
AN INTERIOR POINT ALGORITHM FOR MINIMUM
SUM-OF-SQUARES CLUSTERING∗

O. DU MERLE† , P. HANSEN‡ , B. JAUMARD§ , AND N. MLADENOVIĆ¶

SIAM J. SCI. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
Vol. 21, No. 4, pp. 1485–1505

Abstract. An exact algorithm is proposed for minimum sum-of-squares nonhierarchical cluster-
ing, i.e., for partitioning a given set of points from a Euclidean m-space into a given number of clusters
in order to minimize the sum of squared distances from all points to the centroid of the cluster to
which they belong. This problem is expressed as a constrained hyperbolic program in 0-1 variables.
The resolution method combines an interior point algorithm, i.e., a weighted analytic center col-
umn generation method, with branch-and-bound. The auxiliary problem of determining the entering
column (i.e., the oracle) is an unconstrained hyperbolic program in 0-1 variables with a quadratic nu-
merator and linear denominator. It is solved through a sequence of unconstrained quadratic programs
in 0-1 variables. To accelerate resolution, variable neighborhood search heuristics are used both to
get a good initial solution and to solve quickly the auxiliary problem as long as global optimality
is not reached. Estimated bounds for the dual variables are deduced from the heuristic solution
and used in the resolution process as a trust region. Proved minimum sum-of-squares partitions are
determined for the first time for several fairly large data sets from the literature, including Fisher’s
150 iris.

Key words. classification and discrimination, cluster analysis, interior-point methods, combi-
natorial optimization

AMS subject classifications. 62H30, 90C51, 90C27

PII. S1064827597328327

1. Introduction. Cluster analysis addresses the following general problem: Giv-
en a set of entities, find subsets, or clusters, which are homogeneous and/or well
separated (Hartigan [25], Gordon [15], Kaufman and Rousseeuw [28], Mirkin [36]).
This problem has many applications in engineering, medicine, and both the natural
and the social sciences. The concepts of homogeneity and separation can be made
precise in many ways. Moreover, a priori constraints, or in other words a structure,
can be imposed on the clusters. This leads to many clustering problems and even
more algorithms.

The most studied and used methods of cluster analysis belong to two categories:
hierarchical clustering and partitioning. Hierarchical clustering algorithms give a hier-
archy of partitions, which are jointly composed of clusters either disjoint or included
one into the other. Those algorithms are agglomerative or, less often, divisive. In the
first case, they proceed from an initial partition, in which each cluster contains a sin-
gle entity, by successive merging of pairs of clusters until all entities are in the same
one. In the second case, they proceed from an initial partition with all entities in the
same cluster, by successive bipartitions of one cluster at a time until all entities are
isolated, one in each cluster. The best partition is then chosen from the hierarchy of
partitions obtained, usually in an informal way. A graphical representation of results,

∗Received by the editors October 3, 1997; accepted for publication (in revised form) February
10, 1999; published electronically March 6, 2000. This research has been supported by the Fonds
National de la Recherche Scientifique Suisse, NSERC-Canada, and FCAR-Québec.

http://www.siam.org/journals/sisc/21-4/32832.html
†GERAD, Faculty of Management, McGill University, Montréal, Canada.
‡GERAD, École des HEC, Département des Méthodes Quantitatives de Gestion, Montréal,

Canada (pierreh@umontreal.ca).
§GERAD, École Polytechnique, Montréal, Canada.
¶GERAD, École des HEC, Montréal, Canada.

1485

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1486 O. DU MERLE, P. HANSEN, B. JAUMARD, AND N. MLADENOVIĆ

such as a dendrogram or an espalier (Hansen, Jaumard, and Simeone [23]), is useful
for that purpose. Hierarchical clustering methods use an objective (sometimes im-
plicit) function locally, i.e., at each iteration. With the exception of the single linkage
algorithm (Johnson [27], Gower and Ross [17]) which maximizes the split of all parti-
tions obtained (Delattre and Hansen [2]), hierarchical algorithms do not give optimal
partitions for their criterion after several agglomerations or divisions. In contrast,
partitioning algorithms assume given the number of clusters to be found (or use it as
a parameter) and seek to optimize exactly or approximately an objective function.

Among many criteria used in cluster analysis, the minimum sum of squared dis-
tances from each entity to the centroid of the cluster to which it belongs—or minimum
sum-of-squares for short—is one of the most used. It is a criterion for both homogene-
ity and separation as minimizing the within-clusters sum-of-squares is equivalent to
maximizing the between-clusters sum-of-squares.

Both hierarchical and nonhierarchical procedures for minimum sum-of-squares
clustering (MSSC) have long been used. Ward’s [45] method is a hierarchical agglom-
erative one. It fits in Lance and Williams’s [32] general scheme for agglomerative
hierarchical clustering and can therefore be implemented in O(N2 logN), where N
is the number of entities considered. Moreover, using chains of near-neighbors, an
O(N2) implementation can be obtained (Benzecri [1], Murtagh [38]). Divisive hier-
archical clustering is more difficult. If the dimension m of the space to which the
entities to be classified belong is fixed, a polynomial algorithm in O(Nm+1 logN)
can be obtained (Hansen, Jaumard, and Mladenović [22]). In practice, problems with
m = 2, N ≤ 20000; m = 3, N ≤ 1000; m = 4, N ≤ 200 can be solved in reasonable
computing time. Otherwise, one must use heuristics.

Postulating a hierarchical structure for the partitions obtained for MSSC is a
strong assumption. In most cases direct minimization of the sum-of-squares criterion
among partitions with a given number M of clusters appears to be preferable. This
has traditionally been done with heuristics, the best known of which is KMEANS [33]
(see, e.g., Gordon and Henderson [16] and Gordon [15] for surveys of these heuristics).
KMEANS proceeds from an initial partition to local improvements by reassignment of
one entity at a time and recomputation of the two centroids of clusters to which this
entity belonged and now belongs, until stability is reached. The procedure is repeated
a given number of times to obtain a good local optimum.

It has long been known that entities in two clusters are separated by the hyper-
plane perpendicular to the line joining their centroids and intersecting it at its middle
point; see, e.g., Gordon and Henderson [16]. This implies that an optimal partition
corresponds to a Voronoi diagram. Such a property can be exploited in heuristics but
does not lead to an efficient exact algorithm as enumeration of Voronoi diagrams is
time-consuming, even in two-dimensional space (Inaba, Katoh, and Imai [26]).

Not much work appears to have been devoted, until now, to exact resolution of
MSSC. The problem was formulated mathematically by Vinod [44] and Rao [39] but
little was done there for its resolution. Koontz, Narendra, and Fukunaga [31] propose
a branch-and-bound algorithm which was refined by Diehr [3]. Bounds are obtained in
two ways: First, the sum-of-squares for entities already assigned to the same cluster
during the resolution is a lower bound. Second, the set of entities to be clustered may
be divided into subsets of smaller size and the sum of the sum-of-squares for each
of these subsets is also a lower bound. Using these bounds for all subsets but one
and assigning the entities of the last is then done. After they are assigned, the process
continues with entities of the second subset and so forth. The bounds used tend not to

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MINIMUM SUM OF SQUARES CLUSTERING 1487

be very tight, and consequently, the problems solved are not very large, i.e., N ≤ 60,
with two exceptions. These are two problems with 120 entities in R

2 belonging to
two or four very well separated clusters. Such examples might not be representative
of what this branch-and-bound algorithm might do on real data sets of comparable
size, and it points to a difficulty in evaluating branch-and-bound algorithms by the
size of the largest instance solved. Indeed, consider an example of MSSC with N
entities divided into M clusters which are each within a unit ball in R

m. Assume
these balls are pairwise at least N units apart. Then any reasonable heuristic will give
the optimal partition and any branch-and-bound algorithm will confirm its optimality
without branching as any misclassification more than doubles the objective function
value, and hence, should one be made, the bound would exceed the incumbent value.
Note that N, M, and m can be arbitrarily large.

In this paper we investigate an exact algorithm for MSSC. The problem is ex-
pressed as a constrained hyperbolic program in 0-1 variables with a sum-of-ratio ob-
jective. This compact formulation is shown to be equivalent to an extended one with
an exponential number of columns corresponding to all possible clusters. The reso-
lution method combines an interior point algorithm, i.e., the weighted version of the
analytic center cutting plane method (ACCPM) of Goffin, Haurie, and Vial [13] with
branch-and-bound. The auxiliary problem of determining the entering column (i.e.,
the oracle) is an unconstrained hyperbolic program in 0-1 variables with a quadratic
numerator and linear denominator. It is solved using Dinkelbach’s lemma [4], by a
sequence of unconstrained quadratic 0-1 programs. Moreover, to accelerate resolution,
variable neighborhood search heuristics are used both to get a good initial solution
and to solve quickly the auxiliary problem as long as global optimality is not reached.
Estimated bounds for the dual variables are deduced from the heuristic solution and
used in the resolution process as a trust region. Proved minimum sum-of-squares par-
titions are determined for the first time for several fairly large data sets from the
literature, including Fisher’s 150 iris [9].

Both the compact and the extended formulation are given in the next section,
where their relationship is also studied. Basic components of our algorithm as well
as several strategies are explained in section 3, while refinements, which accelerate
it considerably, are discussed in section 4. Computational results and conclusions are
given in section 5.

2. Model.

2.1. Compact formulation. The MSSC problem may be formulated mathe-
matically in several ways, which suggest different possible algorithms. We first con-
sider a straightforward formulation.

Let O = {o1, . . . , oN} denote a set of N entities to be clustered. These entities
are points in m-dimensional Euclidean space R

m. Let PM = {C1, . . . , CM} denote a
partition of O in M classes, or clusters, i.e.,

Cj �= ∅ ∀j; Ci

⋂
Cj = ∅ ∀i, j �= i;

M⋃
j=1

Cj = O.

Introducing binary variables xjk such that

xjk =

{
1 if entity ok belongs to cluster Cj ,
0 otherwise,

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1488 O. DU MERLE, P. HANSEN, B. JAUMARD, AND N. MLADENOVIĆ

the minimum sum-of-squares clustering problem may be expressed as follows:

Min

M∑
j=1

N∑
k=1

xjk‖ok − zj‖2

subject to (s.t.)

M∑
j=1

xjk = 1, k = 1, . . . , N,

xjk ∈ {0, 1}, j = 1, . . . ,M, k = 1, . . . N,

(1)

where zj denotes the centroid of the cluster Cj .
The algorithms of Koontz, Narendra, and Fukunaga [31] and Diehr [3] are based

on such a formulation. Recall now that Huygens’ theorem (e.g., Edwards and Cavalli-
Sforza [8]) states that the sum of squared distances from all points of a given set to
its centroid is equal to the sum of squared distances between pairs of points of this
set divided by its cardinality. Hence for any cluster Cj

∑
k:ok∈Cj

‖ok − zj‖2 =
∑

k,l:ok,ol∈Cj

‖ok − ol‖2
|Cj | .

Therefore (1) may be written

Min
M∑
j=1

N−1∑
k=1

N∑
l=k+1

dklxjkxjl

N∑
k=1

xjk

s.t.

M∑
j=1

xjk = 1, k = 1, . . . , N,

xjk ∈ {0, 1}, j = 1, . . . ,M, k = 1, . . . , N,

(2)

where dkl = ‖ok − ol‖2.
This formulation was first given by Vinod [44] and Rao [39]. Moreover, one can

observe that equality constraints of (2) may be replaced by

M∑
j=1

xjk ≥ 1,(3)

since a solution with an entity that belongs to several clusters, i.e., a covering of O
which is not a partition, cannot be optimal.

The program (2) (or its variant with inequality constraint (3)) is a constrained
hyperbolic program in 0-1 variables with a sum-of-ratios objective, N constraints, and
N ×M binary variables. It does not lead itself to an easy resolution.

2.2. Extended formulation. Partitioning problems of cluster analysis can be
easily expressed by considering all possible clusters. This was already done by Rao
[39]. Consider any cluster Ct and let

ct =
1

|Ct|
∑

k,l:ok,ol∈Ct

dkl

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MINIMUM SUM OF SQUARES CLUSTERING 1489

denote the sum-of-squares for Ct. Then let

akt =

{
1 if entity ok belongs to cluster Ct,
0 otherwise.

The extended formulation of MSSC can be written

Min
∑
t∈T

ctyt

s.t.
∑
t∈T

aktyt = 1, k = 1, . . . , N,∑
t∈T

yt = M,

yt ∈ {0, 1}, t ∈ T,

(4)

where T = {1, . . . , 2N − 1}. This is a set partitioning problem with a side constraint.
Again, equality constraints in (4) can be replaced by inequalities:∑

t∈T

aktyt ≥ 1, k = 1, . . . , N,(5)

and ∑
t∈T

yt ≤M.(6)

Variables yt are equal to 1 if cluster Ct is in the optimal partition and to 0
otherwise. The first set of constraints in (4) (resp., constraints (5)) expresses that
each entity belongs to a (resp., at least one) cluster, and the next constraint in (4)
(resp., constraint (6)) expresses that the optimal partition contains exactly (resp., at
most) M clusters. The program (4) (resp., with inequality constraints (5) and (6)) is
a large linear partitioning (resp., covering) problem with one additional constraint on
the number of variables at 1. The number of variables is exponential in the number
N of entities. Therefore this problem cannot be written explicitly and solved in a
straightforward way unless N is small. Fortunately, as shown below, the column-
generation technique of linear programming (Gilmore and Gomory [10]) can be used
together with branch-and-bound to solve exactly large instances.

2.3. Relationship between formulations. There is a close relationship be-
tween the two formulations of MSSC. To show this, consider the Lagrangian relaxation
of the compact formulation:

Max
λk≥0

Min
xjk∈{0,1}




M∑
j=1

N−1∑
k=1

N∑
l=k+1

dklxjkxjl

N∑
k=1

xjk

−
N∑

k=1

M∑
j=1

λk(xjk − 1)


 ,(7)

where the λk are the Lagrange multipliers. As, in absence of constraints, the minimum
of a sum is equal to the sum of minima of its terms, problem (7) is equivalent to

Max
λk≥0




N∑
k=1

λk +

M∑
j=1

Min
xjk∈{0,1}




N−1∑
k=1

N∑
l=k+1

dklxjkxjl

N∑
k=1

xjk

−
N∑

k=1

λkxjk





 .(8)D

ow
nl

oa
de

d
09

/1
7/

12
 to

 1
34

.8
3.

1.
24

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1490 O. DU MERLE, P. HANSEN, B. JAUMARD, AND N. MLADENOVIĆ

Observe that index j does not appear in the data of the minimization. Hence (8) can
be written after removing j:

Max
λk≥0

(
N∑

k=1

λk +Mf(λ)

)
,(9)

where

f(λ) = Min
xk∈{0,1}




N−1∑
k=1

N∑
l=k+1

dklxkxl

N∑
k=1

xk

−
N∑

k=1

λkxk


 .(10)

Several remarks are in order. First f(λ) is the lower envelope of a set of linear
functions corresponding to all possible values of x. Hence it is piecewise linear and
concave. Second, f(λ) is nonpositive, as the expression to be minimized in (10) is
equal to −λ1 for x1 = 1, xk = 0, k �= 1, and λ1 ≥ 0. Third, this expression can be
written as the ratio of a quadratic function to a linear function in 0-1 variables (using
the fact that x2

k = xk for binary variables):

f(λ) = Min
xk∈{0,1}

N−1∑
k=1

N∑
l=k+1

(dkl − λk − λl)xkxl −
N∑

k=1

λkxk

N∑
k=1

xk

.(11)

Fourth, the optimal value of (9) is not larger than that of the compact formula-
tion (2) of which it is a relaxation (see, e.g., Minoux [35]).

From concavity of f(λ) one has

f(λ) ≤ f(λt) +

N∑
k=1

gtk(λk − λt
k)(12)

for any vector λt ≥ 0, where gt ∈ ∂f(λt), i.e., gt is a subgradient of f at λt. In our
case one such subgradient is −xt, where xt is an (not necessarily unique) optimal
solution of (10) for λt. Moreover,

f(λt)−
N∑

k=1

gtkλ
t
k =

N−1∑
k=1

N∑
l=k+1

dklx
t
kx

t
l

N∑
k=1

xtk

which is equal to ct, the cost of the cluster Ct defined by xt. Hence (12) is one of the
hyperplanes defining f(λ). Let T ′ denote the index set of vectors xt corresponding to

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MINIMUM SUM OF SQUARES CLUSTERING 1491

all such hyperplanes. Then (9) may be written

Max Mz +

N∑
k=1

λk,

s.t. z +

N∑
k=1

xtkλk ≤ ct ∀t ∈ T ′,

λk ≥ 0, k = 1, . . . , N,
z ≤ 0.

(13)

The dual of this linear program, with dual variables denoted by yt, is

Min
∑
t∈T ′

ctyt

s.t.
∑
t∈T ′

xtkyt ≥ 1, k = 1, . . . , N,∑
t∈T ′

yt ≤M,

yt ≥ 0, t ∈ T ′,

(14)

and setting

akt =

{
1 if xtk = 1,
0 otherwise,

one sees that (14) is equal to the linear relaxation of the extended formulation (4)
except for the fact that variables with index t ∈ T\T ′ have been deleted. Such variables
correspond to redundant constraints in (13). Indeed, assume this is not the case. Then
there exists λ̄ ∈ R

n
+, z̄ ∈ R−, xr, and cr with r ∈ T\T ′ such that

z̄ +

N∑
k=1

xtkλ̄k ≤ ct ∀t ∈ T ′

and

z̄ +

N∑
k=1

xrkλ̄k > cr.

This implies, replacing cr by its value, that

z̄ >

N−1∑
k=1

N∑
l=k+1

dklx
r
kx

r
l

N∑
k=1

xrk

−
N∑

k=1

xrkλ̄k.(15)

As the right-hand side of (15) is the objective of the minimization problem (10)
in which variables xk are fixed at xrk, it is larger than or equal to this minimum f(λ̄),
contradicting z ≤ f(λ)∀ ≥ 0.

We have thus shown that the Lagrangian relaxation of the compact formulation
is equivalent to the linear relaxation of the extended formulation. This equivalence
will be exploited in the algorithm of the next section.

From now on program (14) will be referred to as the primal, while program (13)
will be called the dual, in order to conform with usual convention in the description
of column generation algorithms.

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1492 O. DU MERLE, P. HANSEN, B. JAUMARD, AND N. MLADENOVIĆ

3. Algorithm. The extended formulation of MSSC, i.e., problem (4), will be
solved by combining a column generation procedure with branch-and-bound. In the
dual, resolution of the continuous relaxation of problem (4) can be viewed as a cutting-
plane, or outer-approximation, method applied to solve problem (9). Cuts are iter-
atively added to the restricted dual, i.e., one considers an increasing subset of rows
of (13) or equivalently, an increasing subset of columns of (14). Strategies for solv-
ing this problem are discussed in the following subsection. The auxiliary problem of
finding the cuts (or columns in the primal) is examined in subsection 3.2. Branching
is discussed in subsection 3.3. Several refinements, i.e., finding an initial solution,
using it to bound the dual variables, and weighting appropriately constraints in the
cutting-plane method to ease resolution of the auxiliary problem, will be described in
the next section.

3.1. Strategies for solving the linear relaxation. We consider three strate-
gies for solving the Lagrangian relaxation of MSSC. They correspond to different ways
of choosing the Lagrange multipliers λ. For all three strategies the stopping criterion
is defined by an ε relative duality gap where epsilon is a small positive number (e.g.,
10−6). Lower bounds θl are given by the value of the Lagrangian problem, i.e., for a
given λ

θl =

N∑
k=1

λk +Mf(λ).

Upper bounds θu vary with the strategy and will be given below. The relative
duality gap is defined as θu−θl

max(θl,1)
.

A first strategy is that of Kelley [29] in which at each iteration λ is chosen as the
optimal solution of the current restricted dual. This corresponds, viewing the method
as a column generation one, to the minimum reduced cost criterion of the simplex
algorithm in the primal. It is the most frequently used strategy in column-generation
algorithms. However, it suffers from very slow convergence for the MSSC problem.
Indeed, as solutions to this problem are massively primal degenerate, after an optimal
solution has been found many further iterations may be needed to prove its optimality.

In this case, the upper bound θu on the optimal value of the Lagrangian relax-
ation (9) is given by the optimal value of the restricted dual (13) (or of the restricted
primal (14)).

A second strategy aims at stabilizing the column generation procedure, using a
bundle method in l1 norm (Hansen et al. [21], du Merle et al. [7]). A linear penalization
term is then added to the current restricted dual:

λs+1 = Arg Max Mz +

N∑
k=1

λk − µ

N∑
k=1

|λk − λ̃k|,

s.t. z +

N∑
k=1

xtkλk ≤ ct, t = 1, . . . , s,

λk ≥ 0, k = 1, . . . , N,
z ≤ 0,

(16)

where λ̃ is the best known value for λ and µ is a parameter. Problem (16) can be

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MINIMUM SUM OF SQUARES CLUSTERING 1493

reformulated as a linear program by addition of 2N new variables and N constraints:

λs+1 = Arg Max Mz +

N∑
k=1

λk − µ

N∑
k=1

(uk + vk),

s.t. z +

N∑
k=1

xtkλk ≤ ct, t = 1, . . . , s,

λk + uk − vk = λ̃k, k = 1, . . . , N,
λk, uk, vk ≥ 0, k = 1, . . . , N,
z ≤ 0.

(17)

Under this form the penalized restricted dual is a parametric linear program. In
order to ensure convergence of this penalized program to the optimal solution of the
original problem, µ is progressively decreased to 0. Changes in µ are made each time
the duality gap of the penalized problem is less than ε. Similar to the first strategy,
the upper bound on the optimal value of the penalized problem is given by the optimal
value of (17). Again, as in the first strategy, computations take place in the primal,
which has less rows than columns.

In the third strategy, computations take place in the dual and an interior point
method, i.e., the ACCPM of Goffin, Haurie, and Vial [13] is used. In this strategy,
Lagrangian multipliers are solutions of the following problem:

λs+1 = Arg Max

N+s+1∑
t=1

µt log st,

s.t. z +

N∑
k=1

xtkλk + st = ct, t = 1, . . . , s,

λk − sk+s = 0, k = 1, . . . , N,
z + sN+s+1 = 0,

Mz +
N∑

k=1

λk + s0 = θl,

(18)

where the parameters µt are weights given to the cuts and the st are slack variables
for these cuts (including nonnegativity and nonpositivity constraints). The solution
of this problem is a weighted analytic center for the current set of constraints. Several
ways of choosing the weights µt are considered. If they are all equal to 1, the standard
analytic center is obtained. In practice, this choice is known to be less efficient than
one in which µ0 = N + s + 1, the other µt remaining at 1. The effect is to push
the analytic center away from the lower bound constraint [6]. A third choice will be
discussed in the next section.

Here the upper bound θu on the optimal solution of the Lagrangian relaxation (9)
is a by-product of the resolution of problem (18), which ends up with a primal and
dual feasible point. Details on efficient computations of this bound are given in [5].

3.2. Auxiliary problem. The auxiliary problem is to find the value of f(λs)
and a subgradient of f at λs. As shown in (11) above, finding f(λs) can be expressed
as a hyperbolic (or fractional) program in 0-1 variables with quadratic numerator and
linear denominator. This is done both in a heuristic and in an exact way. The heuristic
will be discussed in the next section.

The standard way to solve such problems (see, e.g., Schaible [42]) is to use Dinkel-
bach’s lemma [4]. It works as follows:

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1494 O. DU MERLE, P. HANSEN, B. JAUMARD, AND N. MLADENOVIĆ

Initialization. Let f0 be the value of an initial solution x0 (finding a good initial
solution will be discussed in the next section). One can always set f0 = 0. Set
i← 1;

Repeat the following until the stopping condition is met:
(1) Solve

xi = Arg Min
xk∈{0,1}

N−1∑
k=1

N∑
l=k+1

(dkl − λs
k − λs

l)xkxl −
N∑

k=1

(λs
k + fi−1)xk;(19)

(2) If the optimal value of (19) is smaller than −ε, where ε is a small positive
constant (i.e., 10−6),

fi =

N−1∑
k=1

N∑
l=k+1

(dkl − λs
k − λs

l)x
i
kx

i
l −

N∑
k=1

λs
kx

i
k

N∑
k=1

xik

,

set i← i+ 1 and return to the previous step. Otherwise, stop.

Convergence of this algorithm follows from a general result of Megiddo [34].
Within this algorithm, however, it is necessary to solve at each iteration the un-
constrained quadratic 0-1 program (19). The exact algorithm to solve this problem is
a branch-and-bound method which exploits the following:

• Representation of the function as a posiform, i.e., as a polynomial in vari-
ables xk and x̄k = 1 − xk with positive coefficients only (except possibly for
a constant). Moreover, the posiform for which the constant term is largest
is obtained by removing variables from the linear terms in xk and x̄k (as
xk + x̄k = 1) and by considering chains of complementation increasing this
constant (e.g., xk + x̄kxl + x̄l = 1 + xkx̄l) (Hammer, Hansen, and Simeone
[19]).
• First-order Boolean derivatives (e.g., Hammer and Hansen [18]):

δxk
=

k−1∑
l=1

(dlk − λs
l − λs

k)xl +

N∑
l=k+1

(dkl − λs
k − λs

l)xl − λs
k − fi−1(20)

and

δxk
≥ 0⇒ xk = 0,

δxk
< 0⇒ xk = 1.

• Branching on the derivatives (i.e., δxk
≥ 0 and δxk

< 0) and fixing xk at 0
or 1 as a consequence (instead of branching on the variables xk as is usually
done). This gives linear relations in variables xl which can be used to fathom
the current subproblem by showing it contains no local optimum.

Remark. Within Dinkelbach’s algorithm one could solve the unconstrained
quadratic 0-1 programming problem by some heuristic as long as the stopping condi-
tion is not verified. Then, however, one must use an exact algorithm to guarantee the
optimality of xi and one must iterate if the stopping condition no longer holds.

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MINIMUM SUM OF SQUARES CLUSTERING 1495

3.3. Branching rule. As the solution of the continuous relaxation of the ex-
tended formulation (4) is not necessarily integer, a branching rule must be specified.
We use the (now) standard one in column generation, due to Ryan and Foster [41]. It
consists of finding two rows i1 and i2 such that there are two columns t1 and t2 with
fractional variables at the optimum and such that

ai1t1 = ai2t1 = 1

and(21)

ai1t2 = 1, ai2t2 = 0.

Such rows and columns necessarily exist in any noninteger optimal solution of the
continuous relaxation of a partitioning problem [41]. While we solve a covering prob-
lem (with one additional constraint) such an optimal solution satisfies the constraints
as equalities and hence this result still holds.

This branching is done by imposing on the one hand the constraint

xi1 = xi2 ,(22)

i.e., both entities will be in the same cluster, and on the other hand

xi1 + xi2 ≤ 1,(23)

i.e., the two entities cannot be in the same cluster. (Of course, in both subproblems
there will be clusters containing neither of the entities, i.e., one may have xi1 = xi2 =
0.) These constraints could be added to the master problem, but it is more efficient
to remove the columns in the current reduced master problem which do not satisfy
them and then introduce them in the auxiliary problem. The effect in the auxiliary
problem of constraint (22) is to reduce by one the number of variables and update
coefficients, while constraint (23) can be imposed by setting di1i2 to an arbitrary large
value. Hence the form of the auxiliary problem is unchanged.

The branching rule so defined can be made more precise by choosing from the
pairs of rows and columns satisfying condition (21) that one which is best according
to another criterion, e.g., having fractional variables the closest possible to 1/2. Such
refinements have not been investigated in detail as for MSSC branching appears to
be rare in practice and the resulting trees are very small.

Note that the branching rule described above can also be viewed as one for the
compact formulation (2), to which one adds the constraint (22) or (23). Then the first
possibility mentioned above corresponds to dualizing these constraints in addition to
the inequality constraints (3) while the second amounts to not doing so, hence having
them as constraints in the auxiliary problem (10) obtained when relaxing problem (2).

Note also that instead of removing the columns which violate the branching con-
straint or giving them a large value in the objective function, one may modify them
by removal or addition of an entity to satisfy his constraint and update their value in
the objective function. This is due to the fact that all clusters are a priori feasible.

4. Refinements.

4.1. Heuristics. As already mentioned, heuristics can be used in several places
in order to accelerate the algorithm whose principles have been described in the pre-
vious section. In some cases, such as when using Kelley’s strategy, the effect of such

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1496 O. DU MERLE, P. HANSEN, B. JAUMARD, AND N. MLADENOVIĆ

heuristics is quite drastic. They can be used to (i) find an initial solution of prob-
lem (2), (ii) find a solution of the auxiliary problem (11), and, possibly, (iii) find
a solution of the unconstrained quadratic 0-1 program (19) which arises when solv-
ing (11).

For these problems we use a recent, simple and effective metaheuristic (or frame-
work for heuristics) called variable neighborhood search (VNS)(Mladenović and Hansen
[37], Hansen and Mladenović [24]).

The principle of VNS is to change and randomly explore neighborhoods with an
appropriate local search routine. Contrary to other metaheuristics, e.g., simulated
annealing (Kirkpatrick, Gelatt, and Vecchi [30]) or Tabu search (Glover [11, 12]),
VNS does not follow a trajectory but explores increasingly distant neighborhoods of
the current incumbent solution, and jumps from there to a new one if and only if an
improvement has been made, through the local search. In this way, often favorable
characteristics of the incumbent solution, e.g., that many variables are already at
their optimal value, will be kept and used to obtain promising neighboring solution.

Let us denote a finite set of preselected neighborhood structures with Nk (k =
1, . . . , kmax) and with Nk(x) the set of solutions in the kth neighborhood of x. Steps
of a basic VNS heuristic, applied to the problem min{f(x) : x ∈ S}, are the following:
Initialization. Select the set of neighborhood structuresNk, k = 1, . . . , kmax, that will

be used in the search; find an initial solution x; choose a stopping condition;
Repeat the following until the stopping condition is met:

(1) Set k ← 1;
(2) Until k = kmax, repeat the following steps:

(a) Shaking. Generate a point x′ at random from the kth neighborhood
of x (x′ ∈ Nk(x));

(b) Local search. Apply some local search method with x′ as initial so-
lution; denote with x′′ the so-obtained local optimum;

(c) Move or not. If this local optimum is better than the incumbent,
move there (x ← x′′), and continue the search with N1 (k ← 1);
otherwise, set k ← k + 1;

Note that VNS uses only one parameter kmax (except for computer time allocated,
e.g., the stopping condition), which can often be disposed of, e.g., by setting it equal
to the size of the vector x considered.

For all the problems considered the neighborhood structure Nk(x) is defined by
the Hamming distance ρ between solutions x and x′ (i.e., the number of components
in which these vectors differ):

ρ(x, x′) = k ⇔ x′ ∈ Nk(x).

The local search routine is a greedy algorithm on the neighborhood N1(x). Up-
dating of first-order Boolean derivatives is used to accelerate computations (Hansen,
Jaumard, and da Silva [20]).

It appears that, while this is neither required nor proved in those steps, VNS
very often gives the optimal solution for MSSC as well as for the auxiliary problem
in moderate computing time.

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MINIMUM SUM OF SQUARES CLUSTERING 1497

4.2. Bounds on dual variables. Let lk ≥ 0 (resp., hk) be lower bounds (resp.,
upper bounds) on the dual variables λk, k = 1, . . . , N . The dual problem (13) is then

Max Mz +
N∑

k=1

λk,

s.t. z +

N∑
k=1

xtkλk ≤ ct ∀t ∈ T ′,

lk ≤ λk ≤ hk, k = 1, . . . , N,
z ≤ 0

(24)

and its primal

Min −
N∑

k=1

lkξk +

N∑
k=1

hkηk +
∑
t∈T ′

ctyt,

s.t. −ξk + ηk +
∑
t∈T ′

xtkyt ≥ 1, k = 1, . . . , N,∑
t∈T ′

yt ≤M,

yt, ξk, ηk ≥ 0, t ∈ T ′, k = 1, . . . , N,

(25)

where ξk (resp., ηk) are dual variables associated to the constraints lk ≤ λk (resp.,
λk ≤ hk), k = 1, . . . , N .

In order to estimate the lower bound lk′ let us first assume that only λk′ is upper
bounded (e.g., 0 ≤ λk′ ≤ hk′ and 0 ≤ λk for k = 1, . . . , N and k �= k′). Then observe
that if ηk′ > 0, this implies that λk′ ≤ hk′ is active and thus if lk′ ≤ hk′ , lk′ is a lower
bound of λk′ . Therefore, to find a lower bound of λk′ we look for values of hk′ that
imply that ηk′ > 0.

Let v(O) be the value of the Lagrangian relaxation (9) of problem (2) when we
are looking for a partition of all entities of O in M clusters. If

hk′ + v(O\{ok′}) < v(O),

then ηk′ in (25) will be strictly positive at the optimum. This implies that

lk′ < v(O)− v(O\{ok′}).

To estimate v(O)− v(O\{ok′}) we bound v(O\{ok′}) from above. Let vint(O) be the
value of the initial solution found by VNS and let c̄1, . . . , c̄M denote the cost of the
different clusters (vint(O) =

∑M
j=1 c̄j). Let k̃ be the index of the cluster in the initial

solution that contains ok′ and c̃k̃ the cost of this cluster when we omit ok′ . We thus
have an initial solution and its value for problem (2) when we omit entity ok′ in O.

vint(O\{ok′}) =
M∑

j=1, j 	=k̃

c̄j + c̃k̃ = vint(O)− c̄k̃ + c̃k̃.

Noting that v(O\{ok′}) is the value of the Lagrangian relaxation of problem (2)
when we are looking for a partition of O\{ok′} in M clusters, it follows that

lk < v(O)− vint(O) + c̄k̃ − c̃k̃ ≤ v(O)− v(O\{ok′}).

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1498 O. DU MERLE, P. HANSEN, B. JAUMARD, AND N. MLADENOVIĆ

The value of v(O) being unknown, it has to be estimated. As VNS often finds
the optimal solution of (2) and again often there is no integrality gap, the difference
v(O)− vint(O) was considered as 0 and lk′ set to c̄k̃ − c̃k̃. This implies that one must
check that the constraint lk′ ≤ λk′ is not active at the optimum of the Lagrangian
relaxation (9). Should it be active, the bound lk′ must be reduced and the resolution
of (9) resumed.

The procedure just described shows how to evaluate the lower bounds on λk one
at a time. The values so obtained are still valid when all lk are put together. Again,
because v(O) − vint(O) is assumed to be null, we must check for bounds which are
tight at the optimum, modify them, and resume the resolution if so.

Similarly, one can show that

hk′ > v(O ∪ {ok′})− v(O),

where v(O∪{ok′}) denotes the value of the Lagrangian relaxation of a partition of O
with two copies of ok′ into M clusters. Then noting that

v(O ∪ {ok′}) < vint(O) + ĉj − c̄j ,

where ĉj j �= k̃ is the cost of the cluster Cj to which ok′ is added, to minimize the
right-hand side one chooses Cj such that the resulting ĉj − c̄j is minimum. Hence

hk′ > vint(O)− v(O) + ĉj − c̄j ≥ v(O ∪ {ok′})− v(O).

As before, we assume that vint(O) − v(O) is equal to 0 and add a procedure to
check if the bound hk′ = ĉj − c̄j is active at the optimum.

4.3. Weights on cuts. The most time-consuming step of the algorithm is the
resolution of the auxiliary problem through a sequence of unconstrained quadratic
0-1 programming problems. As long as the relative duality gap is greater than ε the
auxiliary problem (11) is solved by the VNS heuristic, which is fairly fast. However,
when no relative duality gap is observed, one must check if the dual variables are
optimal and therefore solve the auxiliary problem with the exact branch-and-bound
algorithm. For large instances, this algorithm is time-consuming and its use, in fact,
limits the size of problems which can be solved exactly.

One may note that there is some flexibility in the way the coefficients in the
subproblem, i.e., the dual variables at the current iteration, are selected. Indeed, as
the optimal solution, in which the number M of clusters is usually much smaller than
the number N of entities, is massively primal degenerate (N + 1−M basic variables
being equal to 0 when this optimal solution is integer) there is a large polytope of
optimal solutions in the dual. To prove optimality of the linear relaxation of (4) (or
equivalently of problem (9)) has been attained one must check the value of the lower
bound θl. The question is then, “Which values should be selected in this polytope to
make the resolution of (19) the easiest possible?”

As the branch-and-bound algorithm relies on the first-order Boolean derivatives
(20), one may look for values which will make them fixed variables as soon as possible.
Observe then that reducing λk makes condition δxk

≥ 0⇒ xk = 0 more likely to hold.
(This augments the constant term as well as all coefficients of the linear terms in (20).)
To achieve this goal with ACCPM we weight the upper bound constraints λk ≤ hk
by a constant much larger than for the other constraints. (In practice a value of 100
for the upper bound constraints and 1 for the other constraints, except for the lower
bound on the problem value for which we keep the value µ0 = N + s+ 1, gives good
results.)

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MINIMUM SUM OF SQUARES CLUSTERING 1499

Rules are next given

Initialization:

Set the restricted dual to an empty problem;

Compute an initial partition using VNS;

Add the corresponding column to the restricted dual;

Compute bounds on dual variables using this solution;

t← 0, stop ← false

repeat

θu = +∞; θ̃l = −∞
repeat

(λt, θ̃u)← SolveTheRestrictedDual(xt, ct);

(xt, ct, θl)←SolveTheAuxiliaryProblemUsingVNS(λt);

t← t+ 1

while θu−θ̃l
max(θ̃l,1)

> ε

(xt, ct, θl)← SolveTheAuxiliaryProblemUsingDinkelbach(λt);

TestBoundOnDualVariables();

if (θl = θ̃l and NoBoundPushed()) then stop ← true

while ¬ stop

Fig. 1. Algorithm to compute the lower bounds.

4.4. Algorithm to compute the lower bounds. We state here the complete
algorithm to compute the lower bounds in the branch-and-bound algorithm (see Fig-
ure 1). The following procedures (in typewriter style in the algorithm) need to be
defined:

• (λt, θ̃u) ←SolveTheRestrictedDual(xt, ct) adds the new cluster (xt, ct) to
the restricted dual and solves it using the strategy chosen. It returns the
upper bound θu and the Lagrangian multipliers λt.

• (xt, ct, θl) ←SolveTheAuxiliaryProblemUsingVNS(λt) solves the auxiliary
problem for the Lagrangian multipliers λt using the heuristic VNS. It returns
the cluster (xt, ct) and the lower bound θl.

• (xt, ct, θl) ←SolveTheAuxiliaryProblemUsingDinkelbach(λt) is the same
as the procedure SolveTheAuxiliaryProblemUsingVNS(), but using Dinkel-
bach’s algorithm and quadratic 0-1 programming.
• TestBoundOnDualVariables() tests if the bounds on the dual variables are
active and pushes them if so.
• NoBoundPushed() answers true if no bounds have been pushed during the last
call of TestBoundOnDualVariables(), no otherwise.

These rules are embedded in a standard branch-and-bound procedure, with the
branching rule described above.

5. Computational results. The algorithm has been coded in C except for
VNS heuristics, coded in FORTRAN. Resolution of linear programs was done with

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1500 O. DU MERLE, P. HANSEN, B. JAUMARD, AND N. MLADENOVIĆ

CPLEX 3.0, and for solving the convex problem (18) we used ACCPM’s library [14],
slightly modified to incorporate a branch-and-bound scheme and to permit setting of
appropriate weights. Results were obtained using a SUN ULTRA 200 MHz station
with g++ (Option -O4) C compiler and f77 (Option -O4 -xcg92) FORTRAN compiler.

Extensive comparisons were made using some standard problems from the cluster
analysis literature (Ruspini’s 75 points in the Euclidean plane [40], Späth’s 89 postal
zones problem in three dimensions [43], and Fisher’s celebrated 150 iris problem in
four dimensions [9]).

We next comment in detail on results for Ruspini’s data. As most of the time is
spent in the resolution of the auxiliary problem, it is fair to compare resolution strate-
gies by their number of iterations for solving the linear relaxation. These numbers for
M = 2 to 10 and 15, 20, 25, 30, 35, and 40 are represented in Figures 2 and 3. For
the results of Figure 2 no information was used, i.e., no initial solution nor bounds on
the dual variables. As often observed when using column generation, Kelley’s strategy
is not efficient and the cases M = 2 and 3 could not be solved. The bundle method
in l1-norm allows solution of these two cases but is not much quicker than Kelley’s
strategy for M large. ACCPM is the most efficient strategy for all M and particularly
for the more realistic case of M small. The number of iterations is always small, e.g.,
about 100 for M = 40 a case where at least 40 columns must be generated.

Information was exploited for the results of Figure 3, i.e., an initial heuristic solu-
tion was found by VNS, bounds on the dual variables were computed, and the columns
corresponding to the clusters of the heuristic solution as well as the modified clusters
defined when computing the dual bounds were added. The reduction in number of
iterations due to this information is drastic for all strategies and all values ofM . With
Kelley’s strategy all instances can then be solved. Ranking of strategies remains the
same as in the former case. The number of iterations of ACCPM for M small is few
and never exceeds 25. It is often smaller than M .

Figure 4 shows the effect of information on Ruspini’s problem with the best
strategy (i.e., ACCPM). The first plot, “version 1,” gives the number of iterations
when no information was used. The second plot, “version 2,” gives the number of
iterations when the clusters found with the initial heuristic are added at the outset.
In the third plot, “version 3,” we initially add also the clusters obtained during the
computation of the dual bounds, and in the last one, “version 4,” we also add those
bounds.

The effect of the weights on the upper bounds are displayed in Table 1 using
Fisher’s iris data, ACCPM, and initial information. The first column gives values of
M ; the second, the number of iterations for solving the Lagrangian relaxation; the
third, the time spent in the auxiliary problem when solved exactly with Dinkelbach’s
algorithm; and the fourth, the total CPU time. The next three columns give the same
information as columns 2 to 4 but using a weighted version of ACCPM instead of
the standard one. Times are given in seconds. Observe that the number of iterations
to compute the Lagrangian relaxation with the weighted version of ACCPM is larger
than in the standard version, a consequence of looking for small values for λk. However,
the reduction of the time for solving the auxiliary problem more than compensates
for this increase for the more realistic case of M small.

Computational results using a weighted version of ACCPM and initial information
for the problems of Ruspini [40], Späth [43], and Fisher [9] are given in Tables 2–4.
The first column gives values of M ; the second, optimal solutions; the third, number
of iterations for solving the Lagrangian relaxation and when needed, in parentheses,

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MINIMUM SUM OF SQUARES CLUSTERING 1501

Fig. 2. Strategies without information.

Fig. 3. Strategies with information.

the number of nodes in the branch-and-bound tree; the fourth, the CPU time to
compute the analytic center; the fifth, the time spent in the auxiliary problem; and
the last one, the total CPU time. Again, times are given in seconds. Observe again
that the number of iterations to compute the Lagrangian relaxation with the weighted
version of ACCPM is slightly larger than in Figures 3 and 4 obtained with a standard
ACCPM.

It appears that the proposed interior point algorithm, together with exploitation
of information provided by VNS, allows exact resolution of a substantially larger
realistic MSSC problem than done before. The number of iterations remains small

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1502 O. DU MERLE, P. HANSEN, B. JAUMARD, AND N. MLADENOVIĆ

Fig. 4. Effect of information on ACCPM.

Table 1
Effect of weights on upper bounds.

Fisher Standard ACCPM Weighted ACCPM
M # of iter. Aux. time Tot. time # of iter. Aux. time Tot. time

2 4 128313.93 128348.50 19 18190.98 18348.09
3 5 29266.86 29308.10 39 191.14 498.58
4 9 2067.87 2139.32 51 108.59 506.77
5 8 218.76 281.95 42 20.27 350.81

Table 2
Ruspini using weighted ACCPM.

M Opt. sol. # of iter. AC time Aux. time Tot. time

2 89337.8 11 1.42 10.84 12.33
3 51063.4 16 .98 15.46 16.50
4 12881.0 7 .41 6.82 7.30
5 10126.7 14 .46 13.89 14.43
6 8575.40 25 .76 24.59 25.45
7 7126.19 31 .60 29.42 30.19
8 6149.63 (3) 44 1.03 41.88 43.11
9 5181.65 31 .63 30.47 31.26
10 4446.28 28 .51 26.99 27.62

Table 3
Späth using weighted ACCPM.

M Opt. sol. # of iter. AC time Aux. time Tot. time

2 6.02546 1011 4 2.31 17.50 19.92
3 2.94506 1011 10 4.41 1475.18 1479.75
4 1.04474 1011 28 7.42 62.81 70.49
5 5.97615 1010 21 4.11 35.26 39.59
6 3.59085 1010 50 3.91 83.50 87.61
7 2.19832 1010 60 7.25 98.90 106.55
8 1.33854 1010 45 3.59 73.00 76.86
9 7.80442 109 44 2.89 72.42 75.58
10 6.44647 109 50 2.14 81.92 84.33

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MINIMUM SUM OF SQUARES CLUSTERING 1503

Table 4
Fisher using weighted ACCPM.

M Opt. sol. # of iter. AC time Aux. time Tot. time

2 152.347 19 14.70 18682.22 18697.59
3 78.8514 39 15.11 481.64 497.55
4 57.2284 51 8.87 495.76 505.49
5 46.4461 42 8.63 340.89 350.25
6 39.0399 68 9.05 574.05 584.04
7 34.2982 54 5.02 421.13 427.04
8 29.9889 88 9.98 684.29 695.37
9 27.7860 108 11.43 842.55 855.23
10 25.8340 81 5.12 622.63 628.92

and the CPU time spent in computation of the analytical center is very small.

It is worth stressing that computation times tend to diminish, or at least not to
augment, with M. This is in sharp contrast with results for geometry-based branch-
and-bound methods cited in the introduction.

While those test problems are larger than previously solved exactly, there are
many larger ones for which one might want to obtain an exact solution. Of the five
main ingredients of the proposed algorithm (heuristic VNS, column generation, AC-
CPM, hyperbolic programming, and quadratic 0-1 programming) only one is the
bottleneck, i.e., quadratic 0-1 programming. An efficient choice of weights in the
ACCPM method accelerated considerably the algorithm for this step. Progress in so-
lution methods for unconstrained quadratic 0-1 programming, a topic currently much
studied, would immediately lead to exact solution of large instances of minimum
sum-of-squares clustering.

The proposed algorithm could also be used in heuristic mode by canceling the
quadratic 0-1 programming routine. As VNS often finds the optimal solutions of the
subproblem this modified method might still often lead to an optimal solution, but
without proof of its optimality.

Clearly, several of the new ideas proposed in this paper, i.e., exploitation of an
initial solution to find bounds on dual variables, modification of columns instead of
their removal when branching, and use of strategies to obtain small dual variables
in the auxiliary problem, could apply to many other problems in clustering, location
theory, and other fields.

REFERENCES

[1] J.P. Benzecri, Construction d’une classification ascendante hiérarchique par la recherche en
châıne des voisins réciproques, Les Cahiers de l’Analyse des Données, VII (1982), pp.
209–218.

[2] M. Delattre and P. Hansen, Bicriterion cluster analysis, IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI, 2 (1980), pp. 277–291.

[3] G. Diehr, Evaluation of a branch and bound algorithm for clustering, SIAM J. Sci. Statist.
Comput., 6 (1985), pp. 268–284.

[4] W. Dinkelbach, On nonlinear fractional programming, Management Sci., 13 (1967), pp. 492–
498.

[5] O. du Merle, Points intérieurs et plans coupants: mise en œuvre et développement d’une
méthode pour l’optimisation convexe et la programmation linéaire structurée de grande
taille, Ph.D. Thesis, HEC-Section of Management Studies, University of Geneva, Switzer-
land, 1995.

[6] O. du Merle, J.L. Goffin, and J.P. Vial, On improvements to the analytic center cutting
plane method, Comput. Optim. Appl., 11 (1998), pp. 37–52.

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1504 O. DU MERLE, P. HANSEN, B. JAUMARD, AND N. MLADENOVIĆ

[7] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen, Stabilized column generation,
Discrete Math., 194 (1999), pp. 229–237.

[8] A.W.F. Edwards and L.L. Cavalli-Sforza, A method for cluster analysis, Biometrics, 21
(1965), pp. 362–375.

[9] R.A. Fisher, The use of multiple measurements in taxonomic problems, Ann. Eugenics, VII
part II (1936), pp. 179–188.

[10] P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting stock problem,
Oper. Res., 9 (1961), pp. 849–859.

[11] F. Glover, Tabu search—Part I, ORSA J. Comput., 1 (1989), pp. 190–206.
[12] F. Glover, Tabu search—Part II, ORSA J. Comput., 2 (1990), pp. 4–32.
[13] J.-L. Goffin, A. Haurie, and J.-P. Vial, Decomposition and nondifferentiable optimization

with the projective algorithm, Management Sci., 38 (1992), pp. 284–302.
[14] J. Gondzio, O. du Merle, R. Sarkissian, and J.-P. Vial, ACCPM—A library for con-

vex optimization based on an analytic center cutting plane method, European Journal of
Operational Research, 94 (1996), pp. 206–211.

[15] A.D. Gordon, Classification: Methods for the Exploratory Analysis of Multivariate Data,
Chapman and Hall, New York, 1981.

[16] A.D. Gordon and J.T. Henderson, An algorithm for Euclidean sum of squares classification,
Biometrics, 33 (1977), pp. 355–362.

[17] J.C. Gower and G.J.S. Ross, Minimum spanning trees and single linkage cluster analysis,
Appl. Statistics, 18 (1969), pp. 54–64.

[18] P.L. Hammer and P. Hansen, Logical relations in quadratic 0-1 programming, Rev. Roumaine
Math. Pures Appl., 26 (1981), pp. 421–429.

[19] P.L. Hammer, P. Hansen, and B. Simeone, Roof duality, complementation and persistency
in quadratic 0–1 optimization, Math. Programming, 28 (1984), pp. 121–155.

[20] P. Hansen, B. Jaumard, and E. da Silva, Average-linkage divisive hierarchical clustering, J.
Classification, to appear.

[21] P. Hansen, B. Jaumard, S. Krau, and O. du Merle, A Column Generation Algorithm for
the Weber Multisource Problem, in preparation.

[22] P. Hansen, B. Jaumard, and N. Mladenović, Minimum sum of squares clustering in a low
dimensional space, J. Classification, 15 (1998), pp. 37–55.

[23] P. Hansen, B. Jaumard, and B. Simeone, Espaliers, a generalization of dendrograms, J.
Classification, 13 (1996), pp. 107–127.

[24] P. Hansen and N. Mladenović, An introduction to variable neighborhood search, in Meta-
heuristics. Advances and Trends in Local Search Paradigms for Optimization, S. Voss, S.
Martello, I.M. Osman, and C. Roucairol, eds., Kluwer, Dordrect, The Netherlands, 1998,
pp. 433–458.

[25] J.A. Hartigan, Clustering Algorithms, Wiley, New York, 1975.
[26] M. Inaba. N. Katoh, and H. Imai, Applications of weighted Voronoi diagrams and random-

ization to variance-based k-clustering, in Proceedings of the 10th ACM Symposium on
Computational Geometry, Stony Brook, NY, 1994, pp. 332–339.

[27] S.C. Johnson, Hierarchical clustering schemes, Psychometrika, 32 (1967), pp. 241–245.
[28] L. Kaufman and P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster

Analysis, Wiley, New York, 1990.
[29] J.E. Kelley, The cutting-plane method for solving convex programs, J. SIAM, 8 (1960), pp.

703–712.
[30] S. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecchi, Optimization by simulated annealing,

Science, 20 (1983), pp. 671–680.
[31] W.L.G. Koontz, P.M. Narendra, and K. Fukunaga, A branch and bound clustering algo-

rithm, IEEE Trans. Comput., C–24 (1975), pp. 908–915.
[32] G.N. Lance and W.T. Williams, A general theory of classificatory sorting strategies. 1.

Hierarchical systems, The Computer J., 9 (1967), pp. 373–380.
[33] J.B. MacQueen, Some methods for classification and analysis of multivariate observations,

in Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 2,
Berkeley, CA, 1967, pp. 281–297.

[34] N. Megiddo, Combinatorial optimization with rational objective functions, Math. Oper. Res.,
4 (1979), pp. 414–424.

[35] M. Minoux, Programmation mathématique: théorie et algorithmes, Tome 2, Dunod (Bordas),
Paris, 1983.

[36] B. Mirkin, Mathematical Classification and Clustering, Kluwer, Dordrecht, The Netherlands,
1996.

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MINIMUM SUM OF SQUARES CLUSTERING 1505

[37] N. Mladenović and P. Hansen, Variable neighborhood search, Comput. Oper. Res., 24 (1997),
pp. 1097–1100.

[38] F. Murtagh, A survey of recent advances in hierarchical clustering algorithms, Comput. J.,
26 (1983), pp. 329–340.

[39] M.R. Rao, Cluster analysis and mathematical programming, J. Amer. Statist. Assoc., 66
(1971), pp. 622–626.

[40] E.H. Ruspini, Numerical methods for fuzzy clustering, Inform. Sciences, 2 (1970), pp. 319–350.
[41] D.M. Ryan and B.A. Foster, An integer programming approach to scheduling, in Computer

Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling, A. Wren,
ed., North-Holland, Amsterdam, 1981, pp. 269–280.

[42] S. Schaible, Fractional programming, in Handbook of Global Optimization, R. Horst and P.M.
Pardalos, eds., Kluwer, Dordrecht, The Netherlands, 1995, pp. 495–608.

[43] H. Späth, Cluster Analysis Algorithms for Data Reduction and Classification of Objects, Ellis
Horwood, Chichester, UK, 1980.

[44] H.D. Vinod, Integer programming and the theory of grouping, J. Amer. Statist. Assoc., 64
(1969), pp. 506–519.

[45] J.H. Ward, Jr., Hierarchical grouping to optimize an objective function, J. Amer. Statist.
Assoc., 58 (1963), pp. 236–244.

D
ow

nl
oa

de
d

09
/1

7/
12

 to
 1

34
.8

3.
1.

24
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

