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Abstract
The energy-transport models describe the flow of electrons through a semiconductor crys-
tal, influenced by diffusive, electrical and thermal effects. They consist of the continuity
equations for the mass and the energy, coupled to Poisson’s equation for the electric po-
tential. These models can be derived from the semiconductor Boltzmann equation.

This paper consists of two parts. The first part concerns with the modelling of the
energy-transport system. The diffusion coefficients and the energy relaxation term are
computed in terms of the electron density and temperature, under the assumptions of non-
degenerate statistics and non-parabolic band diagrams. The equations can be rewritten
in a drift-diffusion formulation which is used for the numerical discretization.

In the second part, the stationary energy-transport equations are discretized using
the exponential fitting mixed finite element method in one space dimension. Numerical
simulations of a ballistic diode are performed.
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1 Introduction

Semiconductor devices can be simulated by means of the semiconductor Boltzmann equa-
tion, which is usually numerically solved by employing the Monte-Carlo method. However,
this method is too costly and time consuming to model real problems in semiconductor
applications. Acceptable accuracy can be reached by solving macroscopic semiconductor
models derived from the Boltzmann equation. The simplest models are drift-diffusion
models which consist of the mass continuity equation for the charge carriers and a def-
inition for the particle current density (see, e.g., [24]). These models, however, are not
accurate enough for submicron device modeling, owing to the rapidly changing fields and
temperature effects.

The energy-transport equations consist of the conservation laws of mass and energy,
together with constitutive relations for the particle and energy currents, and are able to
model temperature effects in submicron devices. Since the energy-transport equations are
of parabolic type, the numerical solution needs less effort than the hydrodynamic models.
Moreover, the energy-transport equations can be written in a drift-diffusion formulation,
therefore the numerical effort is comparable to the drift-diffusion models.

In this paper a numerical scheme for energy-transport models is presented and nu-
merical results for a one-dimensional ballistic diode are given. The originality of this
paper consists of three facts: Firstly, we compute explicitly, for rather general band dia-
grams, diffusion coefficients and the energy relaxation term in terms of the electron density
and temperature. For non-parabolic bands in the sense of Kane, the coefficients can be
computed analytically. The resulting model is completely derived from the Boltzmann
equation. Secondly, we show that any energy-transport model, derived from the Boltz-
mann equation via the “spherical harmonic expansion” (SHE) model under rather weak
assumptions on the semiconductor band structure, allows a drift-diffusion formulation.
Finally, based on the drift-diffusion formulation, we discretize and solve the equations by
means of mixed finite elements and point out the differences of various models used in the
physical literature.

The first part of this paper is concerned with the computation of the diffusion coef-
ficients and the energy relaxation term, assuming general non-parabolic band diagrams
and Boltzmann statistics (Section 2). In [5] the energy-transport equations are derived
from the semiconductor Boltzmann equation by means of the Hilbert expansion method.
First, the SHE model is obtained in the diffusion limit, under the assumption of dominant
elastic scattering. Then, through a diffusion approximation, respectively making electron-
electron or phonon scattering large, the energy-transport equations are derived from the
SHE model. The stationary energy-transport model reads as follows:

—divJ, = 0, (1)
“divy = —Ji-VV+W(nT), 2)
J1 = Ln( ﬂ—M)+Ll2v(—i)a (3)
kBT kBT kBT
\YA%4 1
glo = L21( %—Lﬁ)jLLQzV(—kaT , (4)
esAV = ¢q(n—0C). (5)

The variables are the chemical potential u, the electron temperature 7', and the electric
potential V. Furthermore, Ji, Jo are the particle and energy current densities, respectively.
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The physical constants are the elementary charge ¢, the Boltzmann constant kg, and the
semiconductor permittivity 5. The electron density n depends on p and T'. For instance,
for Boltzmann statistics and parabolic bands, the relation n = N;T%/? exp(qpu /ksT) with
N; > 0 holds. The space dependent function C = C(z) is the doping profile, L;; =
L;j(n,T) are the diffusion coefficients, and W = W (n,T) is the energy relaxation term.
These equations hold in the (bounded) semiconductor domain €2, and they have to be
complemented with mixed Dirichlet-Neumann boundary conditions

n=mnp, TZTD, VZVD on FD,
Jov=Jy-v=VV-r=90 on 'y,

modeling the Ohmic contacts I'p and the insulating boundary parts I'y. Then, 02 =
I'pUTyNy and I'p NT'y = 0 must be satisfied. The exterior normal unit vector on 99 is
denoted by v.

The mathematical analysis of the equations (1)-(5) has been studied recently in [11,
12, 13, 17] (also see [1, 15]). The existence and uniqueness of solutions to both the
stationary and the time-dependent equations have been proved. In the physical literature,
the energy-transport equations are investigated numerically since several years [2, 9, 10, 21,
30, 31, 32|, using parabolic band structure and Boltzmann statistics. Non-parabolic and
non-Maxwellian distribution effects are discussed in [9, 31], but no comparisons of energy-
transport models with parabolic and non-parabolic band diagrams have been performed.

In Section 2 we compute the diffusion coefficients L;;, the electron density n, the
internal energy E, and the energy relaxation term W in terms of y and 7. We assume
that the energy-band diagram of the semiconductor crystal is spherically symmetric and
monotone in the modulus of the wave vector E, that non-degenerate Boltzmann statistics
can be used and that a momentum relaxation time 7 can be defined by 7(g) ~ e #N(e)~1,
where ¢ is the energy, N (¢) denotes the density of states, and 8 > —2 is a parameter. Then,
using the general formulas for the coefficients and densities from [5], we get more explicit
expressions than those of [5], involving the energy-band function £(k) and depending on
the temperature 7' (see Section 2.2).

Furthermore, we get analytical expressions under the additional assumption of non-
parabolic bands in the sense of Kane [19]:

(1 +ac) = 2 JR?
€ aE) = —
2'm,0 ’
where A is the reduced Planck constant, mg the effective electron mass, and « > 0 the
non-parabolicity parameter.

The second part of this paper is concerned with the numerical discretization of the
energy-transport equations (Section 3). An important observation is that the current
densities can be written in a drift-diffusion formulation of the form

vv
Ji = ng('n’aT) - gi('n’aT)Ta 1=1,2, (6)
where g; and gy are non-linear functions of n and 7. This formulation is valid for any
current densities coming from a SHE model, involving Boltzmann statistics (see Section
2.3). It is the basis for our numerical discretization. For constant temperature, the
expression (6) reduces to the standard drift-diffusion current definition.
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The continuity equations (6) are discretized with a variant of the mixed exponential
fitting scheme, which have been developed and studied in [6, 7, 8, 23] for the linear drift-
diffusion equations and extended to a nonlinear driftdiffusion model in [18]. The most
important features of these schemes are the current conservation (the current is intro-
duced as independent variable and continuity is directly imposed) and the ability of well
approximating solutions with steep gradient (the scheme introduces exponentials of elec-
tric potential differences, which automatically account for the diffusion dominant part and
the drift dominant part of the operator). Moreover, the extension to the two-dimensional
case is straightforward. The current discretization (in 1-d) can be seen as a non-linear
Scharfetter-Gummel discretization [28].

The numerical scheme is applied to the simulation of a one-dimensional n™nn™ ballistic
diode, which is a simple model of the channel of a MOS transistor. In the numerical
simulations, we also use non-parabolic energy bands. The numerical experiments are
performed by employing two energy-transport models, the Lyumkis and the Chen model,
which are defined by different momentum relaxation time functions. These two models
are already used in the physical literature, but only for parabolic band diagrams.

The numerical results show that the energy-transport models describe the velocity
overshoot with reasonable accuracy, when compared to the results in the literature (see,
e.g., [9]). The spurious velocity overshoot spike at the anode junction becomes smaller in
the non-parabolic band case, compared to the parabolic case, and almost vanishes for the
Chen model.

2 Formulation of the model

2.1 Scaling of the equations

We bring the equations (1)-(5) into a scaled and dimensionless form. Let Cp, be the
maximal value of the doping profile, £* the diameter of the device, pg the low-field mobility
constant, Ty the lattice temperature, and Upr = kpTy/q the thermal voltage. Using the
scaling

n—Cupn, C—C,C, T-TyT, VUV, p—Urp, =— L0,
Ji = (quoUrCr /%) J1,  Jo = (quoUZChy /€¥) 2,
Lij = ((qUr)"™ 7 poCrm) Lij, W — (quoUZCr [L2)W,

we get the system

_divJ; = 0, (7)
—divJy = —J,-VV4+W, (8)
_ p_VV 1
o= (V) e (- ) ®)
_ u_ VvV 1
Jo = Lzl(VT T )+L22V( T)’ (10)
MNAV = n-C, (11)

where A2 = ¢,Ur/(qCm¢*?) denotes the square of the scaled Debye length.



2.2 General non-parabolic band diagrams

In this subsection we reformulate the diffusion coefficients for the energy-transport model
(7)-(11), as derived in [5], and we make precise our assumptions on the energy relaxation
term. We assume in this and the following subsections that all physical variables and
parameters are in scaled form. In order to get more explicit expressions for the coefficients
L;; in terms of n, T' (or u, T'), we have to impose some physical assumptions:

(H1) The energy-band diagram e of the semiconductor crystal is spherically symmetric
and a strictly monotone function of the modulus k£ = |k| of the wave vector k.
Therefore, the Brillouin zone equals R? and € : R — R, k > (k).

(H2) A momentum relaxation time can be defined by

(e) = (¢0(2N0 + 1)gﬂN(e)) L Bs>—2 >0, (12)

where N(g) = 4nk?/|¢'(k)| is the density of states of energy ¢ = ¢(k) [5, (IT1.31)]
and Ny is the phonon occupation number [4, Sec. 4].

(H3) The electron density n and the internal energy E are given by non-degenerate Boltz-
mann statistics.

The assumptions (H1)-(H2) are imposed in order to get simpler expressions for the vari-
ables. In the physical literature, the values f = 0 [9] and § = 1/2 [21] have been used
in the case of parabolic band structure (see Section 2.4). The non-degeneracy assump-
tion (H3) is valid for semiconductor devices with a doping concentration which is below
10cm™3. Almost all devices in practical applications satisfy this condition.

Under these assumptions, the diffusion coefficients are given by

w . .
Lij = Liy(u, ) = /7 [~ (@) e e, (13)
0
where 4
d(s):§7(5)|5'(k)|k2 and &= e(k)

(see [5, (IV.17), (IIL1.33)]). We refer to [5] for more general expressions for the diffusion
coefficients under weaker assumptions.
Due to assumption (H3), we have further [5, (IV.16)]

n = n(u,T):e“/T/ e /TN (¢)de, (14)
0

B = B(uT)=c" / ee==/T N (e)de. (15)
0

Let v(g) = k2 be the inverted (k) relation. Then N(¢) = 277y(¢)'/?4'(¢) and, using
(12),
8r_, \(e)*? 4 7(€)

W) = 57O = 3@y 1 1) Py

which yields

4 s o (e) _
Lii — M/T/ i+j—B—2 e/T
U 3g0(2Ng +1)° 0o - 7Y(e)2* de
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or

Lij = TPt/ T py(T, i + §) (16)
with A o (T)
Py(T,0) = o | ul P2 mug
/3( ’ ) 3¢0(2N0+1)/(; u ,.),I(CZ"u)Z6 u

The electron density and the internal energy read (see (14), (15))
o0
n = 27re”/T/ y(€)2 (€)e /T de,
0

E = 27re“/T/ ev(e)Y?+ (e)e /T de
0

or

n="Te"TQ(T,0), E=T"TQ(T,1) (17)
with ~
Q(T,0) = 27T/ uby(Tu) /%y (Tu)e  du.
0

The energy relaxation term is given by
o0
W = / S1 (=) T ede,
0

where S is the phonon collision operator [5, (IV.18)]. In the Fokker-Planck approximation,
we can write this operator as (see [29])

Si(e=m) = 2 {5(5) [(1 + T0%> ew—s)/T] } ,

where 6(¢) = poe®? N(€)?, B > —1 and Ty = 1 is the (scaled) ambient temperature. With
the definition of ¢(¢), the above expression can be simplified:

o
W = —e“/T/ 5(e)es/T <1 — @> de
0 T

= ¢oeMTTA (T, —T)/ P N(Tu)?e "du
0

o
= dn’goet/ TP (T, —T)/ ~(Tu)y (Tu)*uP e du.
0

Introducing
o
Ro(T) = [ 2Ty (Tufulevdu, (18)
0
the energy relaxation term can be written as
w30 -1)
2 73(T)

with the temperature-dependent relaxation time

3 TYRQ(T,0)
_87r2q§0 R/j(T)

3(T)



2.3 A drift-diffusion formulation for the current densities

A remarkable observation is that the current densities J; and Jo can be written in a
drift-diffusion formulation of the type

J = Vgl(n,T)—gl(n,T)g (20)
J2 = Vgg(n,T) 92(71, T)VV (21)

T

(Here and in the following, the gradient V always means differentiation with respect to
the space variable.) Indeed, in the general case the current densities are given by

J; = / (Ve n=e)/T L vy g (H)/T) elde, i=1,2. (22)

This relation holds true under weak assumptions (see [5] for details) and in particular
under the assumptions (H1)—(H3) of Section 2.2.
From (22) we get

Ji=V / d(e)e /e 1de — VTV ()i~ ge
0
which equals (20), (21), respectively, setting
o o
g1 :/ d(e)elr=2)/T ge, 922/ d(e)e=)Tede.
0 0

The functions g; and g2 can be computed in terms of n and 7', under the assumptions
(H1)—(H3) of Section 2.2. Indeed, by (13), we get g1 = L1 and go = Lo, and using (16)
and (17), we can write

Pﬂ (T7 2)
Q(T,0)

Pp(T,3)

O(T.0) T B (23)

g1(n,T) = Tfﬂn, g2(n,T) =

or
gi(n,T) = ,ug) (T)Tn, go(n,T) = ug) (T)T?n

with the temperature-dependent mobilities

_ Ps(T,i+ 1)T_1_ﬂ,
Q(T,0)
We can write the stationary energy-transport model in the drift-diffusion formulation

either in the variables n, T and V or in the variables g1, go and V. In both cases only the
current density relations change. In the former case we have

i=1,2. (24)

Ji = V(ug(T)Tn) = ug) (T)nVV,
B = Vg (T)T%n) - uG (T)TnVY,

and in the latter case .
Ji=Vg——L vV, i=1,2
g



The electron density is given in terms of g; and go by, see (23),

_ Q(T(91,92),0)
Ps(T (g1, 92),2)

The energy relaxation term in the variables g; and go writes now (recall that Tp = 1)

T(g1,92)" g1 (25)

n(91,92)

3 g1 g2
W = — . (26)
1 2
2o (T \ (1) w(T)
In order to compute the electron temperature in terms of g; and go, we have to invert the
following function (see (23)):
Ps(T,3),, _ 92

)€ TS

Pﬂ(Ta2) B g1 (27)

This is possible if and only if the derivative of f is positive for all T' > 0. The following
lemma shows that this is true if and only if the diffusion matrix (L;;) is positive definite.
Now, this property has to be satisfied in order to get a well-posed mathematical problem.

Lemma 2.1 Let the hypotheses (H1)—(H3) hold. Then

B det(Lij)

(28)

Proof. Using the relation
TPg(T, ¢ —1) = P3(T,£) — (£ — B — 2)Pg(T, £ - 1),
which can be proved by integration by parts, we obtain
fI(T) = Py(T,2)*[P5(T,4)P5(T,2) — P5(T, 3)°].
Then, from the formulas
det(Lij) = e*/TT*[Py(T, 4) P3(T, 2) — P5(T, 3)’]
and n = Q(T,0)Te"'T (see (16) and (17)), it follows

) Q(T,0)TP 12 det(L;;)
fI(T) = (W) det(Ls;) = (Tgl)]g :

For later reference, we rewrite the complete energy-transport model in the (g1, g2, V)
formulation:

—divJ, = 0, (29)
—divJ, = —J,-VV+W, (30)
J o= Vgl—%VV, (31)
Jo = vgg—g—;vv, (32)
MNAV = n—C(z) inQ, (33)



subject to the mixed Dirichlet-Neumann boundary conditions

91 =9p,1, 92=¢gp2, V =Vp onI'p, (34)
Jv=Jy-v=VV-r=90 on 'y, (35)

where we have set gp; = gi(np,Tp), i = 1,2. The functions n and W depend on g; and
g2 according to (25) and (26), respectively. The dependence of T on g; and gs is given by
the non-linear equation (27).

2.4 A non-parabolic band approximation

In this section we compute the diffusion coefficients and the energy relaxation term for
non-parabolic band diagrams in the sense of Kane and we show that for the parabolic
band approximation, we get the same relations as in the physical literature [9, 21].

The non-parabolic band structure in the sense of Kane [19] is defined as follows:

(H4) Let the energy e(k) satisfy
2

e(1+ ae) = py—

The constant m* is the (scaled) effective electron mass given by m* = mokgTy/h?kZ, where
myo is the unscaled effective mass, ko is a typical wave vector, and o > 0 is the (scaled)
non-parabolicity parameter. Notice that we get a parabolic band diagram if a = 0.

The assumption (H4) implies y(Tu) = 2m*Tu(1+aTu), and introducing the functions

o0 1 + oy {—B—1 —
T,0) = —— — _utPlemud
ps(aTf) /0 (1+2aTu)?" ¢
o
q(aT,t) = / (14 aTw)?(1 + 20T u)u/ > e du,
0

we can rewrite Pg and () as (see Section 2.2)

2
Py(T,0) = T T,¢

Q(T,0) = 2x(2m*)*>T'?¢(aT, ).
Therefore, the electron density and internal energy from (17) become

T, 1
q(a 7 )T'n/

n = N(T)T*?e#T, E = :
q(aT,0)

where N(T') = 27(2m*)%/?q(aT,0). For the mobilities (24) we get the expressions

i pglaT, e+ 1) /0
ug)(T): 0 5 )T 1/2—8

= 1.2.
g(aT, 0) e

Here, the mobility constant ug is given by

fo = (37r¢0(2N0 + 1)m*(2m*)3/2)_1 .
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Furthermore, introducing
o
rg(aT) = / (1 + aTw)(1 + 20Tu)?u!Pedu,
0
we obtain (see (18))

Ry(T) = (2m*)*ry(T)T,

and the energy relaxation time (19) becomes

3¢(aT,0),1/0-5
— 2N
78(T) =10 2rg(aT) ’

where .
T0 — (27rq50(2m*)3/2) .
Notice that the function r4 is in fact a polynomial:
ra(aT) = T(B +2) + 50(B + 3)aT + 8T'(B + 4)(aT)? + 4T(B + 5)(aT)>.
The symbol I' denotes the Gamma function defined by
o
T'(s) =/ ut"le7U%du, s> 0.
0

(Here we use the hypothesis 8 > —2.)

Finally, the energy relaxation term (26) can be rewritten as

25! ( 91 92 )
rg(ad — .

woro P (e 2]~ pseTs)

In the parabolic band approximation case (o = 0) the above expressions simplify.
Since ¢(0,0) = I'(3/2) = 4/7/2 and ¢(0,1) = I'(5/2) = 3y/7/4, we get for the electron
density and the internal energy the well-known relations

W =

n = (2rm*)32T32et/T | E = ng.

In order to compute the mobilities and the energy relaxation time, we have to specify the
parameter 5. As mentioned in Section 2.2, in the literature the values = 1/2 (used by
Chen et al., cf. [9]) and 8 = 0 (used by Lyumdkis et al., cf. [21]) have been employed.

First let 8 = 1/2. Then p;/5(0,2) = +/7/2 and p;/5(0,3) = r1/5(0) = 3/7/4 and
therefore,

_ 3 _
HT) = wol ™ p(T) = Suel ™", (D) = 7o,

Hence, we get the same current density relations and the same energy relaxation term as
Chen et al. in [9]:

Ji = ,uo(Vn—ﬁVV),

T
3
Jo = Ho (V(nT) - nVV),
W o= § ’I’L(T() - T) .
2 T0

10



The energy-transport model with the above relations will be called the Chen model.
When 8 = 0, we have py(0,2) = ro(0) =1, po(0,3) = 2 and

W)y — @T—l/Q )y — %Tflﬂ
:uo ( ) \/7—_‘_ ) MO ( ) \/7_T ’

so that the current densities and the energy relaxation term become

RIVL S
70(T) = —[TOTUQ,

_ 2w 12y _ "
o= ﬁ(V(nT )= V),

_ Ao 3/2\ _ , l/2
Jy = F(V(nT ) — nT VV),

2 n(To—T)
VF D
The energy transport equations with these expressions will be called the Lyumkis model.
We conclude this section with a remark on the choice of the parameters. In order to
determine the energy-transport model completely, the parameters «, 3, ¢o, No and kg
have to be chosen. The mobility constant pg depends on ¢y, Ny and k¢ (the dependence
on kg comes in via m*), and the constant 79 depends on ¢y and ky. Instead of choosing
the parameters ¢y, Ny and kg, we prescribe pg and 7y whose values (depending on the
semiconductor material) can be derived from physical experiments.

W =

3 Numerical approximation

In the following we describe in detail the discretization of the one-dimensional energy flux
continuity equations (30), (32) by means of an exponential fitting mixed finite element
method. The discretization of equations (29), (31) is similar but simpler (since the zero-
th order term and the right-hand side of (29) are zero). The Poisson equation (33) is
discretized with a P; finite element scheme. Consequently, in the following V' denotes
a piecewise linear function and V, its (piecewise constant) derivative. The exponential
fitting mixed finite element method introduced for the drift-diffusion continuity equation
(cf. [6, 7, 8, 23]) can be sketched as follows: (i) transformation of the problem by means
of the Slotboom variable to a symmetric form; (7i) discretization of the symmetric form
with mixed finite elements (consequently, the flux is introduced as independent variable);
(iii) suitable discrete change of variable to rewrite the equations in terms of the original
variables go. Due to the non-constant electron temperature, a Slotboom variable does
not exist in the present case. As starting point of the discretization scheme we define
a “local” Slotboom variable, assuming that the temperature is a prescribed piecewise
constant function defined in the global iteration process. We refer to the end of the
section for an explicit choice of the procedure. A related idea has been used in [18] for the
discretization of the non-linear drift-diffusion continuity equation.

More precisely, introduce a partition 0 = 2y < 1 < --- < &y = 1 of (0,1) and set
I; = (z; 1,2;), hi = z; —x; 1 fori = 1,...,N , and h = max; h;. We denote by T the
piecewise constant approximation of the temperature (see (57) for the precise definition).
The equations to be solved are then

Jo = (92)w_92Vm/Ta (36)
—(J2)g +C2g92 = —NVy+7cig1, (37)
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where we set

3
- Trs(T)) (T)
for £ = 1,2, and, for simplicity of notation, we denote again by Jy, gy, for £ = 1,2 the

variables.
In each interval I;, “local” Slotboom variables are introduced by

VT

Y2 =€ g2 in I;, (38)

and equations (36) and (37) are written in the interval I; as:

e VT Ty — (y2)5 = 0, (39)

2)a
—(Jo)z + e Tyy = — 1V + €101 (40)

A similar idea for the transformation of the energy-transport equations has been used in
[16]. Jerome and Shu [14, 15] have employed a slightly different Slotboom transformation
by introducing ¢(z) = [ Va( s)ds.

To define the mlxed ﬁmte element scheme we follow [23], where a monotonic scheme
for the 2-dimensional current continuity equation in the presence of zero-th order term
has been developed. The finite dimensional space for the flux variable contains functions
of L?(Q), which are in each interval polynomials of the form o(z) = a; + b;P;(z), with
a;, b; constant and P;(x) a second order polynomial uniquely defined in the interval I; as
follows. Let P(x) be the second order polynomial with the following properties:

/ ' P@)dz =0, P(0)=0, P(1)=1, (41)
0

that is, P(z) = 322 — 4z + 1. Moreover, it holds fo Pl(z)dzr =1 fo r)%dr = Z. We
define P;(z) (depending on V') by
Pi(z) =-P(%F) if dpin =1 — 1, (42)

Py(z) =P(EE) if Gpin = 1, (43)

where i, is the point of minimum of the potential V(z) in the interval I;. We shall
denote by Vi, its minimum value. Notice that the minimum is always attained at one
end point of the interval, since V is linear in I;. If V(z) is constant in I;, we define
Pi(z) = P(*5=1).

Let us introduce the following finite dimensional spaces:

X, = {0€l*9) : o) =a;+bPi(z)inl,i=1,...,N},
W, = {€€L?*): ¢isconstantin I;, i =1,...,N},
Apy = {qis defined at the nodes zo,...,zn g(zo) = x(0), g(zn) = x(1)}.

The mixed-hybrid approximation of equations (36)-(37) is then:

Find Jél € Xy, §’2‘ € Wy, gg € Aph,gp,, such that :

N .
3 / AiTbo+ / Bgho, — [V Tgho]” | =0, (44)
i=1 \ i I Ti-1
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N N

izzl (_/I(Jg)mf+lz 52555) = i:Zl\/Ii(_J{lvx—}_Elg]ll)g’ (45)
N

> lastfs, =0, ”
i=1

for all o0 € Xy, £ € Wy, q € App. JI € X}, is the approximation of the current density Ji,
g € W}, is the piecewise constant approximation of g;, stemming from the discretization
of the current continuity equation (see (54)-(56) below). In the first equation A and B

fV/T)

denote the piecewise constant functions (approximation of e defined in each interval

I; by

1 Z; __
A = 4L / eVO/Tds, i=1,...,N,
hi Jg

def _ T .
Bl;, = B;< ¢ Vmin/T i=1,...,N.

i—1

Jg is an approximation of the energy flux Jo, §’21 is a piecewise constant approximation
of go and g% is an approximation of g at the nodes (see [3, 22]). The first equation is
obtained from a weak version of (39), using integration by parts and summation over all
I; together with the inverse of the Slotboom transformation (38). Notice that the discrete
inverse transformation is not the same for the variables gi and g&. We refer to [23] for
a detailed discussion on the need of different approximations of the exponential function
due to (possibly) large value of V. The second equation is a discrete weak version of (37),
obtained from (40) where eV/T is approximated by B~! and the discrete inverse Slotboom
transformation for & is used. The third equation implies the continuity of J? at the
nodes.

The variables J? and g can be eliminated a priori by static condensation, leading to
a final algebraic system in the variables g# only. We write J? € X}, as

Jy(z) = J3; + J3;Pi(z) for z € I, (47)

for some constants Jgi, J21’i, i=1,...,N. Set gy; = 1y 920 = gi(z:), Vi = V(=;) and
g; = q(z;). Taking o € X}, such that 0 = 1 in I; and o = 0 elsewhere in equation (44)
gives _ _

hiAiJS,i =e Villgy; —e Virt/Tgy, .

The integral in the definition of A; can be computed explicitly and we arrive after elemen-
tary computations to

o _Vi-Vi o (VQ - Vi—1)92,i —92i1_ 92it i1 Vi— Vi (48)

2,0 oT h; oT h;

This discretization can be seen as a non-linear Scharfetter-Gummel scheme (cf. [6]). The
constants J%’i are computed by using (45) once g, ; is given. Indeed, taking { = 1 in I;
and ¢ = 0 elsewhere in equation (45), it follows

Jy; = Cahigy; — hiri, (49)

13



where we set r; = h% fIi(—J{le + €1g")dz. Taking now o € X}, such that o = P;(x) in I;
and o = 0 elsewhere in equation (44) we obtain

2 V.. T V. T
EhiAz’JQI,i =€ V"””/ng,i +e T gy hin (50)

Using (49) and (50), we can eliminate J21,l~ and get

Goi = (T 2+ 1) (i + G2,iin); (51)
where § = Zh?A;eVmin. Replacing (51) into (49) we get J21,i in terms of g ;:
1 cohi hi
. L B 52
2,2 7 EQ + 1g2azmzn 7 EQ + 1 7 ( )

Finally, equation (46), with ¢; = 1 and ¢ = 0 for all k # i, gives
I3+ Jo i Pi(wi) = J301 + Jg 41 Pia (), i=1,...,N. (53)

We recall that, due to definition (41)-(43), Pi(z;) = 0 (Pi+1(z;) = 0, resp.) if the minimum
of Von I; is in ;1 (x;41, resp.), otherwise it is Pj(z;) = 1 (Pj1+1(z;) = —1, resp.). Using
the expression (48) for Jgﬂ- and (52) for JQI’Z-, the last equation (53) can be written in terms
of the variables g ; only, giving rise to a tridiagonal algebraic system, with the (positive)
contribution of the zero-th order term appearing only in the diagonal entry. Then the
energy flux J% is computed locally in each interval by (47) and g% is computed locally by
(51).

Discretizing the current continuity equation (29), (31) with the same scheme and
applying the (simpler) static condensation procedure (J is piecewise constant in this
case), we obtain

HNi=Jd  i=1,...,N, (54)
with
0 _ Vim Vit (V; —_Vi—1>91,z' —gui-1 _ gLitgLi-1 Vi—Vior (55)
’ 2T 2T h; 2T h;
Moreover, the analogous of (51) gives the upwind expression
§1,Z- = 91,imin> 1=1,...,N. (56)

In order to complete the scheme, we still have to specify how the piecewise constant
temperature T is defined. The temperature is defined implicitly in terms of g; and g
according to the non-linear equation (27). Lemma 2.1 shows that this equation can be

solved uniquely. Numerically, we define T' in each interval I; as approximate solution of

KQf

Z’i:f(Ti)a i:]-a"'aNa (57)
1,

Q|

with T'; def T|r; and g, 4, go; given by the mixed scheme (see (56), (51)). The non-linear
equation reduces to a linear one when a = 0 (parabolic band). For a > 0 a single iteration
of the (scalar) Newton scheme is sufficient to obtain T with an accuracy of 1078, when the
initial guess is the temperature at the previous global iteration procedure step. Moreover,
f' can be explicitly computed by (28).
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In contrast to the strongly coupled equations (7)-(10) in the variables p/T and —1/T,
the two continuity equations (29) and (30) are weakly coupled through the temperature
(which varies only slowly during the iterations). Consequently, we defined the global
iteration procedure as follows. The temperature is frozen at the previous iteration step,
and a full Newton method is used to solve the non-linear system in gi, g2 and V. At
each iteration, the temperature is updated according to equation (57). The associated
linear system is solved by using a GMRES solver. Finally, we remark that a Gummel-type
iteration procedure can be employed (instead of the Newton method) in the parabolic
band case.

4 Numerical results

As a numerical example we present the simulation of a one-dimensional n*tnn™ ballistic
silicon diode which is a simple model for the channel of a MOS transistor. The semi-
conductor domain is given by the interval Q = (0,£*) with £* > 0. In the n™-regions the
maximal doping concentration is 5-10'7 cm3; in the n-channel the minimal doping profile
is 2-10'5 cm™3. The doping profile is shown in Figure 1. The length of the n*-regions is
0.1 pm, whereas the length of the channel region equals 0.4 ym. The numerical values of

1018

-3

[y
o
(N
3
T
|

(N
o

Doping concentration in cm
)
T
L

15
10 | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6

Position in pm

Figure 1: Doping concentration in the n*nn* diode.

the physical parameters (for a silicon diode) are given in Table 1.
On the boundary points z = 0 and z = £* we assume that the (unscaled) total space
charge C — n vanishes and that the (unscaled) temperature has the ambient temperature:

n(0) = n(£*) = c1, T(0) =T(£") = Ty, V()=0, V() =T,

where U > 0 is the applied voltage. We take the value U = 1.5 V. The unscaled relaxation
time 79 and the low-field mobility po depend on ¢¢ and ko (see Section 2.4). These
parameters are chosen such that 79 and pg take the values shown in Table 1. We have

15



Parameter | Physical meaning Numerical value
q elementary charge 1.6-10719 As

Es permittivity constant 10712 AsV—lem™!
o (low field) mobility constant 1.5-103cm?V—1s~!
Ur thermal voltage at Ty, = 300 K 0.026 V

A length of the device 0.6 pm

Ly length of the n™ region 0.1 ym

Co doping concentration in the n region | 2-10%cm ™3

c1 doping concentration in the n* region | 5- 10" ¢cm 3

To energy relaxation time 0.4-10 %5

a non-parabolicity parameter 0.5(eV) !

Table 1: Physical parameters.

chosen the data such that our results can be compared to the numerical results of the
literature (see, e.g., [9, 26, 31]).

We perform numerical results for a uniform mesh of 100 nodes. In Figure 2 we present
the electron temperature for vanishing and non-vanishing non-parabolicity parameter «
using Lyumkis’ model. As expected the temperature in the n-channel is high, i.e. the
electrons are ’hot’. The maximal temperature for « = 0is 7' = 3970 K and T' = 3240 K for
a = 0.5 (eV)~!. The corresponding thermal energies are Ey;, = %kBT =0.51eV and Ey, =
0.42 eV, respectively. Therefore, the temperature is reduced due to the non-parabolicity
effects. Similar results can be observed by employing Chen’s model (Figure 3). Here, the
maximal temperature (thermal energy) values are T' = 2330K (Ey, = 0.30eV) for a = 0
and T = 1610K (Ey, = 0.21eV) for @ = 0.5 (eV)~!. The effective scaled relaxation time
in the Lyumkis model is (3/7/4)70v/T and 7y in the Chen model. Therefore, the effective
relaxation time in the Chen model is smaller than that in the Lyumkis model, and we
expect that the maximal temperature in the Chen model is smaller than in the Lyumkis
model. This observation follows from the fact that in the vanishing relaxation-time limit,
the temperature relaxes to the lattice temperature, and it is confirmed by our numerical
experiments.

In Figure 4 the electron mean velocity for the two different values of the non-
parabolicity parameter « using Lyumkis’ model is shown. The mean velocity u is defined
by u = J1/(gn). The spurious velocity overshoot peak at the left junction becomes smaller
for non-vanishing non-parabolicity parameter. The maximal mean velocity for a = 0 is
u=2.92-10"cm/s and u = 1.51 - 10" cm/s for o = 0.5 (eV)~!. The same effect can be
observed using Chen’s model (see Figure 5), where the spurious velocity overshoot spike
almost vanishes for a = 0.5 (eV)~!. The maximal velocities are u = 1.44 - 10" cm/s for
a=0and u=1.25-10" cm/s for @ = 0.5 (eV) L.

The mean velocities for the non-parabolic case, using Chen’s or Lyumkis’ models,
are compared to the mean velocity from the standard drift-diffusion model in Figure 6.
In the latter model, no velocity saturation effects are taken into account, i.e. the drift-
diffusion model equals the energy-transport equations in the case of constant temperature.
The velocity overshoot from the drift-diffusion model is much larger than for the energy-
transport equations (Figure 6). This can be explained by the fact that the total energy
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Model slope

Lyumkis: a = 0.0 1.00
Lyumkis: a = 0.5/eV | 0.88
Chen: a=0.0 0.90

Chen: a =0.5/eV 0.90

Table 2: Slopes of the logarithmic current-voltage curves for U € [0.5V, 1.5V].

of the energy-transport model is composed of the thermal and the kinetic energy, whereas
the total energy of the drift-diffusion model is determined only by the kinetic energy.

In Figure 7 we present the current-voltage characteristics for the different energy-
transport models. The particle current density J; is always smaller in non-parabolic band
situations. Its dependence on the applied voltage U seems to be sublinear. Indeed, in
the voltage range U € [0.5V,1.5V], the dependence of J; on U is approximately J; ~ U7,
where 7y is between 0.88 and 1. depending on the model (see Table 2). We remark that
increasing the number of nodes does not change the values of the current.

5 Conclusions

In this paper we have derived energy-transport models for semiconductors for general non-
parabolic band diagrams. The diffusion coefficients and the energy relaxation term can be
written analytically in terms of the electron density and the temperature if non-parabolic
bands in the sense of Kane are considered. The energy-transport models are completely
derived from the semiconductor Boltzmann equation. There appear two parameters: the
non-parabolicity parameter a and the parameter in the definition of the momentum re-
laxation time 3. For parabolic bands (« = 0), we recover two models already studied in
the literature: the so-called Lyumkis model (8 = 0) [21] and the so-called Chen model
(8=1/2) [9].

Thanks to a drift-diffusion formulation valid for a large class of energy-transport mod-
els, we presented a mixed exponential fitting finite element discretization of the station-
ary equations and numerical experiments of a ballistic diode in one space dimension. It
turns out that the spurious velocity overshoot peak is smaller in Chen’s model than in
Lyumkis’ model and for non-parabolic bands compared to parabolic ones. Furthermore,
the spurious peak almost vanishes in the non-parabolic Chen model. This shows that
the energy-transport models describe the charge flow of electrons in a ballistic diode with
reasonable accuracy.
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Figure 2: Electron temperature versus position in a ballistic diode using Lyumkis’

model.
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model.
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