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Abstract. A geometric representation for images is studied in this work. This is based on two
complementary geometric structures for the topographic representation of an image. The first one
computes a description of the Morse structure, while the second one computes a simplified version
of drainage structures. The topographic significance of the Morse and drainage structures of Digital
Elevation Maps (DEM) suggests that they can been used as the basis of an efficient encoding scheme.
As an application we then combine this geometric representation with a consistent interpolation
algorithm and lossless data compression schemes to develop an efficient compression algorithm for
DEM. This coding scheme controls the L∞ error in the decoded elevation map, a property that is
necessary for the majority of applications dealing with DEM. We present the underlying theory and
some compression results for standard DEM data.
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1. Introduction. A geometric approach to representing and compressing Dig-
ital Elevation Maps (DEM) is proposed in this paper. Our approach is based on
Morse theory and the computation of drainage structures, which lead to an efficient
representation of the topographic structures of these images. This paper presents
the underlying theoretical results and some experimental examples, which are further
developed in [48].

DEM data consist of a discrete digital representation of a surface terrain. Each
cell in a DEM corresponds to a point (x, y, z) in 3D space. We can think of (x, y) as
the coordinates in the image domain and the height z as the gray value of the image
(see Fig. 1.1). The acquisition systems used to obtain a DEM have been improved
during the last years in order to obtain a better resolution both in the coordinate
plane and in height. Typically a DEM image from a small terrain has 1200 × 1200
points, that is 1440000 bytes (1.4Mb) when using 8 bits for the height, or 2880000
(2.8Mb) when using 16 bits. If we note that for a complete terrain description of a
country we need thousands of these images, storing and transmitting them requires
efficient encoding and compression.

Many algorithms exist for lossless and lossy data compression [40, 56, 55]. Typ-
ically, lossy compression algorithms control the L2 norm of the error (the root mean
square error), but it is not so easy to find algorithms which allow a control on the L∞
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Fig. 1.1. Left: original DEM images. Right: 3D representation of the image on the left.

norm of the error (that is the sup error). This is fundamental for DEM applications.
Without an L∞ error control the error in individual pixels may be of the same order
of magnitude as the image gray value resolution. For DEM applications, e.g., navi-
gation and landing, this leads to an error in terrain height that makes the algorithm
forbidden. A standard algorithm allowing the desired L∞ control is JPEG Lossless
(JPEG-LS) [56, 55, 35], which has a near lossless mode where one can impose the
maximum allowed error. The use of JPEG-LS for DEM data has been studied in [35].
Let us mention that if you compress an image with JPEG-2000 [1] and then encode
the errors greater than a given bound this algorithm can also be used to compress
with control of the maximum error (being this not a fully standard approach).

To represent and compress DEM data it seems reasonable to store only those
geometric structures which are of special relevance such as its Morse and drainage
structures. Morse theory describes the topological change of the isocontours of scalar
data or height function as the height varies, and relates these topological changes
to the criticalities of the function. Critical levels permit to decompose the graph
of a function into (truncated) cone like pieces. This suggests the idea of storing
the level curves corresponding to critical levels, and use a consistent interpolation
algorithm to recover the corresponding cone-like structures. Applying this strategy
directly would lead to high errors between the original image and its interpolated
reconstruction, and the coding of these errors (or a quantized version of them) would
be too expensive. Thus we propose to add other topographically relevant information,
a simplified drainage structure network. Then, for DEM representation we propose to
first encode the level curves corresponding to critical levels, together with a simplified
version of drainage structures. We then use this geometric sampling to compute an
approximation of the data by interpolating them, compute the errors, and encode a
quantized version of them so that we control the L∞ norm of the error. Then these
series of data structures are compressed by an arithmetic coder. This paper presents
the underlying theoretical and computational justification of this method, together
with some experimental results (for additional experiments, see [48]).

Let us mention that the use of a topographic description of images, surfaces,
or 3D data has been used in different areas of research, including image processing,
computer graphics, and geographic information systems (GIS), e.g., [7, 8, 9, 6, 5, 11,
15, 17, 20, 27, 52, 28, 33, 32, 42, 46]. The motivations for such a description differ
depending on the field of application. In all cases these descriptions aim to achieve
an efficient description of the basic shapes in the given image and their topological
changes as a function of a physical quantity that depends on the type of data (height
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in data elevation models, intensity in images, etc.). We shall comment on related
work in Section 5 after the description of our main contributions.

Let us the structure of the paper. Section 2 introduces some notation to be used
in the paper. Section 3 is the theoretical core of the paper. First we introduce the
notion of monotone and maximal monotone section, which represent the truncated
cone-like structures of the image without criticalities. Related to them is the notion
of singular value, the values where a maximal monotone section begins or ends. Next,
to justify the algorithm that will compute the singular values, we define in Subsection
3.2 the notion of critical value and we state the result that both notions are equivalent
(the proof is included in Appendix 11). As a main consequence, we propose a sim-
ple combinatorial algorithm computing the maximal monotone sections of an image.
This is the object of Section 4. Section 5 contains a brief description of related work.
Section 6 will be devoted to the computation of a simplified version of drainage struc-
tures. In Section 7 we discuss some properties of the interpolation algorithms used
to recover an approximation of the original data from the sampled one. In Sections 8
and 9 we collect the previously developed algorithms and we apply them to build-up
an algorithm for compression of DEM data. We also briefly compare it with existing
compression algorithms, mainly with JPEG Lossless (JLS) and JPEG-2000. Finally,
in Section 10 we summarize the main conclusions of this work. In Sections 11 and 12
we include as appendix the proofs of the main results stated throughout the text.

2. Some notation. Let Ω be a set homeomorphic to the closed unit ball of RN

(N ≥ 2),
{
x ∈ RN , ‖x‖ ≤ 1

}
, and Ω be the interior of Ω. Note that, in particular, Ω

is compact, connected and locally connected. Even though some of the results in this
paper could be proved for more general sets, we shall assume that Ω is of this form.

Let u : Ω → R be a function. We call upper (lower) level set of u any set of
the form [u ≥ λ] := {x ∈ Ω : u(x) ≥ λ} or [u > λ] := {x ∈ Ω : u(x) > λ}
([u ≤ λ] := {x ∈ Ω : u(x) ≤ λ} or [u < λ] := {x ∈ Ω : u(x) < λ}), where λ ∈ R. For
each λ, µ ∈ R, λ ≤ µ we define [λ ≤ u ≤ µ] = {x ∈ Ω : λ ≤ u(x) ≤ µ}, and we write
[u = λ] = [λ ≤ u ≤ λ]. The connected components of a set X ⊆ RN will be denoted
by CC(X). If Y is a connected set contained in a set X, the connected component of
X containing Y will be denoted by CC(X, Y ). In particular, if Y = {x} is reduced to
a point, we shall use the notation CC(X, x).

The space of continuous functions in a compact subset K of RN will be denoted
by C(K). We shall denote by X and int(X) the closure and interior, respectively, of
a set X ⊆ RN . A continuum is a compact connected set. We shall say that two sets
A,B ⊆ X are connected inside X by a continuum if there is a continuum C ⊆ X such
that A∪B ∪C is connected. The Lebesgue measure of a set X ⊆ RN will be denoted
by |X|.

3. Morse theory: Monotone sections, singular and critical values. As
we explained in the Introduction, the aim of Morse theory is to describe the topological
changes of the (iso)level sets of a real valued function in terms of its critical points.
Our purpose in this Section is to describe two different notions of critical values (one
of them will be called critical value, the other singular value) and prove that they are
equivalent. One of those notions, the one of singular value, is intuitively related to
the classical notion of critical value for a smooth function (points where the gradient
vanishes), the other notion called critical value will permit us to describe a simple
and efficient algorithm to compute them. When N = 2, this algorithm computes the
Morse structure of the image from its upper and lower level sets.
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Fig. 3.1. a) As λ decreases and crosses a maximum a level curve appears. When crossing a
saddle point, the isolevel curves [u = λ] merge. b) The sets [α1 ≤ u ≤ α2] and [α3 ≤ u ≤ α4]
are monotone sections. c) X1,X2,X3 are three maximal monotone sections. X1 is the maximal
monotone section that contains the point x such that u(x) = λ, and it extends from η+(x, λ) until
η−(x, λ) (we have not displayed this value). In this case, the isolevel set [u = η+(x, λ)] is contained
in X1 but it is not contained in X2 or X3.

3.1. Monotone sections and singular values. We shall refer to the topo-
graphic map of u as the family of connected components of the isolevel sets of u,
[u = λ], λ ∈ R. The idea of topographic map (though in a slightly different form)
was introduced in [11]. In [7],[8], using different approaches, the authors initiated the
study of the Morse structure of the topographic map for continuous functions, and
bounded upper semicontinuous functions, respectively. They defined the notion of
monotone section as a region of the topographic map between two levels containing
no topological changes of the topographic structure. We shall follow the approach in
[7].

Definition 3.1. Let u : Ω → R be a continuous function. A monotone section
of the topographic map of u is a set of the form

Xλ,µ ∈ CC([λ ≤ u ≤ µ]),(3.1)

for some λ, µ ∈ R with λ ≤ µ, such that for any α ∈ [λ, µ], the set Xλ,µ ∩ [u = α] is
a connected set.

Let us explain this definition. The notion of monotone section tries to capture a
region of the topographic map of the image u where there is no change of topology,
meaning no change in the number of connected components of its isolevel sets [u = α],
α ∈ R. To get a better idea, let us assume that u : Ω → [a, b], Ω ⊆ R2, a < b, is
smooth and each isolevel set [u = λ] is a family of curves. The critical points of u
are its maxima, minima and saddle points. If the function is smooth, we may identify
these critical points using the usual rules of differential calculus. But there is also a
topological description of them, which can be called its Morse description. We look at
the isolevel sets [u = α] as α increases from a to b. Notice that if there is a minimum
(resp. a maximum) at level α then a small curve appears (resp. disappears), and if
there is a saddle point at level α there is some bifurcation in the curve, i.e., two curves
merge, or a single curve splits into two (see Figure 3.1.a). Thus, if we see the sets
[u = α] as a family of moving curves, at the critical points, one of such curves appears,
disappears, splits or merges. Then a connected components X of a set [λ < u < µ],
λ < µ, could be called monotone section if X contains no critical point of u (see Figure
3.1.b). Notice that, if X is such a monotone section, then X ∩ [u = α] is connected (a
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Fig. 3.2. a) Top left: Original image with a connected component X with area ≥ ε, and three
connected components Y, Z, T of area < ε. b) Bottom left: Result of the extrema filter T+

ε applied
to the image in a). c) Top middle: The graph of a simple image, d) Bottom middle: the effect of
the extrema filter T+

ε on the image in c). We see that local maxima are decreased until the area of
the connected component containing it attains an area of ε or greater. The effect of the filter T−ε on
the local minima of the an image is similar, and we do not display it here. e) Top right: original
image. f) Bottom right: result of filtering the image in e) using T−ε T+

ε with ε = 100.

connected curve). Our definition of monotone section is inspired by this observation.
Our purpose now is to find a partition of the image domain into its largest monotone
sections, and the boundaries of these regions will be the curves corresponding to the
critical values.

Due to small oscillations in the image, its Morse structure is too complex, i.e.,
there are too many criticalities. To simplify the structure of the topographic map
while preserving its main features we filter the image with the Vicent-Serra filters
[54],[53], also called extrema filters [19]. Extrema filters eliminate the small connected
components of upper and lower level sets of the given image [7], [12]. The resulting
image has a simplified topographic map structure. Let us recall the definition of such
a filter, first on sets (which is equivalent to binary images), then on functions. If X
is a set in RN , and ε > 0, we define Tε(X) = ∪Y ∈CC(X):|Y |≥εY , i.e., the union of
connected components of X of measure ≥ ε (see Figure 3.2.a,b). With this definition
we may define the following operators on images: T+

ε u(x) = sup{λ : x ∈ Tε([u ≥ λ])},
T−

ε u(x) = inf{λ ∈ R : x ∈ Tε([u < λ])}, x ∈ D. The effect of T+
ε (resp. T−

ε ) is to
eliminate the connected components of the upper level sets (resp. of the lower level
sets) of measure < ε, and, as a consequence, the effect on resulting image is that
the local maxima (resp. minima) are filtered as reflected in Figure 3.2.c,d. To filter
images, we apply both filters iteratively T+

ε T−
ε u, or T−

ε T+
ε u (they do not commute,

see [12], for instance). The effect of the filter on an image is displayed in Figure
3.2.e,f. If there is some v ∈ C(Ω) such that u = T+

ε T−
ε v, or u = T−

ε T+
ε v, and X is a

connected component of [u ≥ λ], or [u < λ], then |X| ≥ ε [7],[12]. This implies that,
for any λ ≤ µ, there are a finite number of connected components of [λ ≤ u ≤ µ]. In
particular, there are a finite number of connected components of [u ≥ λ] and [u < λ]
[7],[12]. In all what follows and for the purposes of mathematical justification we shall
assume that
(H) u ∈ C(Ω) and it has been filtered with the extrema filters, i.e., there is some
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v ∈ C(Ω) such that u = T+
ε T−

ε v, or u = T−
ε T+

ε v.

The definition we have given of monotone section is slightly different from the
one given in [7], but, according to next Proposition, equivalent to it.

Proposition 3.2. Let u : Ω → R be a continuous function such that for each
λ, µ ∈ R with λ ≤ µ the set [λ ≤ u ≤ µ] has a finite number of connected components.
Let λ < µ, X ∈ CC([λ ≤ u ≤ µ]). Then X is a monotone section if and only if for
any λ′, µ′ ∈ [λ, µ], λ′ ≤ µ′, the set {x ∈ X : λ′ ≤ u(x) ≤ µ′} is a connected component
of [λ′ ≤ u ≤ µ′].
Proof. Let us denote by (∗) the assertion that for any λ′, µ′ ∈ [λ, µ], λ′ ≤ µ′, the set
{x ∈ X : λ′ ≤ u(x) ≤ µ′} is a connected component of [λ′ ≤ u ≤ µ′]. Obviously,
if X satisfies (∗), then for any α ∈ [λ, µ], the set X ∩ [u = α] is connected. To
prove the converse statement, suppose that X is a monotone section but (∗) does
not hold. Then there are values λ ≤ α ≤ β ≤ µ such that X ∩ [α ≤ u ≤ β] is
not connected. Observe that X ∩ [α ≤ u ≤ β] 6= ∅ because ∅ is connected. Let
c = α+β

2 . Since X ∩ [α ≤ u ≤ β] = (X ∩ [α ≤ u ≤ c]) ∪ (X ∩ [c ≤ u ≤ β]) and
(X ∩ [α ≤ u ≤ c]) ∩ (X ∩ [c ≤ u ≤ β]) 6= ∅, we conclude that either X ∩ [α ≤ u ≤ c]
or X ∩ [c ≤ u ≤ β], or both, cannot be connected (since the union of intersecting
connected sets is also connected). Let us choose one of the above non connected sets
and denote it by X ∩ [α1 ≤ u ≤ β1]. Proceeding iteratively in this way we find a
decreasing sequence of intervals [αn, βn] such that ∩n[αn, βn] = {γ} and X ∩ [αn ≤
u ≤ βn] are not connected. Now, observe that for all Yn ∈ CC(X ∩ [αn ≤ u ≤ βn])
there exists Yn−1 ∈ CC(X ∩ [αn−1 ≤ u ≤ βn−1]) so that Yn ⊆ Yn−1. Thus, there
are at least two different decreasing sequences of continua (compact connected sets)
contained in X ∩ [αn ≤ u ≤ βn]. Since the intersection of a decreasing sequence of
continua is a continuum ([26]), we conclude that X∩ [u = γ] = ∩n(X∩ [αn ≤ u ≤ βn])
is not connected. This contradiction proves the proposition.

The following result which was proved in [7] permits us to define a monotone
section which is maximal with respect to inclusion. Those sets are the non singular
sets we mentioned above.

Proposition 3.3. ([7], Proposition 1) Assume that u : Ω → R is a continuous
function such that for each λ, µ ∈ R with λ ≤ µ the set [λ ≤ u ≤ µ] has a finite
number of connected components. Let λ1, λ2, µ1, µ2 ∈ R. Then, if Xλ1,λ2 , Xµ1,µ2

are monotone sections such that Xλ1,λ2 ∩Xµ1,µ2 6= ∅, then Xλ1,λ2 ∪Xµ1,µ2 is also a
monotone section. In other words, the union of intersecting monotone sections is a
monotone section.

As a consequence, assuming property (H), the union of monotone sections which
intersect is a monotone section. This permits to define the notion of maximal mono-
tone section containing a given point. Indeed, let x ∈ D and λ = u(x), and take
Xλ,λ = CC([u = λ], x) (intuitively, the level curve through x). Then we try to in-
crease Xλ going upwards (resp. downwards) until we find a critical level, call it
η+(x, λ) (resp. η−(x, λ)). With this we shall find two monotone sections containing
x, and whose union is the largest monotone section containing x (see Figure 3.1.c).
Let us precise this. For each η ≥ λ, let Xλ,η = CC([λ ≤ u ≤ η], x). We define

η+(x, λ) = sup{η : η ≥ λ, s. t. Xλ,η is a monotone section}.

Similarly, we define

η−(x, λ) = inf{η : η ≤ λ, s. t. Xη,λ is a monotone section}.
6



Note that both numbers are well defined since Xλ,λ is always a monotone section.
Note also that, by definition, η−(x, λ) ≤ η+(x, λ). Those numbers determine an
(open, closed, half-open, half-closed) interval I(x, λ) containing λ whose end-points
are η−(x, λ), η+(x, λ), which gives a monotone section containing x maximal with
respect to inclusion (see [7]).

At least, when N = 2, maximal monotone sections represent the largest sections
of the topographic map containing no topological changes (see Fig. 3.1.c), and our
purpose is to compute them. Intuitively, monotone sections are topologically equiv-
alent to truncated cones and the maximal monotone ones are the largest truncated
cones contained in the graph of the image. This property is well adapted to the inter-
polation algorithms described in Section 7, which are able to re-interpolate truncated
cones from the curves bounding them.

Definition 3.4. Let M ⊆ Ω. We say that M is a zonal maximum (resp.,
minimum) of u at height λ if M is a connected component of [u = λ] and, for all
ε > 0, the set [λ− ε < u ≤ λ] (resp., [λ ≤ u < λ + ε]) is a neighborhood of M .

Definition 3.5. We say that λ ∈ R is a singular value if it corresponds to
a zonal maximum, minimum, or it corresponds to a level where it begins or ends a
maximal monotone section, i.e., there is a point x ∈ Ω such that η+(x, λ) = λ or
η−(x, λ) = λ.
Remark. Observe that the definition of singular value is self-dual, in the sense that,
λ is a singular value of u if and only if −λ is a singular value of −u.

3.2. Critical values. This section is devoted to the definition of critical values.
Before going into the formal definition, let us explain the idea behind it. Intuitively,
critical levels are levels where a connected component of an isolevel set [u = α] appears,
disappears, splits, or merges. Those critical levels can be identified by looking at
[u = α] as the common boundary of two sets [u ≥ α] and [u < α], and describing
the topology of [u = α] in terms of the connected components of the sets [u ≥ α]
and [u < α]. Indeed, if we increase α and we cross a level with a minimum (resp.
maximum), then a connected component of [u < α] appears (resp. a connected
component of [u ≥ α] disappears). If we cross a saddle point then either two connected
components of [u < α], or of [u ≥ α], merge. This will give us a simple way to compute
the critical levels (see Section 4). Then we shall prove the result that both notions
of critical and singular values are equivalent, and this will prove that we are indeed
computing the maximal monotone sections of the image.

Let us introduce the notion of critical level of u. For that we first need the
following definition.

Definition 3.6. Let λ ∈ R. Assume that (H) holds. A signature of the level set
[u ≥ λ] (resp. [u < λ]) consists of a finite family of marker points {pi : i = 1, ..., r}
(resp. {qj : j = 1, ..., s}) such that each pi (resp. qj) is a point in a different connected
component Xλ,i (resp. Xλ,j) of [u ≥ λ] (resp. [u < λ]). The points pi, qj are selected
as maximum points of u in Xλ,i, and minima of u in Xλ,j, i.e.,

u(pi) = sup
x∈Xλ,i

u(x), and u(qj) = inf
x∈Xλ,j

u(x).

Having chosen the marker points, we denote the signature of [u ≥ λ] by sig([u ≥ λ]),
the signature of [u < λ] by sig([u < λ]). We define sig([u ≥ λ], [u < λ]) = sig([u ≥
λ]) ∪ sig([u < λ]).

It is important to notice that the signature of an upper (resp., lower) level set
is not unique since there may be many different points in a connected component
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Fig. 3.3. A function u and its upper and lower level sets at level λ with its assigned signature.
The set [u ≥ λ] has two connected components depicted in gray and its signature consists of two
points {p1, p2}. The set [u < λ] has only one connected component with two holes, and is depicted
as the circular region below with the two white holes. Its signature consists of the point q1.

of it where the function u attains its maximum (resp., its minimum). The problems
posed by this can be avoided using the following criterion which will be used in the
computational algorithm introduced in Section 4: We define the signature of [u ≥ λ]
(resp. [u < λ]) in a decreasing (resp., increasing) order in the value of λ ∈ R. For the
moment being we shall consider two signatures S1 and S2 of [u ≥ λ] (resp. [u < λ])
equal it they have the same number of marker points and for any point p ∈ S1 there
is a point q ∈ S2 which is a maximum (resp. a minimum) of u in CC([u ≥ λ], p) (resp.,
in CC([u < λ], p)), and conversely, interchanging S2 and S1. In this way we can give
a unique sense to sig([u ≥ λ], [u < λ]) for any λ ∈ R. The definition of signature is
illustrated in Figure 3.3.

Our next Lemma proves that the signature may only change from above. This
justifies the definition of critical value that follows it.

Lemma 3.7. Let λ ∈ R. There is ε > 0 such that sig([u ≥ µ], [u < µ]) is constant
for all µ ∈ (λ− ε, λ].
Proof. Let Xλ,i, Xλ,j , i = 1, ..., r, j = 1, ..., s, be the the family of connected compo-
nents of [u ≥ λ], resp. [u < λ] with the markers pi, qj defined above. Let i ∈ {1, ..., r}.
For each µ < λ, let Xµ,i be the connected component of [u ≥ µ] containing Xλ,i.
Then, obviously, we have Xλ,i ⊆ ∩µ<λXµ,i. Now, since as µ ↑ λ Xµ,i is a decreas-
ing family of continua, their intersection is also a continuum [26]. Moreover, it is
contained in [u ≥ λ]. Therefore,

∩µ<λXµ,i ⊆ CC([u ≥ λ], pi) = Xλ,i,

and we have the equality of both sets. As a consequence, there is an ε > 0 such
that for each µ ∈ (λ − ε, λ], the sets Xλ,i, i = 1, ..., r, are contained in different
connected components of [u ≥ µ]. Moreover, it cannot exist a sequence of values
µn ↑ λ such that [u ≥ µn] has a connected component Qn disjoint to [u ≥ λ]. In
that case [u ≥ µn] ⊇ [u ≥ λ] ∪ Qn, and, thus |[u ≥ µn]| ≥ |[u ≥ λ]| + δ for some
δ > 0. Since [u ≥ µn] ↓ [u ≥ λ], also |[u ≥ µn]| ↓ |[u ≥ λ]|. This contradiction proves
that there is an ε > 0 such that for each µ ∈ (λ − ε, λ] the set [u ≥ µ] consists of r
connected components, each one of them containing a different component of [u ≥ λ].

Let µn ↑ λ. Again, using that ∪n[u < µn] = [u < λ], for n large enough, we have
that [u < µn] ∩ Xλ,j , j = 1, ..., s, are the connected components of [u < µn]. We
conclude that there is an ε > 0 such that sig([u ≥ µ], [u < µ]) is constant for each
µ ∈ (λ− ε, λ].

Definition 3.8. We say that λ ∈ R is a critical value for u if there is a sequence
µn ↓ λ such that sig([u ≥ µn], [u < µn]) 6= sig([u ≥ λ], [u < λ]) for each n = 1, 2, ....

8
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Fig. 3.4. a) For each level µ we compute the connected components of [u ≥ µ]. At level µ > λ
there are two components of [u ≥ µ] which increase and merge as µ decreases to λ. b) While
decreasing the level µ, we see that at level λ there is a new local maximum of u and a new connected
component of [u ≥ λ] appears. c) For each level µ we compute the connected components of [u < µ].
At level λ there are two components of [u < λ] which merge for any level µ ≥ λ. d) Observe that
at level λ there is only a connected component of [u < λ] but at any level µ > λ a new connected
component of [u < µ] appeared.

Let us explain the phenomena reflected by a change of signature. Let λ < µ. If
sig([u ≥ λ], [u < λ]) 6= sig([u ≥ µ], [u < µ]), then either (a) sig([u ≥ λ]) 6= sig([u ≥
µ]), or (b) sig([u < λ]) 6= sig([u < µ]). Suppose that (a) holds. Since [u ≥ µ] ⊆ [u ≥ λ]
each connected component of [u ≥ µ] is contained in a component of [u ≥ λ]. Two
critical phenomena may happen: (a1) there are two different components of [u ≥ µ]
which are contained in the same component of [u ≥ λ], i.e., two connected components
of [u ≥ µ] merged at level λ, or (a2) there is a component of [u ≥ λ] with no component
of [u ≥ µ] contained in it, i.e., a new connected component of the upper level sets
appeared at level [u ≥ λ]. Suppose that (b) holds. Since [u < λ] ⊆ [u < µ], each
component of [u < λ] is contained in a component of [u < µ]. Again, the same two
critical phenomena may happen: (b1) there are two different connected components
of [u < λ] which are contained in the same component of [u < µ], i.e., a connected
component of [u < µ] has splitted at level λ, (b2) there is a component of [u < µ] with
no component of [u < λ] contained in it, i.e., a connected component of the lower
level sets is present at level µ while it was absent at level λ. (see Fig. 3.4). We call
the first type of criticality of upper type, while the second is called of lower type.

Let us state the fundamental theoretical result of this paper which justifies our
algorithm in next section. The proof will be given in Appendix 11.

Theorem 3.9. Assume that (H) holds. Let λ ∈ R. Then λ is a critical level of
u if and only if λ is a singular level of the topographic map of u.

4. The computational algorithm. For the sake of simplicity we only describe
the algorithm to compute the critical values of upper type. The critical values of
lower type can be computed using the same algorithm applied to the inverted image
max(u) − u. Note that it is possible to compute both types of criticalities at the
same time. Anyway, the computational cost will be similar either if we compute
both type criticalities separately or at the same time. As we will see in Algorithm
1, the computational cost derives mainly from the computation of the connected
components at each level. Since we perform this computation by means of a region
growing strategy, it makes no difference to do both computations (upper and lower
connected components) simultaneously or not.

We have observed that, due to low oscillations in the image, a huge number of
criticalities may appear. In order to select the most relevant ones we filter the image
with extrema filters, which simplify but do not distort the topographic map structure
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[7, 12]. We stress here the fact that this pre-filtering step is only done to compute the
relevant criticalities, but the compression algorithm (see Section 8) is applied to the
original (not to the filtered) image. After the above pre-filtering step (which could
also not be used), our strategy consists on discarding some critical sections which do
no satisfy a minimum contrast criterion. The contrast criterion is specified by means
of a parameter MinContrast.

We assume that our image u ranges from m = min(u) to M = max(u) (for exam-
ple from 0 to 255). Let us give some additional explanations before making explicit
the algorithm taking into account the contrast criterion. Our algorithm computes
critical levels of upper type, choosing only a subset of them in such a way that the
regions comprised between two consecutive critical levels have sufficient contrast. The
contrast of u on a set X is the oscillation of the gray level there, i.e., the difference
maxx∈X u(x) −minx∈X u(x). We shall refer to a contrasted M-section as a union of
monotone sections with contrast ≥ MinContrast. Our algorithm starts from λ = M
and decreases the values of λ computing the connected components of [u ≥ λ] and its
markers (let us denote them by Xλ,pi). When a monotone section is born the contrast
is set to 0. Then we decrease λ until we find a critical level. If λ is such a critical level
and Xλ,pi is a maximal monotone section ending at this level whose contrast is lower
than MinConstrast, we do not declare it as critical and we continue growing it by
decreasing λ. If at some lower value of λ we find again a critical level, we shall declare
it as critical only in the case that the contrast of the growing section is higher than
MinContrast. In the case we declare λ as a critical level, a new monotone section
starts and we have to store this level to compute the contrast when we arrive at the
next critical level. This will permit us to compute the critical levels, and to choose a
subset of them giving us contrasted M-sections. If the parameter MinContrast = 0,
the algorithm gives us all critical levels of upper type. Applying the algorithm to u
and to max(u)− u we obtain all critical levels and all monotone sections.

To follow the above strategy, we shall need two quantities: βλ,pi which is the
starting level of the contrasted M-section being computed, and the contrast of Xλ,pi ,
defined by C(Xλ,pi) = βλ,pi − λ. To store the computed connected components we
use a dynamical data structure L consisting on a vector, ranging from m to M , of
lists of couples (Xλ,pi , βλ,pi). The specific algorithm is:
Algorithm 1
1 Set λ = M , and compute the connected components of [u ≥ λ] and its signature
points pi which are chosen as points of the connected component where u attains its
maximum. We denote them by Xλ,pi . Set βλ,pi = M , C(Xλ,pi) = 0, ∀i.
2 Store the couples (Xλ,pi , βλ,pi) in L[λ].
3 If λ−1 < m, we go to step 5. Otherwise, set λ = λ−1, and compute the connected
components of [u ≥ λ]. Denote them by Xλ,i, i = 1, . . . , Nλ. Three cases are possible
a) If Xλ,i contains no connected component of [u ≥ λ+1], then we associate to it a new
signature point pi, denote Xλ,pi instead of Xλ,i, and define βλ,pi = λ, C(Xλ,pi) = 0.
b) If Xλ,i was already present at level λ+1, and contains only one component Xλ+1,pi

of [u ≥ λ+1], then we associate to it the same marker pi. We update βλ,pi = βλ+1,pi ,
C(Xλ,pi) = βλ,pi − λ.
c) If Xλ,i was already present at level λ + 1, and contains more than one component
of [u ≥ λ+1], say Xλ+1,pi1 , . . . , Xλ+1,pik , then we associate to it the marker pi := pij

with highest value of βλ+1,pij . We denote Xλ,pi instead of Xλ,i, and update βλ,pi =
βλ+1,pi , C(Xλ,pi) = βλ,pi − λ. If C(Xλ,pi) ≥ MinConstrast, then we mark Xλ,pi as
critical and redefine βλ,pi = λ, C(Xλ,pi) = 0. In this case, store the set of markers
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Fig. 4.1. a) The original gray level image representing three peaks. b) A sectional view of
Figure a. We display the values at the maximum points, the saddles and the minimum value. The
curves delimit the maximal monotone sections c) The critical levels of the Figure represented in a).
It has been computed with our algorithm taking the parameter MinContrast = 0. After crossing
each saddle the parameters βλ,pi and C(Xλ,pi ) are reset according to Step 3.c in our Algorithm.
Note that at the saddle we have taken the level curve immediately below, thus the two connected
components merging there are inside this curve. d) We display the critical levels obtained with our
algorithm with the parameter MinContrast = 80 (any value between 61 and 140 would produce the
same result). In this case the first saddle is not a critical level since the contrast of the regions
merging there is 60, strictly less than 80. After crossing level 140 the first two maxima merged there
and have a single representative (the maximum point at level 200). When the merging at the second
saddle happens the contrast is already sufficient and equal to 140. The markers of the two merging
regions are depicted here. Note that the marker of the minimum region is also depicted, though not
clearly visible, at the point of coordinates (0, 0).

{pi1 , . . . , pik
} which are represented by pi.1

4 Return to step 2
5 Select from L the list of couples (Xλ,pi , βλ,pi) marked as critical.
6 The output of the algorithm will be the set of curves ΓM corresponding to the
boundaries of the selected critical sections Xλ,pi , and the markers represented by pi.

It is important to remark that the parameter MinContrast selects the critical
levels in a causal way. That is, if we denote as C(u, α) the set critical levels of u
computed with our Algorithm with the parameter MinContrast = α, then C(u, α) ⊃
C(u, β) when α < β. Fig. 4.1 displays an example where we have computed the
critical levels of a synthetic image.

Let us finally say some words concerning the discrete versus continuous formula-
tion. The discrete case could be subsumed under the continuous case, by considering
a discrete function on a grid as a function on a continuous domain by identifying each

1Case c) corresponds to the case where two or more connected components of [u ≥ λ + 1]
merge at level λ. This merging is only labeled as critical if the contrast parameter is larger than
MinConstrast.
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pixel with a square. Moreover, we may do this in such a way that our function become
upper semi-continuous (i.e., such that the upper level sets [u ≥ λ] are closed), as it is
done in [8]. Then the discrete case would be covered if we had developed our results
for upper semi-continuous functions. Indeed, parts of the theory can be generalized
to this context (essentially the results in [7]), but at the moment being we have not
yet addressed Proposition 11.2 in this context. We believe that it is true, but it is not
yet done. From the practical point of view, the same algorithms would hold. On the
other hand, we would like to mention that our algorithm does not select edges in the
sampling process. As a result, we would have large errors at the edge position. The
inclusion of this curves requires the use of some edge detection along level lines of the
image in the spirit of the work [16] (this remains to be explored in the future).

5. Related work. In computer graphics and geographic information systems,
topographic maps represent a high level description of the data. Topographic maps
are represented by the contour maps, i.e., the isocontours of the given scalar data. The
description of the varying isocontours requires the introduction of data structures, like
the topographic change tree or contour tree which can represent the nesting of contour
lines on a contour map (or a continuous topographic structure) [39, 27, 52]. In all
cases, the proposed description can be considered as an implementation of Morse
theory. Given the scalar data u defined in a domain Ω of RN (u : Ω → R), the
contour map is defined in the literature as the family of isocontours [u = λ], λ ∈ R,
or in terms of the boundaries of upper (or lower) level sets [u ≥ λ] ([u ≤ λ]). The first
description is more adapted to the case of smooth data while the second description
can be adapted to more general continuous data where there are plateaus of constant
elevation or discontinuous data. The second description has been addressed in [15, 27],
while the first description has been used in [6, 5, 52], where an a priori interpolation
of the discrete data is required to permit the isocontour description.

The contour map is organized in a data structure, either the contour tree [27, 52],
or the Reeb graph [51, 36]. The contour tree represents the nesting of contour lines
of the contour map. The contour tree encodes the topological changes of the level
curves of the data. Critical values and its associated features, peaks (maxima), pits
(minima), or passes (saddles), can be extracted from the contour trees [27]. Contour
trees can also be used as a tool to compute other terrain features such as ridges and
ravines [27]. For practical applications, the data structure has to be implemented with
a fast algorithm and with minimal storage requirements. In [52] this is accomplished
with a variant of the contour tree where the criticalities (maxima, minima, saddles,
computed in a local way) are computed first. In [6] several attributes have been added
to the contour data which can be used to select a subsampled family of contours which
are representative of the data. As examples of such attributes the authors choose
the length or area of the isocontours, the ratio length of the isocontour/area of the
enclosed set, or the integral of the gradient along the isocontour. The Reeb graph,
which represents the splitting and merging of the isocontours, was proposed in [51] as
a data structure for encoding topographic maps.

In the context of computer graphics, Morse theory has also been used to encode
surfaces in 3D space [46]. In [46], the authors also use a tree structure like the Reeb
graph complemented with information about the Morse indexes of the singularities and
including enough (information about) intermediate contours to be able to reconstruct
by interpolation the precise way in which the surface is embedded in 3D space.

In image processing, the topographic description was advocated as a local and
contrast invariant description of images (i.e., invariant under illumination changes),
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and has lead to an underlying notion of shapes of an image as the family of connected
components of upper or lower level sets of the image [11, 42]. An efficient description
of the family of shapes in terms of a tree was proposed in [33, 32] and further developed
in [28]. The tree of shapes as proposed in [33, 32] fuses the information of both the
trees of upper [u ≥ λ] and lower [u ≤ λ] level sets of the scalar image u. The key idea
for this fusion is the notion of shape as a connected component of an upper [u ≥ λ]
or lower [u < λ] level set in which the holes are filled-in. This topographic structure
has been further studied in [7, 8, 32], where a Morse description of this topographic
structure was developed. In [28], after a bilinear interpolation of the discrete data,
the image could be treated as a continuous function and a tree of bilinear level lines
[u = λ] was computed. The tree of bilinear level lines is more related to the contour
tree computed with the isocontours of the interpolated image. The work in [25] can
be considered as a mathematical description of the (iso) contour tree in the case of
two-dimensional functions.

In [15], Morse theory has also been used as a basic model to describe the geometric
structures of 2D and 3D images, and in general, of multidimensional data. Applica-
tions have been given in different domains, in particular, to visualize structures in 3D
medical images.

Let us finally mention that a morphological approach to image compression has
been proposed by several authors, for instance [34], [41], [37], [18]. In [41] the authors
propose to use binary partition trees to select the level curves which have to be
encoded. The trees take into account the cost in bits to encode the selected level
boundaries and the approximation error (measured with an L2 norm). In [18], the
author selected the level lines taking into account its perceptual significance which
was measured in terms of the number of T and X junctions contained in it. Because
of our application to the encoding of DEM data, we use a description more adapted
to the topographic features of the data.

6. Computing the drainage structures. Besides the Morse description, there
are other structures which are of special interest due to their topographic significance
in DEM data. These mainly correspond to the drainage structures (e.g., rivers and
ravines). There exists many different algorithms accurately computing such struc-
tures, see [29] and references therein. We will present an approach which is related
to the one in [45]. Strictly speaking, we do not compute the drainage structures but
a simplified version of them which is adapted to our purposes. In a simplistic way we
can think of the drainage structures as the set of points for which there exists at least
one direction in which the flow of water is accumulated or repealed. We can write
down this definition mathematically by considering the set of points ~x such that the
image u has an extremum (i.e, a maximum or a minimum) at ~x in some direction ~v,
hence it contains, in particular, the maxima and minima of u. Intuitively, this set
contains the drainage structures (ridges and valleys), and it gives also information
about boundaries of plateaus for example.

In the discrete case we shall consider only 4 different directions (values of v)
corresponding to 4 different profiles in the image. Concretely, we search maxima and
minima of the image u in the vertical, horizontal and diagonal profiles (in [45] only
two directions were used, namely the horizontal and vertical ones). Thus we are lead
to compute the local extrema of a 1D function. Let us recall that the coordinate i0 is
a local maximum (resp. minimum) of w if w(i0 + j) ≤ w(i0) (resp. w(i0 + j) ≥ w(i0))
when j ∈ {+1,−1}. The problem is that a large number of extrema can appear due
to low oscillations, mainly created by noise. In order to solve this problem we choose
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Fig. 6.1. a) Top left: The pointed curve is an example of a 1D signal which takes values only

at the points which are extrema. For the purposes of visualization, we have displayed it as a dashed

curve. We display as a continuous curve the corresponding reconstruction by dilation with contrast

parameter thr = 30. With a circle we display the maxima computed by Algorithm 2. b) Top middle:

The corresponding reconstruction by erosion of the original signal with the superimposed minima

(thr = 30) c) Top Right: The original signal with the superimposed maxima and minima (thr = 30).

d) Bottom left: The same example of a 1D signal with the corresponding reconstruction by dilation

with contrast parameter thr = 40. With a circle we display the maxima computed by Algorithm

2. e) Bottom middle: The corresponding reconstruction by erosion of the original signal with the

superimposed minima ( thr = 40) f) Bottom Right: The original signal with the superimposed

maxima and minima (thr = 40).

the most significant extrema, in our case those which have a large contrast. Following
the standard tools in mathematical morphology, to compute the local maxima of the
function w with contrast larger o equal than thr, we compute the local maxima of the
reconstruction by dilation of w− thr by w. Let us briefly recall this notion (see [47]).
If δ(1)(f)(i) = maxj∈{−1,0,1} f(i + j) denotes the dilation of f in a neighborhood of
radius 1 of i, the geodesic dilation of f by g is δ

(1)
g (f)(i) = min(δ(1)(f)(i), g(i)). Let

δ
(n)
g (f) = δ

(1)
g [δ(n−1)

g (f)], n ≥ 2. Then the reconstruction by dilation of a function
f with respect to a function g, denoted by Rδ

g(f), is the iteration until stability of

δ
(n)
g (f), i.e., Rδ

g(f) = δ
(n)
g (f), where n is such that δ

(n+1)
g (f) = δ

(n)
g (f) [47]. Thus,

the algorithm to compute the maxima of w with contrast larger than thr is
Algorithm 2
1 Compute Rδ

w(w − thr).
2 If i0 is a strict local maximum of Rδ

w(w − thr), we store i0 as a local maximum
of w with contrast ≥ thr. For any regional maxima of Rδ

w(w − thr) we compute the
maxima of w there and we store them. In case that the maxima of w form an interval
we store the end points of the interval. In case Rδ

w(w − thr) is a constant image, the
contrast of w is less than thr and we store the values of w at the end-points of the
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Fig. 6.2. a) The original DEM image, b) Computed level lines (white), MinContrast = 30 ,

c) Computed ridge/valley structure (white), thr = 15, d) The whole image sampling (white).

interval of definition.
The minima of w with contrast larger than thr can be computed by using the

reconstruction by erosion Rε
w(w + thr). Since, for any two functions f, g, we have the

formula Rε
g(f) = k−Rδ

k−g(k−f), k being an upper bound for f and g, we may adapt
Algorithm 2 to compute the minima of w with contrast larger or equal than thr.

Figure 6.1 displays the result of applying this algorithm to a test example.
To apply Algorithm 2 to DEM data we do it along the horizontal, vertical and

the two diagonal directions. The four sets of selected extrema, one in each direction,
constitute our version of the simplified drainage structure, and we shall denote it by
ΓD. Figure 6.2 illustrates the whole geometric sampling process. From left to right
and top to bottom we show the original DEM image (with 8 bits/sample), the level
lines ΓM corresponding to its Morse structure (computed after filtering Figure 6.2.a
with the extrema filter with threshold area = 10, and using MinContrast = 30),
the curves ΓD corresponding to the extrema of the profiles (thr = 15), and the final
sampling Γxy = ΓM ∪ ΓD. We notice that the filtering applied here is used only to
select the level curves corresponding to the Morse and drainage structures. A thinning
step has been performed in order to obtain one pixel width curves.

7. Interpolation. Our purpose in this Section is to describe some interpolation
algorithms based on the solution of a partial differential equation given the boundary
data on a set of curves and/or points. Given the elevation data u(x, y), we have
explained in previous sections how to compute the level curves ΓM at the critical
values of u, and a simplified description of its drainage structures, ΓD. These are
stored together with the values (or an approximation to them) of u on them. Then
we interpolate those values to reconstruct an approximation of the image u.
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In [13] we studied and classified the interpolation algorithms which satisfy a rea-
sonable series of axioms in terms of the solution of a partial differential equation. Of
particular interest for our purposes here are two of them: the Laplacian interpola-
tion and the Absolutely Minimizing Lipschitz Extension, denoted as AMLE in the
sequel. We shall recall both of them and we shall precise in which sense they are
shape preserving interpolators.

For simplicity, we shall assume that Q is a bounded connected domain in R2. The
Laplacian interpolation is based on solving the PDE

−∆u = 0(7.1)

with specified boundary data on ∂Q

u = ϕ on ∂Q.(7.2)

To guarantee the existence and uniqueness of solutions we need to assume that Q is
a domain with a Lipschitz boundary, and ϕ is a continuous function on ∂Q. This
excludes the possibility to use this model to interpolate values on irregular domains
or data given on points, as it will happen in our case. In Figure 7.1.c we display the
result obtained interpolating the data given on a curve and a point. We see that the
vertex of the cone becomes a cusp, a well known behavior. In spite of this, since the
isolated points in our data are scarce we have used (7.1) with satisfactory results.

The AMLE interpolation ([3, 4]) is based on solving the PDE

D2u (Du,Du) = 0 in Q.(7.3)

with boundary data (7.2) (here Du and D2u denote the gradient and the Hessian ma-
trix of u, respectively, so that in coordinates, D2u (Du, Du) =

∑N
i,j=1

∂2u
∂xi∂xj

∂u
∂xi

∂u
∂xj

).
In this case we may consider more general domains and boundary data, in particular
the data can be given in a finite number of Jordan curves and a finite number of
points. Indeed, we may assume that Q is a bounded connected domain in R2, and
the boundary data ϕ ∈ Lip∂(Q) where

Lip∂(Ω) = {g ∈ C(∂Q) : |||g||| = sup
x,y∈∂Q

|g(x)− g(y)|
d∂Q(x, y)

< ∞},

and dQ(x, y) is the geodesic distance between x and y in Q, i.e., the minimal length
of all possible paths joining x and y and contained in Q [22]. If ∂Q is smooth, then
Lip∂(Q) = W 1,∞(∂Q) but Lip∂(Q) is defined for more general domains. Let us recall
that, if X is an open set or a smooth manifold in RN , W 1,∞(X) denotes the space of
functions u ∈ L∞(X) such that ∇u ∈ L∞(X). By W 1,∞

0 (X) we denote the closure
in W 1,∞(X) of the smooth functions with compact support in X.

Existence and uniqueness of viscosity solutions for the AMLE model (7.3) with
boundary data ϕ ∈ Lip∂Q(Q) was proved by Jensen [22]. Moreover, he proved that
the viscosity solution of (7.3) is an absolutely minimizing Lipschitz extension of ϕ,
i.e., u ∈ W 1,∞(Q) ∩ C(Q) and satisfies

‖Du‖L∞(Q′;RN ) ≤ ‖Dw‖L∞(Q′;RN )(7.4)

for all Q′ ⊆ Q and w such that u − w ∈ W 1,∞
0 (Q′). Let us say that the AMLE

model was introduced by Aronsson in [3, 4] as the Euler-Lagrange equation of the
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Fig. 7.1. Top: From left to right the initial data, the interpolated data using Laplacian interpo-

lation and its 3D representation. Bottom: From left to right the initial data, the interpolated data

using AMLE interpolation and its 3D representation.

variational problem (7.4). The above results were extended in [22] to the case of
continuous boundary data ϕ ∈ C(∂Q), and Jensen proved that in that case, the
AMLE is locally Lipschitz continuous in Q [22].

In Figure 7.1, bottom, we see an example of the ability of AMLE to interpolate
data given on curves and points.

An important result proved by Aronsson in [4] was that smooth (C2) AMLE do
not have critical points inside Q (see [38] for further results and references). In next
Theorem we remark that a weaker but related result holds. We shall write it in a
more general context.

Following [13], we shall consider an interpolation operator as a transformation E
which associates to each open bounded set Q and each function ϕ ∈ C(∂Q) a function
E(ϕ, Q) ∈ C(Q) such that E(ϕ, Q)|∂Q = ϕ. We shall say that the interpolation
operator satisfies the stability principle if

E(E(ϕ, Q)|∂Q′ , Q′) = E(ϕ, Q)|Q′

for any open bounded set Q, any ϕ ∈ ∂Q, and any open bounded set Q′ ⊆ Q.
Suppose that the interpolation operator E satisfies the stability property, we say that
E satisfies the maximum principle if

inf
∂Q′

ϕ ≤ inf
Q′

E(ϕ, Q′) ≤ sup
Q′

E(ϕ, Q′) ≤ sup
∂Q′

ϕ(7.5)

for any open bounded set Q, any open bounded set Q′ ⊆ Q, and any ϕ ∈ C(∂Q′). If
E satisfies the maximum principle and ϕ = α in ∂Q, where α ∈ R, then E(ϕ, Q) = α
in Q, and the same is true in any open bounded set Q′ ⊆ Q.

Theorem 7.1. Let Q1, Q2 be two open simply connected sets in R2 such that
Q1 ⊆ Q2. Let Q = Q2 \ Q1. Assume that u|∂Q1 = λ, u|∂Q2 = µ with λ < µ or
λ > µ. Let E be an interpolation operator satisfying the stability and the maximum
principle. Then E(u|∂Q, Q) contains only a monotone section in the sense that Q is a
monotone section of E(u|∂Q, Q). In particular, if E(u|∂Q, Q) is the AMLE extension
of the boundary data inside Q, then E(u|∂Q, Q) contains only a monotone section.
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Since we shall need the notion of saturation, which will be introduced in Appendix
11, the proof of Theorem 7.1 will be given in Appendix 12. We note that the Laplace
interpolation requires more regularity of the boundary of the domain, but the above
result can be adapted to include it. We shall not give the details here.

We can see in Figure 7.1 that, since both interpolators, Laplacian and AMLE,
satisfy the stability and the maximum principle, we obtain no new maxima or minima.
Theorem 7.1 explains in which sense they can be considered as shape preserving
interpolators.

The AMLE interpolator can be applied to the interpolation of DEM data using
the nonlinear sampling described in the above sections. We have shown that it is
an excellent cone interpolator. The Laplace equation can also be used if we consider
that isolated points are small circles, but strictly speaking its use is not theoretically
justified when the data is given on scattered points. Finally, let us mention that it is
possible to prove stability of the interpolations with respect to errors committed in
the position of the boundary curves and the boundary data, but we shall not include
the proof here (see [49]).

8. The coding step. We have described two algorithms that compute impor-
tant points and curves from an image, thereby providing the basic geometric descrip-
tion of DEM data. These algorithms can be considered as a non uniform geometric
sampling of the image. The next step is to interpolate the missing data from our sam-
pling. There exist several algorithms to interpolate data from curves and/or points.
We have in particular tested two of them: the Laplacian and the AMLE model. We
remark that, rigorously speaking, only the AMLE model can be used to interpolate
values specified on points [3, 13, 22] (see Fig. 7.1). In spite of this, we shall also use
the Laplacian since there are many curves in the data and we may think of points
as small regions. In order to evaluate these interpolation schemes we have chosen as
a measure of goodness the entropy of the residual between the original image and
the interpolated one. This is a natural choice since we want to minimize the number
of bits used to encode the errors between the interpolated and the original images.
Both models, AMLE and Laplacian, were tested using the whole image sampling (Γxy

and u|Γxy ), and using only the level lines corresponding to critical values (ΓM and
u|ΓM

). In the second case the AMLE model performed better than the Laplacian
(the entropy of the residual, the maximum, and RMSE errors were lower than in the
Laplacian interpolation). Surprisingly, in the case of the whole sampling structure
the winner was the Laplacian, although there is not much difference, and the interpo-
lation for the AMLE model looked visually better. After these tests we have decided
to use the Laplacian interpolation to obtain the first estimation of the image from the
selected curves and points. In order to control the maximum (sup) error we simply
store/encode the quantized error information (that is why the entropy of the residual
was a natural measure of goodness for the interpolant).

At this point we need to consider how to encode both the geometrically sampled
data and the quantized residual errors once a sup error e is specified. We proceed
to address this now. The geometry of the sampled curves (Γxy) and their gray levels
(u|Γxy ) are encoded separately. To encode the geometry we use a differential chain
coding strategy, see [24, 30, 14]. In the future we plan to explore an encoding based on
rate-distortion theory, as in [44]. For the gray levels, if we accept losses, we may use
an ENO (Essentially Non Oscillatory) based encoding scheme [2] which also controls
the sup error, a fundamental requirement of the application as stated before. Finally
we compress both the geometry and the gray values of the curves using an arithmetic
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coder. Having these curves and the data on them, we can interpolate them by means
of the Laplace equation to obtain the first estimate of the image.

Finally, to control the maximum error, we need to store the residuals r. Encoding
the residuals r can be simply done by quantizing them using

rq = sign(r)
⌊
|r|
e

⌋
e,(8.1)

and then coding the resulting rq with an arithmetic coder.

Algorithm 3

1 From the original image, eventually filtered to reduce its bandwidth, u
compute a subsampled image ul(i, j) = u(li, lj) where l is the reducing
factor.

2 Compute Γxy and ul|Γxy
. Encode Γxy. Compute ũl|Γxy

by applying an
ENO encoding scheme, with maximum error e, to ul|Γxy

.

3 Compute the interpolated image ũl by solving Laplace equation with ini-
tial data (Γxy, ũl|Γxy ).

4 Compute and quantize the residual rq
l between ul and ũl. Let ûl = ũl+rq

l

be the approximation of ul satisfying sup{|ul − ûl|} = e.

5 Zoom out ûland compute and quantize the new residual rq between u and
ũ in order to satisfy sup{|u− (ũ + rq)|} = e.

6 Finally compress Γxy, ũl|Γxy
, rq

l and rq using an arithmetic coder.
Table 8.1

Algorithm for compressing DEM data.

The compression ratios using this approach were already satisfactory. We ob-
served that the encoding of the geometry represented the main cost in bits. This
is due mainly to the irregularity of the curves and the inefficiency of the differential
chain coding approach (3 bits/pixel with 8-connected curves or 2 bits/pixel with 4-
connected curves). To further improve the encoding of the geometry we have adopted
a simple multiscale approach. We compute and encode the curves and the residuals
in a subsampled image and then zoom out the result and recompute new residuals.
If required, before sampling, we may filter the given image with a low pass filter or
with an anisotropic filter like motion by mean curvature, or affine invariant smooth-
ing [19], [43]. In our experiments below, we only filtered the image with the extrema
filter with area threshold = 20. In case of applying anisotropic filters it would be
reasonable, in order to preserve some features of the topographic structure, to apply
these filters while keeping some points fixed, namely, the points corresponding to the
extrema values and the saddle points, or simply we could fix the multiple points of
the sampled curves Γxy. Anisotropic filtering fixing points was studied in [10].

The zoom out process can be done by using a bicubic spline interpolation, al-
though this can create new maxima and minima due to the well known oscillation
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Fig. 9.1. Left: Compression ratio of JLS vs the proposed method for a set of ten images
(quantized with 8 bits/sample) compressed with a maximum error of 5. Right: Corresponding root
mean square error (RMSE) for the two methods.

problem of splines. In order to avoid this kind of errors we have used a shape preserv-
ing spline, which avoids the oscillation problem of classical splines, that is, respects
the monotonicity of the original data (no new maxima or minima are created). Con-
cretely, we have implemented the algorithm proposed in [21].

The complete algorithm for compressing DEM data is summarized in table 8.1.

9. Compression results. We now briefly present some experimental results.
Additional examples can be found in [48]. In order to compare our results, we use
the JPEG-LS standard for lossless and controlled lossy image compression, being this
the only standard that permits a control on the maximal per pixel error [55]. We also
used JPEG-2000 [1] in which, by reintroducing the errors, we are able to control the
maximum error. In the comparisons below, JPEG-LS is denoted by JLS, while ours
is denoted by ME, standing for morphological encoding. We report results on a set
of 10 DEM images of size 1200 by 1200 pixels quantized with 8 or 16 bits/sample.

Figure 9.1 compares the performances of ME versus JLS for a set of 10 different
DEM images when we allow a maximum error e = 5 (comparisons with smaller errors
can be found in [48]). In the left plot we can see the compression ratio (denoted in the
sequel by CR) of both methods for the set of 10 images, the right plot corresponds to
the RMSE for both methods. The average values for the CR and RMSE of JLS and
ME were computed (for these values per each individual image, see [48]). Average
CR for the case of JLS and ME are 18.9872 and 38.7217 respectively. That is, our
proposed scheme ME reaches twice the compression ratio of JLS. In addition, the
average RMSE for the cases of JLS and ME is 2.9038 and 1.9804, respectively.

Table 9.1 compares the results obtained using ME and JPEG− 2000 for the set
of 10 images in Column 0 which are quantized with 16 bits/sample. Columns 1 and
2 contain the compression ratio and the RMSE in meters, respectively, when com-
pressed with ME (with e = 5 meters). The parameters used where the following: we
compute the critical level curves of the data after filtering them with extrema filters
with area threshold = 20 (but we checked that any area parameter between 20 and 200
gives similar results) and MinContrast = 30max(u)−min(u)

255 (i.e. MinContrast = 30 if
the range of the image is [0, 255]); the drainage structures were computed using the
threshold thr = 10max(u)−min(u)

255 (i.e., thr = 10 if the range of the image is [0, 255]).
Most of the cost of compression is spend in encoding the quantized errors. The cost
of encoding the whole set of sampled curves Γxy and the gray levels on it u|Γxy

rep-
resents, in percentage, 18.17, 22.77, 20.34, 15.80, 13.46, 14.50, 16.89, 24.46, 19.16, 16.16,
respectively, for the set of images in Column 0. In Columns 3,4,5 of Table 9.1 we dis-
play the compression ratio (CR), the L∞ error, and the RMSE, obtained by using
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CR (ME) RMSE CR L∞ RMSE
(JPEG− 2000) error

(16 bits) (meters) (adapted n. bits)

baker-e 11.2084 2.5602 11.2264 15 1.5906

bend-e 11.6345 2.5251 11.6594 12 1.6371

bend-w 15.8574 2.5728 16.3574 14 1.4220

billings-e 19.2926 2.4949 19.4837 14 1.2877

sacramento-e 9.0442 2.6483 9.1911 15 1.8514

salina-e 13.7823 2.6217 16.0282 13 1.7411

salina-w 11.5732 2.5993 11.9706 14 1.6899

sandpoint-e 9.5504 2.5189 9.5813 11 1.6459

yakima-e 17.3113 2.4832 17.4141 15 1.3741

yakima-w 7.3946 2.7296 8.3368 15 2.1757

AVERAGE 12.6649 2.5754 13.1249 13,8 1.6415

Table 9.1
Column 0 contains the name of the images. Columns 1 shows the compression ratio (CR) of the

ME algorithm on the set of images of Column 0 quantized with 16 bits/sample. Column 2 shows the
corresponding RMSE error (given in meters). In Columns 3,4,5 we display the compression ratio,
L∞, and RMSE errors obtained using JPEG− 2000 [1]. We have used JPEG− 2000 to compress
the images in column 0; for that, we run the JasPer software but providing to it the actual range
of the image (which amounts to the actual number b of bits/sample, b = 11, or 12, for the set of
images used) so that the quantizer could be adapted to it; and asking for the same compression ratio
than the one obtained in Column 1 rescaled by the factor f = b/16 so that we obtain a compression
ratio similar to Column 1. The compression ratio is displayed in Column 3 and it is computed with
respect to the original bit length. Note that the compression ratio may be slightly different to the
one we asked for, due to the properties of the quantizer. Columns 4 contains the corresponding L∞

error of the compressed image. Column 5 contains the corresponding RMSE error. The last row
shows the average values for the set of 10 images. We can also compute the points where the L∞

error was greater than 5 and correct the corresponding values at those points. The corresponding
compression ratio (compressing also the quantized errors with an arithmetic coder) and RMSE are
given in the text.

JPEG − 2000 for the same set of images. Since the quantizer adapts to the actual
number of bits/sample of the image, we run Jasper software ([1]) giving to it the
actual range of the image (which amounts to the actual number b of bits/sample) and
the same rate of compression obtained with ME rescaled by the factor f = b

16 . In
the set of images we used, the value of b is either 11, or 12. This re-scaling makes
that the rate of compression, when computed using the 16 bits/sample, gives the rate
of compression obtained with ME (which is computed for the images quantized with
16 bits/sample). Note that the rates of compression are only approximately equal, as
obtained in the output of JPEG− 2000. We also see that the RMSE is lower than
in the ME case. If we want to control the L∞ error of the compressed image, we may
quantize the errors between the original and the compressed images, compress them
with an arithmetic coder, and recompute the compression ratio. After this correction
the average compression ratios and RMSE are 12.6152, and 1.5793, respectively. For
a comparison in the case of 8 bits/sample we refer to [48].

We should also note that we have compared the visual quality both of the com-
pressed gray scale images and their topographic maps, and observed that ME and
JPEG− 2000 are significantly better than JPEG-LS [48].

10. Conclusions. In this work we have presented some techniques to compute
a basic geometric representation of images. This representation is given by the Morse
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Fig. 11.1. From left to right a set A (in light gray) and its saturations (also in light gray) with
respect to different points p.

and drainage structures of the image. We have given simple algorithms to compute
these structures and have proved them to be well founded. Finally, we have proved
that any interpolation process satisfying the stability and maximum principle is also
shape preserving, in the sense that no new maxima or minima is created. As an
application, this geometric image representation was used to derive a non uniform
sampling strategy that when combined with interpolation and coding techniques,
provided a novel DEM compression algorithm. This algorithm produces compression
ratios far superior than JPEG-LS and similar to JPEG − 2000, while permits to
control the maximal error in the decoded image, a property which is fundamental for
most DEM applications.

We are currently investigating the use of geometric sampling techniques for the
compression of natural images. The question then is what is a good geometric repre-
sentation of natural images that will lead to compression results as the ones obtained
for DEM with the techniques here introduced.

11. Appendix: the proof of Theorem 3.9. Let us recall that we are assuming
that (H) holds. Let us recall the definition of saturation, which consists essentially in
filling the holes of a set. A detailed study of this operation and its properties can be
found in [7], [8], [32].

Definition 11.1. Let A ⊆ Ω. We call holes of A in Ω the components of Ω \A.
Let p∞ ∈ Ω \ A be a reference point, and let T be the hole of A in Ω containing p∞.
We define the saturation of A with respect to p∞ as the set Ω \T and we denote it by
sat(A, p∞). We shall refer to T as the external hole of A and to the other holes of A as
its internal holes. By extension, if p∞ ∈ A, by convention we define sat(A, p∞) = Ω.
Note that sat(A, p∞) is the union of A and its internal holes.

The reference point p∞ acts as a point at infinity. In all what follows, we assume
that the point p∞ ∈ Ω on which the saturations are based is fixed, i.e., all saturations
will be computed with respect to p∞. To simplify our notation, we shall write sat(A)
instead of sat(A, p∞), unless we change the point at infinity and we need to specify
it. We shall also speak of holes of A instead of holes of A in Ω. We refer to Figure
11.1 for an example.

Proposition 11.2. If λ ∈ R is a critical value, then λ is also a singular value.
To prove Proposition 11.2, we shall need the following two Lemmas. Similar

results, though in a different context, were proved in [7].
Let A,B be two closed connected sets such that A ∩ B = ∅. Then, by Lemma

3.2 in [8], we have that either a) sat(A) ∩ sat(B) = ∅, or b) sat(A) ⊆ sat(B), or
sat(B) ⊆ sat(A). If a) holds, then we define Q(A) = ∂sat(A), Q(B) = ∂sat(B). If b)
holds, then sat(A) is contained in a hole H of B. Take a point p ∈ H \ sat(A). Then
sat(A, p) ∩ sat(B, p) = ∅ and we define Q(A) = ∂sat(A, p), Q(B) = ∂sat(B, p). In a
similar way, we define Q(A) and Q(B) when sat(B) ⊆ sat(A).

Lemma 11.3. Let u ∈ C(Ω). Let λ ∈ R. Suppose that X is a connected
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Fig. 11.2. From left to right we present three different cases that may happen when considering
the hypothesis of Lemmas 11.3 and 11.4.

component of [u ≥ λ] such that [u > λ] ∩ X is not connected. Then there exist
Y, Y ′ ∈ CC([u > λ] ∩ X), Y 6= Y ′, and a continuum C ⊆ [u = λ] ∩ X such that
Y ∪Y ′∪C is connected. If Y ∩Y ′ = ∅, then we may assume that C ⊇ Q(Y )∪Q(Y ′).

Figure 11.2 illustrates the statement of Lemma 11.3 by displaying some examples.
At the top of the figure we display the considered case (different functions u), in the
middle the associated sets Y and Y ′, and finally the set X containing the continuum
C for each case.

Proof. 1: If A,B are two connected components of [u > λ]∩X such that A∩B 6= ∅,
then we may take C = {p} for some point p ∈ A ∩ B. Thus, we may assume that
A ∩B = ∅, for any two connected components A,B of [u > λ] ∩X.
Let us denote by Y1, ..., Yn the connected components of [u > λ]∩X. Since we assume
(H), using [7] Proposition 13, we know that there is only a finite number of connected
components of [u = λ]∩X, let them be Λ1, ...,Λm. By last paragraph, we may assume
that Y 1, ..., Y n are two by two disjoint. Obviously X = ∪n

i=1Y i ∪ ∪m
j=1Λj . Suppose

that each Λi intersects at most one of the Y i, i = 1, ..., n. Since ∂Yi ⊆ [u = λ], given
Y i, i = 1, ..., n, there is some Λki , ki ∈ {1, ..,m}, such that Y i∩Λki 6= ∅. Suppose that
there is some k ∈ {1, ...,m}\{k1, .., kn}. Since Λk are closed sets and X is connected,
it cannot happen that Λk does not intersect ∪n

i=1Y i ∪ Λki
. On the other hand, Λk

does not intersect ∪n
i=1Y i∪Λki

. We conclude that m = n and {k1, ..., kn} = {1, ..., n}.
Since the sets Y i∪Λki

are closed, two by two disjoint and X = ∪n
i=1Y i∪Λki

, we have
a contradiction. Thus, we may assume that some Λk intersects at least two sets, say
Y j and Y r. Since Λk is a continuum and Y j and Y r do not intersect, there is a point
p ∈ Λk \ (Y j ∪ Y r). We claim that

∂sat(Yj , p) ∩ Λk 6= ∅, ∂sat(Yr, p) ∩ Λk 6= ∅.(11.1)

Assume, by contradiction, that ∂sat(Yj , p)∩Λk = ∅. Since Yj ∩Λk 6= ∅, we have that
sat(Yj , p) ∩ Λk 6= ∅. Since Λk is a continuum, this implies that Λk ⊆ int(sat(Yj , p)).
Since p ∈ Λk, we have that p ∈ sat(Yj , p), a contradiction. This implies that
∂sat(Yj , p)∩Λk 6= ∅. Similarly we prove the other assertion of (11.1). Since ∂sat(Yj , p),
and ∂sat(Yr, p) are continuum contained in [u = λ], we conclude that both sets are
contained in Λk. This proves the Lemma.

Lemma 11.4. Let u ∈ C(Ω). Let λ ∈ R. Suppose that X is a connected compo-
nent of [u ≥ λ] such that [u > λ] ∩X is not connected. Let Y, Y ′ ∈ CC([u > λ] ∩X),
Y 6= Y ′, and C ⊆ [u = λ] ∩X be a continuum such that Y ∪ Y ′ ∪ C is connected. If
Y ∩ Y ′ 6= ∅, we assume that C = {x′} where x′ ∈ Y ∩ Y ′. If Y ∩ Y ′ = ∅ we assume
that C ⊇ Q(Y ) ∪Q(Y ′). Let x ∈ C. Then η+(u, x, λ) = λ.
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Proof. Let α > λ. Let Yα, Y ′
α be connected components of Y ∩[u ≥ α], Y ′∩[u ≥ α].

Note that Yα ⊆ Y , Y ′
α ⊆ Y ′, and Yα = CC([u ≥ α], Yα), Y ′

α = CC([u ≥ α], Y ′
α). Let

λ < µ ≤ α. Let Yµ = CC([u ≥ µ], Yα), Y ′
µ = CC([u ≥ µ], Y ′

α). Observe that Yµ ⊆ Y ,
Y ′

µ ⊆ Y ′.

In case x′ ∈ Y ∩ Y ′ and C = {x′} observe that x′ ∈ ∂Y ∩ ∂Y ′. In any case,
let x ∈ C. Suppose that η+(u, x, λ) > λ where η+(u, ., .) denotes the η+, defined in
Section 3, corresponding to u. Let λ < µ < µ̂ < η < η+(u, x, λ). Let Xλ,x = CC({z ∈
Ω : u(z) ∈ [λ, η+(u, x, λ)] ∩ I((x, λ)}, x) (see the end of Section 3 for the definition
of I(x, λ)). Let Xλ,η = {z ∈ Xλ,x : λ ≤ u(z) ≤ η} (a connected set). Note that
{z ∈ Xλ,x : µ ≤ u(z) ≤ µ̂} is a nonempty set.

Let p0 ∈ ∂Y , with p0 = x′ in case Y ∩ Y ′ 6= ∅ and p0 ∈ Q(Y ) in case Y ∩ Y ′ = ∅.
Observe that p0 ∈ C ⊆ Xλ,η. Let p1 ∈ Yµ, and let K be a continuum contained in Y
joining p0 and p1.

Now, we claim that there is a point p ∈ Y ∩ Xλ,η such that µ ≤ u(p) ≤ µ̂. Let
L0 = {y ∈ K : u(y) < µ}, L1 = {y ∈ K : u(y) > µ̂}. Observe that both are open sets
in K and L0 ⊆ Y . Since u(p0) = λ < µ, and u(p1) ≥ µ, then p0 ∈ L0, p1 6∈ L0. Then
L0 is a neighborhood of p0 in K. We observe that L0 ⊆ [λ ≤ u ≤ η]. Indeed, since
L0 ⊆ K ⊆ Y , then u(y) ≥ λ for all y ∈ L0, and, on the other hand, u(y) < µ < η, for
all y ∈ L0. Given k ≥ 1, there is a finite sequence of points pk

0 , pk
1 , ..., pk

Nk
in K with

pk
0 = p0, pk

Nk
= p1, and d(pk

i , pk
i+1) < 1

k . Let jk be the first index i such that pk
i ∈ L0

and pk
i+1 6∈ L0. Observe that jk ≤ Nk − 1. Since K is a compact set, we may assume

that pk
jk
→ p as k → ∞. Then, also pk

jk+1 → p. Since u(pk
jk

) < µ and u(pk
jk+1) ≥ µ,

we have that u(p) = µ. On the other hand, p ∈ L0 ⊆ [λ ≤ u ≤ η], and, being limit of
points not in L0, then p 6= p0. Let m ≥ 1, and let k0 ≥ m be such that |pk

jk
− p| < 1

m

for all k ≥ k0. Recall that pk
i ∈ L0 for all i ≤ jk and d(pk

i , pk
i+1) ≤ 1

k ≤
1
m for all i. Let

γk be the polygonal joining pk
i to pk

i+1 for all 0 ≤ i ≤ jk. Then supp′∈γk
d(p′, L0) ≤ 1

m .
Since p0 ∈ γk for all k, p0 ∈ lim infk γk. Then lim sup γk is a continuum ([26], vol.
II, p. 111) joining p0 to p such that lim supk γk ⊆ L0 ⊆ Y ∩ [λ ≤ u ≤ η]. Since
p0 ∈ Xλ,η we conclude that p ∈ Y ∩ Xλ,η. In a similar way we prove that there is
some q ∈ Y ′ ∩Xλ,η such that µ ≤ u(q) ≤ µ̂.

Summarizing, we have shown that the sets Yµ,µ̂ := {z ∈ Y ∩Xλ,η : µ ≤ u(z) ≤ µ̂},
Y ′

µ,µ̂ := {z ∈ Y ′ ∩ Xλ,η : µ ≤ u(z) ≤ µ̂} are non empty. Since Xλ,x is a monotone
section, we have that the set Xλ,x ∩ [µ ≤ u ≤ µ̂] is connected, contained in [u > λ],
and it contains Yµ,µ̂ and Y ′

µ,µ̂. Notice that, being connected, contained in [u ≥ λ], and
intersecting X, we have Xλ,x ∩ [µ ≤ u ≤ µ̂] ⊆ X. This contradicts the fact that Y, Y ′

are two different connected components of [u > λ] ∩ X. This contradiction proves
that η+(u, x, λ) = λ.

Proof of Proposition 11.2. Let µn > λ be such that µn ↓ λ and sig([u ≥ µn], [u <
µn]) 6= sig([u ≥ λ], [u < λ]) for all n. By taking a subsequence, if necessary, we may
assume that either sig([u ≥ µn]) 6= sig([u ≥ λ]) for all n, or sig([u < µn]) 6= sig([u <
λ]) for all n. As described after Definition 3.6, again, modulo a subsequence, we may
assume that one of the following situations happens (see Fig. 3.4):

(i) for each µn, there is a connected component of [u ≥ λ] which does not contain
a connected component of [u ≥ µn]

(ii) for each µn there are two connected components of [u ≥ µn] contained in the
same connected component of [u ≥ λ]

(iii) for each µn, there is a connected component of [u < µn] which contains no
connected component of [u < λ]
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(iv) for each µn there are two connected components of [u < λ] which are con-
tained in the same connected component of [u < µn].

Assume that we are in case (i). For each µn there is Xn ∈ CC([u ≥ λ]) such
that Xn does not contain a connected component of [u ≥ µn]. Since the number of
connected components of [u ≥ λ] is finite ([7], Lemma 5), by taking a subsequence, if
necessary, we may assume that Xn = X ∈ CC[u ≥ λ]) is independent of n. It follows
that the level λ contains a zonal maximum of u, thus, it is a singular value of u.
Assume that we are in case (iii). For each µn there is Xn ∈ CC([u < µn]) such that
Xn contains no connected component of [u < λ]. Since for each n we have µn+1 < µn

then [u < µn+1] ⊆ [u < µn]. Assume that for each n ∈ N , there is an m ≥ n such
that Xn ∩ [u < µm] = ∅. Then we find a sequence mi such that mi+1 < mi for all i
and Xmi

are two by two disjoint. Since each Xmi
has measure ≥ δ this would imply

an infinite measure for Ω. Hence we may assume that there is an n0 ∈ N such that
for each n ≥ n0 we have that Xn0 ∩ [u < µn] 6= ∅. Repeating the above argument
inside Xn0 we find n1 > n0 and Xn1 ∈ CC([u < µn1 ]) with Xn1 ⊆ Xn0 such that for
all n ≥ n1 we have that Xn1 ∩ [u < µn] 6= ∅. In this way we construct a sequence
Xni such that Xni+1 ⊆ Xni and each Xni does not contain a connected component
of [u < λ]. This implies that there is a zonal (local) minimum at level λ contained in
all Xni

. We deduce that λ is a singular value of u.

Suppose that we are in case (ii), i.e., for each µn the set [u ≥ µn] ∩ X contains
two different connected components, which are components of [u ≥ µn]. Let us
inductively choose these connected components. Let Y1, Y

′
1 be two different connected

components of [u ≥ µ1]. Suppose that we have already chosen Yi, Y
′
i for all i ≤ n.

Since [u ≥ µn] ⊆ [u ≥ µn+1], if CC([u ≥ µn+1], Yn) ∩ CC([u ≥ µn+1], Y ′
n) = ∅, we

take Yn+1 = CC([u ≥ µn+1], Yn), Y ′
n+1 = CC([u ≥ µn+1], Y ′

n). If CC([u ≥ µn+1], Yn) =
CC([u ≥ µn+1], Y ′

n), then we take Yn+1 = CC([u ≥ µn+1], Yn), and Y ′
n+1 a different

connected component of [u ≥ µn+1]. We call this a bifurcation. We note that this
bifurcation cannot happen an infinite number of times since this would amount to an
infinite area contained in [u ≥ λ] because this set would contain an infinite number
of connected components, two by two disjoint, of the sets [u ≥ µn]. Thus, we may
assume that the families of sets Yn and Y ′

n are increasing. Let

Y = ∪nYn Y ′ = ∪nY ′
n.

Then Y and Y ′ are different connected components of [u > λ] ∩X. Indeed, if p1, p2

are such that u(p1) = maxY u, u(p2) = maxY ′ u, then

Y = CC([u > λ], p1), Y ′ = CC([u > λ], p2).

Thus, the set [u > λ]∩X is not connected. By Lemma 11.3, there exist two connected
components Z,Z ′ of [u > λ]∩X satisfying the properties stated in that Lemma. Now,
by Lemma 11.4, there is a point x ∈ X such that η+(u, x, λ) = λ, i.e., λ is a singular
value of u.

Finally, assume that we are in case (iv). Let Xn be the connected component of
[u < µn] which contains two different connected components An, Bn of [u < λ]. Since
the number of connected components of [u < λ] is finite, also is finite the number
of pairs of them. Thus, by extracting a subsequence, if necessary, we may assume
that Xn contains two different connected components A,B of [u < λ] which do not
depend on n. Since µn+1 < µn we have that Xn+1 ⊆ Xn. Let µn+1 < µ′n < µn.

25



Then, if X ′
n = CC([u ≤ µ′n], A), we have that Xn+1 ⊆ X ′

n ⊆ Xn, and therefore
X ′

n = CC([u ≤ µ′n], A ∪B) and

∩nXn = ∩nX ′
n.

Since X ′
n are compact and connected, also is ∩nX ′

n, and we have that

∩nX ′
n = CC([u ≤ λ], A ∪B) =: X.

Now we observe that [u < λ] has two components in X. By defining v = −u, and
applying Lemmas 11.3 and 11.4, we obtain a point x ∈ X such that η−(u, x, λ) = λ.
We conclude that λ is a singular value of u.

One of the consequences of Proposition 11.2 is that the number of critical values
of u is finite. Thus the signature of [u ≥ λ] is locally constant at each side of a critical
value, i.e., if λ is a critical value, then there is ε > 0 such that

sig([u ≥ µ]) = sig([u ≥ λ]) 6= sig([u ≥ µ′]) and sig([u ≥ µ′]) is constant

for each µ < λ < µ′, µ ∈ (λ− ε, λ), µ′ ∈ (λ, λ + ε).
In the proof of next Proposition, we shall need the following definition.
Definition 11.5. A sequence A1, . . . , Ap of subsets of Ω is called a chain if each

Ai is contained in an internal hole of Ai−1, i = 2, . . . , p.
Proposition 11.6. Let λ ∈ R. If λ is a singular value of u, then λ is a critical

value of u.
Proof. Suppose that λ is a singular value which corresponds to a maximum value.

Then there is a connected component X of [u ≥ λ] which does not intersect any
connected component of [u ≥ µ] for all µ > λ. Let p ∈ X be its marker. Then
p ∈ sig([u ≥ λ]) and p 6∈ sig([u ≥ µ]) for any µ > λ. Thus λ is a critical value of u.

If λ is a minimum value, there is q ∈ [u = λ] such that, if µ > λ, then CC([u <
µ], q) 6= ∅ and CC([u < λ], q) = ∅. Then q ∈ sig([u < µ]), q 6∈ sig([u < λ]). Thus λ is
a critical value of u.

Now, suppose that η+(x, λ) = λ. Then there is X ∈ CC([u = λ]) such that
Xε := CC([λ ≤ u ≤ λ + ε], X) is not a monotone section for any ε > 0. Since
∩ε>0X

ε = X, we have that, for ε > 0 small enough, the only connected component of
[u = λ] contained in Xε is X. Take such an ε. By Proposition 3.2 we find a sequence
µn ↓ λ such that Xε ∩ [u = µn] are not connected. Let Y 1

n , Y 2
n be two connected

components of Xε ∩ [u = µn]. Let Z = CC([u ≥ λ], X), Z1
n = CC([u ≥ µn], Y 1

n ), Z2
n =

CC([u ≥ µn], Y 2
n ). Observe that, since Y 1

n , Y 2
n ⊆ Xε ⊆ Z, we have Z1

n, Z2
n ⊆ Z. If we

prove that Z1
n 6= Z2

n for n large enough, we conclude that sig([u ≥ λ]) 6= sig([u ≥ µn]),
and, therefore, λ is a critical value of u. By Lemma 8 in [7], we may assume that
there is a chain formed by the sets Y 1

n and a chain formed by the sets Y 2
n (first, take a

subsequence of Y 1
n with indexes ni such that Y 1

ni
is a chain, then take a subsequence

nij
of ni such that Y 2

nij
is a chain). By extracting a subsequence we may assume that

lim inf Y i
n 6= ∅. Then Y i := lim supY i

n is a continuum ([26], vol. II, p. 111). Observe
that Y i ⊆ Xε ∩ [u = λ] ⊆ X, i = 1, 2. Let us also observe that if Y 1

n is contained in a
hole of Y 2

n then, by Lemma 7 in [7], there is a connected component of [u < µn], or a
connected component of [u > µn], in between both sets, thus, the set in between has
area ≥ δ. By extracting subsequences, if necessary, we may assume that one of the
following cases happens (see Fig. 11.3):

(i) the two chains have disjoint saturations
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Fig. 11.3. From left to right the three cases (i) to (iii) considered in the proof of Proposition 11.6.

(ii) there is a hole in all sets of the first chain and the second chain is contained
in it

(iii) the two chains are intertwined, i.e., all sets Y 1
n , Y 2

n form part of the same
chain and no subsequence satisfies (ii).

We shall say that a chain Y i
n is increasing (resp. decreasing) Y i

n ⊆ sat(Y i
n+1) for

all n (resp., if Y i
n+1 ⊆ sat(Y i

n) for all n). Assume first that one of the chains, say
Y 1

n is increasing while the other, say Y 2
n is decreasing. We know that, by extracting

a subsequence, if necessary, we have either (a) sat(Y 1
n ) ⊆ sat(Y 2

n ) for all n, or (b)
sat(Y 2

n ) ⊆ sat(Y 1
n ) for all n, or (c) sat(Y 1

n ) ∩ sat(Y 2
n ) = ∅ for all n. If (a) or (b) hold,

we are in case (ii). If (c) holds, we are in case (i).

Let us prove that one of the alternatives (i) − (ii) − (iii) hold in case that both
chains Y 1

n and Y 2
n are decreasing. If, for some n the saturations of Y 1

n and Y 2
n are

disjoint, then we are in case (i). Thus we may assume that for each n, the saturations
of Y 1

n and Y 2
n are not disjoint. Then either Y 1

n is contained in a hole of Y 2
n , or Y 2

n is
contained in a hole of Y 1

n . By extracting a subsequence, if necessary, we may assume
that Y 1

n is contained in a hole of Y 2
n for all n, or Y 2

n is contained in a hole of Y 1
n for all

n. To fix ideas, let us assume that Y 2
n is in a hole of Y 1

n for all n. Take n = n1 = 1. If
all Y 1

n , n ≥ 2, contain Y 2
1 in one of their holes then we are in case (ii). Thus we may

assume there is some n2 > n1 such that Y 1
n2

is contained in a hole of Y 2
n1

. Observe
that Y 2

n2
is contained in a hole of Y 1

n2
. If all Y 1

n with n > n2 contain Y 2
n2

in one of
their holes, we are again in case (ii). Otherwise there is some n3 > n3 such that Y 1

n3

is contained in a hole of Y 2
n2

. Proceeding in this way we shall find a subsequence of
Y 1

n and of Y 2
n such that either (ii) or (iii) hold.

The case where both chains are increasing can be analyzed with the same argu-
ments as above.

Suppose that case (i) happens. Then there are two disjoint saturated sets A,B
such that Y 1

n ⊆ A, Y 2
n ⊆ B. If the chains Y 1

n and Y 2
n are decreasing or one is increasing

while the other is decreasing, then we conclude that the sets Y 1 and Y 2 would be
separated by one of the sets Y i

n and then could not be connected inside X (i.e., there
is no continuum Z ⊆ X such that Y 1 ∪ Y 2 ∪X is connected), a contradiction. Thus,
both chains Y 1

n , Y 2
n are increasing. In this case, since Y 1

n is contained in a hole of
Y 1

n+1, we cannot connect Y 1
n to Y 2

n without crossing Y 1
n+1 which is at level µn+1.

Hence, Z1
n and Z2

n cannot be connected without crossing level µn+1. We have that
Z1

n 6= Z2
n and our conclusion follows.

Suppose that case (ii) happens. Without loss of generality we may assume that
the Y 1

n are inside holes of the Y 2
n , i.e., there is a saturated set H such that the chain

Y 1
n ⊆ H and H ⊆ sat(Y 2

n ) for all n. If Y 1
n is decreasing, then Y 1 and Y 2 would be

separated by one of the sets Y 1
n , and could not be connected inside X, a contradiction.

If Y 1
n is increasing, then to connect Y 1

n to Y 2
n we cross Y 1

n+1 which is at level µn+1.
Then we have that Z1

n 6= Z2
n, since to connect both sets we would need to cross level
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µn+1.

Suppose that (iii) happens. We may assume that Y 1
n and Y 2

n are monotone, either
increasing or decreasing. If one of them is increasing and the other is decreasing we
would be in case (ii). Thus we may assume that both families are increasing or
decreasing. Suppose that both are increasing. For simplicity we shall say that two
sets are ordered if one of them is contained in a hole of the other. We know that
Y 1

1 and Y 2
1 are ordered. Set n1 = 1. Choosing n2 sufficiently large, we may assume

that Y 1
n2

, Y 2
n2

are ordered and contain Y 1
n1

, Y 2
n1

in one of their holes. In this way we
construct a subsequence nj such that Y 1

nj
, Y 2

nj
are ordered and contained in a hole of

each of the ordered pair of sets Y 1
nj+1

, Y 2
nj+1

for all j. By extracting a subsequence, if
necessary, we may assume that Y 1

nj
is contained in a hole of Y 2

nj
and both are contained

in a hole of Y 1
nj+1

for all j (or the same relations with 1 and 2 interchanged). Since, as
we already mentioned above, each set between Y 1

nj
and Y 2

nj
has area ≥ δ ([7], Lemma

7), this would represent an infinite area in the intertwined chain. The same conclusion
would follow in case that both chains are decreasing.

In any case, we conclude that there is a sequence of n’s such that Z1
n 6= Z2

n, hence
sig([u ≥ λ]) 6= sig([u ≥ µn]), and, therefore, λ is a critical value of u.

Finally, we assume that η−(x, λ) = λ. Then there is X ∈ CC([u = λ]) such
that Xε := CC([λ − ε ≤ u ≤ λ], X) is not a monotone section for any ε > 0. Since
∩ε>0Xε = X, for ε > 0 small enough we have that the only connected component of
[u = λ] contained in Xε is X. Take such an ε. By Proposition 3.2, we find a sequence
µn ↑ λ such that Xε ∩ [u = µn] are not connected. Let Y 1

n , Y 2
n be two connected

components of Xε ∩ [u = µn]. Observe that Y 1
n , Y 2

n ⊆ Xε ∩ [u = µn] ⊆ X.

By changing u → −u and repeating the argument above we conclude that the
sets Z1

n = CC([u ≤ µn], Y 1
n ) and Z2

n = CC([u ≤ µn], Y 2
n ) are different connected

components of [u ≤ µn]. Since

CC([u ≤ µn], Y 1
n ) = ∩µ>µnCC([u < µ], Y 1

n )

CC([u ≤ µn], Y 2
n ) = ∩µ>µn

CC([u < µ], Y 2
n )

if there is a sequence µk
n ↓ µn such that CC([u < µk

n], Y 1
n ) = CC([u < µk

n], Y 2
n ), we

would obtain that Z1
n = CC([u ≤ µn], Y 1

n ) = CC([u ≤ µn], Y 2
n ) = Z2

n, a contradiction.
Thus, for each n, there is an εn > 0 such that CC([u < µ], Y 1

n ) 6= CC([u < µ], Y 2
n ), for

all µ ∈ (µn, µn + εn). Hence we find a sequence µ′n ↑ λ such that

CC([u < µ′n], Y 1
n ) 6= CC([u < µ′n], Y 2

n ),(11.2)

for all n. Let λ′ > λ. Let Z = CC([u < λ′], X). Observe that Y 1
n , Y 2

n ⊆ X ⊆ Z,
hence Z1

n, Z2
n ⊆ Z. Then (11.2) implies that sig([u ≥ µ′n], [u < µ′n]) 6= sig([u ≥

λ′], [u < λ′]). Since the signature is locally constant at the left of λ, we conclude that
sig([u ≥ λ], [u < λ]) = sig([u ≥ µ′n], [u < µ′n]) 6= sig([u ≥ λ′], [u < λ′]), and this holds
for all λ′ > λ, i.e., λ is a critical value of u.

Remark. From the Remark after Definition 3.5 and the above results it follows that
λ is a critical value of u if and only if −λ is a critical value of −u.

12. Appendix: the proof of Theorem 7.1. To prove Theorem 7.1, we freely
use the properties of saturations [7, 8].
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Fig. 12.1. a) Left: the case where sat(X) ⊆ Q, case a) in the proof of Theorem 7.1. b) Middle:
the case where sat(X) ⊇ Q1, corresponding to case b) in the text. c) Right: The curves X1 and X2

are two connected components of [u = α], and we displayed in bars the region sat(X2)\sat(X1) (see
the proof of Theorem 7.1.)

Proof of Theorem 7.1. To fix ideas, assume that λ > µ. Let α ∈ (µ, λ). Let X ∈
CC([u = α]). Obviously X ∩ ∂Qi = ∅, i = 1, 2. Let us choose a point p∞ ∈ ∂Q2, and
let sat(X) be the saturation of X in Q2 with respect to p∞, i.e., sat(X) is X union
the connected components of Q2 \X with do not contain p∞. By Lemma 3.2 in [8],
either a) sat(X) ⊆ Q, or b) sat(X) ⊇ Q1. Assume that we are in case a) (Figure
12.1.a). In this case, since u|∂sat(X) = α, we deduce that u|sat(X) = α. Then there is
ε > 0 and Z ∈ CC([α− ε ≤ u ≤ α+ ε]) such that sat(X) ⊆ sat(Z) ⊆ Q. Since ∂sat(Z)
is connected [8], then either ∂sat(Z) ⊆ [u = α − ε], in which case u|sat(Z) = α − ε,
or ∂sat(Z) ⊆ [u = α + ε], in which case u|sat(Z) = α + ε. In any case, we obtain a
contradiction. Thus b) must hold (Figure 12.1.b). Now, if there are two connected
components X1, X2 ∈ CC([u = α]), then without loss of generality, we may assume
that Q1 ⊆ sat(X1) ⊆ sat(X2) (Figure 12.1.c). Since ∂sat(X1), ∂sat(X2) ⊆ [u = α],
we obtain that u|sat(X2)\sat(X1) = α, and X1, X2 cannot be different. This proves
that [u = α] consists of a single connected component. Now, we consider the case
α = µ. If there is a connected component of [u = µ] disjoint to ∂Q2, then arguing as
above we obtain that sat(X) must contain Q1. Since u = µ on ∂Q2 ∪ ∂sat(X), then
by interpolating we deduce that u = µ in Q2 \ sat(X). Hence X cannot be disjoint to
∂Q2. This proves that [u = µ] is connected. Similarly we prove that [u = λ] is also
connected.
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Ceremade, 9535, Université Paris-Dauphine, France, 1995.

[20] R. Haralick, L. Watson, and T. Laffey, The topographic primal sketch, Int. J. Rob.
Research, 2 (1983), pp. 50-72.

[21] J. M. Hyman, Accurate Monotonicity preserving cubic interpolation, SIAM J. Sci. Stat. Comp.,
4 (1983), pp. 645-654.

[22] R. Jensen, Uniqueness of lipschitz extensions: Minimizing the sup norm of the gradient, Arch.
Rat. Mech. Anal., 123 (1993), pp. 51-74.

[23] E.G. Johnston and A. Rosenfeld, Digital detection of pits, peaks, ridges and ravines, IEEE
Trans. Systems Man Cybernetics, 5 (1975), pp. 472-480..

[24] R. R. Estes Jr. and V. Ralph Algazi, Efficient error free chain coding of binary documents,
Proc. of the Data Compression Conference, Snowbird, Utah, April 1995, pp. 122-132.

[25] A.S. Kronrod, On functions of two variables, Uspehi Math. Sciences (NS), 35 (1950), 24-134.
[26] C. Kuratowski, Topologie I, II, Editions J. Gabay, 1992.
[27] I.S. Kweon and T. Kanade, Extracting topograpic terrain features from elevation maps,

CVGIP: Image Understanding, 59 (1994), 171-182.
[28] J.L. Lisani, Comparaison automatique d’images par leurs formes, Ph.D Thesis, Université de
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[49] A. Solé, Geometric Image Coding, Filtering and Restoration, PhD thesis, Universitat Pompeu

Fabra, 2002.
[50] S.M. Srivastava, A Course on Borel Sets, Springer Verlag, San Diego, 1998.
[51] S. Takahashi, T. Ikeda, Y. Shinagawa, T. Kunii, and M. Ueda, Algorithms for extracting

correct critical points and constructing topological graphs from discrete geographic elevation
data, Eurographics ’95, 14 (1995), pp. 181-192.

[52] M. van Kreveld, R. va Oostrum, C. Bajaj, V. Pascucci, and D. Schikore, Contour trees
and small seed sets for isosurface traversal, 13th ACM Symp. on Comput. Geometry 1997,
pp. 212-220.

[53] L. Vincent, Gray scale area openings and closings, their efficient implementation and appli-
cations, Proc. Workshop Mathematical Morphology and Applications to Signal Processing,
Barcelona, Spain, May 1993, pp. 22-27.

[54] L. Vincent, Morphological area openings and closings for gray-scale images, Proc. of the
Workshop “Shape in Picture”,1992, Driebergen, The Netherlands, Springer-Berlin, 1994,
pp. 197-208.

[55] M.J. Weinberger, G. Seroussi, and G. Sapiro, From LOCO-I to the JPEG-LS standard,
Proceedings of the International Conference on Image Processing, 4 (1999), pp. 68-72.

[56] M.J. Weinberger, G. Seroussi, and G. Sapiro, LOCO-I: A low complexity, context-based,
lossless image compression algorithm, Proc. IEEE Data Compression Conf., Snowbird,
Utah, April, 1996, pp. 140-149.

31


