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ABSTRACT

We consider the application of the conjugate gradient method to the solution of large equality

constrained quadratic programs arising in nonlinear optimization. Our approach is based on

a reduced linear system and generates iterates in the null space of the constraints. Instead of

computing a basis for this null space, we choose to work directly with the matrix of constraint

gradients, computing projections into the null space by either a normal equations or an augmented

system approach. This can yield substantial economies in both line search and trust region

methods for large-scale optimization, but can also result in signi�cant rounding errors. We

propose iterative re�nement techniques, as well as an adaptive reformulation of the quadratic

problem, that can greatly reduce these errors without incurring in high computational overhead.

Numerical results illustrating the e�ciency of the proposed approaches are presented.
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1 Introduction

A variety of algorithms for nonlinearly constrained optimization [7, 8, 12, 29, 31] use the conjugate

gradient (CG) method [25] to solve subproblems of the form

minimize
x

q(x) = 1
2
xTHx+ cTx (1.1)

subject to Ax = b: (1.2)

In nonlinear optimization, the n-vector c usually represents the gradient rf of the objective

function or the gradient of the Lagrangian, the n� n symmetric matrix H stands for either the

Hessian of the Lagrangian or an approximation to it, and the solution x represents a search direc-

tion. The equality constraints (1.2) are obtained by linearizing the constraints of the optimization

problem at the current iterate. We will assume here that A is an m � n matrix, with m < n,

and that A has full row rank so that the constraints (1.2) constitute m linearly independent

equations. We also assume for convenience that H is positive de�nite in the null space of the

constraints, as this guarantees that (1.1){(1.2) has a unique solution. This positive de�niteness

assumption is not needed in trust region methods, but our discussion will also be valid in that

context because trust region methods normally terminate the CG iteration as soon as negative

curvature is encountered (see [36, 38], and, by contrast, [23]).

The use of an iterative method such as CG is attractive in large scale optimization because,

when the number of variables is large, it can be cost e�ective to solve (1.1){(1.2) approximately,

and only increase the accuracy of the solution as the iterates of the optimization algorithm

approach the minimizer. In addition, the properties of the CG method merge very well with the

requirements of globally convergent optimization methods (see e.g. [36]). In this paper we study

how to apply the preconditioned CG method to (1.1){(1.2) so as to keep the computational cost

at a reasonable level while ensuring that rounding errors do not degrade the performance of the

optimization algorithm.

The quadratic program (1.1){(1.2) can be solved by computing a basis Z for the null space of

A, using this basis to eliminate the constraints, and then applying the CG method to the reduced

problem. We will argue, however, that due to the form of the preconditioners used in practice,

the explicit use of Z will cause the iteration to be very expensive, and that signi�cant savings

can be achieved by means of approaches that bypass the computation of Z altogether. The price

to pay for these alternatives is that they can give rise to excessive roundo� errors that can slow

the optimization iteration and may even prevent it from converging.

As we shall see, these errors cause the constraints (1.2) not to be satis�ed to the desired

accuracy. We describe iterative re�nement techniques that can improve the accuracy of the

solution in highly ill-conditioned problems. We also propose a mechanism for rede�ning the

vector c adaptively that does not change the solution of the quadratic problem but that has more

favorable numerical properties.

Notation. Throughout the paper k � k stands for the `2 matrix or vector norm, while the G-norm
of the vector x is de�ned to be kxkG =

p
xTGx, where G is a given positive-de�nite matrix. We
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will denote the 
oating-point unit roundo� (or machine precision) by �m. We let �(A) denote the

condition number of A, i.e. �(A) = �1=�m, where �1 � � � � � �m > 0 are the nonzero singular

values of A.

2 The CG method and linear constraints

A common approach for solving linearly constrained problems is to eliminate the constraints and

solve a reduced problem (cf. [17, 20]). More speci�cally, suppose that Z is an n� (n�m) matrix

spanning the null space of A. Then AZ = 0, the columns of AT together with the columns of Z

span Rn, and any solution x� of the linear equations (1.2) can be written as

x� = ATxA
� + ZxZ

�; (2.1)

for some vectors xA
� 2 Rm and xZ

� 2 Rn�m. The constraints (1.2) yield

AATxA
� = b; (2.2)

which determines the vector xA
�. Substituting (2.1) into (1.1), and omitting constant terms (xA

�

is a constant now) we see that xZ
� solves the reduced problem

minimize
xZ

1
2
xZ

THZZxZ + cZ
TxZ; (2.3)

where

HZZ = ZTHZ; cZ = ZT (HATxA
� + c):

As we have assumed that the reduced Hessian HZZ is positive de�nite, (2.3) is equivalent to the

linear system

HZZxZ = �cZ: (2.4)

We can now apply the conjugate gradient method to compute an approximate solution of the

problem (2.3), or equivalently the system (2.4), and substitute this into (2.1) to obtain an ap-

proximate solution of the quadratic program (1.1){(1.2).

This strategy of computing the normal component ATxA exactly and the tangential com-

ponent ZxZ inexactly is compatible with the requirements of many nonlinear optimization algo-

rithms which need to ensure that, once linear constraints are satis�ed, they remain so throughout

the remainder of the optimization calculation (cf. [20]).

Let us now consider the practical application of the CG method to the reduced system (2.4).

It is well known that preconditioning can improve the rate of convergence of the CG iteration (cf.

[1]), and we therefore assume that a preconditioner WZZ is given. WZZ is a symmetric, positive

de�nite matrix of dimension n�m, which might be chosen to reduce the span of, and to cluster,

the eigenvalues of W�1
ZZ

HZZ, or could be the result of an automatic scaling of the variables [7, 29].

Regardless of how WZZ is de�ned, the preconditioned conjugate gradient method applied to (2.4)

is as follows (see, e.g. [20]).
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Algorithm I. Preconditioned CG for Reduced Systems.

Choose an initial point xZ, compute rZ = HZZxZ + cZ, gZ = W�1
ZZ

rZ and pZ = �gZ.
Repeat the following steps, until a termination test is satis�ed:

� = rZ
T gZ=pZ

THZZpZ (2.5)

xZ  xZ + �pZ (2.6)

rZ
+ = rZ + �HZZpZ (2.7)

gZ
+ = W�1

ZZ
rZ

+ (2.8)

� = (rZ
+)T gZ

+=rZ
T gZ (2.9)

pZ  �gZ+ + �pZ (2.10)

gZ  gZ
+ and rZ  rZ

+ (2.11)

This iteration may be terminated, for example, when rZ
TW�1

ZZ
rZ is su�ciently small. Once

an approximate solution is obtained, it must be multiplied by Z and substituted in (2.1) to give

the approximate solution of the quadratic program (1.1){(1.2). Alternatively, we may rewrite

Algorithm I so that the multiplication by Z and the addition of the term ATxA
� is performed

explicitly in the CG iteration. To do so, we introduce, in the following algorithm, the n-vectors

x; r; g; p which satisfy x = ZxZ +ATxA
�, ZT r = rZ, g = ZgZ and p = ZpZ.

Algorithm II Preconditioned CG (in Expanded Form) for Reduced Systems.

Choose an initial point x satisfying (1.2), compute r = Hx+ c, g = ZW�1
ZZ

ZT r and

p = �g. Repeat the following steps, until a convergence test is satis�ed:
� = rT g=pTHp (2.12)

x  x+ �p (2.13)

r+ = r + �Hp (2.14)

g+ = ZW�1
ZZ

ZT r+ (2.15)

� = (r+)T g+=rT g (2.16)

p  �g+ + �p: (2.17)

g  g+ and r  r+ (2.18)

This will be the main algorithm studied in this paper. Several types of stopping tests can be

used, but since their choice depends on the requirements of the optimization method, we shall

not discuss them here. In the numerical tests reported in this paper we will use the quantity

rT g = rZ
TW�1

ZZ
rZ to terminate the CG iteration.

Note that the vector g, which we call the preconditioned residual, has been explicitly de�ned

to be in the range of Z. As a result, in exact arithmetic, all the search directions p generated by

Algorithm II will also lie in the range of Z, and thus the iterates x will all satisfy (1.2). Rounding

errors when computing (2.17) may cause p to have a component outside the range of Z, but this

component will normally be too small to cause di�culties.
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3 Implementation of the Projected CG Method

Algorithm II constitutes an e�ective method for computing the solution to (1.1){(1.2) and has

been successfully used in various algorithms for large scale optimization (cf. [16, 28, 39]). The

main drawback is the need for a null-space basis matrix Z, whose computation and manipulation

can be costly, and which can sometimes give rise to unnecessary ill-conditioning [9, 10, 18, 24, 33,

37]. These di�culties will become apparent when we describe practical procedures for computing

Z and when we consider the types of preconditioners WZZ used in practice. Let us begin with

the �rst issue.

3.1 Computing a basis for the null space

There are many possible choices for the null-space matrix Z. Possibly the best strategy is to

choose Z so as to have orthonormal columns, for this provides a well conditioned representation

of the null space of A. However computing such a null-space matrix can be very expensive

when the number of variables is large; it essentially requires the computation of a sparse LQ

factorization of A and the implicit or explicit generation of Q, which has always been believed

to be rather expensive when compared with the alternatives described in [24]. Recent research

[30, 35] has suggested that it is in fact possible to generate Q as a product of sparse Householder

matrices, and that the cost of this may, after all, be reasonable. We have not experimented with

this approach, however, because, to our knowledge, general purpose software implementing it is

not yet available.

Another possibility is to try to compute a basis of the null-space which involves as few nonzeros

as possible. Although this problem is computationally hard [9], sub-optimal heuristics are possible

but still rather expensive [10, 18, 33, 37].

A more economical alternative is based on simple elimination of variables [17, 20]. To de�ne

Z we �rst group the components of x into m basic or dependent variables (which for simplicity

are assumed to be the �rst m variables) and n�m nonbasic or control variables, and partition

A as

A = (B N);

where the m�m basis matrix B is assumed to be nonsingular. Then we de�ne

Z =

 
�B�1N

I

!
; (3.1)

which clearly satis�es AZ = 0 and has linearly independent columns. In practice Z is not formed

explicitly; instead we compute and store sparse LU factors [13] of B, and compute products of

the form Zv and ZT v by means of solves using these LU factors. Ideally we would like to choose

a basis B that is as sparse as possible and whose condition number is not signi�cantly worse than

that of A, but these requirements can be di�cult to achieve. In fact, simply ensuring that B is

well conditioned can be di�cult when the task of choosing a basis is delegated to a sparse LU

factorization algorithm such as MA48 [15]. Some recent codes (see, e.g., [19]) have been designed
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to compute a well-conditioned basis, but it is not known to us to what extent they reach their

objective.

3.2 Preconditioning

These potential drawbacks of the null-space basis (3.1) are not su�ciently serious to prevent its

e�ective use in Algorithm II. However, when considering practical choices for the preconditioning

matrix WZZ, one exposes the weaknesses of this approach. Ideally, one would like to choose WZZ

so that W�1
ZZ

HZZ = I, and thus

W�1
ZZ

= (ZTHZ)�1 (3.2)

is the perfect preconditioner. However, it is unlikely that ZTHZ or its inverse are sparse matrices,

and even if ZTHZ is of small dimension, forming it can be quite costly. Therefore operating with

this ideal preconditioner is normally out of the question.

In this paper we consider preconditioners of the form

W�1
ZZ

= (ZTGZ)�1; (3.3)

where G is a symmetric matrix such that ZTGZ is positive de�nite. Some suggestions on how

to choose G have been made in [32]. Two particularly simple choices are

G = diag(H); and G = I:

The �rst choice is appropriate whenH is dominated by its diagonal. This is the case, for example,

in barrier methods for constrained optimization that handle bound constraints l � x � u by

adding terms of the form ��Pn
i=1(log(xi � li) + log(ui � xi)) to the objective function, for

some positive barrier parameter �. The choice G = I arises in several trust region methods for

constrained optimization [7, 12, 29], where the preconditioner (which derives from a change of

variables) is thus given by

W�1
ZZ

= (ZTZ)�1: (3.4)

Regardless of the choice of G, the preconditioner (3.3) requires operations with the inverse

of the matrix ZTGZ. In some applications [16, 39] Z, de�ned by (3.1), has a simple enough

structure that forming and factorizing the (n�m)�(n�m) matrix ZTGZ is not expensive when

G has a simple form. But if the LU factors of B are not very sparse and the number of constraints

m is large, forming ZTGZ may be rather costly, even if G = I, as it requires the solution of 2m

triangular systems with these LU factors. In this case it is preferable not to form ZTGZ, but

rather compute products of the form (ZTGZ)�1u = v by solving (ZTGZ)v = u using the CG

method. This inner CG iteration has been employed in [29] with G = I, and can be e�ective

on some problems|particularly if the number of degrees of freedom, n�m, is very small. But

it can fail when Z is badly conditioned and tends to be expensive. Moreover, since the matrix

ZTGZ is not known explicitly, it is di�cult to construct e�ective preconditioners for accelerating

this inner CG iteration.

In summary when the preconditioner has the form (3.3), and when Z is de�ned by means

of (3.1), the computation (2.15) of the preconditioned residual g is often so expensive as to
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dominate the cost of the optimization algorithm. The goal of this paper is to consider alternative

implementations of Algorithm II whose computational cost is more moderate and predictable.

Our approach is to avoid the use of the null-space basis Z altogether.

3.3 Computing Projections

To see how to bypass the computation of Z, let us begin by considering the simple case when

G = I, so that the preconditioner WZZ is given by (3.4). If PZ denotes the orthogonal projection

operator onto the null space of A,

PZ = Z(ZTZ)�1ZT ; (3.5)

then the preconditioned residual (2.15) can be written as

g+ = PZr
+: (3.6)

This projection can be performed in two alternative ways.

The �rst is to replace PZ by the equivalent formula

PA =
�
I �AT (AAT )�1A

�
(3.7)

and thus to replace (3.6) with

g+ = PAr
+: (3.8)

We can express this as

g+ = r+ �AT v+; (3.9)

where v+ is the solution of

AAT v+ = Ar+: (3.10)

Noting that (3.10) are the normal equations, it follows that v+ is the solution of the least squares

problem

minimize
v

kr+ �AT v+k; (3.11)

and that the desired projection g+ is the corresponding residual. This approach can be imple-

mented using a Cholesky factorization of AAT .

The second possibility is to express the projection (3.6) as the solution of the augmented

system  
I AT

A 0

! 
g+

v+

!
=

 
r+

0

!
: (3.12)

This system can be solved by means of a symmetric inde�nite factorization that uses 1� 1 and

2� 2 pivots [21].

Let us suppose now that the preconditioner has the more general form (3.3). The precondi-

tioned residual (2.15) now requires the computation

g+ = PZ:Gr
+ where PZ:G = Z(ZTGZ)�1ZT : (3.13)
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This may be expressed as

g+ = PA:Gr
+ where PA:G = G�1

�
I �AT (AG�1AT )�1AG�1

�
(3.14)

if G is non-singular, and can be found as the solution of 
G AT

A 0

! 
g+

v+

!
=

 
r+

0

!
(3.15)

whenever ZTGZ is non-singular (see, e.g., [20, Section 5.4.1]). While (3.14) is far from appealing

when G�1 does not have a simple form, (3.15) is a useful generalization of (3.12). Clearly the

system (3.12) may be obtained from (3.15) by setting G = I, and the perfect preconditioner

results if G = H, but other choices for G are also possible; all that is required is that ZTGZ

be positive de�nite. The idea of using the projection (3.7) in the CG method dates back to at

least [34]; the alternative (3.15), and its special case (3.12), are proposed in [8], although [8]

unnecessarily requires that G be positive de�nite. A more recent study on preconditioning the

projected CG method is [11].

Hereafter we shall write (2.15) as

g+ = Pr+;

where P is any of the projection operators we have mentioned above.

Note that (3.8), (3.12) and (3.15) do not make use of the null space matrix Z and only require

factorization of matrices involving A. Unfortunately they can give rise to signi�cant round-o�

errors, particularly as the CG iterates approach the solution. The di�culties are caused by the

fact that as the iterations proceed, the projected vector g+ = Pr+ becomes increasingly small

while r+ does not. Indeed, the optimality conditions of the quadratic program (1.1)-(1.2) state

that the solution x� satis�es

Hx� + c = AT�; (3.16)

for some Lagrange multiplier vector �. The vector Hx+c, which is denoted by r in Algorithm II,

will generally stay bounded away from zero, but as indicated by (3.16), it will become increasingly

closer to the range of AT . In other words r will tend to become orthogonal to Z, and hence, from

(3.13), the preconditioned residual g will converge to zero so long as the smallest eigenvalue of

ZTGZ is bounded away from zero.

That this discrepancy in the magnitudes of g+ = Pr+ and r+ will cause numerical di�culties

is apparent from (3.9), which shows that signi�cant cancellation of digits will usually take place.

The generation of harmful roundo� errors is also apparent from (3.12)/(3.15) because g+ will

be small while the remaining components v+ remain large. Since the magnitude of the errors

generated in the solution of (3.12)/(3.15) is governed by the size of the large component v+, the

vector g+ will contain large relative errors. These arguments will be made more precise in the

next section.

Example 1.

We applied Algorithm II to solve problem CVXEQP3 from the CUTE collection [4], with

n = 1000 and m = 750. In this and all subsequent experiments, we use the simple preconditioner
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(3.4) corresponding to the choice G = I. We used both the normal equations (3.8) and augmented

system (3.12) approaches to compute the projection. The results are given in Figure 3.1, which

plots the residual
p
rT g as a function of the iteration number. In both cases the CG iteration

was terminated when rT g became negative, which indicates that severe errors have occurred since

rT g = rZ
TWZZrZ must be positive|continuing the iteration past this point resulted in oscillations

in the norm of the gradient without any signi�cant improvement. At iteration 50 of both runs,

r is of order 105 whereas its projection g is of order 10�1.

Figure 1 also plots the cosine of the angle between the preconditioned residual g and the rows

of A. More precisely, we de�ne

cos � = max
i

(
AT
i g

jjAijj jjgjj

)
(3.17)

where Ai is the i-th row of A. Note that this cosine, which should be zero in exact arithmetic,

increases indicating that the CG iterates leave the constraint manifold Ax = b.
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Figure 3.1: Conjugate gradient method with two options for the projection

Severe errors such as these are not uncommon in optimization calculations; see x7 and [27].

This is of grave concern as it may cause the underlying optimization algorithms to behave errat-

ically or fail.

In this paper we propose several remedies. One of them is based on an adaptive rede�nition

of r that attempts to minimize the di�erences in magnitudes between g+ = Pr+ and r+. We also

describe several forms of iterative re�nement for the projection operation. All these techniques

are motivated by the roundo� error analysis given next.
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4 Analysis of the Errors

We now present error bounds that support the arguments made in the previous section, particu-

larly the claim that the most problematic situation occurs in the latter stages of the CG iteration

when g+ is converging to zero, but r+ is not. For simplicity, we shall assume henceforth that A

has been scaled so that kAk = kAT k = 1, and shall only consider the simplest possible precon-

ditioner, G = I. Any computed, as opposed to exact, quantity will be denoted by a subscript

c.

Let us �rst consider the normal equations approach. Here g+ = PAr
+ is given by (3.9) where

(3.10) is solved by means of the Cholesky factorization of AAT . In �nite precision, instead of

the exact solution v+ of the normal equations we obtain v+c = v+ +�v+, where the error �v+

satis�es [3, p.49](1)

k�v+k � 
�m�
2(A)kv+k; (4.1)

with 
 = 2:5n3=2. Recall that �m denotes unit roundo� and �(A) the condition number of A.

We can now study the total error in the projection vector g+. To simplify the analysis, we

will ignore the errors that arise in the computation of the matrix-vector product AT v+ and in

the subtraction g+ � AT v+ given in (3.9), because these errors will be dominated by the error

in v+ whose magnitude is estimated by (4.1). Under these assumptions, we have from (3.9) that

the computed projection g+c = (PAr
+)c and the exact projection g+ = PAr

+ satisfy

g+ � g+c = AT�v+; (4.2)

and thus the error in the projection lies entirely in the range of AT . We then have from (4.1)

that the relative error in the projection satis�es

kg+ � g+c k
kg+k � 
�m�

2(A)
kv+k
kg+k : (4.3)

This error can be signi�cant when �(A) is large or when

kv+k
kg+k =

kv+k
kPAr+k (4.4)

is large.

Let us consider the ratio (4.4) in the case when kr+k is much larger than its projection kg+k.
We have from (3.9) that kr+k � kAT v+k, and by the assumption that kAk = 1,

kr+k � kAT v+k � kv+k:

Suppose that the inequality above is achieved. Then (4.4) gives

kv+k
kg+k �

kr+k
kPAr+k ;

(1)The bound (4.1) assumes that there are no errors in the formation of AAT and Ar
+, or in the backsolves

using the Cholesky factors; this is a reasonable assumption in our context. We should also note that (4.1) can

be sharpened by replacing the term �
2(A) with �0(A)�(A), where �0(A) = min�(AD) over all possible diagonal

scalings D.
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which is simpler to interpret than (4.4). We can thus conclude that the error in the projection

(4.3) will be large when either �(A) or the ratio kr+k=kPAr+k is large.
When the condition number �(A) is moderate, the contribution of the ratio (4.4) to the

relative error (4.3) is normally not large enough to cause failure of the optimization calculation.

But as the condition number �(A) grows, the loss of signi�cant digits becomes severe, especially

since �(A) appears squared in (4.3). In Example 1,


 = O(104) �m = 10�16 �(A) = O(103) kAk = O(10)

and we have mentioned that the ratio (4.4) is of order O(106) at iteration 50. The bound (4.3)

indicates that there could be no correct digits in g+, at this stage of the CG iteration. This is in

agreement with our test, for at this point the CG iteration could make no further progress.

Let us now consider the augmented system approach (3.15). Again we will focus on the choice

G = I, for which the preconditioned residual g+ = Pr+ is computed by solving

 
I AT

A 0

! 
g+

v+

!
=

 
r+

0

!
(4.5)

using a direct method. There are a number of such methods, the strategies of Bunch and Kauf-

man [5] and Du� and Reid [14] being the best known examples for dense and sparse matrices,

respectively. Both form the LDLT factorization of the augmented matrix (i.e. the matrix ap-

pearing on the left hand side of (4.5)), where L is unit lower triangular and D is block diagonal

with 1� 1 or 2� 2 blocks.

This approach is usually (but not always) more stable than the normal equations approach.

To improve the stability of the method, Bj�orck [2] suggests introducing a parameter � and solving

the equivalent system  
�I AT

A 0

! 
��1g+

v+

!
=

 
r+

0

!
: (4.6)

An error analysis [3] shows that

kg+ � g+c k � ��m(�1 + ��(A))(��1kg+k+ kv+k) (4.7)

where � depends on n and m and in the growth factor during the factorization, and �1 � � � � �
�m > 0 are the nonzero singular values of A. It is important to notice that now �(A)|and not

�2(A)|enters in the bound. If � � �m(A), this method will give a solution that is never much

worse than that obtained by a tight perturbation analysis, and therefore can be considered stable

for practical purposes. But approximating �m(A) can be di�cult, and it is common to simply

use � = 1.

In the case which concerns us most, when kg+k converges to zero while kv+k is bounded, the
term inside the last square brackets in (4.7) is approximately kv+k, and we obtain

kg+ � g+c k
kg+k � ��m(�1 + �(A))

kv+k
kg+k ;
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where we have assumed that � = 1. It is interesting to compare this bound with (4.3). We see

that the ratio (4.4) again plays a crucial role in the analysis, and that the augmented system

approach is likely to give a more accurate solution g+ than the method of normal equations in

this case. This cannot be stated categorically, however, since the size of the factor � is di�cult

to predict.

The residual update strategy described in x6 aims at minimizing the contribution of the ratio
(4.4), and as we will see, has a highly bene�cial e�ect in Algorithm II. Before presenting it, we

discuss various iterative re�nement techniques designed to improve the accuracy of the projection

operation.

5 Iterative Re�nement

Iterative re�nement is known as an e�ective procedure for improving the accuracy of a solution

obtained by a method that is not backwards stable. We will now consider how to use it in the

context of our normal equations and augmented system approaches.

5.1 Normal Equations Approach

Let us suppose that we choose G = I and that we compute the projection PAr
+ via the normal

equations approach (3.9)-(3.10). An appealing idea for trying to improve the accuracy of this

computation is to apply the projection repeatedly. Therefore rather than computing g+ by

g+ = PAr
+ in (2.15), we let g+ = PA � � �PAr+ where the projection is applied as many times as

necessary to keep the errors small. The motivation for this multiple projections technique stems

from the fact that the computed projection g+c = (PAr
+)c will have only a small component,

consisting entirely of rounding errors, outside of the null space of A, as described by (4.2).

Therefore applying the projection PA to the �rst projection g+c will give an improved estimate

because the ratio (4.4) will now be much smaller. By repeating this process we may hope to

obtain further improvement of accuracy.

The multiple projection technique may simply be described as setting g+0 = r+ and, for

i = 0; 1; � � �, performing the following steps:

solve L(LT v+i ) = Ag+i (5.1)

set g+i+1 = g+i �AT v+i ; (5.2)

where L is the Cholesky factor of AAT . We note that this method is only appropriate when

G = I, although a simple variant is possible when G is diagonal.

Example 2.

We solved the problem given in Example 1 using multiple projections. At every CG iteration

we measure the cosine (3.17) of the angle between g and the columns of A. If this cosine is greater

than 10�12, then multiple projections are applied until the cosine is less than this value. The

results are given in Figure 5.1, and show that the residual
p
rT g was reduced much more than
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in the plane CG iteration (Figure 3.1). Indeed the ratio between the �nal and initial values ofp
rT g is 10�16, which is very satisfactory.
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Figure 5.1: CG method using multiple projections in the normal equations approach.

It is straightforward to analyze the multiple projections strategy (5.1)-(5.2) provided that,

as before, we make the simplifying assumption that the only rounding errors we make are in

forming L and solving (5.1). We obtain the following result which can be proved by induction.

For i = 0; 1; � � �,
(g+i+1)c = g+ �AT�v+i ; (5.3)

where as in (4.1)

k�v+i k � 
�m�
2(A)kv+i k; and v+i = ��v+i�1: (5.4)

A simple consequence of (5.3){(5.4) and the assumption that A has norm one is that

k(g+i+1)c � g+k � k�v+i k �
�

�m�

2(A)
�i kv+k; (5.5)

and thus that the error converges R-linearly to zero with rate


�m�
2(A): (5.6)

Of course, this rate can not be sustained inde�nitely as the other errors we have ignored in

(5.1){(5.2) become important. Nonetheless, one would expect (5.5) to re
ect the true behaviour

until k(g+i+1)c � g+k approaches a small multiple of the unit roundo� �m. It should be stressed,

however, that this approach is still limited by the fact that the condition number of A appears

squared in (5.5); improvement can be guaranteed only if 
�m�
2(A) < 1.

We should also note that multiple projections are almost identical in their form and numerical

properties to �xed precision iterative re�nement to the least squares problem [3, p.125]. Fixed
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precision iterative re�nement is appropriate because the approach we have chosen to compute

projections is not stable. To see this, compare (4.3) with a perturbation analysis of the least

squares problem [3, Theorem 1.4.6]), which gives

kg+ � g+c k = O
�
�m(kvk + �(A)kg+k)� : (5.7)

Here the dependence on the condition number is linear|not quadratic. Moreover, since �(A) is

multiplied by kg+k, when g+ is small the e�ect of the condition number of A is much smaller in

(5.7) than in (4.3).

We should mention two other iterative re�nement techniques that one might consider, but

that are either not e�ective or not practical in our context.

The �rst is to use �xed-precision iterative re�nement [3, Section 2.9] to attempt to improve

the solution v+ of the normal equations (3.10). This, however, will generally be unsuccessful

because �xed-precision iterative re�nement only improves a measure of backward stability [21,

p.126], and the Cholesky factorization is already a backward stable method. We have performed

numerical tests and found no improvement from this strategy.

However, as is well known, iterative re�nement will often succeed if extended-precision is

used to evaluate the residuals. We could therefore consider using extended precision iterative

re�nement to improve the solution v+ of the normal equations (3.10). So long as �m�(A)
2 < 1,

and the residuals of (3.10) are smaller than one in norm, we can expect that the error in the

solution of (3.10) will decrease by a factor �m�(A)
2 until it reaches O(�m). But since optimization

algorithms normally use double precision arithmetic for all their computations, extending the

precision may not be simple or e�cient, and this strategy is not suitable for general purpose

software.

For the same reason we will not consider the use of extended precision in (5.1)-(5.2) or in the

iterative re�nement of the least squares problem.

5.2 Augmented System Approach

We can apply �xed precision iterative re�nement to the solution obtained from the augmented

system (3.15). This gives the following iteration.

Compute �g = r+ �Gg+ �AT v+ and �v = �Ag+;

solve

 
G AT

A 0

! 
�g+

�v+

!
=

 
�g

�v

!
;

and update g+  g+ +�g+ and v+  v+ +�v+:

Note that this method is applicable for general preconditioners G. When G = I, and if an

appropriate value of � is in hand, we should incorporate it in this iteration, as described in (4.6).

The general analysis of Higham [26, Theorem 3.2] indicates that, if the condition number of A is

not too large, we can expect high accuracy in v+ and good accuracy in g+ in most cases.
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Example 3.

We solved the problem given in Example 1 using this iterative re�nement technique. As in

the case of multiple projections discussed in Example 2, we measure the angle between g and the

columns of A at every CG iteration. Iterative re�nement is applied as long as the cosine of this

angle is greater than 10�12. The results are given in Figure 5.2.
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Figure 5.2: CG method using iterative re�nement in the augmented system approach.

We observe that the residual
p
rT g is decreased almost as much as with the multiple projec-

tions approach, and attains an acceptably small value. We should point out, however, that the

residual increases after it reaches the value 10�10, and if the CG iteration is continued for a few

hundred more iterations, the residual exhibits large oscillations. We will return to this in x6.1.

In our experience 1 iterative re�nement step is normally enough to provide good accuracy,

but we have encountered cases in which 2 or 3 steps are bene�cial.

6 Residual Update Strategy

We have seen that signi�cant roundo� errors occur in the computation of the projected residual

g+ if this vector is much smaller than the residual r+. We now describe a procedure for rede�ning

r+ so that its norm is closer to that of g+. This will dramatically reduce the roundo� errors in

the projection operation.

We begin by noting that Algorithm II is theoretically una�ected if, immediately after com-

puting r+ in (2.14), we rede�ne it as

r+  r+ �AT y; (6.1)

for some y 2 Rm. This equivalence is due to the condition AZ = 0 and the fact that r+ is

only used in (2.15) and (2.16). It follows that we can rede�ne r+ by means of (6.1) in either the
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normal equations approach (3.8)/(3.13) or in the augmented system approach (3.12)/(3.15) and

the results would, in theory, be una�ected.

Having this freedom to rede�ne r+, we seek the value of y that minimizes

kr+ �AT ykG�1 ; (6.2)

where G is any symmetric matrix for which ZTGZ is positive de�nite, and G�1 is the generalized

inverse of G. The vector y that solves (6.2) is obtained as y = v+ from (3.15). This gives rise to

the following modi�cation of the CG iteration.

Algorithm III Preconditioned CG with Residual Update.

Choose an initial point x satisfying (1.2), compute r = Hx + c, and �nd the vector

y that minimizes kr � AT ykG�1 . Set r  r � AT y, compute g = ZW�1
ZZ

ZT r and set

p = �g. Repeat the following steps, until a convergence test is satis�ed:

� = rT g=pTHp (6.3)

x  x+ �p (6.4)

r+ = r + �Hp (6.5)

r+  r+ �AT y where y solves (6.2) (6.6)

g+ = Pr+ (6.7)

� = (r+)T g+=rT g (6.8)

p  �g+ + �p (6.9)

g  g+ and r  r+: (6.10)

This procedure works well in practice, and can be improved by adding iterative re�nement of

the projection operation. In this case, at most 1 or 2 iterative re�nement steps should be used.

Notice that there is a simple interpretation of Steps (6.6) and (6.7). We �rst obtain y by solving

(6.2), and as we have indicated the required value is y = v+ from (3.15). But (3.15) may be

rewritten as  
G AT

A 0

! 
g+

0

!
=

 
r+ �AT v+

0

!
; (6.11)

and thus when we obtain g+ in Step (6.7), it is as if we had instead found it by solving (6.11).

The advantage of using (6.11) compared to (3.15) is that the solution in the latter may be

dominated by the large components v+, while in the former g+ are the large components|of

course, in 
oating point arithmetic, the zero component in the solution of (6.11) will instead be

tiny rounded values provided (6.11) is solved in a stable fashion. Viewed in this way, we see that

Steps (6.6) and (6.7) are actually a limited form of iterative re�nement in which the computed

v+, but not the computed g+ which is discarded, is used to re�ne the solution. This \iterative

semi-re�nement" has been used in other contexts [6, 22].
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There is another interesting interpretation of the reset r  r � AT y performed at the start

of Algorithm III. In the parlance of optimization, r = Hx + c is the gradient of the objective

function (1.1) and r � AT y is the gradient of the Lagrangian for the problem (1.1)-(1.2). The

vector y computed from (6.2) is called the least squares Lagrange multiplier estimate. (It is

common, but not always the case, for optimization algorithms to set G = I in (6.2) to compute

these multipliers.) Thus in Algorithm III we propose that the initial residual be set to the current

value of the gradient of the Lagrangian, as opposed to the gradient of the objective function.

One could ask whether it is su�cient to do this resetting of r at the beginning of Algorithm III,

and omit step (6.6) in subsequent iterations. Our computational experience shows that, even

though this initial resetting of r reduces its magnitude su�ciently to avoid errors in the �rst few

CG iteration, subsequent values of r can grow, and rounding errors may reappear. The strategy

proposed in Algorithm III is safe in that it ensures that r is small at every iteration, but one

can think of various alternatives. One of them is to monitor the norm of r and only apply the

residual update when it seems to be growing.

6.1 The Case G = I

There is a particularly e�cient implementation of the residual update strategy when G = I.

Note that (6.2) is precisely the objective of the least squares problem (3.11) that occurs when

computing Pr+ via the normal equations approach, and therefore the desired value of y is nothing

other than the vector v+ in (3.10) or (3.12). Furthermore, the �rst block of equations in (3.12)

shows that r+ � AT v+ = g+. Therefore, in this case (6.6) can be replaced by r+  Pr+ and

(6.7) is g+ = Pr+. In other words we have applied the projection operation twice, and this is a

special case of the multiple projections approach described in the previous section.

Based on these observations we propose the following variation of Algorithm III that requires

only one projection per iteration. We have noted that (6.6) can be written as r+  Pr+. Rather

than performing this projection, we will de�ne r+ = g where g is the projected residual computed

at the previous iteration. The resulting iteration is given by Algorithm III with the following two

changes:

Omit (6.6)

Replace (6.10) by g  g+ and r  g+:

This strategy has performed well in our numerical experiments and avoids the extra storage

and computation required by Algorithm III. We now show that it is mathematically equivalent

to Algorithm III | which in turn is mathematically equivalent to Algorithm II. The arguments

that follow make use of the fact that, when G = I, we have that PP = P .

The �rst iteration is clearly the same as that of Algorithm III, except that the value we store

in r in the last step is not r+ but g+ = Pr+. Let us consider the e�ect that this has on the next

iteration. The numerator in the de�nition (6.3) of � now becomes gT g which equals rTPg = rT g.

Thus the formula of � is theoretically unchanged, but the symmetric form � = gT g=pTHp has the

advantage that it can never be negative, as is the case with (6.3) when rounding errors dominate
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the projection operation. Next, the step (6.5) becomes r+ = Pr + �Hp, which is di�erent from

the value calculated in Algorithm III. Step (6.6) is omitted in the new variant of Algorithm III.

The projected residual calculated in (6.7) is now P (Pr+�Hp) which is mathematically equivalent

to the value PP (r+ �Hp) calculated in Algorithm III (recall that (6.6) can be written as Pr+).

Note that the new strategy applies the double projection only to r. Finally let us consider the

numerator in (6.8). In the new variant, it is given by

(Pr + �Hp)TP (Pr + �Hp):

whereas in Algorithm III it is given by

(P (r + �Hp))TPP (r + �Hp):

By expanding these expressions we see that the formula for � is mathematically equivalent in

both cases, but that in the new variant the projection is applied selectively.

Example 4.

We solved the problem given in Example 1 using this residual update strategy with G = I.

The results are given in Figure 6.1 and show that the normal equations and augmented system

approaches are equally e�ective in this case. We do not plot the cosine (3.17) of the angle between

the preconditioned residual and the columns of A because it was very small in both approaches,

and did not tend to grow as the iteration progressed. For the normal equations approach this

cosine was of order 10�14 throughout the CG iteration; for the augmented system approach it was

of order 10�15. Note that we have obtained higher accuracy than with the iterative re�nement

strategies described in the previous section; compare with Figures 2 and 3.
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Figure 6.1: Conjugate gradient method with the residual update strategy.
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To obtain a highly reliable algorithm for the case when G = I we can combine the residual

update strategy just described with iterative re�nement of the projection operation. This gives

rise to the following iteration which will be used in the numerical tests reported in x7.

Algorithm IV Residual Update and Iterative Re�nement for G = I

Choose an initial point x satisfying (1.2), compute r = Hx + c, r  Pr, g  Pr,

where the projection is computed by the normal equations (3.8) or augmented system

(3.12) approaches, and set p = �g. Choose a tolerance �max. Repeat the following

steps, until a convergence test is satis�ed:

� = rT g=pTHp (6.12)

x  x+ �p (6.13)

r+ = r + �Hp (6.14)

g+ = Pr+ (6.15)

Apply iterative re�nement to Pr+, if necessary, (6.16)

until (3.17) is less than �max (6.17)

� = (r+)T g+=rT g (6.18)

p  �g+ + �p (6.19)

g  g+ and r  g+: (6.20)

We conclude this discussion by elaborating on the point made before Example 4 concerning

the computation of the steplength parameter �. We have noted that the formula � = gT g=pTHp

is preferable to (6.12) since it cannot give rise to cancellation. Similarly the stopping test should

be based on gT g rather than on gT r. The residual update implemented in Algorithm IV does

this change automatically, but we believe that these expressions are to be recommended in other

implementations of the CG iteration, provided the preconditioner is based on G = I.

To test this, we repeated the computation reported in Example I using the augmented system

approach; see Figure 3.1. The only change is that Algorithm II now used the new formulae for �

and for the stopping test. The CG iteration was now able to continue past iteration 70 and was

able to reach the value
p
gT g = 10�8. We also repeated the calculation made in Example 3. Now

the residual reached the level
p
gT g = 10�12 and the large oscillations in the residual mentioned

in Example 3 no longer took place. Thus in both cases these alternative expressions for � and

for the stopping test were bene�cial.

6.2 General G

We can also improve upon the e�ciency of Algorithm III for general G, using slightly outdated

information. The idea is simply to use the v+ obtained when computing g+ in (6.7) as a suitable

y rather than waiting until after the following step (6.5) to obtain a slightly more up-to-date

version. The resulting iteration is given by Algorithm III, with the following two changes:
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Omit (6.6)

Replace (6.10) by g  g+ and r  r+�AT v+, where v+ is obtained as a bi-product

from (6.7).

Notice, however, that for general G, the extra matrix-vector product AT v+ will be required, since

we no longer have the relationship g+ = r+ � AT v+ that we exploited when G = I. Although

we have not experimented on this idea here, it has proved to be bene�cial in other, similar

circumstances [22].

7 Numerical Results

We now test the e�cacy of the techniques proposed in this paper on a collection of quadratic

programs of the form (1.1)-(1.2). The problems were generated during the last iteration of

the interior point method for nonlinear programming described in [7], when this method was

applied to a set of test problems from the CUTE [4] collection. We apply the CG method with

preconditioner (3.4) (i.e. with G = I) to solve these quadratic programs.

We use the augmented system and normal equations approaches to compute projections,

and for each we compare the standard CG iteration (stand) with the iterative re�nement (ir)

techniques described in x5 and the residual update strategy combined with iterative re�nement

(update) as given in Algorithm IV. The results are given in Table 7.1. The �rst column gives the

problem name, and the second, the dimension of the quadratic program. To test the reliability of

the techniques proposed in this paper we used a very demanding stopping test: the CG iteration

was terminated when
p
rT g � 10�12.

In these experiments we included several other stopping tests in the CG iteration, that are

typically used by trust region methods for optimization. We terminate if the number of iterations

exceeds 2(n�m) where n�m denotes the dimension of the reduced system (2.4); a superscript
1 in Table 7.1 indicates that this limit was reached. The CG iteration was also stopped if the

length of the solution vector is greater than a \trust region radius" that is set by the optimization

method (see [7]). We us a superscript 2 to indicate that this safeguard was activated, and note

that in these problems only excessive rounding errors can trigger it. Finally we terminate if

pTHp < 0, indicated by 3 or if rT g < 0, indicated by 4. Note that the standard CG iteration

was not able to meet the stopping test for any of the problems in Table 7.1, but that iterative

re�nement and update residual were successful in most cases.
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Augmented System Normal Equations

Problem dim stand ir update stand ir update

CORKSCRW 147 162 9 10 44 9 11

COSHFUN 61 1241 1241 58 1241 1241 55

DIXCHLNV 50 91 12 12 54 12 12

DTOC3 999 184 6 6 20001 6 6

DTOC6 1000 64 16 16 24 16 16

HAGER4 1000 1934 350 348 10574 351 349

HIMMELBK 10 221 3 3 74 3 3

NGONE 97 04 67 56 04 65 60

OPTCNTRL 9 204 12 4 201 2 5

OPTCTRL6 39 901 801 16 801 801 16

OPTMASS 402 04 5 6 93 5 5

ORTHREGA 261 134 163 163 143 163 163

ORTHREGF 805 84 18 18 74 18 18

READING1 101 34 5 5 34 5 5

Table 7.1: Number of CG iterations for the di�erent approaches. A 1 indicates that the iteration

limit was reached, 2 indicates termination from trust region bound, 3 indicates negative curvature

was detected and 4 indicates that rT g < 0.

Table 7.2 reports the CPU time for the problems in Table 7.1. Note that the times for

the standard CG approach (stand) should be interpreted with caution, since in some of these

problems it terminated prematurely. We include the times for this standard CG iteration only

to show that the iterative re�nement and residual update strategies do not greatly increase the

cost of the CG iteration.

Next we report on 3 problems for which the stopping test
p
rT g � 10�12 could not be met by

any of the variants. For these three problems, Table 7.3 provides the least residual norm attained

for each strategy.

As a �nal, but indirect test of the techniques proposed in this paper, we report the results

obtained with the interior point nonlinear optimization code described in [7] on 29 nonlinear

programming problems from the CUTE collection. This code applies the CG method to solve

a quadratic program at each iteration. We used the augmented system and normal equations

approaches to compute projections, and for each of these strategies we tried the standard CG

iteration (stand) and the residual update strategy (update) with iterative re�nement described

in Algorithm IV. The results are given in Table 7.4, where \fevals" denotes the total number of

evaluations of the objective function of the nonlinear problem, and \projections" represents the

total number of times that a projection operation was performed during the optimization. A ***

indicates that the optimization algorithm was unable to locate the solution.
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Augmented System Normal Equations

Problem dim stand ir update stand ir update

CORKSCRW 147 0:852 1.18 0.88 0:154 0.74 0.70

COSHFUN 61 0:371 0:661 0.18 0:291 0:541 0.13

DIXCHLNV 50 1.90 0.49 0.30 0:24 0.50 0.30

DTOC3 999 0:484 0.9 0.60 148:481 0.91 0.47

DTOC6 1000 0:324 1.51 0.9 0:084 1.16 0.66

HAGER4 1000 14:234 54.43 34.30 70:574 40.48 24.71

HIMMELBK 10 0:131 0.07 0.04 0:034 0.05 0.04

NGONE 97 0:164 21.19 10.69 0:984 125.24 77.35

OPTCNTRL 9 0:064 0.20 0.06 0:051 0.28 0.07

OPTCTRL6 39 0:361 0:651 0.08 0:291 0:451 0.06

OPTMASS 402 0:064 0.57 0.43 0:343 0.38 0.25

ORTHREGA 261 0:984 2:023 1:143 0:913 2:523 1:883

ORTHREGF 805 0:464 1.84 1.06 1:144 5.65 2.95

READING1 101 0:244 0.92 0.40 0:294 1.31 0.85

Table 7.2: CPU time in seconds. 1 indicates that the iteration limit was reached, 2 indicates

termination from trust region bound, 3 indicates negative curvature was detected and 4 indicated

that rT g < 0.

Augmented System Normal Equations

Problem dim stand ir update stand ir update

OBSTCLAE 900 2.3D-07 1.5D-07 5.5D-08 2.3D-07 9.9D-08 4.2D-08

SVANBERG 500 1.8D-07 9.9D-10 5.7D-12 7.7D-08 8.8D-10 2.9D-10

TORSION1 400 3.5D-09 3.5D-09 2.8D-09 5.5D-08 4.6D-08 3.2D-09

Table 7.3: The least residual norm:
p
rT g attained by each option.
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Augmented System Normal Equations

f evals projections f evals projections

Problem n m stand update stand update stand update stand update

CORKSCRW 456 350 64 61 458 422 65 61 460 411

COSHFUN 61 20 44 40 2213 1025 49 40 2998 1025

DIXCHLNV 100 50 19 19 83 83 19 19 83 83

GAUSSELM 14 11 25 26 92 93 28 41 85 97

HAGER4 2001 1000 18 18 281 281 50 18 2458 281

HIMMELBK 24 14 33 33 88 89 39 33 135 89

NGONE 100 1273 216 133 1763 864 217 187 1821 1146

OBSTCLAE 1024 0 26 26 6233 6068 26 26 6236 6080

OPTCNTRL 32 20 41 51 152 183 *** 50 *** 179

OPTMASS 1210 1005 36 39 129 145 218 39 427 145

ORTHREGF 1205 400 30 30 73 73 30 30 73 73

READING1 202 100 40 40 130 130 43 40 151 130

SVANBERG 500 500 35 35 7809 4265 40 35 10394 4764

TORSION1 484 0 19 19 2174 2140 19 19 2449 2120

DTOC2 2998 1996 6 6 215 215 6 6 215 215

DTOC3 2999 1998 7 7 16 16 26 7 73 16

DTOC4 2999 1998 5 5 8 8 5 5 8 8

DTOC5 1999 999 6 6 12 12 6 6 12 12

DTOC6 2001 1000 12 12 48 46 64 12 166 46

EIGENA2 110 55 4 4 4 4 4 4 4 4

EIGENC2 464 231 25 25 264 268 25 25 270 269

GENHS28 300 298 4 4 7 7 4 4 7 7

HAGER2 2001 1000 5 5 12 12 5 5 12 12

HAGER3 1001 500 4 4 9 9 4 4 9 9

OPTCTRL6 122 80 14 10 97 75 75 10 880 75

ORTHREGA 517 256 8 8 38 38 *** 48 *** 99

ORTHREGC 505 250 10 10 60 60 10 10 60 60

ORTHREGD 203 100 11 11 23 23 11 11 23 23

Table 7.4: Number of function evaluations and projections required by the optimization method

for the di�erent implementations of the CG iteration.
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Note that the total number of function evaluations is roughly the same for all strategies, but

there are a few cases where the di�erences in the CG iteration cause the algorithm to follow a

di�erent path to the solution. This is to be expected when solving nonlinear problems. Note

that for the augmented system approach, the residual update strategy changes the number of

projections signi�cantly only in a few problems, but when it does the improvements are very

substantial. On the other hand, we observe that for the normal equations approach (which is

more sensitive to the condition number �(A)) the residual update strategy gives a substantial

reduction in the number of projections in about half of the problems. It is interesting that with

the residual update, the performance of the augmented system and normal equations approaches

is very similar.

8 Conclusions

We have studied the properties of the projected CG method for solving quadratic programming

problems of the form (1.1)-(1.2). Due to the form of the preconditioners used by some nonlinear

programming algorithms we opted for not computing a basis Z for the null space of the con-

straints, but instead projecting the CG iterates using a normal equations or augmented system

approach. We have given examples showing that in either case signi�cant roundo� errors can

occur, and have presented an explanation for this.

We proposed several remedies. One is to use iterative re�nement of the augmented system or

normal equations approaches. An alternative is to update the residual at every iteration of the

CG iteration, as described in x6. The latter can be implemented particularly e�ciently when the

preconditioner is given by G = I in (3.3).

Our numerical experience indicates that updating the residual almost always su�ces to keep

the errors to a tolerable level. Iterative re�nement techniques are not as e�ective by themselves

as the update of the residual, but can be used in conjunction with it, and the numerical results

reported in this paper indicate that this combined strategy is both economical and accurate.
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