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Abstract. In this paper we study a variational approach for filling-in regions of missing data in
2D and 3D digital images. Applications of this technique include the restoration of old photographs
and removal of superimposed text like dates, subtitles, or publicity, or the zooming of images. The
approach presented here, initially introduced in [12], is based on a joint interpolation of the image
gray-levels and gradient/isophotes directions, smoothly extending the isophote lines into the holes
of missing data. The process underlying this approach can be considered as an interpretation of the
Gestaltist’s principle of good continuation. We study the existence of minimizers of our functional
and its approximation by smoother functionals. Then we present the numerical algorithm used to
minimize it and display some numerical experiments.
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1. Introduction. Filling-in missing data in digital images has a number of fun-
damental applications. Between them, we can mention the removal of scratches in
old photographs and films, the removal of superimposed text like dates, subtitles, or
publicity from a photograph, or the recovery of pixel blocks corrupted during binary
transmission. The basic idea is to fill-in the gap of missing data in a form that it is
non-detectable by an ordinary observer. This process has received different names in
the literature, as disocclusion [52, 54], filling-in [12], or inpainting [19] (inpainting is
the name used in art restoration [73, 34, 46]).

Since the early days of art and photography, inpainting has been done by profes-
sional artists. Imitating their performance with semi-automatic digital techniques is
currently an active area of research. Most of the efforts have been directed either to
the recovery of the textured part of the image or to the recovery of its geometry. Sev-
eral succesful algorithms exist for the recovery of textures. The basic idea in them is
to select a texture (tipically modeled as a Markov random field) and synthesize it in-
side the region to be filled-in (the hole) [40, 39, 32, 66]. The recovery of the geometric
part of the image in a hole, or region where the data is missing, was first formulated
by S. Masnou and J.M. Morel [54] as a variational problem, trying to interpolate the
data in the hole. They were inspired by the work of D. Mumford, M. Nitzberg and
T. Shiota [59] on image segmentation with depth. The same approach was followed
in [12] and in the work of T. Chan and J. Shen [28]. A different approach, based on
the transportation of information along the isophotes of the image, was proposed in
[19]. We shall review in more detail this geometric approach below. A related and
important area of research is the restoration of damaged films. The basic idea here
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is to use information from past and future frames to restore the current one, e.g.,
[43, 48, 49], an approach that can not be used when dealing with still images.

Let us review in some detail the variational approaches used for filling-in the
missing information in a region of the image. A pioneering contribution in the re-
covery of plane image geometry is due to D. Mumford, M. Nitzberg and T. Shiota
[59]. They were not directly concerned with the problem of recovering the missing
parts of the image, instead, they addressed the problem of segmenting the image into
objects which should be ordered according to their depth in the scene. The segmen-
tation functional should be able to find which are the occluding and the occluded
objects while finding the occluded boundaries. For that they relied in a basic princi-
ple of Gestalt’s psychology: our visual system is able to complete partially occluded
boundaries and the completion tends to respect the principle of good continuation
[44]. When an object occludes another the occluding and occluded boundaries form a
particular configuration, called T -junction, which is the point where the visible part
of the boundary of the occluded object terminates. Then our visual system smoothly
continues the occluded boundary between T -junctions. In [59], the authors proposed
an energy functional to segment a scene which took into account the depth of the
objects in the scene and the energy of the occluded boundaries between T -junctions.
They assumed that the completion curves should be as short as possible and should
respect the principle of good (smooth) continuation. Thus, to define the energy of the
missing curve they had to give a mathematical formulation of the above principles.
Given two T -junction points p and q and the tangents τp and τq to the respective
terminating edges, they proposed as smooth continuation curve Euler’s elastica, i.e.,
the curve minimizing the energy ∫

C

(α + βk2)ds(1.1)

where the minimum is taken among all curves C joining p and q with tangents τp and
τq, respectively, k denotes the curvature of C, ds its arc length, and α, β are positive
constants. Let us mention that Euler’s elastica has been frequently used in computer
vision ( [41],[50],[64], [69],[70],[71],[75],[76],[74]) and a beautiful account on it can be
found in [58].

In an important contribution to the question Masnou and Morel [52, 54, 53]
proposed a variational formulation for the recovery of the missing parts of a grey level
two-dimensional image and they referred to this interpolation process as disocclusion,
since the missing parts can be considered as occlusions hiding the part of the image
we want to recover. Their energy functional was also based on the elastica and we
shall review it in some detail.

An image is usually modeled as a function defined in a bounded domain D ⊆ RN

(tipically N = 2 for usual snapshots, N = 3 for medical images or movies) with
values in Rk (k = 1 for grey level images, or k = 3 for color images). For simplicity,
we shall consider only the case of grey level images. Any real image is determined
in a unique way by its upper (or lower) level sets Xλu := {x ∈ D : u(x) ≥ λ}
(X ′

λu := {x ∈ D : u(x) ≤ λ}). Indeed we have the reconstruction formula

u(x) = sup{λ ∈ R : x ∈ Xλu}.(1.2)

The basic postulate of Mathematical Morphology prescribes that the geometric infor-
mation of the image u is contained in the family of its level sets [62], [38], or in a more
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local formulation, in the family of connected components of the level sets of u [62, 63],
[24]. We shall refer to the family of connected components of the upper level sets of
u as the topographic map of u. In case that u is a function of bounded variation
in D ⊆ R2, i.e., u ∈ BV (D) [2, 35, 77], its topographic map has a description in
terms of Jordan curves [3]. With an adequate definition of connected components,
the essential boundary of a connected component of a rectifiable subset of R2 consists,
modulo an H1 null set, of an exterior Jordan curve and an at most countable family
of interior Jordan curves which may touch in a set of H1-null Hausdorff measure [3].
Since almost all level sets Xλu of a function u of bounded variation are rectifiable
sets, its essential boundary, ∂∗Xλu, consists of a family of Jordan curves called the
level lines of u. Thus, the topographic map of u can be described in terms of Jordan
curves. In this case, the monotone family of upper level sets Xλu suffices to have the
reconstruction formula (1.2) which holds almost everywhere [38].

Let D be a square in R2 and Ω̃ be an open bounded subset of D with Lipschitz
continuous boundary. Suppose that we are given an image u0 : D \ Ω̃ → [a, b],
0 ≤ a < b. Using the information of u0 on D \ Ω̃ we want to reconstruct the image
u0 inside Ω̃. We shall call Ω̃ the hole or gap. We shall assume that the function
u0 is a function of bounded variation in D \ Ω̃. Then the topographic structure of
the image u0 outside Ω̃ is given by a family of Jordan curves. Generically, by slightly
increasing the hole, we may assume that, for almost all levels λ, the level lines of Xλu0

transversally intersect the boundary of the hole in a finite number of points [52]. Let
us call Λ ⊆ R the family of such levels. As formulated by Masnou [52, 54, 53], the
disocclusion problem consists in reconstructing the topographic map of u0 inside Ω̃.
Given λ ∈ Λ and two points p, q ∈ Xλu0 ∩ ∂Ω̃ whose tangent vector at the level line
Xλu0 is τp and τq, respectively, the optimal completion curve proposed in [52, 54] is
a curve Γ contained in Ω̃ minimizing the criterion∫

Γ

(α + β|k|p)dH1 + (τp, τΓ(p)) + (τq, τΓ(q))(1.3)

where k denotes the curvature of Γ, τΓ(p) and τΓ(q)) denote the tangents to Γ at the
points p and q, respectively, and (τp, τΓ(p)), (τq, τΓ(q)) denote the angle formed by
the vectors τp and τΓ(p), and, respectively, for q. Here α, β are positive constants,
and p ≥ 1. The optimal disocclusion is obtained by minimizing the energy functional∫ +∞

−∞

∑
Γ∈Fλ

(∫
Γ

(α + β|k|p)dH1 + (τp, τΓ(p)) + (τq, τΓ(q))
)

dλ(1.4)

where Fλ denotes the family of completion curves associated to the level set Xλu0.
As we noted above, the family Fλ is generically finite, thus the sum in (1.4) is gener-
ically finite. In [52, 55] the authors proved that for each p ≥ 1 there is an optimal
disocclusion in Ω̃ and proposed an algorithm based on dynamic programming to find
optimal pairings between compatible points in ∂Xλu0 ∩ ∂Ω for p = 1, curves which
are straight lines, thus finding in this case the minimum of (1.4) [52, 53]. In [4] the
authors interpreted the disocclusion problem in a slightly different way. First, they
observed that by computing the criterion

∫
Γ
(α+β|k|p)dH1 not only on the completion

curve but also in a small piece of the associated level line outside Ω̃, the criterion (1.4)
can be written as ∫ +∞

−∞

∑
Γ∈Fλ

(∫
Γ

(α + β|k|p)dH1
)

dλ(1.5)
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where now the curves in Fλ are union of a completion curve and a piece of level line of
u0 in Ω\ Ω̃ for a domain Ω ⊃ Ω̃. This requires that the level lines of u0 are essentially
in W 2,p in Ω \ Ω̃. Then, at least for C2 functions u, (1.5) can be written as∫

Ω

|∇u|(α + β|div
∇u

|∇u|
|p) dx(1.6)

with the convention that the integrand is 0 when |∇u| = 0. In [4], the authors
considered this functional when the image domain D and the hole Ω̃ are subsets in
RN whit N ≥ 2 and they studied the relaxed functional, proving that it coincides
with ∫

R

∫
∂[u≥t]

(α + β|H[u≥t]|p) dHN−1 dt(1.7)

for functions u ∈ C2(Ω), N ≥ 2, p > N −1, and H[u≥t] denotes the mean curvature of
[u ≥ t]. Moreover they proved that the functional in (1.7) is lower semicontinuous on
u ∈ L1(D)∩C2(Ω), extending the result in [14]. Moreover they obtained a regularity
result for the level lines of the optimal disocclusion [4].

In [28] the authors proposed a direct numerical approach to the solutions of (1.6).
The authors also compared it with previous curvature driven diffusion and Total Vari-
ation based inpaintings [27, 26]. Their analysis in [27] showed that a curvature term
was necessary to have a connectivity principle [27]. In addition, they considered the
interpolation and filling-in in the presence of noise, an important additional contribu-
tion. We shall later comment on this work after we introduce our approach.

In [12, 13] the authors proposed to fill-in the hole Ω̃ using both the gray level
and the vector field of tangents (or normals) to the level lines of the image outside
the hole. Let Ω be an open subset of D with Lipschitz boundary such that Ω̃ ⊂⊂ Ω.
The band around Ω̃ will be the set B = Ω \ Ω̃. To fill-in the hole Ω̃ we shall use the
information of u0 contained in B, mainly the gray level and the vector field of normals
(or tangents) to the level lines of u0 in B. As in the previous approach we attempt to
continue the level sets of u0 in B inside Ω̃ taking into account the principle of good
continuation. The energy functional proposed in [12, 13] was a function of two relied
variables : a vector field θ which represents the directions of the level lines of u, and
the gray level u. Both u and θ were constrained in the band B by their known values
there. Thus the authors proposed to minimize the functional

Minimize
∫

Ω

|div(θ)|p(γ + β|∇k ∗ u|)dx

|θ| ≤ 1, ‖ u ‖≤ M

|Du| − θ ·Du = 0 in Ω

u = u0 in B,

θ · νΩ|∂Ω = θ0 · νΩ|∂Ω,

(1.8)

where p > 1, γ > 0, β ≥ 0, k denotes a regularizing kernel of class C1 such that
k(x) > 0 a.e., M = ‖u0‖L∞(B), θ0 is any vector field in D\Ω̃ such that θ0·Du0 = |Du0|,
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and νΩ denotes the outer unit normal to Ω. The convolution of Du with the kernel
k in (1.8) is necessary to be able to prove the existence of a minimum of (1.8). The
authors proved that the functional is coercive and admits a minimum in a suitable
class of admissible functions.

Our purpose in this paper is to study a variant of problem (1.8), namely

Minimize
∫

Ω

|div(θ)|p(γ + β|∇k ∗ u|) dx +

+α

∫
Ω

|Du| − α

∫
∂Ω

g0u + λ

∫
B

|u− u0|qdx

|θ| ≤ 1, |Du| − θ ·Du = 0 in Ω,

θ · νΩ|∂Ω = g0,

(1.9)

where g0 = θ0 · νΩ|∂Ω, γ, α, λ > 0, β ≥ 0, q ≥ 1, and θ0 is a vector field in D \ Ω̃ such
that θ0 ·Du0 = |Du0| and the trace θ0 ·νΩ|∂Ω exists (for instance, if div θ0 ∈ Lp(D\Ω̃)).
We have relaxed the condition u = u0 in B to the integral term

∫
B
|u− u0|q dx. This

is the main difference with (1.8) besides the inclusion of the total variation on the
functional. One of the main reasons for this is the possibility to approximate (1.9) by
the problems

Minimize
∫

Ω

∣∣∣div
( Du√

ε2 + |Du|2
)∣∣∣p(γ + β|∇k ∗ u|)dx+

+α

∫
Ω

|Du| − α

∫
∂Ω

g0u + λ

∫
B

|u− u0|qdx

Du√
ε2 + |Du|2

· νΩ =
Du0√

ε2 + |Du0|2
· νΩ,

(1.10)

in the sense that the minimizers of (1.10) converge (modulo a subsequence) to a
minimum of (1.9) ε → 0+. For that, we shall prove first the existence of minimizers
for both problems and study the two operators div

(
Du
|Du|

)
and div

(
Du√

ε2+|Du|2

)
which

appear in (1.9) and (1.10) respectively. Notice that the convergence of minima of
(1.10) to minima of (1.9) establishes a connection between the numerical appproach
of T. Chan and J Shen [28] and ours. After this mathematical discussion we shall
present the numerical algorithm used to minimize (1.9) and we shall display some
numerical experiments in 2D and 3D dimensions. Finally, let us say that both names
disocclusion and inpainting have been used in the literature; since our approach is
again a relaxed formulation of the elastica we shall refer to it as a disocclusion model.

All the above models were based on the elastica, a different approach has been
taken in [19, 20] where the authors proposed a propagation model which, when written
as a partial differential equation, coincides with Navier-Stokes equation for an incom-
pressible fluid in 2D [20] plus a term of mean curvature diffusion. In this model, the
image is identified with the stream function. The Navier-Stokes term (written in terms
of the stream function) seems to propagate the information along the isophotes and
sends the information inside the hole while the curvature diffusion tends to straight
up the isophotes.
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In a recent work [21], M. Bertalmio, L. Vese, G. Sapiro and S. Osher proposed
a model for separate geometry and texture inpainting. The authors propose to use
a recently introduced model for structure and texture separation by L. Vese and S.
Osher [72] in combination with any successful disocclusion/inpainting and texture
synthesis models to fill-in the information on the hole. The authors used the texture
synthesis model given in [32] and the Navier-Stokes inpainting model [20, 19] in their
experiments but they suggest that any other successful model could be used instead
with the same purpose. The strategy of separating both geometry and texture seems
to improve the existing models [21].

Let us explain the plan of the paper. Section 2 contains some basic definitions
about functions of bounded variation and vector fields. We include also some prelim-
inary results about the operator div

(
Du
|Du|

)
with Neumann type boundary conditions

which will permit us to introduce our model. In Section 3 we introduce the energy
functional we shall use for disocclusion (1.9) which can be also interpreted as a relax-
ation of the Elastica. In Section 4 we prove the existence of minimizers of (1.9). In
Section 5 we prove the convergence (after subsequence extraction) of the minima of
the functionals (1.10) to a minimum of the functional in problem (1.9). For that we
need to prove the closedness and maximal accretivity of the operator div ∇u√

ε2+|∇u|2

in Lp for any p ≥ 1. Section 6 contains a review of some regularity results for quasi
minimizers of the perimeter which apply to prove the regularity of the level sets of
the solution of (1.9). Section 7 contains the numerical experiments and a description
of the algorithm we used for them.

2. Preliminaries. Let us first recall the definition of BV functions and total
variation. Let Q be an open subset of RN . A function u ∈ L1(Q) whose partial
derivatives in the sense of distributions are measures with finite total variation in Q is
called a function of bounded variation. The class of such functions will be denoted by
BV (Q). Thus u ∈ BV (Q) if and only if there are Radon measures µ1, . . . , µN defined
in Q with finite total mass in Q and∫

Q

uDiϕdx = −
∫

Q

ϕdµi(2.1)

for all ϕ ∈ C∞
0 (Q), i = 1, . . . , N . Thus the distributional gradient of u is a vector

valued measure with finite total variation

‖ Du ‖= sup{
∫

Q

u div ϕ dx : ϕ ∈ C∞
0 (Q,RN ), |ϕ(x)| ≤ 1 for x ∈ Q}.(2.2)

The space BV (Q) is endowed with the norm

‖ u ‖BV =‖ u ‖L1(Q) + ‖ Du ‖ .(2.3)

As usual, we shall denote by HN−1 the N − 1 dimensional Haussdorf measure in RN .
The Lebesgue measure in RN will be denoted by λN .

We say that a measurable set E ⊆ Q has finite perimeter in Q if its indicator
function χE ∈ BV (Q). If u ∈ BV (Q) almost all its level sets [u ≥ λ] = {x ∈ Q :
u(x) ≥ λ} are sets of finite perimeter. For sets of finite perimeter E one can define the
essential boundary ∂∗E, which is rectifable with finite HN−1 measure, and compute
the normal to the level set at HN−1 almost all points of ∂∗E. Thus at almost all
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points of almost all level sets of u ∈ BV (Q) we may define a normal vector θ(x)
which coincides |Du|-a.e. with the Radon-Nikodym derivative of the measure Du
with respect to |Du|, hence it formally satisfies θ ·Du = |Du| (and also |θ| ≤ 1 a.e.)
[2], 3.9. For further information concerning functions of bounded variation we refer
to [2, 35, 77].

Next, we shall give a sense to the integrals of bounded vector fields with divergence
in Lp integrated with respect to the gradient of a BV function. For that, we shall need
some results from [11] (see also [47] and [31]). Let Q be an open bounded subset of RN

with Lipschitz continuous boundary. Let p ≥ 1 and p′ ≥ 1 be such that 1
p + 1

p′ = 1.
Following [11], let

X(Q)p = {z ∈ L∞(Q, RN ) : div(z) ∈ Lp(Q)}.(2.4)

If z ∈ X(Q)p and w ∈ BV (Q)∩Lp′(Q) we define the functional (z,Dw) : C∞
0 (Q) → R

by the formula

< (z,Dw), ϕ >= −
∫

Q

w ϕ div(z) dx−
∫

Q

w z · ∇ϕ dx.(2.5)

Then (z,Dw) is a Radon measure in Q,∫
Q

(z,Dw) =
∫

Q

z · ∇w dx(2.6)

for all w ∈ W 1,1(Q) ∩ Lp(Q), and∣∣∣∣ ∫
B

(z,Dw)
∣∣∣∣ ≤ ∫

B

|(z,Dw)| ≤ ‖z‖∞
∫

B

|Dw|(2.7)

for any Borel set B ⊆ Q. By writing

z ·Dsu := (z,Du)− (z · ∇u) dλN ,(2.8)

we see that z ·Dsu is a bounded measure, furthermore, in [47], it is proved that z ·Dsu
is absolutely continuous with respect to |Dsu| (and thus is singular) and

|z ·Dsu| ≤ ‖z‖∞|Dsu|.(2.9)

If no confusion arises, we shall indifferently write z · Dw or (z,Dw) for z ∈ X(Q)p,
w ∈ BV (Q) ∩ Lp′(Q).

In [11], a weak trace on ∂Q of the normal component of z ∈ X(Q)p is defined.
Concretely, it is proved that there exists a linear operator γ : X(Q)p → L∞(∂Q)
such that

‖γ(z)‖∞ ≤ ‖z‖∞

γ(z)(x) = z(x) · νQ(x) for all x ∈ ∂Q if z ∈ C1(Q,RN ),

where νQ(x) denotes the outer unit normal at x ∈ ∂Q. We shall denote γ(z)(x) by
z · νQ(x). Moreover, the following Green’s formula, relating the function z · νQ and
the measure (z,Dw), for z ∈ X(Q)p and w ∈ BV (Q) ∩ Lp′(Q), is established:∫

Q

w div(z) dx +
∫

Q

(z,Dw) =
∫

∂Q

z · νQw dHN−1.(2.10)
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For any p ≥ 1, let us define the space

Ep(Q) = {(u, z) : u ∈ BV (Q), z ∈ X(Q)p, |z| ≤ 1, (z,DTk(u)) = |DTk(u)|, ∀k > 0}.

Since BV (Q) ⊆ LN/(N−1)(Q), if p ≥ N , then

Ep(Q) = {(u, z) : u ∈ BV (Q), z ∈ X(Q)p, |z| ≤ 1, (z,Du) = |Du|}.

We may define the corresponding space if we require that z ∈ L∞(Q,RN ) and div(z)
is a finite Radon measure in Q, but this space, more adapted to the decription of
images will not be used in the sequel.

2.1. Definition of the operator div ( Du
|Du| ) with Neumann type boundary

conditions. Assume that Ω is an open bounded set whose boundary is of class C1.
Let g ∈ L∞(∂Ω) be such that ‖g‖∞ < 1. Let Tk(r) = [k − (k − |r|)+]sign0(r),
k ≥ 0, r ∈ R. Later we shall need to consider a more general set of truncature
functions, concretely, the set P of all nondecreasing Lipschitz-continuous fuctions
p : R → R, such that p′(s) ∈ {0, 1} and {r ∈ R : p′(r) = 1} = ∪m

j=1]aj , bj [,
a1 < b1 < a2 < . . . < am < bm.

We need to consider the function space

TBV (Ω) := {u ∈ L1(Ω) : Tk(u) ∈ BV (Ω), ∀ k > 0}.

Notice that the function space TBV (Ω) is closely related with the space GBV (Ω) of
generalized functions of bounded variation introduced by E. Di Giorgi and L. Ambro-
sio ([30], see also [2]).

We shall define the operator div ( Du
|Du| ) with Neumann type boundary conditions

in the space L1(Ω). For that we shall use the graph notation, usual in the theory of
accretive operators [18],[17]. Let B be the following operator in L1(Ω)× L1(Ω):

(u, v) ∈ B ⇐⇒ u, v ∈ L1(Ω), u ∈ TBV (Ω)

and there exists z ∈ X(Ω)1 such that:

−v = div z in D′(Ω),(2.11)

z ·DTk(u) = |DTk(u)| ∀k > 0,(2.12)

z · νΩ = g HN−1 − a.e.(2.13)

Let us define

B(1,p) = B ∩ (L1(Ω)× Lp(Ω)) and Bp = B ∩ (Lp(Ω)× Lp(Ω)).

Note that, since BV (Ω) ⊆ Lp(Ω) for all p ≤ N
N−1 , we have that B(1,p) ∩ (BV (Ω) ×

Lp(Ω)) = Bp ∩ (BV (Ω) × Lp(Ω)). We shall prove below that B(1,p) and Bp are
completely accretive.

The domain of B(1,p), denoted by DomB(1,p) is the set of functions of L1(Ω) such
that there is a function v ∈ Lp(Ω) such that (u, v) ∈ B(1,p). Let B(1,p)u := {v ∈
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Lp(Ω) : (u, v) ∈ B(1,p)}, if u ∈ DomB(1,p), otherwise B(1,p)u = ∅. In a similar way we
define the domain of Bp and Bpu. It follows easily from the definition that the sets
B(1,p)u, and Bpu are convex for any u ∈ L1(Ω), respectively, for any u ∈ Lp(Ω). As
a consequence of Proposition 2.2, the sets B(1,p)u, and Bpu are closed in L1(Ω) and
Lp(Ω), respectively. Let ω ∈ C(Ω), ω(x) > 0 for all x ∈ Ω. Let us consider the space
Lp(Ω, ω) = Lp(Ω), endowed with the norm

‖u‖p,ω =
(∫

Ω

|u(x)|pω(x) dx
)1/p

.

Let u ∈ DomB(1,p). Then, if p > 1, there is a unique vector v ∈ B(1,p)u of minimal
norm in Lp(Ω, ω). We denote this vector by Bω

(1,p)u. In a similar way we define Bω
p u

for any u ∈ DomBp.

Let us recall the following result whose proof can be found in [15].
Proposition 2.1. Let g ∈ L∞(∂Ω), ‖g‖∞ < 1. Let Φ : L2(Ω) → (−∞,+∞] be

given by

Φ(u) =


∫
Ω
|Du| −

∫
∂Ω

gu if u ∈ BV (Ω) ∩ L2(Ω)

+∞ if u ∈ L2(Ω) \ (BV (Ω) ∩ L2(Ω)).

Then ∂Φ = B2.
We note that the functional Φ is lower semicontinuous [37] (this result is also true

if ‖g‖∞ = 1 [57]).

Recall that an operator A in Lp(Ω) is called completely accretive if∫
Ω

(v2 − v1)p(u2 − u1) dx ≥ 0, for any (u1, v1), (u2, v2) ∈ A and any p ∈ P.

If A is completely accretive, then it is also accretive in Lp(Ω), i.e.∫
Ω

(v2 − v1)βp(u2 − u1) dx ≥ 0, for any (u1, v1), (u2, v2) ∈ A,

where βp(r) = |r|p−1sign0(r), sign0(r) = sign(r) if r 6= 0, sign0(0) = 0.

Proposition 2.2. The operator Bp is closed and completely accretive in Lp(Ω).
Moreover, if (un, vn) ∈ Bp, un → u in L1(Ω), vn → v weakly in L1(Ω), then (u, v) ∈
Bp. Similar assertions hold for B1,p. In particular, Bpu (resp. B(1,p)u) is closed in
Lp(Ω) for any u ∈ DomBp (resp. u ∈ DomB(1,p)).

Proof. Let (u1,−div θ1), (u2,−div θ2) ∈ Bp, p(r) ∈ P. Then

−
∫

Ω

(div θ1 − div θ2)p(Tk(u1)− Tk(u2)) dx =

=
∫

Ω

(θ1 − θ2) ·Dp(Tk(u1)− Tk(u2))−
∫

∂Ω

(θ1 · νΩ − θ2 · νΩ)p(Tk(u1)− Tk(u2))

=
∫

Ω

(θ1 − θ2) ·Dp(Tk(u1)− Tk(u2)).

Since θ1 ·DTk(u1) = |DTk(u1)|, θ2 ·DTk(u2) = |DTk(u2)|, |θ1 ·DTk(u2)| ≤ |DTk(u2)|,
and |θ2 ·DTk(u1)| ≤ |DTk(u1)|, and following the steps in [7] we deduce that the right
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hand side of the above expression is positive (see also the proof of Proposition 5.11 for
the details in a similar computation). Letting k →∞ we obtain that Bp is completely
accretive. The same proof gives us that B(1,p) is completely accretive.

Now, let (un, vn) ∈ Bp be such that un → u in L1(Ω), vn → v weakly in L1(Ω).
Let fn = un + vn → f = u + v weakly in L1(Ω). Let θn ∈ L∞(Ω, RN ), |θn| ≤ 1 be
such that θn · DTk(un) = |DTk(un)|, θn · νΩ = g, and vn = −div θn. By extracting
a subsequence, if necessary, we may assume that θn → θ weakly∗ in L∞(Ω, RN ) and
v = −div θ. Let ϕ be a smooth function in Ω, continuous up to ∂Ω. We multiply
un − div θn = fn by ϕ and integrate by parts to obtain∫

Ω

unϕ +
∫

Ω

θn · ∇ϕ−
∫

∂Ω

θn · νΩϕ =
∫

Ω

fnϕ.(2.14)

Letting n →∞ and using that θn · νΩ = g, we obtain∫
Ω

uϕ +
∫

Ω

θ · ∇ϕ−
∫

∂Ω

gϕ =
∫

Ω

fϕ.(2.15)

Integrating by parts the second term of the above equality, we get∫
Ω

uϕ−
∫

Ω

div θ ϕ +
∫

∂Ω

(θ · νΩ − g)ϕ =
∫

Ω

fϕ.(2.16)

Now, using equation u− div θ = f , it follows that∫
∂Ω

(θ · νΩ − g)ϕ = 0

for all test functions ϕ. This implies that

θ · νΩ = g on ∂Ω.

To prove that θ ·DTk(u) = |DTk(u)|, we observe that∫
Ω

|DTk(u)| −
∫

∂Ω

gTk(u) ≤ lim inf
n

∫
Ω

|DTk(un)| −
∫

∂Ω

gTk(un)

= lim inf
n

∫
Ω

θn ·DTk(un)−
∫

∂Ω

gTk(un)

= lim inf
n

−
∫

Ω

div θn Tk(un) +
∫

∂Ω

θn · νΩTk(un)−
∫

∂Ω

gTk(un)

= lim inf
n

−
∫

Ω

div θn Tk(un) = −
∫

Ω

div θ Tk(u)

=
∫

Ω

θ ·DTk(u)−
∫

∂Ω

gTk(u) ≤
∫

Ω

|DTk(u)| −
∫

∂Ω

gTk(u).

We conclude that θ·DTk(u) = |DTk(u)| for all k > 0. We have proved that (u, v) ∈ Bp.
The proofs for B(1,p) are the same and we omit the details.

3. Joint interpolation of vector fields and gray values. Let u0 : D → R
be an image defined on a domain D of RN , N ≥ 2, which we may suppose to be
a hyperrectangle. Let Ω, Ω̃ be two open bounded domains in RN with Lipschitz
boundary and suppose that Ω̃ ⊂⊂ Ω ⊂⊂ D. To simplify our presentation we shall
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Fig. 3.1. The hole and the band

assume that Ω does not touch the boundary of the image domain D. Let B := Ω \ Ω̃.
The set B will be called the band around Ω̃ (see Figure 3.1). Suppose that a function
u0 is given in D \ Ω̃ which, for the moment being, we shall assume to be smooth (later
we shall assume that u0 is of bounded variation, i.e., u0 ∈ BV (D \ Ω̃)). Let θ0 be the
vector field of directions of the gradient of u0 on D \ Ω̃, i.e., θ0 is a vector field with
values in R2 satisfying θ0(x) · ∇u0(x) = |∇u0(x)| and |θ0(x)| ≤ 1. We shall assume
that θ0(x) has a trace on ∂Ω.

We pose the image disocclusion problem in the following form: Can we extend
(in a reasonable way) the pair of functions (u0, θ0) from the band Ω \ Ω̃ to a pair of
functions (u, θ) defined inside Ω̃ ? Of course, we will have to precise what we mean by
a reasonable way. We shall discuss and analyze a variant of the variational formulation
of the disocclusion problem introduced in [12] and study its approximation with more
regular functionals which have a direct interpretation.

The data u0 is given on the band B and we should constrain the solution u to
be near the data on B. The vector field θ should satisfy θ · νΩ = θ0 · νΩ, |θ| ≤ 1 on
Ω and should be related to u by the constraint θ ·Du = |Du|, i.e., we should impose
that θ is related to the vector field of directions of the gradient of u. The condition
|θ(x)| ≤ 1 should be interpreted as a relaxation of this. Indeed, it may happen that
θ(x) = 0 (flat regions) and then we cannot normalize the vector field to a unit vector
(the ideal case would be that θ = Du

|Du| , u being a smooth function with Du(x) 6= 0
for all x ∈ Ω). Finally, we should impose that the vector field θ0 in D \Ω is smoothly
continued by θ inside Ω. Note that if θ represents the directions of the normals to
the level lines of u, i.e., of the hypersurfaces u(x) = λ, λ ∈ R, then div(θ) represents
its mean curvature. We shall impose the smooth continuation of the levels lines of u0

inside Ω by requiring that div θ ∈ Lp(Ω).

After this discussion, we can make precise the functional analytic model for u and
θ. We shall assume that u0 ∈ BV (D \ Ω̃), and θ0 : D \ Ω̃ → RN is the vector field
of directions of the gradient of u0, i.e., a vector field θ0 ∈ L∞(D \ Ω̃, RN ), such that
|θ0| ≤ 1 and

div θ0 ∈ Lp(B)

θ0 ·Du0 = |Du0| as measures in B (therefore, a.e.).
(3.1)

We shall assume in the rest of the paper that Ω is a domain of class C1. Let g0 = θ0·νΩ.
We shall assume that ‖g0‖∞ < 1. This assumption will be used in Section 5 to prove
the convergence (after subsequence extraction) of the minima of the functionals (1.10)
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to a minimum of the functional in problem (1.9). Notice that it does not permit the
level lines of the topographic map of the image to be tangent to the boundary of the
hole Ω̃, and to ensure it we may slightly change the topographic map by replacing the
level lines near the tangent one by a constant gray level, which gives us more freedom
to choose the vector field θ0.

We define the space

Ep(Ω, B, θ0) = {(u, θ) ∈ Ep(Ω), u|B ∈ Lq(B), θ · νΩ = g0 on ∂Ω }

If (u, θ) ∈ Ep(Ω, B, θ0) we define

Ep(u, θ) =
∫

Ω̃

|div(θ)|p(γ + β|∇k ∗ u|)dx

+α

∫
Ω̃

|Du| − α

∫
∂Ω

g0u + λ

∫
B

|u− u0|q dx
(3.2)

where γ, α, λ > 0, β ≥ 0, p > 1, q ≥ 1, and k denotes a regularizing kernel of class C1

such that k(x) > 0 a.e..

We propose to interpolate the pair (θ, u) in Ω by solving the minimization problem

Minimize Ep(u, θ)

(u, θ) ∈ Ep(Ω, B, θ0)
(3.3)

We shall prove that this functional is coercive and admits a minimum in the class
of functions described above if p > 1. The case p = 1 is is particularly interesting
but is not covered by our results. The functional can be interpreted as a formulation
of the principle of good continuation and amodal completion as formulated in the
Gestalt’s theory of vision. We shall prove that the minima of functionals (1.10)
converge (modulo a subsequence) to a minimum of (3.2). Before going into the proofs
let us discuss in more detail the main features of the model.

Remark. Observe that for any 1 < p < ∞ we have

(u, θ) ∈ Ep(Ω, B, θ0) if and only if (u,−div θ) ∈ B(1,p), u ∈ BV (Ω), u|B ∈ Lq(B)

and, if p ≤ N
N−1 , we may write Bp instead of B(1,p).

One of the key tricks above is the band around the hole. The band is of local
character but in principle it could be extended to all the known part of the image.
Obviously, what happens at distant parts can be independent or not from what hap-
pens at the hole, but, in our construction below, we suppose that only a narrow band
around the hole influences what happens inside the hole. Could we fill-in the hole
without the band ? To discuss this suppose that we are given the image of Figure
3.2, left, which is a gray band on a black background partially occluded by a square
Ω̃. We suppose that the sides of the square hole Ω̃ are orthogonal to the level lines
of the original image. In these conditions, the normal component of the vector field
θ0 outside Ω̃ is null at ∂Ω̃. Thus if the boundary data is just θ0 · νΩ̃|∂Ω̃, we would
have that θ0 · νΩ̃|∂Ω̃ = 0. In particular, the vector field θ = 0 satisfies this condition.
If we are not able to propagate θ inside Ω̃ this may become an unpleasant situation,
since this would mean that we do no propagate the values of u at the boundary. If
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Fig. 3.2. Left: a strip with a hole. Middle: image disocclusion obtained using Total Variation.
Right: Image disocclusion obtained using functional (3.2).

we write the functional (3.2) with θ = 0, α = 1, it turns out to be the Total Variation
[61]. The decision of extending the gray band or filling-in the hole with the black
gray level would be taken as a function of the perimeter of the discontinuities of the
function in the hole. Then the result of interpolating Figure 3.2, left, using Total
Variation would be that of Figure 3.2, middle, and not the one in Figure 3.2, right,
because the interpolating lines in Figure 3.2, middle, are shorter than the ones in
Figure 3.2, right. To overcome this situation we introduce the band around the hole.
The introduction of the band permits us to effectively incorporate in the functional
the information given by the data u0 and the vector field θ outside Ω̃. In Figure 3.2,
middle, we display the result of the interpolation with θ = 0 on Ω̃. In Figure 3.2,
right, we display the result of the interpolation using (3.2), which takes into account
the band B and computes the vector field θ in Ω.

The following remarks contain heuristic arguments which may help to understand
our choice.

Remarks.
1. If u is the characteristic function of the region enclosed by a curve C then

the terms

β

∫
Ω

|div(θ)|p|Du|+ α

∫
Ω

|Du|(3.4)

are related to
∫

C
(α + β|κ|p)ds, where κ is the Euclidean curvature (of the

level-sets). If p = 2, this coincides with Euler’s elastica,∫
C

(α + βκ2)ds, α, β > 0.(3.5)

Euler’s elastica (3.5) was proposed in [59] as a technique for removing occlu-
sions with the goal of image segmentation, since this criterion yields smooth,
short, and not too curvy curves. In terms of characteristic functions, Euler’s
elastica can be written as∫

|∇u|

(
α + β

∣∣∣∣div

(
∇u

|∇u|

)∣∣∣∣2
)

.(3.6)

In [14], it was shown that the elastica functional is not lower semicontinuous.
As shown in [4], the functional proposed by Masnou and Morel [52, 53, 54]



14 C. BALLESTER , V. CASELLES AND J. VERDERA

can be interpreted as a relaxation of it, since it integrates functionals like the
elastica along the level lines of the function u. Our functional can be also
considered as a relaxed formulation of the energy of the elastica. For that,
we introduced θ as a independent variable, and we tried to couple it to u
by imposing that θ ·Du = |Du|. This restriction could be also incorporated
as a penalization term. Finally, let us say that for mathematical reasons we
have convolved the Du term of (3.4) to be able to prove the existence of a
minimum for (3.2). From a theoretical point of view, this may invalidate our
previous comments. But, from a practical point of view, it gives a weight to
the curve of discontinuities of the image.

2. The constant γ has to be > 0. Otherwise we do not get an Lp bound on
div(θ). Both coefficients γ and β are required to be > 0 (even if the existence
of minimizers can be proved for β = 0). Indeed, in a heuristic way, if we do
not compute θ in a proper way, in an image like Figure 3.2, θ could be zero
except on some curves. Then θ = 0 a.e. on B (or on Ω) and a term like∫

Ω

|div(θ)|pdx(3.7)

would produce a null value since div(θ) = 0. On the other hand, the term
corresponding to the coefficient β > 0 would integrate a power of the cur-
vature on the level line corresponding to the boundary of the object and it
would guarantee that the functional is not null.

3. Given the image u0, to construct a vector field θ0 in a Lipschitz domain Q
such that div(θ0) ∈ Lp(Q) and θ0 ·Du0 = |Du0| we may use the equation

∂u

∂t
= div

(
Du

|Du|

)
in (0,∞)×Q

u(0, x) = u0(x) for x ∈ Q,

(3.8)

with Neumann or Dirichlet boundary conditions. As it is shown in [7, 8],
this equation permits a regularization of the vector field of directions of the
gradient of u, i.e., there is a vector field z, |z| ≤ 1, such that ut = div(z)
and

∫
Q

z · Du =
∫

Q
|Du|. Moreover, for each t > 0, div(z(t)) ∈ Lp(Q) if

u0 ∈ Lp(Q) for all p ≥ 1. This regularized vector field has a normal trace at
the boundary of Q.

4. We have incorporated the constraint that u is near the data u0 in B via the
penalty term

∫
B
|u− u0|q. This type of approach was followed in the work of

T. Chan and J. Shen mentioned before [26]. Similarly, we could add a penalty
term to constraint θ to be near θ0 inside B.

5. In practice, functional (3.2) is used to interpolate shapes, i.e., to interpolate
level sets. The image is decomposed into upper level sets [u0 ≥ λ], which are
interpolated using (3.2) to produce the level sets Xλu of a function u, which
is reconstructed inside Ω by using the reconstruction formula

u(x) = sup{λ : x ∈ Xλu}.

To guarantee that the reconstructed level sets correspond to the level sets of
a function u, they should satisfy that Xλ+1u ⊆ Xλu. In practice, we force
our solution to satisfy this property.
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Fig. 3.3. Left: a double cross with holes. Right: reconstructed image using functional (3.2).
Observe that due to our choice of upper level sets to decompose and reconstruct the image, the white
bar goes above the black ones.

In principle, our functional (3.2) could be used directly to interpolate func-
tions. But, discontinuities of the image have a contribution to the energy
which is proportional to the jump. This gives different weights to discontinu-
ities of different sizes and, as a consequence, they are not treated in the same
manner. This is not reasonable if we want to interpolate the shapes of the
image, independently of their contrast. When taking level sets, we treat all
shapes equally, and the parameters of the functional should only weight geo-
metric quantities (like length, total curvature) and decide which interpolation
is taken as a function of them. This approach is less diffusive than directly
interpolating the gray levels. Theorem 4.1 in Section 4 proves the existence of
minimizers for our model and can be applied to both cases, binary and gray
level images. In Section 5 we shall approximate (3.2) by functionals (1.10)
which have a direct geometric interpretation.

6. The choice made in Remark 5 of decomposing the image u0 into upper level
sets, interpolating them and reconstructing the function u, introduces a lack
of symmetry. Indeed, we are giving more weight to upper level sets than to
lower level sets. This can be seen in Figure 3.3. Figure 3.3, left, displays
the image to be interpolated. It is clear that several reasonable solutions
are possible and no one of them is preferable to the others. The choice we
made gives Figure 3.3, right, as solution, favoring that the object whose level
is 210 goes above the object whose level is 0. But, in that case, the “true”
information is lacking and we selected one of the possible reasonable solution.

4. Existence of minimizers. Let us first recall a couple of inequalities that we
shall use at several places below. We are assuming that Ω is an open bounded set in
RN such that ∂Ω is of class C1, and g ∈ L∞(Ω) with ‖g‖∞ < 1.

For x ∈ ∂Ω we define

q(x) = lim sup
r→0+

{∫
∂Ω

χA dH1

P (A,Ω)
: A ⊆ B(x, r), |A| > 0

}
.(4.1)

Observe that, since ∂Ω is of class C1, we have q(x) = 1 for all x ∈ ∂Ω [37].

Since ‖ gq ‖∞=: 1− 2σ < 1, there is a constant c depending on σ, g, Ω, such that∣∣∣∫
∂Ω

gw
∣∣∣ ≤ (1− σ)

∫
Ω

|Dw|+ c

∫
Ω

|w|(4.2)
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for all w ∈ BV (Ω) ([37], Lemma 1.2).

On the other hand, by [37], Lemma 2.2, there is some ε0 > 0 such that for each
δ > 0 we may find a constant c(δ) > 0 such that∣∣∣∫

∂Ω

gw
∣∣∣ ≤ (1− ε0)

∫
Sδ

|Dw|+ c(δ)
∫

Sδ

|w|(4.3)

for all w ∈ BV (Ω), where Sδ = {x ∈ Ω : d(x, ∂Ω) < δ}.

Theorem 4.1. If p > 1, q ≥ 1, γ, α, λ > 0, and β ≥ 0, then there is a minimum
(u, θ) ∈ Ep(Ω, B, θ0) for the problem (3.3).

Proof. Let (un, θn) be a minimizing sequence for Ep(u, θ) in Ep(Ω, B, θ0). Since
Ep(un, θn) is bounded, we obtain that∫

Ω

|div(θn)|p,
∫

Ω

|Dun| −
∫

∂Ω

gun, and
∫

B

|un − u0|qdx

are bounded. Then, using (4.3), we have∫
Ω

|Dun| ≤ C +
∫

∂Ω

gun ≤ C + (1− ε0)
∫

Sδ

|Dun|+ c(δ)
∫

Sδ

|un|

for some constants C, c(δ), ε0 > 0. Taking δ small enough so that Sδ ⊆ B we have

ε0

∫
Ω

|Dun| ≤ C + c(δ)
∫

B

|un| ≤ C ′

for some constant C ′ > 0. Since |θn| ≤ 1, we have that θn is weakly∗ relatively
compact in L∞(Ω, RN ) and we may assume that θn → θ weakly∗ in L∞(Ω, RN ), and
in div θn → div θ weakly in Lp(Ω). On the other hand, since

∫
Ω
|Dun|, and

∫
B
|un−u0|

are bounded, by extracting a subsequence we may assume that un converges to some
function u ∈ BV (Ω) in Lr(Ω) for all r ∈ [1, N

N−1 ). In particular, we have that
∇k ∗ un → ∇k ∗ u uniformly in Ω, and we obtain∫

Ω

|div(θ)|p(γ + β|∇k ∗ u|)dx ≤ lim inf
n

∫
Ω

|div(θn)|p(γ + β|∇k ∗ un|)dx,

∫
Ω

|Du| −
∫

∂Ω

g0u ≤ lim inf
n

∫
Ω

|Dun| −
∫

∂Ω

g0un,

and ∫
B

|u− u0|qdx ≤ lim inf
n

∫
B

|un − u0|q.

On the other hand, by Proposition 2.2, we know that (u,−div θ) ∈ B(1,p), hence
(u, θ) ∈ Ep(Ω, B, θ0). Thus, collecting all these facts, we have proved that Ep(u, θ) ≤
lim infn Ep(un, θn) and the pair (u, θ) is a minimum of Ep in Ep(Ω, B, θ0).

Note that if p > N , we have θ ·Du = |Du|.

5. Approximation of the functional (3.2). Our purpose in this Section is to
prove that from any sequence {uε}ε of mimima of the the family of functionals (1.10)
(as ε varies) we may extract a subsequence converging to a minimum of the functional
(3.2).
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5.1. The operator div ∇u√
ε2+|∇u|2

in Lp. We shall follow the techniques intro-

duced in [10, 9]. We shall need the function space TBV (Ω) and to give a sense to the
Radon-Nikodym derivative ∇u (with respect to the Lebesgue measure) of a function
u ∈ TBV (Ω). In [16] a similar problem is treated to give sense to the derivative of
functions for which their truncatures are in a Sobolev space (in their notation, for
functions in T 1,p

loc (Ω), p ≥ 1). Using chain’s rule for BV-functions (see for instance
[2]), with a similar proof to the one given in Lemma 2.1 of [16], we obtain the following
result.

Lemma 5.1. For every u ∈ TBV (Ω) there exists a unique measurable function
v : Ω → RN such that

∇Tk(u) = vχ{|u|<k} λN − a.e(5.1)

Thanks to this result we define ∇u for a function u ∈ TBV (Ω) as the unique
function v which satisfies (5.1). This notation will be used throughout in the sequel.

Let aε(ξ) = ξ√
ε2+|ξ|2

, hε(ξ) = aε(ξ) · ξ, fε(ξ) =
√

ε2 + |ξ|2, ξ ∈ RN . If u ∈
TBV (Ω) we may define aε(∇u). Observe that ‖ aε(∇u) ‖∞≤ 1.

Let p ≥ 1, ε > 0. Recall that we are assuming that Ω is an open bounded subset
of RN with C1 boundary. Let g ∈ L∞(∂Ω). Assume that ‖ g ‖∞< 1. Let us define
the operator Aε,p

g on Lp(Ω)× Lp(Ω):

(u, v) ∈ Aε,p
g ⇐⇒ u, v ∈ Lp(Ω), u ∈ TBV (Ω)

and aε(∇u) ∈ X(Ω)p satisfies :

−v = div aε(∇u) in D′(Ω),(5.2)

aε(∇u) ·Dsp(u) = |Dsp(u)| ∀p ∈ P,(5.3)

aε(∇u) · νΩ = g HN−1 − a.e.(5.4)

The domain of Aε,p
g is the set of functions u ∈ Lp(Ω) such that there is a function

v ∈ Lp(Ω) such that (u, v) ∈ Aε,p
g . Let Aε,p

g u := {v ∈ Lp(Ω) : (u, v) ∈ Aε,p
g }.

Lemma 5.2. Let u ∈ DomAε,p
g . Then we have

fε(Dp(u)) =
ε2√

ε2 + |∇p(u)|2
+ aε(∇u) ·Dp(u)(5.5)

for any p(r) ∈ P.

To prove Lemma 5.2, let us prove first the following Lemma.
Lemma 5.3. Let Q ⊆ RN be an open set. Let u ∈ BV (Q), aε(∇u) = ∇u√

ε2+|∇u|2
.

Then aε(∇u) is characterized as the unique vector field θε ∈ L∞(Q,RN ) such that
‖θε‖∞ ≤ 1 and √

ε2 + |∇u|2 − ε
√

1− |θε|2 = θε · ∇u a.e.(5.6)
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Lemma 5.3 follows as a consequence of the corresponding scalar result.

Lemma 5.4. Let f(v) =
√

ε2 + |v|2, v ∈ RN . If f∗(ξ) = sup{< v, ξ > −f(v) :
v ∈ RN}, ξ ∈ RN , then f∗(v) = −ε

√
1− |ξ|2 if |ξ| ≤ 1, f∗(ξ) = +∞ if |ξ| > 1. We

have
(i) if v ∈ RN and ξ = v√

ε2+|v|2
then

f(v) + f∗(ξ) = ξ · v(5.7)

(ii) if ξ, v ∈ RN , |ξ| ≤ 1, satisfy (5.7) then ξ = v√
ε2+|v|2

.

Proof. We leave the proof of (i) and the computation of f∗ as an exercice. If
v, ξ ∈ RN satisfy (5.7) then f∗(ξ) < ∞ and, thus, |ξ| ≤ 1. If v = 0, then ξ = 0. Thus
we may assume that v 6= 0. Let Pv = v⊗v

|v|2 . Observe that

f(v) + f∗(Pv(ξ)) ≤ f(v) + f∗(ξ) =< ξ, v >=< Pv(ξ), v >≤ f(v) + f∗(Pv(ξ))

the last inequality being always true. Thus f∗(Pv(ξ)) = f∗(ξ), and we obtain that
|Pv(ξ)| = |ξ|, which in turn implies that

| < ξ, v > | = |ξ||v|.

If ξ = 0, then v = 0. Thus we may assume that ξ 6= 0. Then we deduce that ξ = λv,
λ 6= 0. Introducing this value in (5.7) we obtain

λ = ± 1√
ε2 + |v|2

.

Finally, a direct computation shows that only the positive sign permits to satisfy
(5.7).

Proof of Lemma 5.2. Let p(r) ∈ P, and denote A = {r : p′(r) = 1}, B = R \ A.
Recall that fε(Dp(u)) =

√
ε2 + |∇p(u)|2 + |Dsp(u)|. Using (5.6) we may write√

ε2 + |∇p(u)|2 =
√

ε2 + p′(u)|∇u|2 =
√

ε2 + |∇u|2χA(u) + εχB(u)

= ε
√

1− |aε(∇u)|2χA(u) + aε(∇u) · ∇u p′(u) + εχB(u)

= ε
√

1− |aε(∇u)|2χA(u) + εχB(u) + aε(∇u) · ∇p(u)

=
ε2√

ε2 + |∇p(u)|2
+ aε(∇u) · ∇p(u).

Now, taking into account (5.3) we have

fε(Dp(u)) =
√

ε2 + |∇p(u)|2 + |Dsp(u)|

=
ε2√

ε2 + |∇p(u)|2
+ aε(∇u) · ∇p(u) + aε(∇u) ·Dsp(u)

=
ε2√

ε2 + |∇p(u)|2
+ aε(∇u) ·Dp(u).
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Lemma 5.5. Let (un, vn) ∈ Aε,p
g be such that un → u in L1(Ω), vn is bounded in

L1(Ω), and

‖Dp(un)‖(5.8)

is bounded for all p ∈ P. Assume that aε(∇un) → aε(∇u) in the weak∗ topology of
L∞(Ω, RN ). Then

∇un → ∇u a.e. in Ω.(5.9)

Proof. Observe that we have the the following strict monotonicity condition on
aε:

(aε(η)− aε(ξ)) · (η − ξ) > 0 if ξ 6= η.(5.10)

Let us prove that {∇un} is a Cauchy sequence in measure. To do that, we follow
the same technique as in [22] (see also [10]). Let t, ε > 0. For a > 1, we set

C(x, a, t) := inf{(aε(ξ)− aε(η)) · (ξ − η) : ‖ξ‖ ≤ a, ‖η‖ ≤ a, ‖ξ − η‖ ≥ t}.

Having in mind that the function ξ 7→ aε(ξ) is continuous for almost all x ∈ Ω, and
the set {(ξ, η) : ‖ξ‖ ≤ a, ‖η‖ ≤ a, ‖ξ − η‖ ≥ t} is compact, the infimum in the
definition of C(x, a, t) is a minimum. Hence by (5.10), it follows that

C(x, a, t) > 0 for almost all x ∈ Ω.(5.11)

For n, m ∈ N , and any k > 0, we have

{‖∇un −∇um‖ > t} ⊂ {‖∇Taun‖ ≥ a2} ∪ {‖∇Taum‖ ≥ a2}

∪{|un| ≥ a} ∪ {|um| ≥ a} ∪ {|un − um| ≥ k2} ∪ {C(x, a2, t) ≤ k}

∪{|un − um| < k2, |un| < a, |um| < a,C(x, a2, t) ≥ k,

‖∇Taun‖ ≤ a2, ‖∇Taum‖ ≤ a2, ‖∇un −∇um‖ > t}.

(5.12)

Since {un} is bounded in L1(Ω) we can choose a large enough in order to have

λN

(
{|un| ≥ a} ∪ {|um| ≥ a}

)
≤ ε

5
for all n, m ∈ N.(5.13)

Similarly, by (5.8), we can choose a large enough in order to have

λN

(
{‖∇Taun‖ ≥ a2} ∪ {‖∇Taum‖ ≥ a2}

)
≤ ε

5
for all n, m ∈ N.(5.14)

Fixing a satisfying (5.13) and (5.14), by (5.11), taking k small enough, we have

λN

(
{C(x, a2, t) ≤ k}

)
≤ ε

5
.(5.15)

On the other hand, since vn = −div aε(∇un), using Green’s formula, for any j > 0
we have∫

Ω

(aε(∇un)−aε(∇um), DTr(Tj(un)−Tj(um))) =
∫

Ω

(vn−vm)Tr(Tj(un)−Tj(um)) dx
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+
∫

∂Ω

(aε(∇un) ·νΩ−aε(∇um) ·νΩ)Tr(Tj(un)−Tj(um)) dHN−1 ≤ 2Qr, ∀ n, m ∈ N

where Q denotes a bound for ‖vn‖1. Now,∫
Ω

(aε(∇un)− aε(∇um), DTr(Tj(un)− Tj(um)))

=
∫

Ω

(aε(∇un)− aε(∇um)) · ∇Tr(Tj(un)− Tj(um)) dx

+
∫

Ω

(aε(∇un)− aε(∇um)) ·DsTr(Tj(un)− Tj(um)).

Moreover, by chain’s rule for BV functions [2], there exists a positive function η such
that ∫

Ω

(aε(∇un)− aε(∇um)) ·DsTr(Tj(un)− Tj(um))

=
∫

Ω

η[(aε(∇un)− aε(∇um)) ·Ds(Tj(un)− Tj(um))]

=
∫

Ω

η[|DsTj(un)| − aε(∇um) ·DsTj(un) + |DsTj(um)| − aε(∇um) ·DsTj(um)] ≥ 0,

the last term being positive because, by (2.9), we have |DsTj(un)| − aε(∇um) ·
DsTj(un) ≥ 0 and the analogous inequality with n and m interchanged. Therefore,
we obtain∫

Ω

(aε(∇un)− aε(∇um)) · ∇Tr(Tj(un)− Tj(um)) dx ≤ 2Qr ∀j > 0.(5.16)

If

S := {|un − um| < k2, |un| < a, |um| < a, C(x, a2, t) ≥ k,

‖∇Taun‖ ≤ a2, ‖∇Taum‖ ≤ a2, ‖∇un −∇um‖ > t},

since ∇Taun = ∇un a.e in S, by (5.16), we get

λN (S) ≤

≤ λn({|un − um| < k2, |un| < a, |um| < a, (aε(∇un)− aε(∇um)) · (∇un −∇um) ≥ k}

≤ 1
k

∫
|un−um|<k2

(aε(∇un)− aε(∇um)) · (∇Ta(un)−∇Ta(um)) dx ≤ 2Qk.

Hence, for k small enough, we have

λN (S) ≤ ε

5
.(5.17)
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Since a and k have already been choosen, if n0 is large enough, we have for n, m ≥ n0

the estimate λn({|un − um| ≥ k2}) ≤ ε
5 . Now, using (5.12), (5.13), (5.14), (5.15) and

(5.17), it follows that

λN ({‖∇un −∇um‖ > t}) ≤ ε for n, m ≥ n0.

Consequently, {∇un} is a Cauchy sequence in measure. Then, up to extraction of a
subsequence, we have convergence a.e., and we can say that there exists a measurable
function F , such that

∇un → F a.e. in Ω.(5.18)

Now, aε(∇un) ⇀ aε(∇u) in the weak∗ topology of L∞(Ω, RN ), and by (5.18),
aε(∇un) → aε(F ) a.e. in Ω. Hence, aε(F ) = aε(∇u) a.e. in Ω. Therefore, by
(5.10), we deduce that

∇un → ∇u a.e. in Ω.

Proposition 5.6. The operator Aε,p
g is closed in Lp(Ω)× Lp(Ω). Even more, if

(un, vn) ∈ Aε,p
g and un → u in Lp(Ω) and vn → v weakly in Lp(Ω), then (u, v) ∈ Aε,p

g .
Proof. Let (un, vn) ∈ Aε,p

g be such that un → u in Lp(Ω) and vn → v weakly in
Lp(Ω). Let us prove that (u, v) ∈ Aε,p

g . Since (un, vn) ∈ Aε,p
g , we have aε(∇un) ∈

X(Ω)p satisfying

−vn = div aε(∇un) in D′(Ω),(5.19)

aε(∇un) ·Dsp(un) = |Dsp(un)| ∀ p ∈ P,(5.20)

aε(∇un) · νΩ = g HN−1 − a.e.(5.21)

Then, given p(r) ∈ P, we have∫
Ω

vnp(un) dx =
∫

Ω

(aε(∇un), Dp(un))−
∫

∂Ω

aε(∇un) · νΩp(un) dHN−1

=
∫

Ω

aε(∇un) · ∇p(un) dx +
∫

Ω

|Dsp(un)| −
∫

∂Ω

gp(un) dHN−1.

Applying estimate (4.2) to p(un) we have∫
∂Ω

gp(un) dHN−1 ≤ (1− σ)
∫

Ω

|Dp(un)|+ c

∫
Ω

|p(un)|

for some σ > 0 and some constant c > 0. Since x2√
ε2+|x|2

≥ |x| − ε, we have

‖Dp(un)‖ =
∫

Ω

|∇p(un)| dx +
∫

Ω

|Dsp(un)|

≤
∫

Ω

aε(∇p(un)) · ∇p(un) dx +
∫

Ω

|Dsp(un)|+ ελN (Ω)

≤
∫

Ω

vnp(un) dx +
∫

∂Ω

gp(un) dHN−1 + ελN (Ω)

≤ ‖ p ‖∞‖ vn ‖1 +(1− σ)‖Dp(un)‖+ c‖un‖1 + ελN (Ω).
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Thus

‖Dp(un)‖ ≤ C ∀ n ∈ N,(5.22)

for some constant C. Therefore, p(u) ∈ BV (Ω) for any p(r) ∈ P. On the other hand,
since

‖aε(∇un)‖∞ ≤ 1,

we may assume that aε(∇un) ⇀ z in the weak∗ topology of L∞(Ω, RN ) with ‖z‖∞ ≤
1. Moreover, since vn → v weakly in Lp(Ω), we have that v = −div(z) in D′(Ω). By
the definition of the weak trace on ∂Ω of the normal component of z, it is easy to
see that

aε(∇un) · νΩ ⇀ z · νΩ weakly∗ in L∞(∂Ω),(5.23)

and therefore z · νΩ = g. On the other hand,

lim
n→∞

(∫
Ω

hε(Dp(un))−
∫

∂Ω

gp(un) dHN−1

)
= lim

n→∞

∫
Ω

vnp(un) dx

=
∫
Ω

vp(u) dx = −
∫
Ω

div(z)p(u) =
∫
Ω
(z,Dp(u))−

∫
∂Ω

gp(u) dHN−1.

(5.24)

It is not difficult to prove that

lim
n→∞

∫
Ω

(aε(x,∇un)− aε(x,∇p(un))) · ∇p(u) dx = 0

for all p(r) ∈ P. Consequently,

lim
n→∞

∫
Ω

aε(x,∇p(un)) · ∇p(un) dx =
∫

Ω

z · ∇p(u) dx ∀ p ∈ P.(5.25)

Let us now prove the convergence of the energies. We consider the energy func-
tional Ψg : L1(Ω) → [0,+∞] defined by

Ψg(v) :=


∫

Ω

fε(Dv)−
∫

∂Ω

gv dHN−1 if v ∈ BV (Ω)

+∞ if v ∈ L1(Ω) \BV (Ω).

The functional Ψg is convex. As a consequence of Giusti’s result [37], Proposition 2.1,
if wn ∈ BV (Ω) is bounded in LN/N−1(Ω) and wk → w in L1(Ω), w ∈ BV (Ω), then

Ψg(w) ≤ lim inf
k

Ψg(wk).

Using the convexity of fε we have

Ψg(p(un)) =
∫

Ω

fε(∇p(un)) dx +
∫

Ω

|Dsp(un)| −
∫

∂Ω

gp(un) dHN−1

≤
∫

Ω

fε(∇p(u)) dx +
∫

Ω

aε(∇p(un)) · ∇p(un) dx

−
∫

Ω

aε(∇p(un)) · ∇p(u) dx +
∫

Ω

aε(∇un) ·Dsp(un)−
∫

∂Ω

gp(un) dHN−1
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=
∫

Ω

fε(∇p(u)) dx +
∫

Ω

(aε(∇un), Dp(un))

−
∫

Ω

aε(∇p(un)) · ∇p(u) dx−
∫

∂Ω

gp(un) dHN−1

=
∫

Ω

fε(∇p(u)) dx−
∫

Ω

div(aε(∇un))p(un) dx

−
∫

Ω

aε(∇p(un)) · ∇p(u) dx

Letting n →∞ in the above inequality, and using (5.25), we obtain

lim sup
n→∞

Ψg(p(un)) ≤
∫

Ω

fε(∇p(u)) dx−
∫

Ω

div(z)p(u) dx−
∫

Ω

z · ∇p(u) dx

=
∫

Ω

fε(∇p(u)) dx +
∫

Ω

(z,Dp(u))−
∫

Ω

z · ∇p(u) dx

−
∫

∂Ω

gp(u) dHN−1

=
∫

Ω

fε(∇p(u)) dx +
∫

Ω

z ·Dsp(u)−
∫

∂Ω

gp(u) dHN−1.

Now, according to (2.9), we have∫
Ω

z ·Dsp(u) ≤
∫

Ω

|Dsp(u)|,

hence,

lim sup
n

Ψg(p(un)) ≤
∫

Ω

fε(∇p(u)) dx+
∫

Ω

|Dsp(u)| dx−
∫

∂Ω

gp(u) dHN−1 = Ψg(p(u)),

and, having in mind the lower-semicontinuity result for Ψg, this yields

lim
n→∞

Ψg(p(un)) = Ψg(p(u)).(5.26)

Now, let us prove that

z(x) = aε(∇u(x)) a.e. x ∈ Ω.(5.27)

Let 0 ≤ φ ∈ C1
0 (Ω) and g ∈ C1(Ω). We observe that∫

Ω

φ[(aε(∇un), Dp(un − g))− aε(∇g)Dp(un − g)] =∫
Ω

φ[aε(∇un)− aε(∇g)) · ∇p(un − g)] dx +
∫

Ω

φ[aε(∇un)− aε(∇g)] ·Dsp(un − g)).

Since both terms at the right hand side of the above expression are positive, we have∫
Ω

φ[(aε(∇un), Dp(un − g))− aε(∇g)Dp(un − g)] ≥ 0.

Since ∫
Ω

φ(aε(∇un), Dp(un − g)) = −
∫

Ω

div(aε(∇un))φp(un − g) dx

−
∫

Ω

p(un − g)aε(∇un) · ∇φ dx,
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we get

lim
n→∞

∫
Ω

φ(aε(∇un), Dp(un − g)) =

= −
∫

Ω

div(z)φp(u− g) dx−
∫

Ω

p(u− g)z · ∇φ dx =
∫

Ω

φ(z,Dp(u− g)).

On the other hand,

lim
n→∞

∫
Ω

φaε(∇g)Dp(un − g) =
∫

Ω

φaε(∇g)Dp(u− g).

Consequently, we obtain∫
Ω

φ[(z,Dp(u− g))− aε(∇g)Dp(u− g)] ≥ 0, ∀ 0 ≤ φ ∈ C1
0 (Ω).

Thus the measure (z,Dp(u−g))−aε(∇g)Dp(u−g) ≥ 0. Then its absolutely continuous
part

(z − aε(∇g)) · ∇p(u− g)) ≥ 0 a.e. in Ω.

Hence,

(z − aε(∇g)) · ∇(u− g)) ≥ 0 a.e. in Ω.

Since we may take a countable set dense in C1(Ω), we have that the above inequality
holds for all x ∈ Ω̂, where Ω̂ ⊂ Ω is such that λN (Ω \ Ω̂) = 0, and all g ∈ C1(Ω).
Now, fixed x ∈ Ω̂ and given ξ ∈ RN , there is g ∈ C1(Ω) such that ∇g(x) = ξ. Then

(z(x)− aε(ξ)) · (∇u(x)− ξ) ≥ 0, ∀ ξ ∈ RN .

These inequalities imply (5.27) by an application of the Minty-Browder’s method in
RN . Since v = −div(z) in D′(Ω), by (5.27) we get

v = −div aε(∇u) in D′(Ω).

By (5.21), (5.23) and (5.27), we also have

aε(∇u) · νΩ = g a.e. on ∂Ω.

By Lemma 5.5 we have that ∇un → ∇u a.e.. Then, it is easy to check that
∇p(un) → ∇p(u) a.e.. Then using (5.5), we obtain∫

Ω

hε(Dp(u)) −
∫

∂Ω

gp(u) =
∫

Ω

fε(Dp(u))−
∫

Ω

ε2√
ε2 + |∇p(u)|2

dx−
∫

∂Ω

gp(u)

= lim
n

∫
Ω

fε(Dp(un))−
∫

Ω

ε2√
ε2 + |∇p(un)|2

dx−
∫

∂Ω

gp(un)

= lim
n

∫
Ω

hε(Dp(un))−
∫

∂Ω

gp(un).
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Together with (5.24) this gives∫
Ω

hε(Dp(u)) =
∫

Ω

(z,Dp(u)).(5.28)

Now, (5.28) can be written as∫
Ω

aε(∇u) · ∇p(u) dx +
∫

Ω

|Dsp(u)| =
∫

Ω

z · ∇p(u) dx +
∫

Ω

z ·Dsp(u).(5.29)

Using (5.27), we deduce that∫
Ω

z ·Dsp(u) =
∫

Ω

|Dsp(u)|.(5.30)

Now, since by (2.9) the singular parts satisfy the inequality

|z ·Dsp(u)| ≤ |Dsp(u))| as measures in Ω,(5.31)

using (5.31) and (5.30) we deduce that

z ·Dsp(u) = |Dsp(u)|,(5.32)

which, by (5.27), is the same as aε(∇u) ·Dsp(u) = |Dsp(u)|.

Proposition 5.7. The operator Aε,p
g is an m-accretive operator in Lp(Ω), i.e.,

for any f ∈ Lp(Ω) there is a unique solution u ∈ Lp(Ω) of

u +Aε,p
g u 3 f,(5.33)

and we have the estimate

‖ u− ũ ‖p≤‖ f − f̃ ‖p .(5.34)

for any two solutions u, ũ of (5.33) corresponding to the right hand side f, f̃ ∈ Lp(Ω).
Proof. Since we are assuming that ‖ g ‖∞< 1 and ∂Ω is of class C1, then q(x) = 1

for all x ∈ Ω, and

‖ gq ‖∞< 1(5.35)

holds. This implies that assumptions (1.3) and (1.4) in [37] hold. As a consequence,
if f ∈ W 1,∞(Ω), there is a unique solution u is C2,α(Ω) ([36], [37]) of u− div

Du√
ε2 + |Du|2

= f in Ω

aε(∇u) · νΩ = g in ∂Ω
(5.36)

We shall only need that u ∈ W 1,1(Ω). Then u is a solution of (5.33). The accretivity
estimate (5.34) when f, f̃ ∈ W 1,∞(Ω) follows by a simple integration by parts.

Now, let f ∈ Lp(Ω) and let fn ∈ W 1,∞(Ω) be such that ‖ f − fn ‖p→ 0. Let
(un, vn) ∈ Aε,p

g be such that un + vn = fn. By the accretivity estimate we have that

‖ un − um ‖p≤‖ fn − fm ‖p .
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Thus (un, vn) converge in Lp(Ω)2 to a pair of functions (u, v) ∈ Lp(Ω)2. By Propo-
sition 5.6, we have that (u, v) ∈ Aε,p

g . The accretivity estimate (5.34) for general
f, f̃ ∈ Lp(Ω) follows as in [10] by using the doubling variables technique of Kruzhkov
and refer to it for details (for limit solutions it would be a consequence of the same
estimate for any f, f̃ ∈ W 1,∞(Ω)).

If f ∈ Lp(Ω) with p ≥ 2, we may prove that u ∈ BV (Ω). This implies the
following result.

Proposition 5.8. If p ≥ 2, then (u, v) ∈ Aε,p
g if and only if u, v ∈ Lp(Ω),

u ∈ BV (Ω), and aε(∇u) ∈ X(Ω)p satisfies (5.2),(5.4) and

aε(∇u) ·Dsu = |Dsu|.(5.37)

5.2. Some approximation results. Let g and Φ be as in Proposition 2.1.

Proposition 5.9. Let ρ(x) ∈ C(Ω), ρ(x) ≥ ρ0 > 0, µ > 0. For any f ∈ L2(Ω)
there is a unique solution u ∈ L2(Ω) of the equation

1
ρ(x)

u + µ∂Φ(u) 3 1
ρ(x)

f,(5.38)

in other words, there exists z ∈ L∞(Ω, RN ), ‖z‖∞ ≤ 1 such that z · Du = |Du|,
z · νΩ = g, and

1
ρ(x)

u− µdiv z =
1

ρ(x)
f.(5.39)

Proof. Let us consider the variational problem

min
w∈BV (Ω)

D(w), D(w) :=
∫

Ω

|Dw|+ 1
2µ

∫
Ω

(w − f)2
1

ρ(x)
dx−

∫
∂Ω

gw(5.40)

We observe that the functional D is convex and L1–lower semicontinuous [37]. More-
over, since ‖ g ‖∞< 1 and ∂Ω is of class C1, using the results of Giusti [37] we get
that D is coercive. Therefore it attains its minimum, which is also unique. Hence
u = arg minD if and only if 0 ∈ ∂D(u). Since ∂D(u) = ∂Φ(u) + 1

µρ(x) (u− f), (5.38)
follows. By Proposition 2.1, (5.38) and (5.39) are equivalent.

Proposition 5.10. Let f ∈ L2(Ω) ∩DomBp, ρ(x) ∈ C(Ω), ρ(x) ≥ ρ0 > 0. For
each µ > 0, let uµ be the unique solution of

1
ρ(x)

u + µ∂Φ(u) 3 1
ρ(x)

f,(5.41)

and let vµ ∈ ∂Φ(uµ) be such that

1
ρ(x)

uµ + µvµ =
1

ρ(x)
f.(5.42)

Then (∫
Ω

|uµ|p

ρ(x)
dx
)1/p

≤
(∫

Ω

|f |p

ρ(x)
dx
)1/p

+ µC
(∫

Ω

1
ρ

dx
)1/p

(5.43)
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‖vµ‖p,ρ(p−1) ≤ ‖Bρ(p−1)

p f‖p,ρ(p−1) ,(5.44)

vµ → Bρ(p−1)

p f in Lp(Ω) as µ → 0,

and ∫
Ω

|DTk(uµ)| −
∫

∂Ω

gTk(uµ) →
∫

Ω

|DTk(u)| −
∫

∂Ω

gTk(u)(5.45)

as µ → 0, for all k > 0.

Proof. To prove (5.43), let βε : R → R be a C1 function, β′ε(r) > 0 for all r ∈ R
such that βε(r) = |r|p−1sign(r) for |r| ≥ ε. Let zµ ∈ L∞(Ω, RN ), ‖zµ‖∞ ≤ 1 be such
that vµ = −div zµ. Multiplying (5.42) by βε(Tk(uµ)) and integrating by parts, we
obtain∫

Ω

uµβε(Tk(uµ))
1

ρ(x)
dx + µ

∫
Ω

|Dβε(Tk(uµ))| =
∫

Ω

fβε(Tk(uµ))
1

ρ(x)
dx

+ µ

∫
Ω

gβε(Tk(uµ)) ≤
∫

Ω

|f ||βε(Tk(uµ))| 1
ρ(x)

dx

+ µ(1− σ)
∫

Ω

|Dβε(Tk(uµ))|+ µC

∫
Ω

|βε(Tk(uµ))| 1
ρ(x)

dx

where we have used (4.2), ‖g‖∞ = 1 − 2σ, and C > 0 is a positive constant. Using
Hoelder’s inequality we obtain∫

Ω

uµβε(Tk(uµ))
ρ(x)

dx ≤
((∫

Ω

|f |p

ρ(x)
dx
)1/p

+ µC
(∫

Ω

dx

ρ

)1/p)(∫
Ω

|βε(Tk(uµ))|p′

ρ(x)
dx
)1/p′

where p′ denotes the conjugate exponent of p. Letting ε → 0 we obtain∫
Ω

|Tk(uµ)|p

ρ(x)
dx ≤

((∫
Ω

|f |p

ρ(x)
dx
)1/p

+ µC
(∫

Ω

1
ρ

dx
)1/p)(∫

Ω

|Tk(uµ)|p

ρ(x)
dx
)1/p′

,

i.e., (∫
Ω

|Tk(uµ)|p

ρ(x)
dx
)1/p

≤
(∫

Ω

|f |p

ρ(x)
dx
)1/p

+ µC
(∫

Ω

1
ρ

dx
)1/p

.

Letting k →∞ we obtain (5.43).

To prove (5.44), let us write v = Bρ(p−1)

p f . Recall that βp(r) = |r|p−1sign0(r).
By Proposition 2.2 we have the inequalities∫

Ω

(vµ − v)βp(uµ − f) dx ≥ 0

Using (5.42) we may write∫
Ω

|uµ − f |p 1
ρ(x)

dx ≤ −µ

∫
Ω

vβp(uµ − f) dx,

or, ∫
Ω

|vµ|pρ(x)p−1 dx ≤ −
∫

Ω

vβp(
uµ − f

µ
) dx = −

∫
Ω

vβp(vµ)ρ(x)p−1 dx.
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Using Holder’s inequality, we obtain∫
Ω

|vµ|pρ(x)p−1 dx ≤
(∫

Ω

|v|pρ(x)p−1 dx
)1/p(∫

Ω

|vµ|pρ(x)p−1 dx
)(p−1)/p

which implies (5.44).
To prove the last assertion, observe that from estimate (5.44) we have that vµ

is bounded in Lp(Ω) and we may assume that vµ → v∗ weakly in Lp(Ω) for some
v∗ ∈ Lp(Ω). On the other hand, since uµ − f = −µρvµ we deduce that uµ → f in
Lp(Ω). Since (uµ, vµ) ∈ Bp, by Proposition 2.2 we obtain that (f, v∗) ∈ Bp. Now

‖v∗‖(p,ρ(p−1)) ≤ lim inf
µ

‖vµ‖(p,ρ(p−1)) ≤ ‖Bρ(p−1)

p f‖(p,ρ(p−1))

This implies that v∗ = v = Bρ(p−1)

p f , and ‖vµ‖(p,ρ(p−1)) → ‖v‖(p,ρ(p−1)). Since p > 1,
this implies that vµ → v in Lp(Ω, ρ(p−1)), hence, also in Lp(Ω). The proof of (5.45)
follows as in the proof of Proposition 2.2.

Proposition 5.11. Let (u, v) ∈ Bp, i.e., there is θ ∈ L∞(Ω, RN ), |θ| ≤ 1, such
that θ ·DTk(u) = |DTk(u)| for all k > 0, v = −div θ and θ · νΩ = g. Let f = u + v.
Let uε be the unique solution of

U − div aε(∇U) = f in Ω,

aε(∇U) · νΩ = g in ∂Ω.
(5.46)

Then uε → u, div aε(∇uε) → v in Lp(Ω) and
∫
Ω
|DTk(uε)|−

∫
∂Ω

guε →
∫
Ω
|DTk(u)|−∫

∂Ω
gu as ε → 0, for any k > 0. Moreover, if f ∈ L∞(Ω), we have that uε is bounded

in L∞(Ω)

Proof. Let us prove some estimates. Let β(r) be a smooth strictly increasing func-
tion such that β(r) = |r|p−1sign(r) for r large enough. Multiply (5.46) by β(Tk(uε))
and integrate on Ω. Using (4.2) we obtain∫

Ω

uεβ(Tk(uε)) +
∫

Ω

aε(∇uε)Dβ(Tk(uε)) =
∫

Ω

fβ(Tk(uε)) +
∫

∂Ω

gβ(Tk(uε))

≤ ‖f‖p‖β(Tk(uε)))‖p′ + c

∫
Ω

|Dβ(Tk(uε))|+ C

∫
Ω

|β(Tk(uε))|

for some c < 1. Then∫
Ω

uεβ(Tk(uε)) + (1− c)
∫

Ω

|Dβ(Tk(uε))| ≤ ‖f‖p‖β(Tk(uε)))‖p′

+ C

∫
Ω

|β(Tk(uε))|+ ε

∫
Ω

|β′(uε)|

Since the terms at the right hand side involving β(Tk(uε)) and β′(Tk(uε)) can be
controlled by the first term of the left hand side, letting k →∞ in the above inequality
we obtain that uε is bounded in Lp(Ω) and β(Tk(uε)), hence also β(uε), is bounded
in BV (Ω) (independently of k and ε > 0). Note that, if f ∈ L∞(Ω), the Lp estimate
on uε is independent of p, and we obtain an estimate for ‖uε‖∞ which is independent
of ε.
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Let us now prove that uε → u as ε → 0. For that we write (5.46) in the form

uε − u− div (aε(∇uε)− θ) = 0,(5.47)

we multiply it by β(Tk(uε)− Tk(u)), and integrate it on Ω. We obtain∫
Ω

(uε − u)β(Tk(uε)− Tk(u)) +
∫

Ω

(aε(∇uε)− θ) ·Dβ(Tk(uε)− Tk(u)) = 0.

Let us now prove that

(aε(∇uε)− θ) ·Dβ(Tk(uε)− Tk(u)) + εβ′(Tk(uε)− Tk(u)) ≥ 0.(5.48)

Since

aε(∇uε) ·DTk(uε) = aε(∇uε) · ∇Tk(uε) + |DsTk(uε)| ≥ |DTk(uε)| − ε,

θ ·DTk(uε) ≤ |DTk(uε)|

and

(aε(∇uε)− θ) ·DTk(u) ≤ 0

we have that

(aε(∇uε)− θ) ·D(Tk(uε)− Tk(u)) + ε ≥ 0.(5.49)

Let Θ(aε(∇uε)−θ, D(Tk(uε)−Tk(u))) be the Radon-Nikodym derivative of (aε(∇uε)−
θ) ·D(Tk(uε)−Tk(u)) with respect to the measure |D(Tk(uε)−Tk(u))|. We may write
(5.49) as

Θ(aε(∇uε)− θ, DTk(uε)− Tk(u))|D(Tk(uε)− Tk(u))|+ ε ≥ 0.(5.50)

Using Volpert’s chain rule for BV functions ([2]) there is a function β̃′(x), measurable
both with respect to the measure D(Tk(uε)−Tk(u)) and with respect to the Lebesgue
measure, such that

Dβ(Tk(uε)− Tk(u)) = β̃′(x)D(Tk(uε)− Tk(u)).

Multiplying (5.50) by β̃′(x) we obtain

Θ(aε(∇uε)− θ, DTk(uε)−DTk(u))|Dβ(Tk(uε)− Tk(u))|+ εβ̃′(x) ≥ 0.(5.51)

Since, by Anzellotti’s results in [11], we have

Θ(aε(∇uε)− θ, DTk(uε)− u) = Θ(aε(∇uε)− θ, Dβ(Tk(uε)− Tk(u)))

almost everywhere with respect to the measure |Dβ(Tk(uε) − Tk(u))|, we conclude
that

(aε(∇uε)− θ) ·Dβp(Tk(uε)− Tk(u)) + εβ̃′(x) ≥ 0.(5.52)

Since β̃′(x) = β′(Tk(uε(x))− Tk(u(x))) a.e., we deduce (5.48).
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Using (5.48) we have∫
Ω

(uε − u)β(Tk(uε)− Tk(u)) ≤ ε

∫
Ω

β′(Tk(uε(x))− Tk(u(x)))

Letting k → ∞ and ε → 0 in this order we conclude that uε → u in Lp(Ω). From
(5.47) we deduce that

div aε(∇uε) → div θ in Lp(Ω)

as ε → 0.

Let us finally prove that∫
Ω

|DTk(uε)| −
∫

Ω

gTk(uε) →
∫

Ω

|DTk(u)| −
∫

Ω

gTk(u)

as ε → 0. Indeed, using (5.5) with p(r) = Tk(r), we have∫
Ω

|DTk(u)| −
∫

∂Ω

gTk(u) =≤ lim inf
ε

∫
Ω

|DTk(uε)| −
∫

∂Ω

gTk(uε)

= lim inf
ε

ε|Ω|+
∫

Ω

aε(∇uε) ·DTk(uε)−
∫

∂Ω

gTk(uε)

= lim inf
ε

∫
Ω

aε(∇uε) ·DTk(uε)−
∫

∂Ω

gTk(uε)

= lim inf
ε

−
∫

Ω

div aε(∇uε) Tk(uε) +
∫

∂Ω

(aε(∇uε) · νΩ − g) Tk(uε)

= −
∫

Ω

div θ Tk(u) =
∫

Ω

θ ·DTk(u)−
∫

∂Ω

gTk(u)

≤
∫

Ω

|DTk(u)| −
∫

∂Ω

gTk(u)

5.3. A convergence result for the mimima of (1.10). Let γ, α, λ > 0, β ≥ 0,
p > 1, q ≥ 1, and ε > 0. We shall use the same assumptions on u0 and θ0 as in Section
3. Recall that g0 = θ0 · νΩ, and we are assuming that ‖g0‖∞ < 1. Let

A(Gε) = {u ∈ BV (Ω) : u ∈ DomAε,1
g0

, div aε(∇uε) ∈ Lp(Ω) , u|B ∈ Lq(B)}.

If u ∈ A(Gε) we define

Gε(u) =
∫
Ω
|div aε(∇u)|p(γ + β|∇k ∗ u|)dx

+α

∫
Ω

|Du| − α

∫
Ω

g0u + λ

∫
B

|u− u0|q dx,
(5.53)

if u ∈ L1(Ω̃) \ A(Gε) we set

Gε(u) = +∞.

Following the proof of Theorem 4.1 we prove:
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Proposition 5.12. The functional Gε attains its infimum at some (u, θ) ∈
A(Gε).

Let us extend Ep(u, θ) by writing Ep(u, θ) = +∞ if (u, θ) ∈ L1(Ω̃)×L∞(Ω̃, RN ) ⊆
Ep(Ω, B, θ0) with ‖θ‖∞ ≤ 1.

Theorem 5.13. For each ε > 0, let uε be a minimum of (5.53). Then there
exists a subsequence, call it again uε, such that uε → u in Lr(Ω) for all r ∈ [1, N

N−1 )
and aε(∇uε) → θ weakly∗ in L∞(Ω, RN ) where (u, θ) ∈ Ep(Ω, B, θ0) is a minimum of
Ep.

Proof. Let (uε, θε) be a minimum of Gε on A(Gε). We may assume that∫
Ω

|div θε|p,
∫

Ω

|Duε| −
∫

∂Ω

guε and
∫

B

|uε − u0|q dx

are bounded independently of ε > 0. Indeed, to justify it it suffices to construct a
sequence Uε ∈ Dom Gε such that Gε(Uε) is bounded independently of ε. For that, by
Proposition 5.9 with ρ(x) = 1, f = 0 and g = g0, there exists (u, v = −div(z)) ∈ Bp

such that u + v = 0. Let Uε be the unique solution of (5.46) with f = 0, g = g0.
By Proposition 5.11 we know that Gε(Uε) converges to E(u, z), hence it is bounded.
Notice that, as in the proof of Theorem 4.1, we have that

∫
Ω
|Duε| is bounded.

Thus, by extracting a subsequence, if necessary, we may assume that θε converges
to some function θ̃ weakly∗ in L∞(Ω, RN ), with |θ̃| ≤ 1, div θ̃ ∈ Lp(Ω) and div θε →
div θ̃ weakly in Lp(Ω). We may also assume that uε → u in Lr(Ω) for any r ∈ [1, N

N−1 )
for some function ũ ∈ BV (Ω).

Let f := ũ−div θ̃, and fε := uε−div θε. Proceeding as in the proof of Proposition
2.2 we deduce that θ̃ · νΩ = g0 on ∂Ω. Proceeding as in the proof of Proposition
5.11 we prove that θ̃ · DTk(ũ) = |DTk(ũ)| for all k > 0. We have proved that
(ũ, θ̃) ∈ Ep(Ω, B, θ0).

Let us prove that (ũ, θ̃) is a minimum of E. For that, let (u, θ) ∈ Ep(Ω, B, θ0).
Observe that (Tk(u), θ) ∈ Ep(Ω, B, θ0) for any k > 0. Since E(Tk(u), θ) → E(u, θ) it
will be sufficient to prove that

E(ũ, θ̃) ≤ E(u, θ)

for any (u, θ) ∈ Ep(Ω, B, θ0) with u ∈ L∞(Ω). Thus, let us assume that u ∈ L∞(Ω).
Let θ∗ be such that −div θ∗ = Bω(u)

p u where ω(u) = γ + β|∇k ∗ u|. Since E(u, θ∗) ≤
E(u, θ), we may assume that θ = θ∗, hence −div θ = Bω(u)

p u. Now, we apply Propo-
sition 5.10 with f = u, g = g0, µ = 1

n , and ρ(x)p−1 = ω(u) to obtain a sequence
(un, θn) ∈ Bp such that un is bounded in L∞(Ω), and div θn → div θ in Lp(Ω),∫
Ω
|Dun| −

∫
∂Ω

g0un →
∫
Ω
|Du| −

∫
∂Ω

g0u as n → ∞ (hence E(un, θn) → E(u, θ)).
Since div θn = nun−u

ρ(x) we obtain that div θn ∈ L∞(Ω). Now, we apply Proposition
5.11 to fn := un − div θn and we obtain functions uε,n ∈ Aε,p

g0
which are bounded in

L∞(Ω) independently of ε and G(uε,n) → E(un, θn) as ε → 0. Since G(uε) ≤ G(uε,n)
for each ε and each n, we have

E(ũ, θ̃) ≤ lim inf
ε

G(uε) ≤ lim inf
ε

G(uε,n) = E(un, θn)

for all n. Letting n → ∞ we obtain E(ũ, θ̃) ≤ E(u, θ). We conclude that (ũ, θ̃) is a
minimum of (3.2).



32 C. BALLESTER , V. CASELLES AND J. VERDERA

6. Regularity. The following Theorem collects some results which have been
proved in the literature. For a proof we refer to [1, 5] and the references therein.

Theorem 6.1. Let u ∈ BV (Ω), z ∈ X(Ω)p, N ≤ p ≤ ∞, be such that (z,Du) =
|Du|. Then for almost all levels t ∈ R, the sets Et = [u > t] satisfy

(i) if N < p < ∞ (p = ∞) then the reduced boundary ∂∗Et is relatively open
in ∂Et and is a hypersurface of class C1,α for any α < p−N

2p (resp., for any
α < 1). Moreover the closed set Σ(Et) = ∂Et \ ∂∗Et is empty if N < 8,
discrete if N = 8 and has Haussdorff dimension not greater that N − 8 if
N > 8.

(ii) if p = N , there is a closed set Σ(Et) of Haussdorff dimension not greater
than N − 8 such that ∂Et \Σ(Et) is a (N − 1) dimensional manifold of class
C0,α for all α < 1.

If N = 2, these results can be further precised. If p = 2, then ∂Et is locally parame-
terizable with a bilipschitz map (a Lipschitz map with a Lipschitz inverse). If p = ∞,
∂Et is of class C1,1.

Proof. Let t be such that [u > t] has finite perimeter in Ω and z · Dχ[u>t] =
|Dχ[u>t]| (in particular, for almost every t). Let x ∈ Ω, F be a finite perimeter set
such that F4[u > t] ⊂⊂ Bρ(x) ⊆ Ω. Then∫

[u>t]∩Ω

divz −
∫

E∩Ω

divz ≤ P (E,Ω)− P ([u > t],Ω).(6.1)

We have

P ([u > t],Ω) ≤ P (F,Ω)−
∫

[u>t]∆F

div z

and, thus, also

P ([u > t], Bρ(x)) ≤ P (F,Bρ(x))−
∫

[u>t]∆F

div z

≤ P (F,Bρ(x)) + ‖div z‖LN (Bρ(x))|[u > t]∆F |
N

N−1

≤ P (F,Bρ(x)) + ω
p−N

N

N ‖div z‖Lp(Bρ(x))ρ
2α|[u > t]∆F |

N
N−1

with α = p−N
2p . This permits to prove that there is a constant C(N) such that

|[u > t]∆F | ≤ C(N)P ([u > t], Bρ(x)),

hence

P ([u > t], Bρ(x)) ≤ 1
1− η(ρ)

P (F,Bρ(x))

where η(ρ) = C(N)ω
p−N

N

N ‖div z‖Lp(Bρ(x))ρ
2α. The above inequality may be written

as

P ([u > t], Bρ(x)) ≤ (1 + ω(ρ))P (F,Bρ(x))

where ω(ρ) = η(ρ)
1−η(ρ) . In other words, [u > t] is a quasi minimizer of the perimeter.

The study of the regularity of quasiminimizers of the perimeter can be found in [1, 5]
and the references therein.
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7. Algorithm and numerical experiments. To minimize the functional (3.2)
we use the steepest descent method. If we denote the energy by Ẽ(θ, u), the steepest
descent equations are

θt = −∇θẼ(θ, u)(7.1)

and

ut = −∇uẼ(θ, u)(7.2)

in (0,∞) × Ω supplemented with the corresponding boundary data and initial con-
ditions. The constraints on (θ, u) can be incorporated either by penalization or by
projecting onto them after each time step. Indeed, we have tested both methods
method in an implicit (also in a explicit) in time discretization of (7.1), (7.2). Let
us explain in some detail the implicit in time implementation of (7.1), (7.2) with the
constraint θ ·Du = |Du| incorporated by penalization. Thus we take

Ẽ(u, θ) =
∫

Ω

|div(θ)|p(γ + β|∇k ∗ u|)dx + η

∫
Ω

(|Du| − θ ·Du)+

+α

∫
Ω

|Du| − α

∫
∂Ω

g0u + λ

∫
B

(u− u0)2

=
∫

Ω

|div(θ)|p(γ + β|∇k ∗ u|)dx + (α + η)
∫

Ω

|Du|+ η

∫
Ω

div θ u+

−(α + η)
∫

∂Ω

g0u + λ

∫
B

(u− u0)2

(7.3)

which corresponds to the energy (3.2) with plus a penalization term for the constraint
that θ ·Du = |Du|. To simplify our notation, let us write g(θ) = β|div(θ)|p, h(u) =
γ + β|∇k ∗ u|. Then

∇θẼ(θ, u) = −p∇
[
h(u)|div(θ)|p−2div(θ)

]
− ηDu = 0(7.4)

and

∇uẼ(θ, u) = −div
(
k ∗
(
g(θ) ∇k∗u

|∇k∗u|

))
− (η + α) div

(
Du
|Du|

)
+

+η div θ + 2λ(u− u0)χB = 0.

(7.5)

To solve equations (7.1) and (7.2), we use a implicit discretization in time. To be
precise, we write

∇θẼ(θ, θ′, u, v) = −p∇
[
h(u)(ε + |div(θ′)|p−2)div(θ)

]
− ηDu = 0(7.6)

and

∇uẼ(θ, θ′, u, v) = −div

(
k ∗
(
g(θ) ∇k∗u√

ε+|∇k∗v|2

))
− (η + α) div

(
∇u√

ε+|∇v|2

)
+ η div(θ) + 2λ(u− u0)χB = 0.

(7.7)
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Then, we use the discretization in time given by

θn+1 − θn = ∆t∇θẼ(θn+1, θn, un, un),(7.8)

and

un+1 − un = ∆t∇uẼ(θn+1, θn+1, un+1, un).(7.9)

Finally, we make the change of variables ξn+1 = θn+1− θn, vn+1 = un+1−un and we
have

ξn+1 = ∆t∇θẼ(ξn+1 + θn, θn, un, un),(7.10)

vn+1 = ∆t∇uẼ(θn+1, θn+1, vn+1 + un, un).(7.11)

In practice we solve equations (7.10),(7.11) in Ω with the boundary conditions

θn+1 · νΩ = g0

k ∗
(
g(θn+1)

∇k ∗ un+1√
ε + |∇k ∗ un|2

)
· νΩ + (η + α)

(
∇un+1√
ε + |∇un|2

)
· νΩ = (α + η)g0

Now, since θn ·νΩ|∂Ω = θn+1 ·νΩ|∂Ω then we may write the first of the above boundary
conditions as

ξn+1 · νΩ = 0.

On the other hand we approximate the second of the above boundary conditions by

k ∗
(
g(θn+1)

∇k ∗ vn+1√
ε + |∇k ∗ un|2

)
· νΩ + (η + α)

(
∇vn+1√

ε + |∇un|2

)
· νΩ = 0

Then we may use a conjugate gradient method to solve (7.10) and (7.11). The con-
straint |θ| ≤ 1 is incorporated by renormalizing θn (when |θn| > 1) after each time
step. In spite of the penalization term, the relationship |Du| = θ ·Du is lost and we
reinforce it after a certain number of time steps.

We can also incorporate the constraint that |Du| = θ ·Du by projecting onto it
after each time step. Indeed, we have implemented this in both in a time implicit and
explicit discretization of equations (7.1), (7.2). After each time step of θ and u we
redefine

θ(i, j) =
θ(i, j) + η̃Du(i, j)

max(1, |θ(i, j) + η̃Du(i, j)|)

for some η̃ > 0. As it has been shown in [42] this is a good way of imposing that
|θ| ≤ 1 and |Du| = θ ·Du. We have found quite similar results using both described
methods.

In our experiments, we take k a Gaussian kernel with small variance, say one or
two pixels. In practice, one can also dismiss the kernel k. The initial conditions are
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Fig. 7.1. Left: Four circles. Right: Reconstructed image.

ad-hoc interpolations, for instance, we can take u = u0 on B, and on Ω̃, take u equal
to the average value of u0 in B, θ inside Ω being the direction of the gradient of u.
One can also take a geodesic propagation inside Ω of the values of u0 in B, with θ
being again the direction of the gradient of u.

In the experiments below, this algorithm is used to interpolate level sets, following
the approach in [52], [54]. The image in B is decomposed into level sets and we get
a family of binary images u0λ = χ[u0≥λ], λ = 0, 1, 2, ..., 255. These functions are
interpolated inside Ω and we obtain a family of level sets Xλu. Then the function u
is reconstructed using the reconstruction formula

u(x) = sup{λ ∈ {0, 1, ..., 255} : x ∈ Xλu}.

As observed in Remark 5 of Section 2.2, we force our solution to satisfy the mono-
tonicity property of the level sets, i.e., that Xλ+1u ⊆ Xλu. This could also be imposed
in the initialization of the level set Xλu and maintained at each iteration of the algo-
rithm by taking the supremum of the current solution with the characteristic function
of Xλu. With the level set approach, we diminish the diffusive effects of the above
algorithm and we better capture the shapes and discontinuities on the interpolated
image.

7.1. Experimental results: examples in 2D. In the following experiments
we show the results of the joint interpolation of gray level and the vector field of
directions using functional (3.2). The experiments have been done with p = 1 and/or
p = 2. The results are quite similar and, unless explicitely stated, we display the
results obtained with p = 1.

Figure 7.1 displays an image made of four circles covered by a square (left image)
and the result of the interpolation (right image) obtained with p = 2. Figure 7.2.a
is a detail of the mouth of Lena with a hole. Figures 7.2.b displays the result of the
interpolation using (3.2). Figure 7.2.c shows the result of interpolating the hole of
Figure 7.2.a by using a simple algorithm: the value of pixels at distance k from the
boundary is the average of its neighboring pixels at distance k−1 from the boundary.
In Figure 7.2.b we see the effect of continuing the level lines along the mouth, which
is not the case in Figure 7.2.c. Figure 7.3.a is an image of Einstein smoking with a
pipe. In Figure 7.3.b we have represented a hole covering the region of the pipe. In
Figure 7.3.c we display the result of interpolating the hole of Figure 7.3.b using (3.2).
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Fig. 7.2. a) Left: Detail of the mouth of Lena. b) Middle: Reconstructed mouth using (3.2).
c) Right: Result of interpolating the hole in a) by means of a propagation of neighbouring values.

Fig. 7.3. a) Left: Einstein with a pipe. b) Middle: Einstein with a mask on the pipe representing
the hole. c) Right: Result of interpolation using (3.2)

Fig. 7.4. Removing the text on an image. a) Left: original image, b) Right: reconstructed image.

Figure 7.4.a displays an image with text to be removed. Figure 7.4.b displays the
corresponding reconstructed result.

7.2. Experimental results: the 3D case . Figure 7.5 displays a portion of
a sphere with a hole of size 30 × 30 × 30 seen from two different points of view and
its corresponding reconstruction using functional (3.2) with N = 3. We see in the
frontal view of the hole that the reconstruction is somewhat flat at the center, we have
checked that this defect would not appear in a hole of size 20× 20× 20. Figure 7.6.a
displays a 3D image with a hole at the lower part of the right hand corner. Figure
7.6.b displays its reconstruction. The object appearing behind the queue was present
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Fig. 7.5. This Figure displays a piece of a sphere with a hole of size 30 × 30 × 30 from two
different point of views and the corresponding reconstruction

Fig. 7.6. This is a experiment in 3D. a) Left: original image with the hole (the lower right
box). b) Right: reconstructed image, the object appearing was hidden by the queue.

in the top image, but it was hidden by it. The queue has been extended outside about
3 pixels and looks more flat. These two images have been rendered using the AMIRA
Visualization and Modeling System [6].

Figure 7.7 displays six consecutive slices of a CT image with a scratch covering
two frames. Figure 7.8 displays the corresponding result obtained using functional
(3.2) in the 3D case.

Figure 7.9 displays nine frames of the Foreman video sequence. There are two
scratches in the sequence, one of them extends along 6 frames (from frame 3 to frame
8) of the sequence while the second one is located at the ear in frame 6. We shall refer
to them as right and left scratches respectively. Figure 7.10 displays the reconstructed
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Fig. 7.7. This Figure displays six consecutive slices of a CT image with a scratch covering two
frames.

Fig. 7.8. Interpolation of the scratch in Fig. 7.7.

frames 3 to 8 obtained using functional (3.2) with N = 3. As we see the quality of the
results depends on the scratch. The reconstruction of the right scratch which extends
along 6 frames has some defects in frame 5, 6, and 7 along the face boundary. The
reconstruction of the ear in frame 6 is too smooth and lacks of a textured appearance.
In Figure 7.11 we have displayed the reconstruction of the ear in frame 6 of Figure 7.9
obtained by averaging frames 5 and 7 at the hole pixels, and we display a zoom of the
result. Figure 7.12 displays the results of interpolating the right scratches of frames
5, 6 and 7 of Figure 7.9 (not ear’s scratch) frame by frame using functional (3.2)
with N = 2. These experiments show the complexity of using functional (3.2) with
N = 3 for video sequences. Indeed, this functional is not adapted to video. Tipically,
reconstructing video scratches requires an estimation of the optical flow and will be
considered elsewhere [25]. On the other hand it may happen that in some cases it
is preferable to use a internal frame reconstruction than using the estimation of the
optical flow.
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Fig. 7.9. 9 consecutive frames of the Foreman sequence with several scratches.

Fig. 7.10. The results of interpolating the scratches of Figure 7.9. We displayed only frames 3
to 8 of the Foreman sequence.

7.3. Experimental results: 2D zoom. Figure 7.13 displays a rose and a detail
of it. Figure 7.14.a displays the result of zooming by a factor of 8 the rose detail
of Figure 7.13. This zoom has been obtained using functional (3.2) with N = 2.



40 C. BALLESTER , V. CASELLES AND J. VERDERA

Fig. 7.11. Left: Result of reconstructing ear’s hole in frame 6 of Figure 7.9 by averaging
previous and next frame in the hole. Right: a zoom of the result.

Fig. 7.12. The results of interpolating the scratches of frames 5, 6 and 7 of Figure 7.9 frame
by frame using functional (3.2) with N = 2.

Fig. 7.13. a) Left: a rose image. b) Right: a detail of it.

Figure 7.14.b displays the zoom of factor 8 of the same detail obtained using Bicubic
Photoshop interpolation. Comparing both Figures we observe a better preservation
of geometry in Figure 7.14.a, but a similar result could be obtained by using Total
Variation zooming [51].

8. Concluding remarks. In this paper we have proposed a variational approach
based on the energy functional (3.2) for filling-in regions of missing data in still 2D and
3D images. The basic idea is to smoothly extend inside the hole both the vector field
obtained from the image gradient and the corresponding gray values. We have proved
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Fig. 7.14. a) Left: Zoom by a factor of 8 of the rose detail of Figure 7.13 obtained using
functional (3.2) with N = 2. b) Right: a zoom of factor 8 obtained using Bicubic Photoshop
interpolation. We observe a better preservation of geometry in Figure a), but a similar result could
be obtained using the Total Variation zooming prposed in [51].

existence of minimizers for functional (3.2) and proved that it can be approximated
by functionals (5.53). We have displayed some numerical experiments for 2D and 3D
images, and we have discussed its limitations in the case of video sequences.
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[36] M. Giaquinta, Regolarità delle superfici BV (Ω) con curvatura media assegnata, Boll. U.M.I.,
8 (1973), pp. 567-578.

[37] E. Giusti, Boundary Value Problems for Non-Parametric Surfaces of Prescribed Mean Cur-
vature, Ann. Scuola Normale Sup. di Pisa, 3 (1976), pp. 501-548.

[38] F. Guichard and J.M. Morel, Image iterative smoothing and P.D.E.’s, Book in preparation,
2000.

[39] D. Heeger and J. Bergen, ‘Pyramid based texture analysis/synthesis, Computer Graphics,
pp. 229-238, SIGGRAPH 95, 1995.

[40] A. Hirani and T. Totsuka, Combining frequency and spatial domain information for fast
interactive image noise removal, Computer Graphics, pp. 269-276, SIGGRAPH 96, 1996.

[41] B.K.P. Horn, The curve of least energy, ACM Transactions on Mathematical Software, 9
(1982), pp. 441-460.

[42] K. Ito and K. Kunisch, An active set strategy based on the augmented Lagrangian formulation
for image restoration, M2AN Math. Model. Numer. Anal., 33 (1999), pp. 1-21.

[43] L. Joyeux, O. Buisson, B. Besserer, S. Boukir, Detection and removal of line scratches in
motion picture films, Proceedings of CVPR’99, IEEE Int. Conf. on Computer Vision and
Pattern Recognition, Fort Collins, Colorado, USA, June 1999.

[44] G. Kanizsa, Gramática de la visión, Paidos.
[45] C. Kenney and J. Langan, A new image processing primitive: Reconstructing images from

modified flow fields, preprint, University of California, Santa Barbara.
[46] D. King, The Commissar Vanishes, Henry Holt and Company, 1997.
[47] R. Kohn and R. Temam, Dual spaces of stresses and strains, with applications to Hencky

plasticity, Appl. Math. Optimization, 10 (1983), pp. 1-35.
[48] A.C. Kokaram, R.D. Morris, W.J. Fitzgerald, P.J.W. Rayner, Detection of missing data

in image sequences, IEEE Transactions on Image Processing, 11 (1995), pp. 1496-1508.
[49] A.C. Kokaram, R.D. Morris, W.J. Fitzgerald, P.J.W. Rayner, Interpolation of missing

data in image sequences, IEEE Transactions on Image Processing, 11 (1995), pp. 1509-
1519.

[50] T. Leung and J. Malik, Contour continuity in region-based image segmentation, Proc. Euro.
Conf. Computer Vision, volume 1, Freiburg (Germany). H. Burkhardt and B. Neumann,
editors, pp. 544-59, June 1998, Springer-Verlag, 1998.

[51] F. Malgouyres and F. Guichard, Edge direction preserving image zooming: a mathematical
and numerical analysis, SIAM J. Numer. Anal., 39 (2001), pp. 1-37.

[52] S. Masnou, Filtrage et Desocclusion d’Images par Méthodes d’Ensembles de Niveau, Thèse,
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