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Abstract

In this paper we present an efficient numerical approach based on the Renor-
malization Group method for the computation of self-similar dynamics. The latter
arise, for instance, as the long-time asymptotic behavior of solutions to nonlin-
ear parabolic partial differential equations. We illustrate the approach with the
verification of a conjecture about the long-time behavior of solutions to a certain
class of nonlinear diffusion equations with periodic coefficients. This conjecture
is based on a mixed argument involving ideas from homogenization theory and
the Renormalization Group method. Our numerical approach provides a detailed
picture of the asymptotics, including the determination of the effective or renor-
malized diffusion coefficient.
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1 Introduction

The time evolution of many non-equilibrium physical systems is well described by
nonlinear partial differential equations (PDEs). It is frequently observed that under
suitable, but fairly general, conditions the time evolution of such systems becomes
asymptotically self-similar. Within the PDE framework, this assertion amounts to the
observation that the PDEs in question have solutions that behave asymptotically as

u(x, t) ∼ 1

tα
φ
( x

tβ

)

, as t → ∞.

It turns out that often such a self-similar behavior possesses a great deal of universal-
ity: the scaling exponents α and β and most aspects of the profile function φ(·) are
independent of initial conditions (within a suitable class) or, more strikingly, even of
the form of the equations.

Universal behavior is a central issue in the study of critical phenomena in equilibrium
statistical mechanics and quantum field theory. Using the Renormalization Group
(RG) approach [11, 18, 14], physicists predict critical exponents and determine the
universality class of a variety of models. In the early 90’s, Goldenfeld, Oono and
collaborators (see [12] and references therein) developed a perturbative renormalization
group method for PDEs and used it to compute perturbatively the similarity exponents
in the difficult and most frequently encountered case of self-similarity of the second kind
(in Barenblatt’s classification [1]). Later, Bricmont, Kupiainen and Lin [6, 7] introduced
a non-perturbative renormalization group approach. A numerical renormalization group
algorithm was developed at the same time by Chen and Goldenfeld [8].

In this paper we combine the numerical approach of Chen and Goldenfeld with the
constructive approach of Bricmont et al. to develop a computationally efficient RG
algorithm for the calculation of self-similar dynamics. This algorithm is then used
to produce a detailed picture of the asymptotic dynamics of certain nonlinear diffusion
equations with periodic coefficients; in particular, this algorithm allows the investigation
of which aspects of these dynamics are universal and which are not. A similar point of
view was adopted by some of the authors [4] to study a modification of Barenblatt’s
equation. Isaia [13] also used the same approach to study other classes of problems
including some with logarithmic corrections to the time decay.

Our purpose in writing this paper is threefold. Firstly, we conjecture the long-time
asymptotic behavior of a class of PDEs. Secondly, following the strategy of [4, 13], we
present a systematic numerical approach, based on the RG ideas, to study self-similar
dynamics. Finally, we point out a connection between the renormalization group and
homogenization theory [2]. Homogenization theory has been applied with success to
critical lattice field theories [16], where a RG approach should work. Here, in addition
to adopting a reverse point of view and showing that the RG approach succeeds in
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problems typically analyzed with homogenization theory, we further point out that the
RG approach gives more general results; see below.

Numerical procedures based on rescaling, and thus similar in spirit to the RG approach
presented here, have previously been developed [15, 3] and used to study solutions which
blow up in finite time (as, for example, in the case of certain reaction-diffusion equations
and the cubic nonlinear Schrödinger equation). Such procedures exploit the known
self-similar structure of the solutions under study to define the appropriate rescalings.
Recently, versatile and more efficient versions of such procedures were developed [17, 10]
and employed for the computation of solutions which blow up at multiple points. Yet,
the RG procedure presented here is unique in exploiting fixed points. The central
feature of this procedure is that the rescalings are determined dynamically, not by any
a priori knowledge of the scale invariance of the solutions. As a result, the procedure can
be used to investigate self-similar asymptotics of both the first and second (anomalous)
kind. On the other hand the current implementation of the procedure that we present
here is not appropriate for studying blow-up problems.

This paper proceeds as follows: in Section 2 we define the class of initial value problems
we study and state the conjecture we make about the long time behavior of their
solutions. In Section 3 we present a non-rigorous argument to motivate this conjecture.
In Section 4 we explain how we have implemented our modification of the numerical
renormalization group scheme of Chen and Goldenfeld [8] to the oscillating equation (1).
In Section 5 we present numerical results that corroborate our conjecture. We also
present studies to validate our numerical procedure, including the computation of the
critical exponent α for solutions of Barenblatt’s equation to illustrate the versatility
of our procedure in computing anomalous behavior. Finally, in Section 6 we present
numerical evidence supporting a similar conjecture for “relevant” perturbations (see the
Remark in the next section), make some comments and discuss further developments.

2 Asymptotics of oscillating equations

Consider the following initial value problem (IVP):

ut = [1 + µg(x)]uxx + λF (u, ux, uxx) x ∈ R, t > 1, (1)

u(x, 1) = f(x), x ∈ R.

Here µ and λ are real parameters; µ is such that (1+µg(x)) > 0 for all x ∈ R; g(x) is a
smooth periodic function with zero mean; f(x) is a smooth and rapidly decaying initial
condition; F (u, v, w) is an analytic function of u, v and w around u = v = w = 0:

F (u, v, w) = uavbwc +
∑

{i>a, j>b, k>c}

cijku
ivjwk.
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Let T be the period of the function g and let H(g, µ) denote the harmonic mean of
1 + µg(x):

H(g, µ) ≡
[

1

T

∫ T

0

1

1 + µg(x)
dx

]−1

. (2)

We conjecture the following.

Conjecture 2.1 Let u(x, t) be the solution of the IVP (1). If the lowest order exponents
of the power series expansion of F satisfy the inequality a+ 2b+ 3c− 3 > 0 and if the
initial condition f is small enough, then there is a constant A, which usually depends
on f , g, µ, λ and F , such that

tαu(
√
tx, t) → A√

4πσ
e−

x
2

4σ as t → ∞, (3)

with α = 1/2 and σ = H(g, µ).

As we shall see, this conjecture arises from formal renormalization group arguments
applied to (1). These arguments are based on the methods developed by Goldenfeld,
Oono and collaborators [12] and by Bricmont, Kupiainen and Lin [6, 7]. Implementing
a modification of the RG-based numerical algorithm of Chen and Goldenfeld [8], we
verify the validity of the conjecture.

Remark: Let dF ≡ a+2b+3c−3. Bricmont et al. [7] classify the perturbations F (see
Eq. (1)) as irrelevant if dF > 0, marginal if dF = 0 (F = uux, uxx or u3) and relevant if
dF < 0 (F = ux or ua). Conjecture 2.1 is stated for irrelevant perturbations but similar
conjectures hold for the marginal and relevant cases, although care is needed in order
to avoid blow up at finite time. In particular, if λF = −ua+ irrelevant perturbations,
1 < a < 3, then, instead of (3) we expect that

t
1

a−1u(
√
tx, t) → fa(

x√
σ
) as t → ∞, (4)

where fa is a function such that

u(x, t) ≡ 1

t
1

a−1

fa

( x

t1/2

)

is a scale invariant solution to Eq. (1) with µ = 0 and λF = −ua, see [5, 6, 7]. In
Section 6 we present numerical results supporting this conjecture. Due to logarithmic
corrections, our numerical approach can not handle marginal perturbations efficiently.
We point out that logarithmic corrections have been obtained using another version of
the numerical RG in [13].

We emphasize the following aspects of (3):
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1. the exponent α is universal: α = 1/2 independently of the initial condition f , the
periodic function g, the parameters µ and λ and the perturbation F (u, ux, uxx)
provided that a+ 2b+ 3c− 3 > 0;

2. the effective diffusion coefficient σ depends on µ and g: σ = H(g, µ);

3. in general, the prefactor A depends on the initial condition f , on the perturbations
F (u, ux, uxx) and g(x) and on the parameters µ and λ.

Conjecture 2.1 can be understood as a statement about the universality class of Gaus-
sian fixed points of a renormalization group transformation. It furnishes a classification
of the nonlinear terms that can be added to the linear oscillating equation without
changing the long-time asymptotics of the associated solutions. The work of Duro and
Zuazua [9] can also be interpreted within this framework. They have considered the
equation

ut − div(a(~x)∇u) = ~d · ∇(|u|q−1u) in R
N × (0,∞),

where ~d ∈ R
N and a(~x) is a smooth, symmetric and periodic matrix. Using homogeniza-

tion theory, they have proved, among other results, the asymptotic result (3) whenever
q > 1 + 1/N . Although we do not prove it, our conjecture indicates that Duro and
Zuazua’s results should hold for other non-linear equations.

3 Renormalization group analysis

In this section we present the formal RG arguments which led to the aforementioned
conjecture. In the sequel, we assume that the perturbation F (u, ux, uxx) in Eq. (1) is
of the form uaub

xu
c
xx. Later, it will become clear that this assumption constitutes no

loss of generality since the higher powers of F are “irrelevant” in the RG sense. The
renormalization group approach that we employ in this paper is simply the integration
of the equation followed by a rescaling. To explain this idea, we need some preliminary
notions.

Let u be a real-valued function of (x, t) ∈ R× R+. For a fixed L > 1 and sequences of
positive scaling exponents, {αn}∞n=1 and {βn}∞n=1, define a sequence {un}∞n=0 of rescaled
functions inductively by u0 = u and, for n ≥ 1,

un(x, t) = Lαnun−1

(

Lβnx, Lt
)

= Lαn+···+α1u
(

Lβn+···+β1x, Lnt
)

. (5)

If the original function u is a global solution to Eq. (1), then a direct calculation reveals
that un satisfies the renormalized initial value problem:

∂tun = χn [1 + µg(ωnx)]∂
2
xun + λn u

a
n(∂xun)

b(∂2
xun)

c, (6)
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un(x, 1) = fn(x).

Here
χn = Ln−2(βn+···+β1), ωn = Lβn+···+β1,

and
λn = λLn−(b+2c)(βn+···+β1)+(1−a−b−c)(αn+···+α1), (7)

and the initial data fn is

fn(x) = Lαn+···+α1u
(

Lβn+···+β1x, Ln
)

. (8)

The renormalization group transformation of Bricmont et al., which we denote as RL,
is now introduced. This transformation acts on the space of initial conditions and is
defined having the linear diffusion equation

ut = uxx (9)

in mind. As explained in [6, 7], the study of the long time asymptotics of solutions to
(1) with µ = 0 is equivalent to studying the fixed points, and their basins of attraction
(i.e. universality classes), of the transformation RL. The RG transformation is designed
so that its fixed points are the similarity solutions to (9). Below we adopt the same
strategy and use RL to study the long time asymptotics of solutions to the oscillating
equation (1).

To define RL, take L > 1 and set αi = βi = 1/2 for all i ≥ 1. With this choice, χn = 1,
ωn = Ln/2, λn = λLn[3−(a+2b+3c)]/2 and the IVP (6) becomes

∂tun = [1 + µg(Ln/2x)]∂2
xun + λLn[3−(a+2b+3c)]/2 ua

n(∂xun)
b(∂2

xun)
c, (10)

un(x, 1) = fn(x).

If un(x, t) is the solution to the IVP (10) for t ∈ [1, L], RL is defined as

(RLfn)(x) = L1/2un

(

L1/2x, L
)

≡ fn+1(x). (11)

RL depends on n but we do not write explicitly this dependence to simplify the notation.
Notice that RL has the semigroup property:

Rn
Lf(x) = RLnf(x) = Ln/2u

(

Ln/2x, Ln
)

, n = 1, 2, . . . .

This fact allows us to investigate the limit (3), with t = Ln, by iterating RL, and this
is how we proceed. We start our analysis by reviewing the results of Bricmont et al.
[6, 7] when µ = 0 6= λ:
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1. let R denote the linearized RG transformation (take µ = λ = 0 in equation (1)).
One can check that any multiple of the Gaussian distribution

φ∗(x) ≡
e−

x
2

4

√
4π

is a fixed point of R. φ∗(x) is called the Gaussian fixed point;

2. any smooth function g decaying sufficiently fast and with ĝ(0) = 0, where ĝ(k)
denotes the Fourier transform of g(x), contracts to zero under the action of R:

‖Rg‖∞ ≤ C

L
‖g‖∞ < ‖g‖∞,

if L > C;

3. any function f can be written as its projection onto φ∗ plus a remainder g with
ĝ(0) = 0: f = f̂(0)φ∗ + g;

4. write Rn
Lf(x) as Rn

Lf(x) = Anφ∗(x) + gn(x), where ĝn(0) = 0. Then, if the
exponents a, b and c are such that [(a+2b+3c)−3] > 0, An → A and gn(x) → 0
as n → ∞.

In other words, Bricmont et al. proved that the long-time behavior of the solution
u(x, t) to the IVP (1) with µ = 0 is given by the solution of

ut = uxx,

u(x, 1) = Aφ∗(x).

Now consider the case µ 6= 0 = λ. Using homogenization theory [2], one can conclude
that the limit (3) exists. This is done as follows. After n RG iterations of equation (1)
with λ = 0 we obtain:

∂tu = [1 + µg(Ln/2x)]∂2
xu (12)

un(x, 1) = fn(x).

Take ǫ−1
n = Ln/2. Observing that ǫn → 0 as n → ∞, we see that studying the asymp-

totics of the solution to IVP (12) as n → ∞ is equivalent to studying the asymptotics
as ǫn → 0, a situation which can be dealt with by homogenization theory which says
that the long time behavior is governed by a multiple of the solution to

∂tu = σuxx (13)

u(x, 1) = φσ(x),
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where σ = H(g, µ) is the harmonic mean defined by equation (2) and

φσ(x) =
e−

x
2

4σ

√
4πσ

.

For the general case µ 6= 0 6= λ, the RG iteration of the IVP (1) is represented by the
IVP (10). As n → ∞, the second term on the right hand side of Eq. (10) is expected to
be driven to zero if [(a+2b+3c)−3] > 0. Writing Rn

Lf(x) as R
n
Lf(x) = Anφσ(x)+gn(x),

with ĝn(0) = 0, we also expect that An → A and that gn(x) → 0 as n → ∞. Therefore,
for large values of n, we expect the solution to the IVP (1) to behave as the solution
to the IVP (13), with A = limAn and σ = H(g, µ).

4 The numerical procedure

The RG-based numerical procedure for the integration of the IVP (1) is now introduced.
The renormalization procedure constructs the sequence of renormalized IVP (6) (viz.
the sequences {αn}, {βn} and {fn}) satisfied by the solution of (1) in the following
steps.

Start with f0 = f , the initial condition of the IVP (1). For n = 0, 1, 2, . . .

1. Evolve the initial data fn forward, from the initial time t = 1 to t = L, with
L > 1 arbitrary but fixed, using Eq. (6), to obtain the solution un(x, L).

2. Compute the scaling exponents αn+1, βn+1 as

Lαn+1 =
un(0, 1)

un(0, L)
=

fn(0)

un(0, L)
, βn+1 =

1

2
. (14)

(This choice will be discussed shortly.)

3. Define fn+1(x) = Lαn+1un(L
βn+1x, L).

Notice that if f0 = f , then (5) and the definition of fn imply that

fn(x) = Lαnun−1

(

Lβnx, L
)

= Lαn+···+α1u
(

Lβn+···+β1x, Ln
)

, (15)

where u(·, Ln) is the solution of the initial value problem (1) at time t = Ln.

A simple consideration of (15) uncovers the relationship between the limiting behavior
of {fn} as n → ∞ and the long time asymptotics of u. To wit, rewrite (15) as

u(x, Ln) =
An

Lnαn

fn(Bn
x

Lnβn

),
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where
An = Lnαn−(αn+···+α1), Bn = Lnβn−(βn+···+β1).

Thus, if the limits An → A, Bn → B, αn → α, βn → β and fn → φ as n → ∞ are
attained, we might expect that

Lnαu(Lnβx, Ln) =
An

Ln(αn−α)
fn

(

Bn
x

Ln(βn−β)

)

→ Aφ(Bx) n → ∞.

This limit, in turn, establishes the self-similarity of the long time asymptotics of u.

It is the numerical algorithm consisting of steps 1 − 3 above supplemented by the
calculation of the prefactors {An} and {Bn} that we use to verify the Conjecture 2.1
about the asymptotic behavior of solutions to (1). We remark that this procedure
yields a very detailed picture of the asymptotics. In particular, it seems ideal to study
which aspects of the dynamics are universal and which depend on parameters and initial
conditions. A number of comments are in order.

The rationale behind the idea we use to compute {αn} in step 2 is the reputed self-similar
asymptotic dynamics we want to compute: in the self-similar regime, the solution u at
x = 0, behaves as

u(0, t) ∼ const t−α.

Thus, given the relation between un in the time interval t ∈ [1, L] and u in t ∈ [Ln, Ln+1]
(c.f. (5)), we expect that, as n → ∞, αn approaches α. Whereas the determination of
the exponents αn can always be performed as in step 2 above, the determination of the
exponents βn is problem dependent. It usually involves a scaling relation between the
exponents αn and βn so that certain (a priori chosen) parts of the differential operator
remain invariant under the rescaling of step 3. To illustrate this point, consider the
initial value problem (1) with F (u, ux, uxx) = uaub

xu
c
xx. If βn is chosen to be 1/2, then

the linear operator
ut = uxx (16)

remains invariant under the scaling defined in step 3. In this way, the dynamics associ-
ated with (16) can be explored. On the other hand, if βn is chosen to satisfy the scaling
relation (c.f. equation (7))

1− (b+ 2c)βn + (1− a− b− c)αn = 0, (17)

then it is the nonlinear operator

ut = λuaub
xu

c
xx (18)

that remains invariant. In this case, it is the dynamics of (18) that can be explored. In
the RG language, the choice βn = 1/2 focuses the attention on the dynamics of (16) and,
as such, is suitable for the investigation of its irrelevant and marginal perturbations.
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This is done in Section 5 for the Equation (1). When the perturbation is relevant, then
a new scaling relation may be needed. For instance, with the choice (17), the nonlinear
operator ut = uaux

buxx
c remains invariant (under the associated scaling). Therefore this

is the appropriate scaling (which then defines an appropriate RG map) if we want to
study irrelevant and marginal perturbations to the nonlinear operator ut = uaux

buxx
c.

In Section 6 we study a case when both the Laplacian and the non-linear term become
marginal under an appropriate scaling (see the remark on Section 2 and the limiting
behavior given by (4)).

Finally, the spatial scaling in step 3 can be realized in two different ways: by rescaling
the mesh size ∆x without changing the discrete sites j = 0, 1, . . ., so that after one
iteration the new mesh size is (∆x)1 = L−β1∆x and the new mesh points are located
at x = jL−β1∆x; this is the approach adopted in Ref. [8]; or by rescaling the discrete
sites while keeping the mesh size fixed, so that after one iteration the new discrete sites
L−βj are located at x = L−β1j∆x. In this approach, the values of the solution u at the
fixed mesh points x = j∆x have to be interpolated from the data given at the (new)
discrete sites in each iteration.

In our investigation of the asymptotics of problem (1) we have used the first approach.
The successive spatial scalings performed in step 3 change the frequency of the periodic
diffusion coefficient. It is actually this mechanism that leads to a renormalization of the
diffusion coefficient in the long time regime. Thus, to resolve properly the effects of the
oscillating diffusion, the mesh size has to be shrunk at the same rate as the frequency
is increased.

5 Numerical results

For the discretization of the governing PDE, any appropriate scheme can be employed.
We chose a simple explicit finite difference scheme that combines Euler’s method for
the time discretization with the standard three-point formula for the discretization of
the Laplacian operator and centered differences for the first order spatial derivatives.
Given the stability constraints, the resulting scheme is second order accurate.

To eliminate the need of numerical boundary conditions in our computations of purely
initial value problems with compactly supported initial data, additional grid points with
associted zero-valued data were added at the boundaries of the computational domain
before each timestep was performed. In all simulations 27 grid points were used for the
discretization of the initial data in −5 ≤ x ≤ 5 (initial computational domain). The
time step was dynamically chosen to satisfy the stability condition (1 +max |µg|)∆t ≤
C∆x2 (the grid spacing ∆x shrinks as the renormalization procedure is iterated). The
constant C was chosen to be 0.45.
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Table 1: Description of the numerical simulations, with L = 1.021 and β = 0.5

n µ g λ a b c f

1 .1 g1 0 f1
2 .1 g1 0 f2
3 -.15 g1 0 f1
4 .1 g1 0 f3
5 .1 g1 .1 4 0 0 f1
6 .1 g1 .1 2 1 0 f1
7 .1 g2 .3 8 0 0 f3
8 .8 g1 0 f1
9 .1 g3 0 f1
10 .8 g3 0 f1
11 0 0 f1
12 0 0 f2
13 0 0 f3
14 .1 g1 .1 1 1 1 f1
15 .6 g3 .1 0 1 1 f2

Table 1 summarizes our numerical simulations: the first column is the simulation num-
ber; the other columns specify the parameters µ and λ, the exponents a, b and c and the
functions f and g appearing in the IVP (6) (functions fi and gi, i = 1, 2, 3 are specified
in Figures 1 and 2). In all simulations, the scaling factor L was chosen to be L = 1.021.
Although, in principle, any value of L > 1 can be used, for a too large value of L, a
large number of time steps per RG iteration would be required, and the system would
shrink too quickly (due to the spatial rescaling); for a very small L, a large number of
RG iterations would be necessary to produce good enough accuracy.

−4 −3 −2 −1 0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xx

f(
x)

Figure 1: Initial conditions f1 (continuous line), f2 (dashed line), f3 (dotted line).

We now discuss some of the simulations. In order to validate the numerical procedure
and to illustrate its accuracy, efficiency and the amount of detailed information it
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−6 −4 −2 0 2 4 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

xx

g(
x)

Figure 2: Periodic functions: g1(x) = cos(x), g2(x) = [cos(x) + sin(2x) + cos(4x)]/2.72,
g3(x) = 1− 2|x/πmod2− 1|

provides, the algorithm was applied to the heat equation (µ = 0 = λ), an equation whose
asymptotic behavior is well known (simulations number 11, 12, 13). Figures 3, 4, and 5
refer to this study, as explained below. Also, simulations for Barenblatt’s equation

ut = (1 + ǫH(−ut))uxx,

where H(u) is the Heaviside function, were performed for different values of ǫ. Figure 6
shows the anomalous exponent α computed by our simulations, compared with the
first-order approximation [12]

α =
1

2
+

ǫ√
2πe

+O(ǫ2).

50 100 150 200 250 300 350 400
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n

α n

Figure 3: Validation simulation (heat equation): plot of αn×n, for simulations 11, 12 and
13, verifying that α∗ = limαn is universal with respect to initial conditions.

Figure 3 depicts the convergence of the computed exponent αn to the theoretical value
α = 1/2 as the numerical RG map is iterated for several distinct initial conditions.
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0.2
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0.8

1
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1.4

n

A
n

Figure 4: Validation simulation (heat equation): plot of An × n, for simulations 11, 12
and 13, verifying that An → A and that A is mass dependent.
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0
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0.004

0.006

0.008
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0.012

0.014

n

||f
n||−

||f
n−

1|| 
/ |

|f n||

Figure 5: Validation simulation (heat equation): plot of ‖fn − fn−1‖/‖fn‖ × n, for simu-
lations 11, 12 and 13, verifying that the profile function fn converges upon the iteration
of the numerical RG map.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

ε

α

Figure 6: Relation between α and ǫ for Barenblatt’s equation. The continuous curve is
the first-order approximation for α(ǫ). The circle points are the results of our simulations.

This illustrates the universality of α with respect to sufficiently localized (e.g. with
compact support) initial conditions. Figure 4 shows the convergence of the prefactors
An to the theoretical values A (dotted lines). The latter depend on the mass of the
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initial condition.

We also verified that the profile function is equal to the Gaussian distribution, in agree-
ment with the analytical results. Finally, in Figure 5 we plot the relative difference
between successive profiles, ||fn − fn−1||/||fn||, as a function of the number n of RG
iterations. The convergence of this difference to zero can be used as a diagnosis of
the self-similar behavior of the long-time asymptotics; it can also be used to check the
convergence of the procedure and as a practical stopping criterion for the number of
RG iterations.

The remaining figures, Figures 7-10, illustrate various aspects of the asymptotics of
the solutions to the IVP (1) and corroborate our Conjecture 2.1. In all simulations
performed, αn was observed to converge quickly to α = 1

2
, as the number of RG it-

erations increases. In order to verify the universality of this fact, we varied: initial
conditions (Figure 7); nonlinear perturbations (Figure 8); values of µ and periodic
functions (Figure 9). Figure 10 shows the convergence of the prefactors An and their
nonuniversality. We emphasize that in all simulations, the convergence of the relative
difference ‖fn − fn−1‖/‖fn‖ (in both L1 and L∞ norms) to zero was observed, as the
number of RG iterations increased, thus providing strong evidence of the self-similar
nature of the asymptotics.
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Figure 7: Plot of αn × n, for simulations 1, 2 and 4, verifying that α is universal with
respect to the initial condition.

Finally, the effect of the term µg on the diffusion coefficient is illustrated in Figures 11
and 12. These figures display the points (− log φ∗,− logφ), where φ denotes the profile
function fn computed after the last RG iteration and φ∗(x) = exp(−x2/4). It is clear
that for each simulation these points lie on a straight line. This implies that the
computed profiles φ are the “renormalized Gaussians” φσ(x) = exp(−x2/4σ), with σ
being given by the slope of the corresponding straight line. The theoretical values
for σ are also plotted (stars) in these figures and they are obtained from the explicit
computation of the harmonic mean of 1 + µg.

14



50 100 150 200 250 300 350 400
0.47

0.48

0.49

0.5

0.51

0.52

0.53

n

α n
Figure 8: Plot of αn × n, for simulations 1, 5, 6, 14 and 15, verifying that α is universal
with respect to the addition of nonlinear terms.
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Figure 9: Plot of αn × n, for simulations 1, 3, 7 and 9, verifying that α is universal with
respect to the periodic perturbation g(·) and the parameter µ.
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Figure 10: Plot of An × n, for simulations 1, 2 and 3, showing that An does converge as
n → ∞.
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Figure 11: Plot of − log(φ∗) × − log(φ), for simulations 8, 10 and 15. The stars plotted
are the theoretically computed values for σ.
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Figure 12: Plot of − log(φ∗) × − log(φ), for simulations 1, 3 and 11. The stars are the
explicitly calculated σ.

6 Concluding Remarks

From the numerical simulations we have a solid basis that indicates the correctness
of our Conjecture 2.1. Furthermore, using the numerical algorithm of Section 4, we
have some preliminary results for the dynamics for the following equation (which is in
divergence form):

ut = ∂x([1 + µg(x)]∂xu) + λF (u, ux, uxx) x ∈ R, t > 1. (19)

Equations (1) and (19) differ by a multiple of g′(x)ux. Our results indicate that this
term is irrelevant in the RG sense even though the term ux is relevant. When F = uqux

in equation (19), our conjecture has been proved [9].

The version of the numerical procedure that we described here is not appropriate for
the analysis of the dynamics when marginal perturbations of the type uux are included.
Marginal perturbations have been handled successfully using a modified version of the
procedure in [13].
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To verify the strength and flexibility of the method, we also performed a numerical study
of Equation (1) with λF = −ua, 1 < a < 3. First suppose µ = 0 in Eq. (1). In this
case, the Laplacian and the nonlinear term λF are equally important asymptotically.
The choice βn = 1

2
keeps the Laplacian invariant to scaling. As discussed in Section 4,

we expect that αn will converge to α = 1
a−1

as n → ∞, so that the nonlinear term
remains in the limiting equation describing the long-time asymptotic behavior. This
result is rigorous and it was first proved by Brezis, Peletier and Terman [5] and also
verified by Bricmont et al. [6, 7] using the RG approach. When µ 6= 0, we expect that
the same scalings will hold. These scalings lead to the conjecture (4), which we have
verified numerically. In Figure 13 we plot the curve α = 1

a−1
together with the results

of our simulations. The renormalization of the profile function by a factor of
√
σ in

the argument has been verified: we have plotted the computed profile function against
x/

√
σ, where the factor σ was computed a priori as the harmonic mean of 1 + µg(x),

and the plot coincides with the plot of the computed profile function with µ = 0.
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Figure 13: Relation between α and a for λF (u) = −ua, with 1 < a < 3. The continuous
curve is obtained theoretically and the stars are the results of our simulations.
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