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THE ANDERSON MODEL OF LOCALIZATION: A CHALLENGE
FOR MODERN EIGENVALUE METHODS∗

ULRICH ELSNER‡ , VOLKER MEHRMANN‡, FRANK MILDE§ , RUDOLF A. RÖMER§ ,

AND MICHAEL SCHREIBER§

Abstract. We present a comparative study of the application of modern eigenvalue algorithms
to an eigenvalue problem arising in quantum physics, namely, the computation of a few interior
eigenvalues and their associated eigenvectors for the large, sparse, real, symmetric, and indefinite
matrices of the Anderson model of localization. We compare the Lanczos algorithm in the 1987
implementation of Cullum and Willoughby with the implicitly restarted Arnoldi method coupled
with polynomial and several shift-and-invert convergence accelerators as well as with a sparse hy-
brid tridiagonalization method. We demonstrate that for our problem the Lanczos implementation
is faster and more memory efficient than the other approaches. This seemingly innocuous problem
presents a major challenge for all modern eigenvalue algorithms.
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derson model of localization, shift-and-invert, polynomial convergence accelerators
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1. Introduction. In this paper we present a comparative study of the applica-
tion of modern eigenvalue algorithms to an eigenvalue problem arising in quantum
physics. The task is to compute a few (5–10) interior eigenvalues and the associ-
ated eigenvectors of a family of structured large, sparse, real, symmetric, indefinite
matrices. The off-diagonal elements are equal to the off-diagonal elements of the
7–point central difference approximation to the three-dimensional Poisson equation
on the unit cube with periodic boundary conditions. The matrices differ from each
other only in the diagonal entries, which are suitably chosen random numbers.

Previously this problem was often solved by using the 1987 Cullum and Wil-
loughby implementation of the Lanczos algorithm [6, 7], in the following called
CWI. But in the last 10 years several new eigenvalue methods have been developed
and implemented as software packages, that seem, at least at first glance, more
appropriate than CWI, see, e.g., the recent survey and comparison given in [19].
We apply these new codes to the described family of matrices and check whether
they are faster and more memory efficient than CWI. To our surprise, none of the
tested codes is consistently better than CWI. As we show below, we find only a
single new code which is at least as fast as CWI. But this code needs two orders of
magnitude more memory than CWI. We therefore believe that the described family
of matrices will present an important new benchmark example and will hopefully
lead to modifications and improvements for the current methods.

The paper is organized as follows. In § 2 we describe the underlying quantum
physics problem, i.e., the Anderson model of localization, and introduce the pa-
rameters used in our study. In § 3 we briefly review the Cullum/Willoughby version
of the Lanczos method that has been previously used in the simulations for this
model. We then give in § 4 a brief survey of more recent eigenvalue methods. In
§ 5 we present comparative results for the different methods and show that CWI is
faster and needs less memory than all other approaches.

2. The Anderson model of localization. The Anderson model of local-
ization [1] is a convenient model for the investigation of electronic properties of
disordered systems. Although it represents a severe simplification of amorphous
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materials and alloys, it has nevertheless become a paradigmatic model and is cur-
rently widely used in the theoretical description of quantum mechanical effects of
disorder such as, e.g., spatial localization of electronic wave functions with increasing
strength of disorder and the corresponding metal-insulator transitions [18, 21, 35].
The quantum mechanical problem is represented by a Hamilton operator in the
form of a real symmetric matrix A and the quantum mechanical wave functions
are simply the eigenvectors of A, i.e., finite vectors x with real entries. E.g., for a
simple cubic lattice with M = N × N × N sites, we have to solve the eigenvalue
equation Ax = λx, which is given in site representation as

xi−1,j,k + xi+1,j,k + xi,j−1,k + xi,j+1,k + xi,j,k−1 + xi,j,k+1 + εi,j,kxi,j,k(2.1)

= λxi,j,k,

with i, j, k denoting the cartesian coordinates of a site. The off–diagonal entries
of A correspond to hopping probabilities of the electrons from one site to a neigh-
boring site. For simplicity, we have set them all to unity in (2.1). The disorder is
encoded in the random potential site energies εi,j,k on the diagonal of the matrix
A. We consider only the case of εi,j,k being uniformly distributed in the interval
[−w/2,+w/2]. This is a common simplification, usually used in the studies of the
Anderson model of localization with typical values of w ranging from 1 to 30. The
boundary conditions are usually taken to be periodic, but hard wall and helical [28]
boundary conditions are sometimes also used. According to the Gersgorin circle the-
orem [13] every such matrix A has eigenvalues in the interval [−w/2− 6,+w/2+6].
Possible generalizations of the Anderson model include anisotropic [21] or even ran-
dom hopping [9] and various choices of the distribution function of the site energies
[14]. However, the graph of the matrix remains the same.

Although the above matrix seems to be fairly simple, the intrinsic physics is
surprisingly rich. For small disorder (w ≪ 16.5), the eigenvectors are extended,
i.e., xi,j,k is fluctuating from site to site but the envelope |x| is approximately a
non-zero constant. For large disorder (w ≫ 16.5), all eigenvectors are localized, i.e.,
the envelope |xn| of the nth eigenstate may be approximately written as exp[−|~r−
~rn|/ln(w)] with ~r = (i, j, k)T and ln(w) denoting the localization length of the
eigenstate at the specified strength w of the disorder. In Fig. 2.1, we show examples
of such states for the Anderson model in one spatial dimension. Since extended
states can contribute to electron transport, whereas localized states cannot, the
Anderson model thus describes a metal-to-insulator transition: In three-dimensional
samples at w = wc ≈ 16.5, the extended states at λ ≈ 0 vanish and no current can
flow. The eigenvector properties are also connected with the statistical properties
of the spectrum σ(A) of A. In the extended regime one finds level repulsion, while
in the localized regime the eigenvalues are uncorrelated resulting in level clustering.
These results agree quantitatively with random matrix theory [18]. Directly at wc

there is a so-called critical regime where the eigenvectors are multifractal entities
[21, 29] showing characteristic fluctuations of the amplitude on all length scales.
In order to numerically distinguish these three regimes, namely localized, critical
and extended behavior, one needs to (i) go to extremely large system sizes and (ii)
average over many different realizations of the disorder, i.e., compute eigenvalues
or -vectors for many matrices with different diagonals.

In the present paper we concentrate on the computation of a few eigenvalues
and corresponding eigenvectors for the physically most interesting case of critical
disorder wc and in the center of σ(A), i.e., at λ = 0, for system sizes as large as
possible. In Fig. 2.2, we show a histogram of σ(A) for different disorders. Note the
high density of states at λ = 0 in all cases. Therefore we have the further numerical
challenge of distinguishing clearly the eigenstates in this high density region.
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Fig. 2.1. Extended (dashed line) and localized (thick solid line) eigenstate for a single
realization of the Anderson model in one spatial dimension with N = 200 sites and periodic
boundary conditions. For the localized eigenstate, we also show the exponential envelope with
localization length l ≈ 12 (thin lines) according to § 2.
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Fig. 2.2. Histogram n(λ) of eigenvalues for a single system with N3 = 483 sites and w = 10
(✷), 16.5 (◦), and 20 (⋄). The bin width is 0.05. The lines are obtained by consecutively averaging
20 bins.
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3. The Lanczos algorithm and the Cullum/Willoughby implementa-
tion. As outlined in the last section, each of the matricesA is sparse, symmetric and
indefinite. Furthermore, the matrix-vector multiplication Ax can be written explic-
itly as in (2.1) and is thus easily implemented. An ideal candidate for an algorithm
taking advantage of nearly all these properties is the Lanczos algorithm [13]. This
algorithm iteratively generates a sequence of orthogonal vectors vi, i = 1, . . . ,K,
such that V T

KAVK = TK , with V = {v1, v2, · · · , vK} and TK a symmetric tridiagonal
K ×K matrix. One obtains the recursion

βi+1vi+1 = Avi − αivi − βivi−1,(3.1)

where αi = vTi Avi and βi+1 = vi+1Avi are the diagonal and subdiagonal entries of
TK , v0 = 0 and v1 is an arbitrary starting vector. For K = M in exact arithmetic
this is an orthogonal transformation to tridiagonal form that needs M matrix-vector
multiplications. The eigenvalues of the tridiagonal matrix TK , also known as Ritz
values, are then simply the eigenvalues of the matrix A and the associated Ritz
vectors yield the eigenvectors [6, 7, 13, 22, 25].

In finite precision arithmetic, however, the Lanczos vectors vi loose their or-
thogonality after a small number of Lanczos iterations. Consequently, there appear
so called “spurious” or “ghost” eigenvalues in σ(TK), which do not belong to σ(A).

There are several solutions to this problem: total reorthogonalization of all
Lanczos vectors against each other, selective reorthogonalization [23], or distin-
guishing between good and spurious eigenvalues. While the reorthogonalization
leads to an increase in memory requirements and computing time, since all or sev-
eral of the vi need to be stored and reorthogonalized, the solution implemented
in CWI [7] uses a simple and highly successful procedure to identify the spurious
eigenvalues, thereby avoiding reorthogonalization. It thus only uses two Lanczos
vectors in each iteration step and consequently the memory requirements are very
small. An eigenvalue of TK is identified as being spurious if it is also an eigenvalue
of the matrix T ′

K which is constructed by deleting the first row and column of TK .
Still, the good eigenvalues produced may not yet have converged properly for a
given K. So we further use the fact that good eigenvalues will be replicated in
σ(TK) if K is large enough. We only accept eigenvalues as being good eigenvalues
after they have been replicated at least once in σ(TK). Hence we usually need at
least K ≥ 2M . Finally, in order to obtain the eigenvectors corresponding to these
good eigenvalues of A, all Lanczos vectors must be computed a second time, again
doubling the computational effort.

The convergence of the Lanczos algorithm is very fast for the eigenvalues close
to min σ(A) and max σ(A). This is especially true if these eigenvalues are well
separated. However, for eigenvalues in the interior of σ(A) and for eigenvalues which
are not well separated the convergence is slow. Furthermore, the tridiagonal matrix
TK becomes very large for an iteration in the interior of σ(A). Nevertheless, the CWI
has been used to study the Anderson model of localization even at λ = 0 successfully
for years [27, 29, 18, 14, 21, 35] and eigenstates for matrices with N = 100 can be
obtained within a few weeks of computing time [34].

We also remark that most of the computational effort in the Lanczos algorithm
is spent on the iteration of (3.1), i.e., on matrix-vector multiplications and vector
additions. These can be easily parallelized and thus the CWI is well suited for
parallel architectures. For example, the eigenspectra presented in Fig. 2.2 have
been obtained by such a parallel version of CWI running for about 60 hours for
each realization using 16 processors of a Parsytec GCC Power Plus.

4. Modern approaches. Lately there has been much progress in eigenvalue
methods mostly concentrating on non-symmetric matrices. We refer to [19] for
a recent survey. The symmetric problem is usually assumed to be taken care of
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implicitly. But although our symmetric eigenvalue problem is well-conditioned [13],
the fact that the eigenvalues are clustered in the neighborhood of λ = 0, our region
of interest, creates difficulties for all numerical methods. Promising choices for
possible replacements of the Cullum and Willoughby approach are the implicitly
restarted Arnoldi method [19] and the hybrid tridiagonalization (HTD) algorithm
of Cavers [4]. Another new approach is the Jacobi-Davidson method [3]. In the
following we will pay special attention to the Arnoldi approach, since it allows the
easy use of the shift-and-invert technique. We expect this to overcome the above
mentioned clustering problem at λ = 0.

4.1. Modifying the eigenproblem. The problem of slow convergence in the
interior of σ(A) can be overcome by computing eigenvalues and eigenvectors for a
modified eigenvalue problem f(A)x = f(λ)x. The function f is chosen such that the
desired point λ in σ is mapped onto or close to the minimum or maximum of σ(f).
Furthermore, one should choose f , such that σ(f) has well separated eigenvalues at
min σ(f) and max σ(f).

Among the many possible choices for f(A), we shall consider in the following:
(i) polynomial convergence accelerators, where f(A) is chosen as a polynomial which
has its maximum (or minimum) at λ. This moves λ to max σ(f(A)) (or min σ(f(A))
resp.). We remark that occasionally these convergence accelerators are somewhat
misleadingly called preconditioners. (ii) shift-and-invert with f(A) = (A − λI)−1

and I the M ×M identity matrix. This choice of f requires the additional solution
of a linear system with A− λI in each step of the eigenvalue iteration [13, 25]. For
the solution of this linear system there are again two alternatives: (ii.a) direct sparse
solvers for A − λI. Unfortunately, not many direct solvers exist which can make
efficient use of the sparseness for indefinite problems. (ii.b) iterative solvers using
only matrix-vector multiplications with A− λI. The iterative methods promise to
make large matrix sizes possible, since they benefit in an optimal way from sparsity.
Memory requirements and computational cost of a matrix-vector multiplication are
proportional to the number of non-zeros and therefore proportional to M for our
present problem. However, we note that in our case (A − λI) is indefinite which
will lead to slow convergence for most iterative solvers. Since the convergence of
the iterative solver is dominated by the condition number of the linear system, one
may employ preconditioners to accelerate its convergence [13].

All these approaches result in a competition between smaller numbers of Lanc-
zos or Arnoldi iterations and increased costs for each such iteration step. For this
reason it is not a priori clear whether they will indeed give a net reduction in
computation time.

4.2. The implicitly restarted Arnoldi method. In a recent comparison
[19] of different Arnoldi based packages ArPack [20] was found to be the fastest
and most reliable of the compared codes.

When applied to symmetric eigenvalue problems, the main difference between
the techniques in ArPack based on the Arnoldi iteration and the Lanczos iteration
is an implicit restart technique. The Arnoldi method stores a number of Ritz
vectors produced by the iterations and after a small number of steps initiates a
restart which uses an implicit QR–algorithm for the small eigenvalue problem to
create a new starting vector and to maintain orthogonality among the Ritz vectors.
In contrast to the Lanczos algorithm more vectors have to be stored but spurious
eigenvalues are avoided.

The ArPack implementation further allows the easy use of additional acceler-
ation methods such as polynomial convergence acceleration and shift-and-invert as
outlined above. So ArPack is probably the best choice for a replacement of CWI.
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4.3. Other approaches. We have also studied the use of the HTD method [4]
and the Jacobi/Davidson method [3]. The HTD method is a direct tridiagonaliza-
tion method specifically designed for sparse matrices. This makes it an interesting
approach for our purposes. However, it is not explicitly designed to compute only
few interior eigenvalues and associated eigenvectors.

The Jacobi/Davidson method appears to be another promising future direc-
tion if it can be properly accelerated. The current version is designed for complex
unsymmetric problems and to report comparative results would not be fair to this
interesting new development. We intend to further study this method in the future.

5. Results. After a short discussion of the specific implementations and pa-
rameters, we now present the results of our comparison. The tests are performed
on Hewlett-Packard HP9000 735/125 workstations for N3 ≤ 243 and on a HP9000
K460 with the fast PA8000 processor for N3 ≥ 243. The latter machine allows
us to use up to 1.9 GB RAM and is about 3.5 times faster. In order to obtain
a fair comparison we always require that the eigenresidual of the computed eigen-
value/eigenvector pair satisfies |Ax− λx| ≤ 10−8. The CPU times have been mea-
sured using the Unix time command of the tcsh shell. Even for the largest system
sizes considered, we have usually taken at least 5 different realizations of disorder
and averaged the resulting CPU times. Sometimes, when the CPU times for a given
algorithm fluctuate widely, we report the range of times instead of a simple average.
We remark that the use of time introduces a further uncertainty into the results
such that we always have an error of about 10%. The random number generators
used are ran2 from [24] and the rand command from Matlab.

5.1. The standard approach. For our particular problem we can reachM =
803 = 512000 with CPU times of about two weeks on the K460 machine using
CWI. However, keeping in mind the configurational averaging necessitated by the
underlying physical problem, a reasonable upper limit for the matrix size is M =
503 = 125000.

In Table 5.1 we show the CPU times obtained for CWI in the center and at
the edge of σ(A). Note that the computing times are nearly independent of the
disorder parameter W , but, as expected, CWI is much faster at the edges of σ(A)
than at λ = 0. In Table 5.2, we show the results for CWI at λ = 0 in dependence
on the matrix size M .

In the ArPack implementation of Lehoucq et al. [20] one has to set the pa-
rameter NCV which is the largest number of basis vectors that will be used in the
implicitly restarted Arnoldi process. In normal mode and in the interior of σ(A) we
find that the actual value of NCV heavily influences computing time as shown in
Table 5.3. This dependence on NCV becomes less pronounced for eigenvalues close
to min σ(A) and max σ(A) as shown in Table 5.4. However, since we do not know
of any strategy to choose NCV optimally, this is a severe restriction of ArPack.
Furthermore, as shown in Table 5.1, ArPack, working in normal mode, is much
slower than CWI both in the center and at the edge of σ(A). It becomes too slow
for practical use already at M = 123 = 1728 as shown in Table 5.2.

In Tables 5.1 and 5.2 we also include CPU times for the HTD method. Note
that we only show the CPU times needed to transform A to tridiagonal form.
Nevertheless, we find that HTD is much slower than CWI. We remark that when
we use CWI to compute the full spectrum as in Fig. 2.2, it is still faster than HTD
except for small system sizes M ≤ 123 = 1728.

5.2. Polynomial convergence acceleration. As outlined above, polyno-
mial convergence acceleration is usually a convenient choice to speed up the com-
putation of eigenvalues and -vectors corresponding to a small region of σ(A). Here,
we test a polynomial provided by D. Sorensen, one of the authors of ArPack, and
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M W CWI ArPack HTD

1000 10.0 2.4 240 – 2200 22
1000 16.5 2.5 230 – 1400 22
1000 20.0 2.4 140 – 1300 23
1728 10.0 7.9 1700 – 12000 170
1728 16.5 7.8 410 – 12000 170
1728 20.0 7.6 1100 – 20000 160
4096 10.0 43 2600
4096 16.5 40 2500
4096 20.0 40 2500

1000 10.0 0.71 0.78 22
1000 16.5 0.77 0.85 22
1000 20.0 0.80 0.89 23
1728 10.0 0.94 1.5 170
1728 16.5 1.0 1.7 170
1728 20.0 1.1 1.8 160

13824 10.0 9.4 57
13824 16.5 9.2 57
13824 20.0 9.3 71

Table 5.1

CPU times in seconds to compute 5 eigenvectors with CWI, ArPack, and HTD. The upper
part of the table corresponds to eigenvalues in the interior of σ(A) at λ ≈ 0, the lower part
corresponds to the 5 largest eigenvalues.

CWI+ ArPack+
M CWI

conv. acc.
ArPack

conv. acc.
HTD

1000 2.5 5.6 230 – 1400 4.9 22
1728 7.8 11 410 –12000 10 170
4096 40 59 66 2500

13824 770 1700 1700
13824 220 550
27000 1000 3500
91125 20000

110592 35000

Table 5.2

CPU times in seconds to compute at w = 16.5 the eigenvectors corresponding to the 5
eigenvalues closest to λ = 0 with CWI, CWI with Chebyshev-polynomial acceleration, ArPack

in normal mode, ArPack with Chebyshev-polynomial acceleration and HTD for various matrix
sizes M . The CPU times in the upper (lower) part of the table have been measured on the HP
735 (HP K460).

C. Sun [31]. It is based on a Chebyshev-type polynomial given by the following
recursion:

p1(x) = 1
p2(x) = a+ bx2

pn+1(x) = 2(a+ bx2)pn − pn−1

(5.1)

where a = (x2
1+x2

2)/(x
2
1−x2

2) and b = 2/(x2
2−x2

1). Also, pn is symmetric with a local
maximum pn(0) > 1 at zero, |pn(x)| ≤ 1 in the intervals [x1, x2] and [−x2,−x1],
and pn grows rapidly for |x| > x2 as shown, e.g., in Fig. 5.1 for n = 20. In general,
one would like to have x1 and x2 chosen automatically in order to obtain a suitable
function f as described in § 4. In all our present calculations we use n = 50 with
(x1)

2 = 0.005 and (x2)
2 = 1.1 [max σ(A)]2 according to [31]. This polynomial

convergence acceleration speeds up ArPack immensely as one can see in Table 5.2.
Since λ = 0 is now mapped to max σ(p50(A)), the actual value of NCV is less
important. We found NCV = 50 to be a good choice to make the execution times
faster, although this requires more memory. Still CPU times are about a factor of
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NCV

90 110 130

1 2577 4337 9455
2 2011 2267 3455
3 4190 1935 3635
4 411 755 1204
5 2435 1811 11620
6 8188 4704 2506

Table 5.3

CPU times in seconds to compute 5 eigenvectors with ArPack for 6 different diagonals and
3 choices of NCV for M = 1728 and w = 16.5 at λ = 0.

NCV

w = 10 w = 16.5 w = 20
15 20 15 20 15 20

1 41 44 63 62 56 58
2 65 65 43 47 49 55
3 57 60 54 64 44 47
4 62 62 44 49 49 55
5 72 76 72 68 76 71
6 44 45 56 62 87 85
7 81 70 72 88 108 90
8 52 60 49 51 70 66
9 42 48 58 68 99 75

Table 5.4

CPU times in seconds to compute the eigenvectors corresponding to the 5 largest eigenvalues
of A with ArPack for 9 different diagonals and 2 choices of NCV with M = 13824.

−10 −5 −1 1 5 10
x

−1
1

5

10

15

20

25

p20(x)

Fig. 5.1. Chebyshev polynomial p20(x) with x1 = 1 and x2 = 10.
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ArPack+ ArPack+
M CWI

conv. acc.
HTD

LU BKP SuperLU MA27 MA27+HB

1000 0.24 0.6 1.4 7.4 10 7.8 0.8 0.4
1728 0.43 1.2 6.7 18 22 19 2.2 0.9
4096 1.0 2.3 13 80 81 92 8.6 2.9

13824 3.4 6.6 70 22
27000 6.5 15 200 68
91125 22 1300 500

110592 27 2600 600

Table 5.5

Memory requirements in MB to compute at w = 16.5 the eigenvectors corresponding to the
5 eigenvalues closest to λ = 0 for the different diagonalizers (Names as in the text, HB indicates
hard wall boundary conditions)

ArPack+
M CWI

LU BKP SuperLU MA27 MA27+HB

1000 2.5 39 74 8.8 1.3 0.88
1728 7.8 150 300 28 5.0 2.0
4096 40 1200 1900 220 39 9.8

13824 770 740 140
13824 220 260 58
27000 1000 1300 250
91125 20000 19000 4900

Table 5.6

CPU times in seconds to compute at w = 16.5 the eigenvectors corresponding to the 5
eigenvalues closest to λ = 0 with shift-and-invert ArPack and different direct solvers. For easier
comparison, we also include CWI. The CPU times in the upper (lower) part of the table have
been measured on the HP 735 (HP K460).

two larger than for CWI without any convergence acceleration. Unfortunately, CWI
itself is not made faster by the use of this accelerator as also shown in Table 5.2.
Although the number of Lanczos vectors needed to achieve convergence is reduced
remarkably, the additional computational effort now required for every Lanczos
step becomes very large. At the end one needs even slightly more matrix-vector
multiplications than without convergence acceleration.

5.3. Shift-and-invert with direct solvers. We now discuss the use of the
shift-and-invert mode of ArPack together with a direct solver for the linear system
(A − λI)y = b. We first note that although our matrix A is symmetric, it is
not positive definite and thus we cannot use a sparse Cholesky decomposition.
Unfortunately, there are only few packages available for sparse symmetric indefinite
problems [8]. Therefore we also investigated several packages for general sparse
matrices.

Meschach [32] is a freely available mathematical package written in C. There
are three sparse factorization methods implemented in Meschach: Cholesky, LU,
and Bunch-Kaufmann-Parlett (BKP). Cholesky factorization does not work due to
the indefiniteness of A. LU and BKP are supposed to take advantage of the sparse-
ness of our problem. However, we find that they have huge memory requirements
of the order of M2 as shown in Table 5.5. So they are inapplicable for large system
sizes. And even for small systems they turn out to be much too slow as shown in
Table 5.6.

The Harwell Subroutine Library [16] contains the sparse symmetric indefinite
solver MA27. As shown in Table 5.6, ArPack with MA27 is about as fast as
CWI. In fact, MA27 seems to become faster than CWI for M ≥ 453 = 91125.
Unfortunately we could not test this because of the huge memory requirements of
MA27 as shown in Table 5.5.
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ArPack+
M CWI

QMRX QMRL CPX

1000 2.5 68 93 85
1728 7.8 239 320 330
4096 40 1600 2300

13824 770 35000
13824 220 12000
27000 1000
91125 20000

Table 5.7

CPU times in seconds to compute at w = 16.5 the eigenvectors corresponding to the eigen-
values closest to λ = 0 with shift-and-invert ArPack and the iterative solvers from QMRPack.
For easier comparison, we also include CWI. The CPU times in the upper (lower) part of the
table have been measured on the HP 735 (HP K460).

A noteworthy fact is that MA27 is much better for hard wall boundary condi-
tions (HB). This can be explained by the fact that the bandwidth of the matrix is
O(N2) instead of O(N3) as for periodic boundary conditions. However, on physical
grounds, a calculation with HB is expected to be much more influenced by the finite
size of the cubes considered. So although we can obtain larger system sizes here, the
results for the interesting physical quantities may not be as reliable. Nevertheless,
ArPack with MA27 for matrices with HB is faster than CWI for matrices with
periodic boundary conditions. MA27 with HB is also faster than CWI with HB,
since for CWI there is only a negligible difference in computing time between HB
and periodic boundary conditions coming from the matrix-vector multiplication.

SuperLU is a package by Demmel et al. [8] doing a sparse LU decomposition.
Compared with CWI and MA27, SuperLU is much slower as shown in Table 5.6.
Furthermore, it needs about one order of magnitude more memory than MA27 as
shown in Table 5.5. SuperLU allows the input of different preorderings in addition
to the default minimum-degree ordering. We have tested a symmetric minimum
degree ordering from the Matlab program and a nested dissection ordering com-
puted by the Chaco package [17]. For some choices of diagonals we derive small
savings in run time and/or memory but these are not consistent, i.e., the same kind
of ordering speeds up the program for one choice of N and slows it down for N +1.

5.4. Shift-and-invert with iterative solvers. Considering the recent ad-
vances in iterative solvers, we initially hoped that ArPack in shift-and-invert mode
coupled with a modern iterative method for the solution of linear systems would be
quite efficient. As we will show below, this is not the case.

The quasi-minimal-residual (QMR) technique should be one of the best iterative
solvers for symmetric matrices that works using only matrix-vector multiplications
if no preconditioning is used [12]. However, as shown in Fig. 2.2, our matrices
are indefinite with a nearly symmetric eigenvalue distribution around zero. This
results in a very bad iteration count of about 2M for the solution of a single linear
system of sizeM . The times and iteration numbers from three variants implemented
in QMRPack [11], namely, QMR based on three-term Lanczos with and without
look-ahead (QMRL/QMRX) and QMR based on coupled two-term Lanczos without
look-ahead (CPX) are not very different as shown in Table 5.7. For all three methods
the iteration count is rather high. Consequently, we find that ArPack in shift-and-
invert mode coupled with QMRPack as iterative solver is about 20 times slower
than CWI. The ArPack input parameter NCV was set to 15. We also find that
the implementation of QMR based on coupled two-term Lanczos with look-ahead
does not converge for larger systems within 50000 iterations.

In order to check if other iterative methods are perhaps more efficient than
QMR for our family of matrices, we have also tried several such iterative solvers
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M QMR CGS Bi-CG Bi-CGSTAB

512 796 – 999 843 – n.c. 809 – 980 1006 – n.c.
1000 1705 – n.c. 1762 – n.c. 1701 – n.c. n.c.
1728 2918 – n.c. n.c. 2932 – n.c. n.c.
2744 4809 – n.c. n.c. 4775 – n.c. n.c.
4096 7270 – n.c. n.c. 7401 – n.c. n.c.

M GMRES GMRES(5N) QMR+jac QMR+tri

512 511– 512 n.c. 813 – n.c. 295 – 569
1000 995–1000 n.c. n.c. 1389 – n.c.
1728 1723–1728 n.c. n.c. n.c.
2744 2736–2744 n.c. n.c. n.c.
4096 n.c. n.c. n.c.

Table 5.8

Number of iterations needed in Matlab in order to solve the linear system Ay = b. The
abbreviations for the different algorithms are explained in the text. The runs are aborted when
the number of iterations is more than 2M . This case of no convergence is indicated by “n.c.”.

using theMatlab programming environment. In addition to QMR, we have consid-
ered the conjugate-gradient-squared method (CGS) [30], the BiConjugate-Gradient
method (BiCG) [10], its stabilized variant (Bi-CGSTAB) [33] and the generalized-
minimal-residual (GMRES(k)) method [26]. Furthermore, several general purpose
preconditioners [2], i.e., the Jacobi (jac) preconditioner, the ILU(0) preconditioner
and also the three main diagonals as the preconditioning matrix (tri) have been
tested. Since the performance of Matlab programs cannot directly be compared
to compiled programs, we only give the iteration count of each algorithm. One such
iteration requires at least one matrix-vector multiplication and two inner products
and is thus at least as expensive as one Lanczos step. We always use the built-in
implementations of these algorithms as in Matlab v5.1.

In Table 5.8, we show results obtained for various matrix sizes M . The ranges
reflect the variations corresponding to 12 different realizations of disorder on the
diagonal of the matrices. Note that for the same M we use the same 12 diagonals
for all algorithms. We always choose x0 = 0 as initial vector. The iteration count
represents the number of iterations needed to solve the matrix equation Ax = y
up to a relative accuracy of 10−8. We always stop the algorithms if after 2M
iterations this accuracy has not been achieved. For practical restart values k ≤ 200,
GMRES(k) does not converge at all within our iteration limit. With no restarts,
GMRES needed M or slightly less iterations. But note that both memory and
computing-time requirements for M steps of pure GMRES exceed those of a non-
sparse direct solver.

None of the tested preconditioners is consistently effective. The Jacobi precon-
ditioner in fact increases the iteration count most of the time. The ILU(0) pre-
conditioner returns a singular matrix and consequently appears inapplicable. The
tridiagonal preconditioner is more effective, in some cases reducing the iteration
count by up to 50%. But again there are examples where it fails to do anything.
We remark that in general the iteration count is consistent with the results from
QMRPack. To sum up, we find that all of these iterative algorithms do not perform
better that the QMR algorithm and consequently are no real alternative.

Another idea is to work with the matrix A2 instead of A. Since it is symmetric
and positive definite, we can now use the conjugate gradient method. But this
squares the condition number of the linear system, which is already usually very
large for A [15]. Hence more effort has to be invested into the development of a
good preconditioner. We find for our matrices that while the iteration count is in
general a bit less than for the methods mentioned above and the preconditioners
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are more consistently effective we still need of the order of M steps with at least two
matrix-vector multiplications for the solution of one linear system. And since the
shift-and-invert ArPack still needs to solve several linear systems, all the iterative
methods working on A2 were no match for CWI.

6. Summary. We have tested several modern methods to compute a few inner
eigenvectors of a very large sparse matrix corresponding to the Anderson model of lo-
calization motivated within theoretical physics. Particularly the implicitly restarted
Arnoldi method in connection with polynomial convergence acceleration and in
shift-and-invert mode with several direct and iterative solvers for systems of linear
equations is compared to the Cullum/Willoughby implementation of the Lanczos
method. Despite the recent progress in linear system solvers we find all considered
modern methods to be inapplicable for very large system sizes, because either the
computation times or the memory requirements are much to large. To sum up, we
find that CWI Lanczos is currently still the most efficient method for the matrix
type we are interested in. We emphasize that the CWI Lanczos, with our slight
modifications as outlined in § 3, is a reliable tool for our problem. In particular, the
problem of spurious eigenvalues which plague the original Lanczos algorithm, can
be handled safely.

Since large scale diagonalizations are widely used in theoretical physics — and
also theoretical chemistry [5] — we would be happy to learn about any algorithm
that does better than CWI for our matrices. We are especially interested in a
preconditioner for the iterative methods which is suitably adapted to our problem.
Certainly improved direct methods for our matrix type are also of great importance.
We hope to have convinced the reader that it may be worthwhile to rethink seem-
ingly easy problems like the present eigenproblem for real and symmetric matrices.
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