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1. Introduction

Let 
 = (0; 1)� (0; 1), V = H1
0 (
) for the second order model problem and H2

0 (
) for the

fourth order model problem, and the variational form a(�; �) be de�ned by either

(1:1) a(v1; v2) =

Z



rv1 � rv2 dx 8 v1; v2 2 H1
0 (
)

for the second order case, or

(1:2) a(v1; v2) =

Z



X
i;j=1;2

(v1)xixj (v2)xixj dx 8 v1; v2 2 H2
0 (
)

for the fourth order case.

Consider the following variational problem:

Find u 2 V such that

(1:3) a(u; v) =

Z



fv dx 8 v 2 V ;

where f 2 L2(
).

The variational problem (1:3) can be discretized using the P1 conforming �nite element

(cf. Figure 1) in the second order case and the Hsieh-Clough-Tocher macro element (cf.

Figure 2 and [11]) in the fourth order case. The nodal variables of these elements are

depicted in Figure 1 and Figure 2 according to the conventions in [10] and [6].

* This work was supported in part by the National Science Foundation under Grant

No. DMS-96-00133.
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Figure 1. Figure 2.

Anticipating the use of two-level domain decomposition preconditioners, we construct

a triangulation of 
 in the following way. Let 
 be divided into J = 22k nonoverlapping

squares b
1; : : : ; b
J (cf. Figure 3 where k=2). By adding a diagonal to each b
j we obtain

a triangulation TH of 
 (cf. Figure 4). Then we perform a dyadic subdivision of TH to

obtain the triangulation Th (cf. Figure 5). Here H and h are the lengths of the horizontal

edges in TH and Th respectively.

Ω Ω Ω Ω

Ω Ω Ω Ω

Ω Ω Ω Ω

Ω Ω Ω Ω

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 3. Figure 4. Figure 5.

Let Vh � V be the �nite element space associated with Th. The discretization of (1:3)
is:

Find uh 2 Vh such that

(1:4) a(uh; v) =

Z



fv dx 8 v 2 Vh :

Let Ah : Vh �! V 0
h be the linear operator from Vh to its dual space de�ned by

(1:5) hAhv1; v2i = a(v1; v2) 8 v1; v2 2 Vh ;

where h�; �i is the canonical bilinear form between a vector space and its dual. The operator

Ah is symmetric positive de�nite (SPD) in the sense that hAhv1; v2i = hAhv2; v1i for all
v1; v2 2 Vh and hAhv; vi > 0 for 0 6= v 2 Vh. Note that if fh 2 V 0

h is de�ned by

hfh; vi =
R


fv dx for all v 2 Vh, then (1:4) can be written as Ahuh = fh.

The two-level additive Schwarz preconditioner (cf. [8], [21] and the references therein)

for Ah is constructed as follows. Let b
j be enlarged in all directions by the amount � = `h

(` 2 N) and 
j be the intersection of this enlarged square with 
 (cf. Figure 6).
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We de�ne VH � V to be the �nite element space associated with TH , and Vj to be

the subspace of Vh whose members vanish identically outside 
j , for 1 � j � J . The SPD

operators AH : VH �! V 0
H
and Aj : Vj �! V 0

j are de�ned by

hAHv1; v2i = a(v1; v2) 8 v1; v2 2 VH ;(1:6)

hAjv1; v2i = a(v1; v2) 8 v1; v2 2 Vj :(1:7)

The operators IH : VH �! Vh and Ij : Vj �! Vh are just natural injections, and we

denote by It
H
: V 0

h �! V 0
H
and Itj : V

0
h �! V 0

j their transposes with respect to the canonical

bilinear forms, i.e.,

hIt
H
�; vi = h�; IHvi 8� 2 V 0

h; v 2 VH ;(1:8)

hItj�; vi = h�; Ijvi 8� 2 V 0
h; v 2 Vj :(1:9)

The two-level additive Schwarz preconditioner B : V 0
h �! Vh is de�ned by

(1:10) B = IHA
�1
H
It
H
+

JX
j=1

IjA
�1
j Itj :

It is easy to check that BAh : Vh �! Vh is SPD with respect to the bilinear form

hA�; �i = a(�; �). It is known (cf. [13], [23]) that for second order problems

(1:11) �(BAh) � C

�
1 +

H

�

�
;

and for fourth order problems (cf. [4], [3])

(1:12) �(BAh) � C

�
1 +

H

�

�3

;

where the (generic) constant C in (1:11) and (1:12) is independent of h, H, J and �.
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In this paper we will show that for � = h (minimal overlap) the following estimate

holds for the second order model problem

(1:13) �(BAh) � c

�
H

h

�
;

while the estimate

(1:14) �(BAh) � c

�
H

h

�3

holds for the fourth order model problem, where the (generic) positive constant c is inde-

pendent of h, H and J .

Hence, the known upper bounds are sharp in the case of a small overlap for both

second and fourth order problems. We note that the sharpness of (1:11) has already been

remarked upon in [13].

The rest of the paper is organized as follows. Section 2 contains some lemmas that

are needed in the subsequent sections. We prove the lower bound (1:13) for the second

order model problem in Section 3 and the lower bound (1:14) for the fourth order model

problem in Section 4.

2. Some Lemmas

First we state an abstract result for additive Schwarz preconditioners. Let V and Wj ,

0 � j � J , be �nite dimensional vector spaces, and A : V �! V 0 and Bj : Wj �! W 0

be linear SPD operators. Let the vectors spaces be connected by the linear operators

Ij : Wj �! V . Then the additive Schwarz preconditioner B : V 0 �! V is de�ned by

B =

JX
j=0

IjB
�1
j I

t
j ;

where I t
j : V 0 �! W 0 is the transpose of Ij with respect to the canonical bilinear forms.

We have the following lemma (cf. [17], [19], [20], [12], [24], [14]) on the eigenvalues of BA .

Lemma 2.1. The operator BA is symmetric positive semi-de�nite with respect to

hA �; �i. The minimum eigenvalue �min(BA ) and the maximum eigenvalue �max(BA )

of BA have the following characterizations:

(i) �min(BA ) = min
v 2 V
v 6= 0

hA v; vi

min
v=

P
J

j=0
Ijwj

wj2Wj

JX
j=0

hBjwj ; wji

;

(ii) �max(BA ) = max
v 2 V
v 6= 0

hA v; vi

min
v=

P
J

j=0
Ijwj

wj2Wj

JX
j=0

hBjwj ; wji

:
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Next we state three lemmas concerning discrete norms and semi-norms for �nite ele-

ment spaces. They can all be easily proved by straight-forward calculations and standard

scaling arguments. The Sobolev semi-norms in these lemmas are de�ned by

jvjH`(G) =
�Z

G

X
j�j=`

(@�x v)
2 dx

�1=2
;

where G is an open subset of Rn, @�x = @�1x1 @
�2
x2
� � � @�nxn and j�j = �1 + � � � + �n.
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Figure 7. Figure 8.

Lemma 2.2. Let v(x1; x2) be a linear polynomial on an isosceles right-angled triangle

T with vertices p1, p2 and p3 (cf. Figure 7). Then there exists a positive constant C

independent of diamT and v such thatX
j=2;3

�
v(p1)� v(pj)

�2
� Cjvj2H1(T ) :

Lemma 2.3. Let v(x1; x2) be a C1 function on an isosceles right-angled triangle T

such that v is piecewise cubic with respect to the triangulation formed by the vertices

pi (1 � i � 3) and the centroid c of T (cf. Figure 8). Let mi, 1 � i � 3, be the midpoints

of the three sides of T . Then there exists a positive constant C independent of diamT and

v such that

X
i=1;2

X
j=2;3

�
vxi(p1)� vxi(pj)

�2
+

�
v(p1)� v(p2)

jp1p2j
�

@v

@n
(m2)

�2

+

�
v(p1)� v(p3)

jp1p3j
�

@v

@n
(m3)

�2

� Cjvj2H2(T ) ;

where @v=@n denotes the normal derivative of v in the direction of the outer normal.

Lemma 2.4. Let I be an interval with endpoints p1 and p2. Let P1(I), P3(I) be

respectively the space of linear and cubic polynomials de�ned on I. Then there exist

positive constants C1 and C2 independent of jIj such that

(i) kvk2L2(I) � C1jIj
X
i=1;2

v2(pi) 8 v 2 P1(I) ;

(ii) kvk2L2(I) � C3jIj
X
i=1;2

�
v2(pi) + jIj2(v0)2(pi)

�
8 v 2 P3(I) :

5



3. The Second Order Case

In this section we consider the preconditioner B (cf. (1:10)) for the second order model

problem, where V = H1
0 (
), a(�; �) is de�ned by (1:1), and the P1 conforming �nite element

is used. The overlap � is taken to be h, i.e., we consider the case of minimal overlap.

In order to avoid the proliferation of constants, we will henceforth use the notation

A <
� B (or B >

� A) to represent the statement that A � constant�B, where the constant

is independent of h, H, J and the variables in A and B. The notation A � B means that

A <
� B and A >

� B.

First we apply Lemma 2.1 to obtain a lower bound for �max(BAh). In this context

we have V = Vh, W0 = VH, Wj = Vj for 1 � j � J , A = Ah, B0 = AH , Bj = Aj for

1 � j � J , I0 = IH , and Ij = Ij for 1 � j � J .

Lemma 3.1. The following estimate holds:

(3:1) �max(BAh) � 1 :

Proof. Let 0 6= v� 2 V1. We have a trivial decomposition of v�: v� = vH+
PJ

j=1 vj , where

0 = vH = v2 = � � � = vJ and v1 = v�. It follows from (1:5){(1:7) and (ii) of Lemma 2.1

that

�max(BAh) � a(v�; v�)=

�
min

v�=vH +

P
J

j=1
vj

v
H
2V

H
;vj2Vj

h
a(vH ; vH) +

JX
j=1

a(vj ; vj)
i�

�
a(v�; v�)

a(v�; v�)
= 1 :

By (1:5){(1:7) and (i) of Lemma 2.1, in order to show that �min(BAh) <� (h=H), it

su�ces to �nd one function vy 2 Vh such that

(3:2) a(vy; vy) <�

�
h

H

�
min

vy=vH +

P
J

j=1
vj

v
H
2V

H
;vj2Vj

h
a(vH ; vH) +

JX
j=1

a(vj ; vj)
i
:

We will construct vy as one of the discrete harmonic functions associated with the nonover-

lapping decomposition b
1; : : : ; b
J (cf. Figure 3).

Let � =
�SJ

j=1 @
b
j

�
n @
 be the skeleton of the nonoverlapping decomposition. The

subspace Vh(
 n �) of Vh is de�ned by

Vh(
 n �) = fv 2 Vh : v vanishes on �g :

The subspace Vh(�) of Vh is the a(�; �)-orthogonal complement of Vh(
 n �), i.e.,

(3:3) Vh(�) = fv 2 Vh : a(v; w) = 0 8w 2 Vh(
 n �)g :

The functions in Vh(�) are known as discrete harmonic functions and they are completely

determined by their nodal values along �. The property of discrete harmonic functions

that we will use is stated in the following lemma, the proof of which can be found in [2]

and [22].
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Lemma 3.2. The following estimate holds:

jvj
H1(b
j) � jvj

H1=2(@b
j) for 1 � j � J and 8 v 2 Vh(�) :

The fractional order Sobolev semi-norm j � j
H1=2(@b
j) in Lemma 3.2 is de�ned by

jvj2
H1=2(@b
j) =

Z
@b
j

Z
@b
j

jv(x) � v(y)j2

jx� yj2
ds(x) ds(y) ;

where ds denotes the di�erential of the arc length.

Let P1P2 be the common boundary of two subdomains b
j1 and
b
j2 which is parallel

to the x1-axis, and Q1, Q2 be two points on P1P2 such that jP1Q1j = jP2Q2j = H=4 (cf.

Figure 9).

Ω

Ω

P1 P2

Q1 Q2

j

j 1

2

Figure 9.

The restriction to � of the function vy 2 Vh(�) that we are going to construct will

vanish outside the line segment Q1Q2. Lemma 3.2 and a simple calculation shows that for

such functions the following lemma holds.

Lemma 3.3. Suppose that v 2 Vh(�) and v
��
�
vanishes outside Q1Q2. Then we have

jvjH1(
) � jvjH1=2(P1P2) ;

where

jvj2H1=2(P1P2)
=

Z
P1P2

Z
P1P2

jv(x)� v(y)j2

jx� yj2
dx1 dy1 :

In view of Lemma 3.3, we can focus our construction to the reference interval I = [0; 1].

Let T� be a dyadic subdivision of I with mesh size � and L�(I) be the space of continuous

piecewise linear functions on I associated with T�.

Since the dimension of the subspace fw 2 L1=8(I) : w = 0 outside (1=4; 3=4)g of

L1=8(I) is three, there exists a nontrivial function ĝ with the following properties:
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(i) ĝ 2 L1=8(I),

(ii) ĝ = 0 outside (1=4; 3=4),

(iii)

Z 3=4

1=4

ĝ(x) dx =

Z 3=4

1=4

xĝ(x) dx = 0.

We denote by � the constant (jĝj2
H1=2(I)

=jĝk2L2(I)), which is of course independent of h, H

and J .

The next lemma follows from the construction on I above and a scaling argument.

Lemma 3.4. There exists a continuous function g de�ned on the line segment P1P2 (cf.

Figure 9) which is piecewise linear with respect to the dyadic subdivision induced by Th,

for any h � (H=8), and which has the following properties:

g vanishes outside the line segment Q1Q2 (cf. Figure 9) ;(3:4) Z
Q1Q2

g(x)v(x) dx1 = 0 for any v which is a linear polynomial on P1P2 ;(3:5)

jgj2
H1=2(P1P2)

kgk2L2(Q1Q2)
=

�

H
:(3:6)

For (h=H) � (1=8), we can now de�ne vy 2 Vh(�) to be the discrete harmonic function

which vanishes everywhere on � except the segment P1P2, where it is identical to the

function g in Lemma 3.4. It follows from (1:1), Lemma 3.3, (3:4) and (3:6) that

(3:7) a(vy; vy) <�
1

H
(vy; vy)L2(Q1Q2) :

Given any decomposition

(3:8) vy = vH +

JX
j=1

vj

where vH 2 VH and vj 2 Vj for 1 � j � J , we have, since the overlap is minimal,

(3:9) (vy � vH)
��
Q1Q2

= vj1
��
Q1Q2

+ vj2
��
Q1Q2

:

It follows from (3:5) and (3:9) that

(3:10) (vy; vy)L2(Q1Q2) � (vy � vH ; vy � vH)L2(Q1Q2) <� kvj1k
2
L2(Q1Q2)

+ kvj2k
2
L2(Q1Q2)

:

Let p`, 1 � ` � L, be the dyadic subdivision points on Q1Q2 induced by Th. Part (i)
of Lemma 2.4 implies that

(3:11) kvj1k
2
L2(Q1Q2)

+ kvj2k
2
L2(Q1Q2)

<
� h

LX
`=1

�
v2j1(p`) + v2j2(p`)

�
:

Since the overlap is minimal, each p` belongs to a triangle T` 2 Th where vj2 vanishes

at all the vertices except p`. These triangles appear as the shaded triangles in Figure 10.
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Hence, by Lemma 2.2, we have

(3:12)

LX
`=1

v2j2(p`) <�

LX
`=1

jvj2 j
2
H1(T`)

� jvj2 j
2
H1(
) = a(vj2 ; vj2) :

Similarly we have

(3:13)

LX
`=1

v2j1(p`) <� a(vj1 ; vj1) :

Combining (3:7) and (3:10){(3:13) we �nd

a(vy; vy) <�

�
h

H

��
a(vj1 ; vj1) + a(vj2 ; vj2)

�

for any decomposition of vy given by (3:8), which implies (3:2) and hence the next lemma.

Lemma 3.5. For (h=H) � (1=8) we have

(3:14) �min(BAh) <�

�
h

H

�
:

Finally we can establish the estimate (1:13).

Theorem 3.6. There exists a positive constant c independent of h, H and J such that

�(BAh) � c

�
H

h

�

holds for the second order model problem in the case of minimal overlap.

Proof. For (h=H) � (1=8) the estimate follows (3:1) and (3:14). On the other hand, the

estimate follows from the trivial estimate 1 � �(BAh) when (h=H) � (1=8).

Remark 3.7. It is easy to see that Theorem 3.6 can be applied to many other elements

and that the estimate

(3:15) �(BAh) � c

�
H

�

�

is valid under the condition that (�=h) is bounded. Note also that (3:15) can be extended

to the second order model problem on the unit cube (0; 1)3.
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Remark 3.8. The estimate (3:15) can also be extended to nonconforming �nite elements.

Remark 3.9. When H is �xed and the overlap � � h, we have �(BAh) � h�1, which

is also the estimate for the condition number of the Schur complement in nonoverlapping

domain decomposition algorithms for second order problems (cf. [1], [18], [5]).

4. The Fourth Order Case

We consider in this section the fourth order model problem where V = H2
0 (
), a(�; �) is

de�ned by (1:2) and the Hsieh-Clough-Tocher macro element is used. The overlap � is

again taken to be h.

The �rst lemma is established by the same argument in the proof of Lemma 3.1.

Lemma 4.1. The following estimate holds:

(4:1) �max(BAh) � 1 :

By (i) of Lemma 2.1, in order to show that �min(BAh) <� (h=H)3, it su�ces to �nd

one function vy 2 Vh such that

(4:2) a(vy; vy) <�

�
h

H

�3

min
vy=vH +

P
J

j=1
vj

v
H
2V

H
;vj2Vj

h
a(vH ; vH) +

JX
j=1

a(vj ; vj)
i
:

We will construct vy as one of the discrete biharmonic functions associated with the

nonoverlapping decomposition b
1; : : : ; b
J (cf. Figure 3).

Let � =
�SJ

j=1 @
b
j

�
n @
 be the skeleton. The subspace Vh(
 n �) is de�ned by

Vh(
 n �) = fv 2 Vh : v vanishes to the �rst order on �g :

The subspace Vh(�) is then de�ned as in (3:3). The functions in Vh(�) are known as

discrete biharmonic functions and they are completely determined by their nodal values

(i.e., derivatives up to order one at the vertices and normal derivatives at the midpoints (cf.

Figure 2)) along �. The proof of the following property of discrete biharmonic functions

can be found in [15], [16] and [7].

Lemma 4.2. The following estimate holds:

jvj
H2(b
j) �

X
i=1;2

jvxi jH1=2(@b
j) for 1 � j � J and 8 v 2 Vh(�) :

Using Lemma 4.2 and referring to Figure 9, we obtain the following lemma by a simple

calculation.
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Lemma 4.3. Suppose that v 2 Vh(�) and v
��
�
vanishes to the �rst order outside Q1Q2.

Then we have

jvjH2(
) �
X
i=1;2

jvxi jH1=2(P1P2) :

Note that the restriction of v 2 Vh to P1P2 is a C
1 function which is piecewise cubic.

In view of Lemma 4.3 we can again focus our construction to the reference interval

I = [0; 1]. Let T� be a dyadic subdivision of I with mesh size � and C�(I) be the space of

C1 functions which are piecewise cubic with respect to T�.

Since the dimension of the subspace fw 2 C1=8(I) : w = 0 outside (1=4; 3=4)g of

C1=8(I) is six, there exists a nontrivial g 2 C1=8(I) with the following properties:

(i) ĝ 2 L1=8(I),

(ii) ĝ = 0 outside (1=4; 3=4),

(iii)

Z 3=4

1=4

xkĝ(x) dx = 0 for k = 0; 1; 2; 3.

We denote by � the constant (jĝ0j2
H1=2(I)

=kĝk2L2(I)), which is independent of h, H and J .

The following lemma is obtained by a scaling argument.

Lemma 4.4. There exists a C1 function g de�ned on the line segment P1P2 (cf. Figure

9) which is piecewise cubic with respect to the dyadic subdivision induced by Th, for any
h � (H=8), and which has the following properties:

g vanishes outside the line segment Q1Q2 (cf. Figure 9) ;(4:3) Z
Q1Q2

g(x)v(x) dx1 = 0 for any v which is a cubic polynomial on P1P2 ;(4:4)

jgx1 j
2
H1=2(P1P2)

kgk2L2(Q1Q2)
=

�
�

H

�3

:(4:5)

For (h=H) � (1=8) we de�ne vy 2 Vh(�) to be the discrete biharmonic function which

vanishes to the �rst order everywhere on � except the segment P1P2. On P1P2 it satis�es

the following conditions:

vy
��
P1P2

= g ;(4:6)

(vy)x2
��
P1P2

= 0 ;(4:7)

where g is the function in Lemma 4.4. It follows from (1:2), Lemma 4.3, (4.3) and (4:5){

(4:7) that

(4:8) a(vy; vy) <�

�
1

H

�3

(vy; vy)L2(Q1Q2) :
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Given any decomposition of vy de�ned by (3:8), we have, by (4:4),

(4:9) (vy; vy)L2(Q1Q2) � (vy � vH ; vy � vH)L2(Q1Q2) <� kvj1k
2
L2(Q1Q2)

+ kvj2k
2
L2(Q1Q2)

:

Let p`, 1 � ` � L be the dyadic subdivision points on Q1Q2 induced by Th. It follows

from (ii) of Lemma 2.4 that

kvj1k
2
L2(Q1Q2)

+ kvj2k
2
L2(Q1Q2)

<
� h

LX
`=1

�
v2j1(p`) + v2j2(p`)

�
(4:10)

+ h3
LX
`=1

�
(vj1)

2
x1
(p`) + (vj2)

2
x1
(p`)

�
:

Since the overlap is minimal, each p` belongs to a triangle T` 2 Th where all the nodal

values of vj2 vanish on the side opposite to p` (cf. Figure 10). Hence, by Lemma 2.3, we

have

LX
`=1

v2j2(p`) <� h2
LX
`=1

jvj2 j
2
H2(T`)

� h2jvj2 j
2
H2(
) = h2a(vj2 ; vj2) ;(4:11)

LX
`=1

(vj2)
2
x1
(p`) <�

LX
`=1

jvj2 j
2
H2(T`)

� jvj2 j
2
H2(
) = a(vj2 ; vj2) ;(4:12)

and similarly,

LX
`=1

v2j1(p`)
<
� h2a(vj1 ; vj1) ;(4:13)

LX
`=1

(vj1)
2
x1
(p`) <� a(vj1 ; vj1) :(4:14)

Combining (4:8){(4:14) we �nd

a(vy; vy) <�

�
h

H

�3 �
a(vj1 ; vj1) + a(vj2 ; vj2)

�
;

which implies (4:2) and hence the following lemma.

Lemma 4.5. For (h=H) � (1=8) we have

(4:15) �min(BAh) <�

�
h

H

�3

:
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Using (4:1) and (4:15) and the argument in the proof of Theorem 3.6 we obtain the

following theorem.

Theorem 4.6. There exists a positive constant c independent of h, H and J such that

�(BAh) � c

�
H

h

�3

holds for the fourth order model problem in the case of minimal overlap.

Remark 4.7. It is easy to see that Theorem 4.6 can be applied to many other elements

and that the estimate

(4:16) �(BAh) � c

�
H

�

�3

is valid under the condition that (�=h) is bounded. The estimate (4:16) can also be

extended to nonconforming �nite elements. When H is �xed and the overlap � � h,

we have �(BAh) � h�3, which is also the estimate for the condition number of the Schur

complement in nonoverlapping domain decomposition algorithms for fourth order problems

(cf. [9], [5]).
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