ|2 + |∇η|2

)
,(1.5)

where w(x, y) is a weight function depending on the physical solution to be adapted,
and this corresponds to (1.2) with the monitor function

G = w(x, y)I.(1.6)

Brackbill and Saltzman [4] generalize Winslow’s method to produce satisfactory mesh
concentration while maintaining relatively good smoothness and orthogonality. Theirs
has become one of the most popular methods used for mesh generation and adaptation.

The method based upon harmonic maps uses the functional

I[ξ, η] =
1

2

∫
Ωp

dxdy
1√
m

(∇ξTM−1∇ξ +∇ηTM−1∇η) ,(1.7)

where m = det(M(x, y)) and M(x, y) is a symmetric positive definite matrix. It can
be written in the general form (1.2) with

G =
M√
m
.(1.8)
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1980 W. CAO, W. HUANG, AND R. D. RUSSELL

A nice feature of this type of method is that for two-dimensional problems, existence,
uniqueness, and nonsingularity for the continuous map can be guaranteed from the
theory of harmonic maps (e.g., see [6, 9], and see [15, 16] for discussion on singularity
of three-dimensional harmonic maps), and such theoretical guarantees are rare in the
field of mesh generation.

The success of a mesh adaptation strategy with functional (1.2) (and all other
methods using a variational approach or an elliptic equation system) hinges on choos-
ing an appropriate monitor function G, so understanding how the monitor function
influences the resulting mesh properties is clearly crucial. There has been only limited
study of this aspect of the adaptive mesh generation problem, e.g., see [1, 2, 7, 14, 18],
although practical experience has undoubtedly led to insight into a suitable choice for
the monitor function in some cases such as in [3, 4, 20]. Our objective in this paper
is to more systematically analyze the adaptivity effects for the monitor function G in
(1.2).

We find that, in general, the eigenvectors of G determine the directions of the
mesh concentration, while the eigenvalues determine the strength of mesh compression
or expansion. This insight motivates how G can be chosen in practice. For instance,
it can be fortuitous for problems in fluid dynamics to choose an eigenvector to be
the streamline direction or the characteristic direction, and for general problems with
steep wave fronts to choose an eigenvector in the gradient direction. The eigenvalues
are in turn chosen to vary the strength of the mesh concentration.

An outline of the paper is as follows. In section 2, the Dirichlet problem for a
general elliptic PDE is considered. The influence of the source term on the solu-
tion behavior is discussed both analytically and geometrically using Green’s function.
Then the eigendecomposition of the monitor function is used in section 3 to investi-
gate the effect of the monitor function on the behavior of the mesh corresponding to
the functional form (1.2). The above-mentioned general guide for the choice of the
monitor function is also developed in this section. After numerical examples for com-
mon choices of the monitor function are presented in section 4, the case of adaptive
mesh generation for a disk is studied in section 5 in order to illustrate some of the
complicated two-dimensional effects for mesh adaptation along the eigendirections of
the monitor functions. A brief discussion of the three-dimensional case is given in
section 6. Finally, section 7 contains the conclusions.

2. Green’s function. Our basic tools for providing insight into the mesh behav-
ior are Green’s function for elliptic PDEs and the eigendecomposition of symmetric
matrices. Using Green’s function, we show in this section how the source function
for an elliptic PDE influences the behavior of the solution. These results are crucial
to the analysis of the influence of monitor functions on the mesh behavior developed
in the next section. Detailed mathematical discussion of Green’s function and its
applications appears in many places, e.g., in [5, 17], but here the main purpose is to
examine certain geometrical effects.

Consider the differential operator

L ≡
n∑

i,j=1

aij(~x)
∂2

∂xi∂xj
+

n∑
i=1

bi(~x)
∂

∂xi
,(2.1)

where the coefficients aij = aji and bi are continuous functions of ~x = (x1, . . . , xn)T

in a bounded domain Ω in n-dimensional space. The quadratic form
∑n
i,j=1 aijξiξj

is assumed to be positive definite in the parameter ~ξ = (ξ1, . . . , ξn)T for all ~x ∈ Ω.
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STUDY OF MONITOR FUNCTIONS FOR MESH ADAPTATION 1981

If the boundary ∂Ω is sufficiently smooth, then Green’s function for the differential
operator L, denoted by G = G(~x, ~y), exists in Ω. Furthermore, G is positive in Ω and
zero on ∂Ω and has the asymptotic behavior that as ~y → ~x, G(~x, ~y) → |~x − ~y|2−n
for n > 2 or log|~x − ~y| for n = 2, where |~x − ~y| is the distance from ~x to ~y. For the
Dirichlet problem {

L[u] = f in Ω,
u = h on ∂Ω,

(2.2)

the solution can be expressed by

u(~x) = −
∫

Ω

G(~x, ~y)f(~y)d~y −
∫
~y∈∂Ω

h(~y)
∂G
∂~n

(~x, ~y)dS,(2.3)

where ∂G
∂~n =

∑n
i,j=1 aijcos(~n,~ei)

∂
∂xj

, ~n is the outward normal to the boundary ∂Ω,

and ~ei is the unit vector in the xi axis.
To consider the effect the function f has on the behavior of the solution u, define

v as the solution of the “homogeneous” problem{
L[v] = 0 in Ω,
v = h on ∂Ω.

(2.4)

Clearly,

v(~x) = −
∫
~y∈∂Ω

h(~y)
∂G
∂~n

(~x, ~y)dS,(2.5)

and it follows from (2.3), (2.5), and the positivity of G(~x, ~y) that

f ≥ 0 in Ω =⇒ u ≤ v in Ω.(2.6)

This is of course the well-known conclusion of the comparison theorem [5]. For ge-
ometric meaning of the inequality u ≤ v, Fig. 2.1 gives a sketch of u- and v-contour
lines (surfaces when n > 2) on which u and v are constant. Since u(~x) ≤ v(~x) for all
~x ∈ Ω, for any constant c the line u = c lies in the region where v ≥ c. Therefore,
the u-contour lines are shifted away from the “uniform” reference v-contour lines in
the direction toward which u increases. Generally, a large positive value of f causes
u-contour lines to move in the direction of increasing u, and a large negative value
causes them to move in the direction of decreasing u. The larger the magnitude of
|f |, the greater the shift.

When the function f(~x) changes sign over the domain, the situation becomes
more complicated. To see the influence of such a source function, we consider the
extreme (point charge) case

f(~x) = δ(~x− ~x1)− δ(~x− ~x2),(2.7)

where ~x1 and ~x2 are two distinct points in the domain and δ is the Dirac delta function.
(We note that this function fails to give a solution u in the strong sense, but it can be
smoothed and have sufficiently small compact support that the following discussion
can be made rigorous.) In this case, the solution to (2.2) is

u(~x) = −G(~x, ~x1) + G(~x, ~x2) + v(~x).(2.8)
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1982 W. CAO, W. HUANG, AND R. D. RUSSELL

u=C3

2
u=C

u=C1

v=C

v=C

v=C

3

2

1

u  increases

Fig. 2.1. A sketch of u- and v-contour lines, where u < v in Ω and C1 < C2 < C3 are three
arbitrary constants.

Since G(~x, ~y) → +∞ as ~y → ~x, (2.8) implies that (u − v)(~x) → −∞ as ~x → ~x1 and
(u − v)(~x) → +∞ as ~x → ~x2. In other words, the influence of the function f on
the behavior of u comes predominantly from the value f(~x1) near ~x1 and from the
value f(~x2) near ~x2. Geometrically, this means that in a neighborhood of ~x1, f causes
u-contour lines to shift (relative to the v-contour lines) in the direction of increasing
u, and in a neighborhood of ~x2 in the direction of decreasing u. As a result, the
u-contour lines in the region between ~x1 and ~x2 are compressed when u increases in
the direction from ~x1 to ~x2 and are expanded when u decreases. An illustration is
given in Fig. 2.2.

This analysis of the point charge source function can be extended to a general
function f . Because of the singular behavior of Green’s function G(~x, ~y) at ~y = ~x, the
main contribution to the first integral on the right-hand side of (2.3) comes from the
values of f near ~x. Thus, (u−v) becomes negative in the region where f is sufficiently
large and positive. Geometrically, u-contour lines will shift from the reference v-
contour lines in the increasing u direction in the region. A similar interpretation can
of course be made if (u−v) becomes positive in the region where f is sufficiently large
and negative. Consequently, u-contour lines will be compressed or expanded about
the region where f changes sign.

We have thus far assumed that f is a function of ~x only. It is not difficult to see
that the analysis in this section holds for the more general case where f depends also
upon the unknown function u; i.e., f = f(~x, u). In this case, the sign of f at a point
~x is regarded as the sign of f(~x, u(~x)), where u = u(~x) is the solution of (2.2).

3. Monitor function in two dimensions. We now use the geometrical inter-
pretations in the previous section to analyze the behavior of the function minimizing
the functional (1.2), or the solution of the Euler–Lagrange equation (1.3). Being sym-
metric and positive definite, the monitor function G and its inverse G−1 in (1.2) have
the eigendecompositions

G = λ1~v1~v
T
1 + λ2~v2~v

T
2 ,(3.1)

G−1 = λ−1
1 ~v1~v

T
1 + λ−1

2 ~v2~v
T
2 ,(3.2)
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STUDY OF MONITOR FUNCTIONS FOR MESH ADAPTATION 1983

1

(a) Compression

v=Const.

u increases

u=Const.

v=Const.
2

1

Shift direction

x
(f(x )>0)

Shift direction

x

(f(x )>0)1

1

(f(x )<0)2

u=Const.

u increases

(b)  Expansion

Shift direction
Shift direction

x (f(x )<0)
2

x

2

Fig. 2.2. Compression and expansion of u-contour lines caused by the sources f(~x1) and f(~x2).
(u- and v-contour lines are solid and dotted lines, respectively.)

where λ1 and λ2 are the two positive eigenvalues of G and ~v1 and ~v2 are corresponding
normalized orthogonal eigenvectors. Using this decomposition and recalling that the
directional derivative in the ~v direction is defined as ∂

∂~v = ~v · ∇, we can rewrite the
functional (1.2) as

I[ξ, η] =
1

2

∫
Ωp

dxdy

[
1

λ1

(∣∣∣∣ ∂ξ∂~v1

∣∣∣∣2 +

∣∣∣∣ ∂η∂~v1

∣∣∣∣2
)

+
1

λ2

(∣∣∣∣ ∂ξ∂~v2

∣∣∣∣2 +

∣∣∣∣ ∂η∂~v2

∣∣∣∣2
)]

.(3.3)

The Euler–Lagrange equation (1.3) is

∇ ·
(
~v1

λ1

∂ξ

∂~v1

)
+∇ ·

(
~v2

λ2

∂ξ

∂~v2

)
= 0,

∇ ·
(
~v1

λ1

∂η

∂~v1

)
+∇ ·

(
~v2

λ2

∂η

∂~v2

)
= 0,(3.4)

which after some manipulation becomes

1

λ1

∂2ξ

∂~v2
1

+
1

λ2

∂2ξ

∂~v2
2

=
1

λ1

(
1

λ1

∂λ1

∂~v1
−∇ · ~v1

)
∂ξ

∂~v1
+

1

λ2

(
1

λ2

∂λ2

∂~v2
−∇ · ~v2

)
∂ξ

∂~v2
,

(3.5)

1

λ1

∂2η

∂~v2
1

+
1

λ2

∂2η

∂~v2
2

=
1

λ1

(
1

λ1

∂λ1

∂~v1
−∇ · ~v1

)
∂η

∂~v1
+

1

λ2

(
1

λ2

∂λ2

∂~v2
−∇ · ~v2

)
∂η

∂~v2
.

(3.6)
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1984 W. CAO, W. HUANG, AND R. D. RUSSELL

Consider now the effect a change in λ1 has on the behavior of ξ: Rewriting (3.5) in
the form (2.2), with

L[ξ] ≡ ∂2ξ

∂~v2
1

+

(
λ1

λ2

)
∂2ξ

∂~v2
2

+ (∇ · ~v1)
∂ξ

∂~v1
+

(
λ1

λ2

)
(∇ · ~v2)

∂ξ

∂~v2
−
(
λ1

λ2

)(
1

λ2

∂λ2

∂~v2

)
∂ξ

∂~v2
,

f(x, y) ≡ 1

λ1

∂λ1

∂~v1

∂ξ

∂~v1
,(3.7)

we easily show that the operator L has a form as in (2.1) and is elliptic. Thus, the
analysis in the previous section applies. Moreover, since f is proportional to 1

λ1

∂λ1

∂~v1
,

a rapid change in λ1 in the ~v1 direction will result in a significant change in f in
the same direction. One can then conclude from the analysis in section 2 that if λ1

changes rapidly in the ~v1 direction, ξ-coordinate lines can be expected to compress or
expand in this direction compared with the reference coordinate lines corresponding
to not having the source term 1

λ1

∂λ1

∂~v1

∂ξ
∂~v1

. Specifically, one can easily see from the
special form of f that compression of ξ-coordinate lines occurs in the ~v1 direction if
λ1 first increases and then decreases along this direction, while ξ-coordinate lines will
be expanded if the λ1 change is the reverse.

We emphasize that this compression and/or expansion of ξ-coordinate lines caused
by the change in λ1 is relative motion compared with the reference coordinate lines.
To determine the location of the actual ξ-coordinate lines, the impact of the other
terms in the operator L in (3.7) on the mesh adaptation in the ~v1 direction must be
taken into account. These include the change in ~v1 (the third term), the change in
~v2 (the fourth term), the relative change in λ2 in the ~v2 direction (the fifth term),
and the ellipticity of the underlying equation (the second term). The latter, the effect
of the ellipticity, is well understood—ellipticity tends to space coordinate lines more
equally in the absence of boundary curvature. However, the effects from changes in
~v1, ~v2, and λ2 are complicated and difficult to analyze in general. We do not perform a
detailed theoretical analysis of these effects here; rather, they are illustrated for several
examples in sections 4 and 5. We refer to all of them as two-dimensional effects on
the mesh adaptation in the ~v1 direction. It is worth pointing out that a decrease of
the ratio λ1

λ2
reduces all of the two-dimensional effects on the mesh adaptation in the

~v1 direction except that resulting from the change in ~v1 (see (3.7)).
A similar analysis holds for the ξ-coordinate line adaptation in the ~v2 direction

and the η-coordinate lines in the ~v1 and ~v2 directions. It is useful to note that if,
for instance, λ1 first increases and then decreases rapidly in the ~v1 direction, then
both the ξ- and η-coordinate lines will be compressed in the same direction and the
resulting mesh can become very skewed. The analysis also extends to the case where
G2 6= G1 in (1.1), in which ξ- and η-coordinate lines can have different compression
and/or expansion directions.

The above shows how the monitor function can be naturally defined directly in
terms of suitably chosen ~v1, ~v2, λ1, and λ2 using (3.1). Since ~v1 and ~v2 are orthogonal,
the monitor function can be expressed as

G = λ1~v~v
T + λ2~v⊥~vT⊥.(3.8)

If one wishes the mesh concentration or expansion to occur mainly along a direc-
tion, e.g., the streamline direction in the convection–diffusion problem or the gradient
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STUDY OF MONITOR FUNCTIONS FOR MESH ADAPTATION 1985

direction of the numerical solution, then one may choose this direction as the eigen-
vector ~v, and choose the corresponding eigenvalue λ1 increasing and then decreasing
(or vice versa) in certain regions to give mesh concentration (or expansion) along the
~v direction in the regions. Similarly, λ2 can be chosen to give mesh concentration
or expansion along the ~v⊥ direction. Since the resulting mesh is affected by both
the changes of λ1 in ~v and the changes of λ2 in ~v⊥, which are inevitably competing
(two-dimensional effects), the magnitude of λ1 and λ2 should be chosen to reflect the
relative preference of mesh adaptation along one direction over the other. Generally,
smaller λ1/λ2 produces smaller two-dimensional effects and thus better adaptation
along just the ~v direction.

It is instructive to consider (3.8) for the monitor functions used in Winslow’s
method and for the method based upon harmonic maps. For Winslow’s method,
(3.8) becomes (1.6) with

λ2 = λ1 = w(x, y).(3.9)

In this case, ~v can be chosen as any unit vector. Coordinate lines are compressed
or expanded in the ~v direction if w changes rapidly in this direction and otherwise
are relatively equally spaced. Thus, the direction in which w = w(x, y) changes most
rapidly is the one in which mesh lines are also compressed or expanded most. For the
method based upon harmonic maps, we have{

λ1 =
√
α1/α2, λ2 =

√
α2/α1,

~v = the normalized eigenvector associated with α1,
(3.10)

where α1 and α2 are the eigenvalues of the matrix M (see (1.7)). Unlike for Winslow’s
map, the eigendecomposition (3.1) is unique for the harmonic map unless α1 = α2.
Thus, the mesh adaptation can be expected to occur mainly in the directions of ~v and
its orthogonal complement.

One class of mesh adaptation methods uses the arclength-like monitor function
[10, 11, 19]. That is, for a physical solution u = u(x, y), G is defined through (1.8) with

M = I+∇u∇uT . In this case, the eigenvalues are α1 = 1 + |∇u|2 and α2 = 1, and the
corresponding eigenvectors are ∇u/ |∇u| and its orthogonal complement. Motivated
by this arclength-like monitor function, we can construct a class of monitor functions
with 

~v = ∇u/|∇u|,
λ1 =

√
1 + |∇u|2,

λ2 = a function of λ1

(3.11)

to perform mesh adaptation in the gradient direction of u. The choices for λ2 which
correspond to Winslow’s method and the method based upon harmonic maps are,
respectively, λ2 = λ1 and λ2 = 1

λ1
. For problems in which u has steep fronts or even

discontinuities, λ1 and λ2 change much faster in the gradient direction than in the
tangential direction. It can be expected that with the choice (3.11), coordinate line
compression and expansion will mainly occur in the gradient direction. Furthermore,
since the ratio of λ1 to λ2 is smaller for Winslow’s method than for the one based
upon harmonic maps (i.e., λ1

λ2
= 1 versus λ1

λ2
= λ2

1), the two-dimensional effects on
the mesh adaptation in ~v will generally be less significant for the former method than
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1986 W. CAO, W. HUANG, AND R. D. RUSSELL

the latter. In other words, the mesh adaptation in this direction is more like one-
dimensional adaptation for Winslow’s method than for the one based upon harmonic
maps. On the other hand, adaptation with the method based upon harmonic maps
has a stronger two-dimensional coupling, and our experience has shown that in this
case the control of skewness of the mesh can be easier.

It is important to realize that this analysis is a local one. Other factors, such as
the shapes of the physical and computational domains and the grid point distributions
on boundary, can also strongly influence the mesh adaptation in two dimensions. The
influence of the boundary on the elliptic mesh generation is discussed in [19].

To conclude this section, we observe that the above analysis can also be applied
to interpret the widely used Poisson mesh generation system

∇2ξ = P, ∇2η = Q,(3.12)

where P and Q are control functions, as well as other elliptic mesh generation systems.
For (3.12) we easily see that a positive (or negative) value of the Laplacian of one
of the curvilinear coordinates implies that the contour lines for that coordinate will
shift in the increasing (or decreasing) direction of that coordinate. This result is also
obtained in [19] by generalizing their analysis of the mesh behavior near boundaries.

4. Numerical experiments. Numerical results obtained using the mesh equa-
tion (1.4) together with Dirichlet boundary conditions (i.e., mesh points fixed along
the boundary ∂Ωp) are presented in this section. Three examples are chosen to demon-
strate the analysis of the previous section. The monitor function is defined using (3.8)
with ~v and λ1 to be chosen and with λ2 being a function of λ1. For the first two ex-
amples, ~v and λ1 are artificially designed to illustrate our mesh adaptation analysis.
The third is somewhat more realistic, with a “physical solution” prescribed and the
complex effects on grid adaptation more in display.

For simplicity, both the physical and computational domains are chosen as the
unit square. The mesh equation (1.4) is converted to a so-called moving mesh PDE
(MMPDE) [10, 11], a time-dependent PDE with the desired solution of (1.4) as its
steady state solution. This MMPDE is discretized in space using central finite dif-
ferences on a uniform mesh in the computational domain. The resulting system of
ordinary differential equations is solved using an ADI-like scheme spatial eigenvalue
approximate factorization (SEAF), integrating it until there is little mesh movement,
viz., until the L2 norm of the difference between two consecutive solutions is less than
10−3. Also, a low pass filter is applied twice to the monitor function in order to give
a smoother mesh and improve the convergence of the scheme. Since our purpose here
is to show how the monitor function affects the behavior of the generated mesh and
not to study the details of the numerical solution process itself, we refer the interested
reader to [10, 11] for the details of the finite difference discretization of (1.4) and the
SEAF scheme.

The computations were performed on Silicon Graphics workstations, an Indigo2
and an Onyx2 with double precision algorithms.

Example 4.1. For the first example, we choose ~v = 1√
2

[
1
1

]
, ~v⊥ = 1√

2

[
1
−1

]
,

λ1 = 1 + 10sech(50(x+ y − 1)2).

(4.1)
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Fig. 4.1. The function λ1 used in Example 4.1.

Note that the desired direction of mesh adaptation ~v is constant. The function λ1

changes fastest in this direction and is constant in the perpendicular direction ~v⊥. The
function λ1 is shown in Figure 4.1. Along the line y = x, for instance, the function λ1

increases until the center point (0.5, 0.5) and then decreases. If mesh adaptation along
this line (or direction) is one-dimensional, then from one-dimensional equidistribution
arguments (e.g., see [12]) we know that the mesh density increases until this center
point and then decreases, so the mesh is densest near the center. On the other hand,
from the analysis in the previous section, the change in λ1 will cause coordinate lines
to compress in the ~v direction, and this will compete with the two-dimensional effect
resulting from the ellipticity which tends to space coordinate lines equally. Note that
in this example the other two-dimensional effects do not take effect because both v
and v⊥ are constant and (∂λ2)/(∂~v⊥) = 0. Moreover, we cannot expect there to be
significant mesh adaptation in the ~v⊥ direction because, once again, (∂λ2)/(∂~v⊥) = 0.

Figure 4.2 shows the 30 × 30 meshes generated using four different values of λ2:
(a) λ2 = 1/λ1 (the method based upon harmonic maps), (b) λ2 = 0.1λ1, (c) λ2 = λ1

(Winslow’s method), and (d) λ2 = 10λ1. For the four cases, the compression of mesh
lines in the ~v direction and basic absence of compression and expansion in the ~v⊥
direction can be clearly seen. Recall that the two-dimensional effect on the mesh
adaptation in the ~v direction is stronger for the harmonic map than for Winslow’s
map. For all except the harmonic map case, the mesh is concentrating along the ~v
direction as one would expect from one-dimensional mesh adaptation. However, from
Figure 4.2a we see that the mesh adaptation, say along the line y = x, is obviously not
one dimensional. This is caused by the two-dimensional effect which tends to space
mesh lines more equally. This two-dimensional effect can also be seen by comparing
Figure 4.2b and Figure 4.2d, corresponding to λ1/λ2 = 10 and 0.1, respectively. From
our analysis, the two-dimensional effect on the mesh adaptation in the ~v direction is
stronger in the former case than in the latter. As a result, the mesh line compression
in this direction is weaker in Figure 4.2b than in Figure 4.2d. Finally, it is worth
pointing out that for all the cases, mesh lines tend to be uniform near the boundary,
particularly near the top-left and bottom-right corners, due to the influence of the
uniform boundary point distribution.
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Fig. 4.2. The meshes obtained for Example 4.1 with different λ2: (a) λ2 = 1/λ1 (method based
upon harmonic maps), (b) λ2 = 0.1λ1, (c) λ2 = λ1 (Winslow’s method), (d) λ2 = 10λ1.

Example 4.2. Our second example is very similar to the first example except the
function λ1 is now chosen such that its fastest variation direction changes: ~v = 1√

2

[
1
1

]
, ~v⊥ = 1√

2

[
1
−1

]
,

λ1 = 1 + 10sech(50((x− 0.5)2 + (y − 0.5)2 − 0.32)).

(4.2)

Figure 4.3 shows the meshes generated using four different choices of λ2. For the
harmonic map shown in Figure 4.3a, mesh lines are compressed in the ~v direction
in the area around the circle (x − 0.5)2 + (y − 0.5)2 = 0.32, as one would expect
from the analysis in the previous section. In the perpendicular ~v⊥ direction, since λ2

(≡ 1/λ1) first decreases and then increases around the circle, mesh lines are expanded.
From the analysis we also know that the two-dimensional effect is stronger in the ~v
direction than the ~v⊥ direction, although it is hard to detect from this figure precisely
what the effect is. For Winslow’s map, there is no preferred direction of adaptation.
Since λ1 changes in every direction, mesh lines are compressed uniformly around the
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Fig. 4.3. The meshes obtained for Example 4.2 with different λ2: (a) λ2 = 1/λ1 (method based
upon harmonic maps), (b) λ2 = 0.1λ1, (c) λ2 = λ1 (Winslow’s method), (d) λ2 = 10λ1.

circle (see Figure 4.3c). For the other two cases, λ2 is chosen to be 0.1λ1 and 10λ1,
respectively. As predicted, mesh lines are compressed in both the ~v and ~v⊥ direction.
However, since the ratio λ1/λ2 is 10 in the first case, the two-dimensional effect is
stronger in the ~v direction than the ~v⊥ direction. Thus, the mesh line compression
is less in the ~v direction than the ~v⊥ direction (see Figure 4.3b). Conversely, for the
case in Figure 4.3d, the ratio λ1/λ2 is 0.1, and, therefore, the mesh line compression
is stronger in the ~v direction than the ~v⊥ direction.

Example 4.3. The third example is more realistic than the previous two. Here,
we assume that the “physical” solution u is given and the desired mesh adaptation
direction is taken as the gradient direction of the solution. According to (3.11), we
define G with 

u(x, y) = sech(50((x− 0.5)2 + (y − 0.5)2 − 0.32)),

~v = ∇u/|∇u|,
λ1 =

√
1 + |∇u|2.

(4.3)D
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Fig. 4.4. The meshes obtained for Example 4.3 with different λ2: (a) λ2 = 1/λ1 (method based
upon harmonic maps), (b) λ2 = 0.1λ1, (c) λ2 = λ1 (Winslow’s method), (d) λ2 = 10λ1.

Note that the function λ1 behaves similarly to that in Example 4.2, changing most
significantly across the circle (x−0.5)2 +(y−0.5)2 = 0.32. The meshes obtained with
four different choices of λ2 are shown in Figure 4.4. As expected from the theoretical
analysis, mesh line compression occurs mainly in the radial direction oriented from
the center (0.5, 0.5) in all the cases. It is easy to show that (∂λ2)/(∂~v⊥) = 0 since λ2

is a function of λ1. Thus the two-dimensional effects only come from the ellipticity
and the change of ~v. However, in this case they are much more complicated than in
the previous examples. They will be analyzed in the next section.

5. Mesh adaptation on the unit disk. In the previous two sections we have
investigated theoretically and numerically how the qualitative behavior of the mesh
is related to the change in the eigensystems of the monitor function. The two-
dimensional effect is extremely complicated to analyze for the general case. To get
insight into this effect, we consider the special case where Ωp and Ωc are unit disks,
and the monitor function is given by (3.8) with
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STUDY OF MONITOR FUNCTIONS FOR MESH ADAPTATION 1991{
~v = (cosθ, sinθ)T , ~v⊥ = (−sinθ, cosθ)T ,
λ1 = λ1(r), λ2 = λ2(r) both positive and bounded above.

(5.1)

Here (r, θ) are polar coordinates in Ωp, ~v is the unit radial vector, and ~v⊥ is the unit
angular vector. Under these assumptions, the mesh adaptation problem has angular
symmetry, so the mesh equations can be reduced to ordinary differential equations.

In fact, using the identities
∇ = ~v ∂

∂r
+ 1
r~v⊥

∂
∂θ
,

∂
∂~v

= ∂
∂r
, ∂

∂~v⊥
= 1
r
∂
∂θ
,

(5.2)

the mesh equations (3.5) and (3.6) become

1

λ1

∂2ξ

∂r2
+

1

λ2r2

∂2ξ

∂θ2
=

1

λ1

(
1

λ1

dλ1

dr
− 1

r

)
∂ξ

∂r
+

1

λ2r2
(0− 0)

∂ξ

∂θ
,

1

λ1

∂2η

∂r2
+

1

λ2r2

∂2η

∂θ2
=

1

λ1

(
1

λ1

dλ1

dr
− 1

r

)
∂η

∂r
+

1

λ2r2
(0− 0)

∂η

∂θ
.(5.3)

The two-dimensional effects on the mesh adaptation in the radial direction result only
from the change in ~v ((∇ ·~v) = 1/r) and the ellipticity (from the second term of each
of the equations in (5.3)). Using the polar coordinates (R,Θ) in Ωc, so

ξ = R cos Θ, η = R sin Θ,(5.4)

we have by symmetry that Θ = θ and R = R(r). Then (5.3) leads to

d2R

dr2
=

(
1

λ1

dλ1

dr

)
dR

dr
−
(

1

r

)
dR

dr
+

(
λ1

λ2

)
R

r2
.(5.5)

It is easy to show from this equation and the boundary conditions R(0) = 0 and
R(1) = 1 that

R = R(r) ∈ (0, 1),
dR

dr
(r) > 0 for r ∈ (0, 1).(5.6)

The mesh point density function in the radial direction is dR
dr , and the first, second,

and third terms on the right-hand side of (5.5) represent the effects of the change in λ1,
the change in ~v, and the ellipticity of the underlying system. We can readily conclude
that as r increases, the two-dimensional effect from a change of ~v corresponds to a
decrease in the density function and the ellipticity term causes an increase in the
density function. In particular, mesh point density near the origin will be increased
by change in ~v and decreased by the ellipticity. Of course, these two-dimensional
effects compete with one another and with the effect caused by the relative change
in λ1. The degree of the effect from ellipticity is controlled by the ratio λ1/λ2. To
see this, we consider the case where λ1 and λ2 are constants, for which an analytical

solution of (5.5) is available, viz. R(r) = r
√
λ1/λ2 . Note that for λ1

λ2
= 4, 1, and 1

4 ,
dR
dr = 2r, 1, and 1

2r
−1/2, respectively. The smaller the ratio λ1

λ2
, the stronger the effect

of the change in ~v, and therefore the denser the mesh will be near the origin.
For Example 4.3, the physical domain is not a disk, but because the bound-

ary point distribution does not strongly affect the adaptation inside the domain and
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1992 W. CAO, W. HUANG, AND R. D. RUSSELL

because λ1 and ~v behave similarly to those in this section, one can expect that the
above qualitative arguments should remain valid. For the harmonic map shown in Fig-
ure 4.4a, since λ1 changes significantly in r (r is the distance to the point (0.5,0.5)) and
the ratio λ1/λ2 is large (i.e., λ2

1) near r = 0.3, the adaptation and the two-dimensional
effect from ellipticity dominate the mesh line placement. Thus, we can see that the
mesh points are pulled away from point (0.5,0.5) (the ellipticity effect) and are denser
near r = 0.3 (the adaptation effect). On the other hand, for the case shown in Fig-
ure 4.4d, the ratio λ1/λ2 is 0.1 (small), and the adaptation and the two-dimensional
effect from the change in ~v dominate the mesh line placement. Thus, the mesh points
are concentrated near the center point (0.5,0.5) (the effect of the change in ~v) and in
the area where r ≈ 0.3 (the effect of adaptation). The case shown in Figure 4.4b is
similar to that in Figure 4.4a. For the case shown in Figure 4.4c, the two-dimensional
effects from the change in ~v and the ellipticity appear to be more or less balanced.

6. The three-dimensional case. We briefly discuss the three-dimensional case.
Denote the physical and computational coordinates by ~x = (x1, x2, x3)T and ~ξ =
(ξ1, ξ2, ξ3)T , respectively. The general functional corresponding to (1.2) is

I[~ξ] =
1

2

∫
Ωp

d~x
∑
i

(∇ξi)T G−1∇ξi,(6.1)

where G−1 is a symmetric positive definite matrix (monitor function). The Euler–
Lagrange equation is

∇ · (G−1∇ξi) = 0.(6.2)

If (λi, ~vi), i = 1, 2, 3 are the three pairs of eigenvalues and eigenvectors of G, it has
the eigendecomposition

G =
∑
i

λi~vi~v
T
i .(6.3)

The general functional (6.1) can then be rewritten as

I[~ξ] =
1

2

∫
Ωp

d~x
∑
i,j

1

λi

∣∣∣∣∂ξj∂~vi

∣∣∣∣2 ,(6.4)

and the Euler–Lagrange equation becomes∑
j

1

λj

∂2ξi

∂~v2
j

=
∑
j

1

λj

(
1

λj

∂λj
∂~vj
−∇ · ~vj

)
∂ξi

∂~vj
.(6.5)

An extension of the analysis in sections 2 and 3 enables us to similarly conclude that
(i) coordinate lines can be expected to compress and/or expand in the ~vi direction
if the function λi changes significantly in this direction; (ii) the compression and/or
expansion (i.e., adaptation) of coordinate lines in the ~vi direction have to compete
with the three-dimensional effects resulting from the changes in ~v1, ~v2, and ~v3, the
relative change in λj along the direction of ~vj (j = 1, 2, 3 and j 6= i), and the ellipticity
of the underlying system; (iii) among the three-dimensional effects, ellipticity tends
to give more even placement of mesh lines. All of the three-dimensional effects on
the mesh adaptation in ~vi except that from the change in ~vi can be controlled by
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STUDY OF MONITOR FUNCTIONS FOR MESH ADAPTATION 1993

controlling the ratios λi/λj (j = 1, 2, 3 and j 6= i). More specifically, the smaller the
ratios λi/λj (j = 1, 2, 3 and j 6= i), the weaker these three-dimensional effects and
the more dominant the effects of changes in λi and ~vi are on the adaptation along ~vi
direction.

Motivated by this analysis, it is natural to define the monitor function using (6.3)
with 

~v1 = ∇u/|∇u|,
~v2, ~v3 are orthogonal complements of ~v1,

λ1 =
√

1 + |∇u|2,
λ2 and λ3 are functions of λ1,

(6.6)

where u = u(x1, x2, x3) is the solution of the physical PDE. One of course has consid-
erable flexibility in these choices. For instance, curvature information for u could also
be included in the definition of λ1. What is important is that the eigenvectors and
eigenvalues of the monitor function determine, respectively, the directions of adapta-
tion and strength of compression/expansion in these directions, and this is used to
tailor G to meet the needs of a particular application area.

7. Conclusions. In the previous sections, we have studied the effect of the mon-
itor function on the behavior of the mesh generated with a variational approach. The
study has been carried out using Green’s function for elliptic problems. Numerical
results have also been presented for illustrative purposes.

The main conclusion of this study is that a significant change (first increasing and
then decreasing, or vice versa) in an eigenvalue λ1 of the monitor function G along
the corresponding eigendirection ~v1 will result in adaptation of coordinate lines along
this direction. Meanwhile, this adaptation will compete with far more complicated
two-dimensional effects, including the effect of the ellipticity and those from changes
in eigenvectors and another eigenvalue λ2 of G. Fortunately, most of these two-
dimensional effects can be controlled by the ratio λ1/λ2. That is, the smaller this
ratio, the weaker the two-dimensional effects and the more dominant the effect that
change in λ1 has on the adaptation along the ~v1 direction. The same analysis holds
along the ~v2 direction.

Based upon this analysis, general guidelines for defining monitor functions to
achieve the desired mesh adaptation in practical computation have been given. In
fact, a monitor function can often be naturally defined in terms of suitably chosen λ1,
λ2, ~v1, and ~v2 through formula (3.1) or (3.8). Specifically, when one wishes mesh con-
centration or expansion to occur along a given direction, e.g., the streamline direction
in a convection–diffusion problem or the gradient direction for a general problem, then
one may choose this direction as the eigenvector ~v and choose λ1 increasing and then
decreasing (or vice versa) in certain regions to give mesh concentration (or expansion)
along the ~v direction. There are a variety of natural ways in which λ2 can be chosen
as a function of λ1. Last, the class of monitor functions given in (3.11) or (6.6) is
useful when one wants the coordinate lines to adapt along the gradient direction of a
physical variable u.

We would like to point out that the results obtained in this study are only qual-
itative. Besides the competing effects of the mesh adaptation along the two eigendi-
rections, mesh adaptation is also greatly affected by the shapes of the physical and
computational domains and the grid point distribution on the boundaries. These
factors make the mesh adaptation procedure very complicated. Many difficulties still
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remain in predicting the precise behavior of adaptive meshes. Nevertheless, it is our
hope that this study will provide a better understanding of monitor functions thereby
providing some guidelines for one to choose them more easily and will be a useful
complement to related recent work in grid generation such as that in [3, 13].
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