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Preface

I heard the name "metagenomics" for the first time in my life when I

joined the Department of Energy’s Joint Genome Institute (JGI) in 2009.

I was no stranger to microbiology or genomics, as I majored in microbi-

ology in college and spent a significant portion of my graduate studies

in genomics and bioinformatics. It is just a scaled-up version of microbi-

ology using genomics tools, I thought naively at that time. I could never

imagine the scale of the challenges and the impact it brings at such a

rapid pace. Just a few years later, metagenomics had already taken a

center stage – Science magazine named it as one of the breakthroughs

of the year in both 2011 and 2013. Neither could I imagine the amount

of fun and learning experience I had since then.

As Harvard entomologist, Edward O. Wilson stated in his book "Con-

silience: The Unity of Knowledge" that modern science is increasingly

seeing the convergence of knowledge across separated disciplines, this

consilience process is also happening between metagenomics and data

science. The rapid development of metagenomics was propelled by a

tsunami of next-generation sequencing data, which offers an unprece-

dented opportunity for scientists to get a holistic view of a microbial

community and its intricate inner workings. This group of scientists,

mostly microbiologists, were also overwhelmed by the scale of the

metagenomics datasets and intimidated by the complexity to navigate

the richness of these data. They desperately needed help to understand

the data they generated. Fortunately, a new breed of data scientists,

while sailing in the ocean of big data, also discovered that their knowl-

edge and experience could be well applied to the metagenomics data

problem. When the two camps joined forces, the field of computational

vii
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metagenomics was born.

0.1 The three pillars of computational metagenomics

After these two camps of pioneers, both experts in their fields but speak-

ing two different languages finally figured out a way to communicate

with each other, they found that most of the computational metage-

nomics problems are more complex than each camp had individually

envisioned. Solving a typical computational metagenomics problem, as

it turns out, is analogous to planning a trip to a new destination. They

need to know the terrain, but their map does not have sufficient infor-

mation. Many roads are not labeled, some even contain errors. They

need vehicles, but existing vehicles have various mechanical problems,

and some even need to be broken apart and redesigned from scratch.

They also need creative routes to overcome the uncertain map and un-

reliable vehicles to make sure they may eventually reach their desti-

nations, or just get close enough. Here, the terrain refers to metage-

nomics, the study of microbial communities with many species, the

majority of which could be unknown ones. Operating vehicle refers to

data engineering, or dealing with scalable data collection, transforma-

tion, and analysis. Finally, routes refer to computer algorithms that cor-

rectly and efficiently solve problems. Thanks to the audacious efforts

of these pioneers, advances in these three aspects now form the three

pillars of computational metagenomics (Figure 0.1). Almost all compu-

tational metagenomics projects are built upon three pillars across dif-

ferent stages from planning to execution.

Although many computational metagenomics projects begin with

some data already acquired, it is crucial to understand the scientific

metagenomics questions and the experimental genome technologies

that produce the data. This is a perquisite for every successful compu-

tational metagenomics project. For a given microbial community, do we

want to know what organisms are present in the community? Or do we

want to fish out interesting gene clusters for our engineering starting

points? These scientific questions determine the genome technology to

be used, the type of data to be generated, and the amount of data is

needed. Each technology inevitably brings unique biases and noises,

understanding them will guide us to design appropriate algorithms and
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Computational Metagenomics

Meta-
genomics

Data 
Engineering

Computer
Algorithms

Fig. 0.1 The three pillars for computational metagenomics.

statistics for robust data analysis.

Most research teams do not have a data architect to help us de-

sign a comprehensive strategy for data management and analytic, but

this does not necessarily mean that we should ignore the data engi-

neering aspect. Do we want to store the data on the cloud or locally?

Do we need a workstation with more CPU cores or more memory? Do

we need GPUs or a high-performance computing cluster to accelerate

our software pipeline? A careful data plan can greatly shorten the time

between data and scientific insights. Choice of different engineer solu-

tions will bring different cost models in both computational and time.

Many projects headed by biologists traditionally only include experi-

mental costs but not computational costs, a hindsight often causes poor

data management problems.

Having a fast computer loaded with CPUs and RAM does not guar-

antee a fast solution to our computational genomics problem, neither

does it guarantee a correct one. This is where the computer algorithms

come into play. Many problems, such as metagenome assembly, are so

complex that it not only requires many computing nodes but also a spe-

cial data structure to reach an approximate solution efficiently.

The main goal of this book is to introduce you to the three pillars of
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computational metagenomics. As a future leader in the field of compu-

tational metagenomics, you need to be a "jack-of-all-trades" when the

time comes to collaborate with a team of microbiologist, hardware ar-

chitects, software engineers, and data scientists.

0.2 Targeted audience

The book is written with the mind of targeting college seniors or first-

year graduate students. It should serve some data engineering princi-

ples and a basic understanding of the underlying computational algo-

rithms if you come from microbial genomics fields. If your background

is in computation instead, I hope this book may help you get familiar

with genome technologies so that you may apply your skills to solve

some of the challenging metagenomics problems.

0.3 What will not be covered in this book

Although computational metagenomics relies heavily on various

databases and software pipelines, in this book I will purposefully

avoid the vast majority of them. The reason is two folds. Firstly, new

databases and pipelines emerge rapidly as the field of metagenomics

research proliferates, it is simply impossible to even briefly describe all

of them. Even if I were able to do that, it would make the book hard to

read. Secondly, most of the tools will become obsolete in a few years,

even though the principles they build upon stay. Thus, I will focus on ex-

plaining the basic concepts behind these tools, and occasionally using

a few representative tools as examples. With these knowledge, readers

should get comfortable to read review papers about these databases

and methods, as every year we see many such papers. The same idea

applies to the research literature, as this book is never intended to pro-

vide a comprehensive review of any subfield in metagenomics. A Google

Scholar search for papers with the keyword "metagenomics" returns

21,500 hits between 2007-2020. As a Chinese proverb says, "Give a

man a fish and you feed him for a day. Teach a man to fish and you feed

him for a lifetime". I will try my best to teach you fishing rather than

giving you fish in this book.

To make the book more readable to a more general audience, I will
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also purposely omit many technical jargons, as many of them only ap-

pease experts in specific fields. Whenever I have to use one, I will try to

explain it in the same context.

0.4 Structure of the book

Chapters 1-3 introduce the basic concepts in computational metage-

nomics from a metagenomics, data, and algorithm perspective, respec-

tively. Because many computational metagenomics problems are big

data problems, Chapter 4 is devoted to topics related to hardware and

software platforms for scalable data analysis. These four chapters lay

the ground for computational metagenomics and are an essential read-

ing for beginners.

Chapter 5 provides an in-depth overview of data quality improve-

ment, which is a common topic of almost all computational metage-

nomics projects. Chapters 6-10 each focus on a special topic: Chapter

6 on taxonomic diversity, Chapter 7 on functional diversity, Chapter 8

on metagenome assembly, Chapter 9 on single-cell metagenomics, and

Chapter 10 on interactions between microbes and their environment.

Each of these chapters itself is a mini-review of a single topic that can

be read independently of each other. The content inside a chapter does

not follow a strict structure, but it is loosely organized in four sections:

background information, challenges, solutions, and future perspectives.

These chapters are designed for more advanced readers, but it can also

help beginners who want to cover more depth.

Given the broad applications of metagenomics, these topics are by

no means definitive or comprehensive but serve as a starting point. It

serves as an introduction to aspects of computational metagenomics

and an invitation to a deep understanding of the biological algorithms

that govern microbial life and their interactions.

Zhong Wang
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Chapter 1

Computational Metagenomics: a
metagenomics perspective

Most of microorganisms are small, invisible to human eyes, and some

even invisible to optical microscopes. Yet microbes are everywhere:

they present in the air we breathe in, in the water we drink, and in

the food we eat. They flourish on the surface of our skin and colonize

in our gut. They outnumber our own cells: an average person has about

30 trillion human cells accompanied with about 38 trillions of bacteria,

according to a recent estimation (Sender et al., 2016). It is not possible

to separate them from us, as they are a part of us. We exchange these

microorganisms with other people and our environment all time. It is

hard to imagine the extent of such exchanges, but a 10 second intimate

kiss with a partner we would exchange 80 million bacteria!

What are these microorganisms living within and around us? What

do they do? How do they interact with us and among themselves? These

are central questions in metagenomics, a rapid evolving scientific disci-

pline started only a couple of decades ago. In this chapter, I will intro-

duce the concept of metagenomics, followed by the sequencing tech-

nologies currently employed to interrogate metagenomics. Getting to

know these technologies is important to understand the metagenomics

pillar of computational metagenomics.

1.1 Metagenome and metagenomics

Just like us, microbial organisms also form communities. A microbial

community refers to all microbial organisms, including archaea, bac-

teria, fungi, protozoa, and viruses that live in a given habitat. These

communities adapt to their environment together, some are associated

1
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with animals or plants, some freely live in water, air, or land. Their com-

plexity at the taxonomic level, or the number of different species they

contain, can vary greatly. A simple community such as an acid mine

drainage biofilm contains only five species, while complex communities

such as those from forest soils can contain tens of thousands of species

(Tyson et al., 2004).

A genome refers to the entire set of genetic information of a single

organism, be it a bacterial cell or a human individual. A metagenome

refers to the collective genetic information of a microbial community

of a particular habitat. The collective microbial species in a community

is also called microbiota or microbiome. A metagenome is not to be

confused with a pangenome. A metagenome is the union of all genomes

of all members of a microbial community, and the members may or may

not be related. For example, the metagenome of the above-mentioned

acid mine drainage community includes a few bacterial and archaeal

species that cooperate to tolerate extreme environmental stress. Some

of them are related but some are not. Metagenome is often studied in

the context of microbial ecology. A pangenome, in contrast, only exists

as a concept. It is the union of all genomes of a particular taxonomic

group. For example, the pangenome of E. coli is defined by all genomes

from all E. coli strains. A pangenome is often studied in the context of

understanding genome evolution and diversification.

A closely related but slightly different concept is the microbiome.

As a biome is a community of plants and animals that live in a habitat,

a microbiome is its microbial counterpart. Therefore, the metagenome

is the genome of a microbiome. Some people also use "microbiome"

where "metagenome" should be used, ignoring the distinction that

"metagenome" refers to genetic information, but the microbiome refers

to biological materials. It is also worth noting that clinical researchers

often “hijacked” the microbiome concept to narrowly refer it to the mi-

crobiome that lives on and inside the human body.

Metagenomics is the study of metagenomes. Many readers are al-

ready familiar with microbiology, in which microbiologists isolate and

grow one or a few microbial organisms in the lab and study them.

Modern microbiology has shifted from studying morphology features,

growth, and metabolism to molecular characterization of its genomics

information. For example, phylogenomic analysis precisely places a
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species on the tree of life, while homology-based gene discovery can

quickly predict new members of protein families. Is metagenomics mod-

ern microbiology in parallel mode? The answer is both yes and no. Yes,

in metagenomics we can ask almost the same set of questions regard-

ing to many microbes simultaneously. Metagenomics questions can be

much harder than a simple multiplication of a single-genome question,

as you will see later chapters in this book, physically or informatically

separating the community members faces great technical challenges. In

addition, as you will see below, metagenomics brings new dimensions

that traditional microbiology fails to reach.

1.2 Metagenomics: key scientific questions

In metagenomics, we ask scientific questions like the following (Boon

et al., 2014): What species are present in the microbial community of

interest? What are their functions in the community? How does their

abundance change in response to environmental changes? How are

the species interacting with each other? I will use a few examples to

show key questions asked in metagenomics in this section. The list of

scientific questions in metagenomics one can ask does not stop here,

though. Curious readers can read articles such as "Fifty important re-

search questions in microbial ecology" (Antwis et al., 2017) to explore

the broad scope of metagenomics. Below I will list a few key questions

in metagenomics, and for each question I will find a couple of inspiring

science stories.

1.2.1 Who is out there?

Just like Charles Darwin’s journey in the nineteenth century to discover

new species, Craig Venter and a group of researchers in 2004 set out

to the Sargasso Sea in the middle of the Atlantic Ocean near Bermuda.

Venter knew that microorganisms in the world’s oceans, like those in

many other territories, are largely unexplored. In this first ever large-

scale metagenomics study, his team produced a total of 1.045 gigabases

of sequence derived from at least 1,800 different species from seawater

samples they collected while circling the globe in Venter’s luxury yacht

the Sorcerer II. Among them, 148 had never been seen before (Venter
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et al., 2004). Encouraged by the success of this pilot, Venter and his

colleagues continued their Sorcerer II Global Ocean Sampling (GOS)

Expedition for more than two years, visiting 23 different countries and

island groups on four continents. These efforts led to the discovery of

millions of new genes and nearly 1,000 genomes for uncultivated lin-

eages of microbes, greatly expanded our knowledge of microbial diver-

sity in the ocean (https://www.jcvi.org/research/gos).

Venter’s epic GOS study broke the dawn of a new metagenomics

era. Previously, more than 88% of all microbial species discovered via

cultivation belong to only four bacterial phyla (Proteobacteria, Firmi-

cutes, Actinobacteria, and Bacteroidetes), while half of the 60 major

branches of the tree of life lack any isolated representatives. In another

historical landmark study, a research team led by the US Department

of Energy (DOE) Joint Genome Institute (JGI)’s Tanja Woyke system-

atically sequenced more than 200 uncultivated archaeal and bacterial

cells from a variety of habitats. The approach they took is called single-

cell metagenomics, which we will review in Chapter 9. In this single

study, they discovered new species from more than 20 major branches

of the tree of life. These new species likely represent only the tip of the

iceberg of undiscovered microbial diversity, or the so-called "microbial

dark matter" (Rinke et al., 2013).

1.2.2 What are they doing?

Craig Venter’s expedition was funded by a $9 million grant award from

DOE to the Institute for Biological Energy Alternatives (IBEA), which

Venter heads. Besides "may lead to the development of new methods

for carbon sequestration or alternative energy production", DOE also

hoped that this study may uncover new microbial genes that support

the energy needs of their hosts to efficiently turn sunlight into energy.

These mechanisms could also be harnessed to pave the way to better

biofuels.

With metagenomics, the bioprospecting process, or exploring nat-

ural sources for commercially valuable product candidates, can be

greatly accelerated. In 2011, a team lead by JGI’s Eddy Rubin se-

quenced and analyzed 268 gigabases of metagenomic DNA from mi-

crobes in cow rumen, and they identified 27,755 candidate enzymes

https://www.jcvi.org/research/gos
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that could be exploited further for their ability for converting biomass

to energy (Hess et al., 2011).

The action of these microbes is not limited to impact carbon cycling

and energy conversion in our environment, and recent studies started

to reveal the role of our "second genome" (the microbiome) that lives

within us. The human gut microbiome not only impacts our nutrition,

but also affects the efficacy and toxicity of the medicine we take. Some

produce compounds that can lead to new therapeutics, qualifying them

as "the microbial pharmacists within" (Spanogiannopoulos et al., 2016).

1.2.3 How do they interact?

Besides directly impacting health and disease treatment, species

among the microbiome are also interacting with each other and form in-

tricate networks that indirectly impact their host’s health (Gould et al.,

2018). An imbalance of microbes in our gut has long believed to lead

to immune related health problems (Kho and Lal, 2018). A recent study

found that imbalance in the gut microbiome contributes to the severity

of COVID-19 (Yeoh et al., 2021). The list of cases implicating micro-

biome in health is growing rapidly.

1.3 Metagenome Sequencing: Strategies

To answer the above scientific questions, today’s microbial ecologists

seldom rely on traditional methods of identification and isolation to

study microbial communities. Just like we sequence the human genome

to understand our own species, Homo sapiens, we use DNA sequenc-

ing to understand the members of a microbial community. Sequenc-

ing not only provides more insights than microscopy in understand-

ing microbial diversity but also has the potential to shed light on

their metabolic capacity by constructing genome-scale metabolic mod-

els (GEMs, a topic we will visit in Chapter 10). In contrast to individ-

ual microbial genome sequencing that we sequence cultured single iso-

lates, in metagenome sequencing, we sequence a microbial community

directly isolated from the environment without cultivation. This is par-

ticularly important given the fact that it is estimated that only 1% of

the microbial population is amenable to be cultivated in the lab envi-
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ronment (Staley and Konopka, 1985), due to either unknown culture

conditions or their dependencies on other species. The application of

high-throughput sequencing directly to environmental samples has en-

abled analyses at unprecedented scale and speed, bringing a generic

method to study almost any microbial community in any habitat, even in

the International Space Station (Nicholas et al., 2017). Designing these

high-throughput metagenomics experiments to be statistically robust

and reproducible, however, is no trivial task. We will not cover the art of

experimental design here in this book, as it depends heavily on specific

scientific problems and available resources. We will only discuss briefly

the technologies underlying computational metagenomics. Readers are

encouraged to read a comprehensive review article by Knight et al.

to gain in-depth knowledge about metagenomics experimental design

(Knight et al., 2012).

Numerous sequencing strategies and techniques have been devel-

oped in the past 15 years. I will attempt to briefly summarize these

exciting developments below. Depending on the scientific question and

one’s sequencing budget, typically one or more of the following three

main metagenome sequencing strategies could be taken. Here we only

see an overview of the experimental technology, but we will expand the

analysis tasks for each in later chapters.

1.3.1 Targeted Amplicon Sequencing

Targeted amplicon sequencing (TAS) strategy offers a rapid and af-

fordable way to determine what species are present and their rela-

tive abundance, by sequencing only one gene, or a specific region of

a gene of each microbial species. It was the method of choice to pro-

file a metagenome before the year 2010 due to its low sequencing

cost. Although the genes being targeted can vary depending on the

scientific questions, the genes encoding the 16S/18S small subunit of

the ribosome (SSU) are most commonly chosen as a proxy for bacte-

rial/archaeal and eukaryotic genomes, respectively. PCR experiments

amplify the variable regions of the SSU gene and the amplicons are

subsequently sequenced. The sequenced SSU genes/regions can be rel-

atively easily analyzed to obtain each species’ abundance that consti-

tutes the community structure, or to construct phylogenetic trees to in-
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fer community composition. We will discuss TAS-based computational

analysis in detail in Chapter 6.

TAS sequencing is analogous to a census of microbes, by cataloging

a rough estimate of what species are present at what abundance in

a community. It can be quite sensitive, revealing rare members that

exist in only a few copies. It is, however, not a comprehensive sur-

vey. For example, it does not catalog viruses, which do not carry their

own SSU genes. Nor does it survey species with less conserved SSU

genes/regions where the PCR primers recognize. Moreover, errors in-

troduced by PCR amplification such as point mutations (base substitu-

tions, insertions/deletions) and chimeras may lead to spurious species

that do not actually exist.

1.3.2 Whole Metagenome Sequencing

Besides surveying microbial diversity, another motivation that we study

metagenomics is to comprehensively discover novel species including

viruses, and novel candidate genes or pathways with desired metabolic

capabilities such as secondary metabolism that microbes invented but

proven extremely useful for our medicine. For these purposes, we turn

to the most commonly used strategy for metagenome sequencing to-

day, Whole Metagenome (shotgun) Sequencing (WGS or WMGS). With

this strategy, we first collect the genomic DNA from a metagenomic

sample and then shear it randomly into small pieces (this is why it is

called shotgun sequencing). Each piece is then sequenced using mas-

sively parallel sequencing technology and digitally transformed into a

read (Figure 1.1). Breaking metagenomic DNA into short pieces is nec-

essary to achieve high-throughput sequencing and to accommodate the

read length limitation of current sequencers (see next section). To en-

sure no part of the genome is omitted by random sampling, or to have

a good sequencing coverage, and to ensure random sequence errors

are corrected, each position of the genome is sequenced more than

once, sometimes by thousands of times (sequencing depth ). These

reads are then computationally assembled into genes or genomes for

further analysis. WGS is less biased against novel species than TAS,

and yet rivals its sensitivity to detect rare species given sufficient se-

quencing, therefore it is replacing TAS for surveying diversity. Having
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genomic sequences of the microbes also unlocks the ability to predict

their metabolism capacity and even their interaction.

Collection,
Isolation

DNA
Extraction

Sample Preparation Sequencing Data Analysis

Library construction,
Sequencing

Computational
Metagenomics

Fig. 1.1 An Overview of a Whole Metagenome Sequencing Project. A typical project

consists of three phases. In the sample preparation phase, samples are collected from

various environments, and microbial materials are separated from the rest, followed by

a DNA extraction step to harvest metagenomic DNA. In the sequencing phase, metage-

nomic DNA is sheared into small pieces and made into sequencing libraries. The libraries

are then sequenced by the high-throughput sequencers to obtain sequencing data. The

data is then analyzed in the data analysis phase, using strategies and techniques covered

in this book.

WGS creates substantial challenges for downstream analysis, as

computational biologists are faced with both a data challenge and an

algorithmic one, let alone that it can be quite costly experimentally and

computationally. A single WGS metagenomic dataset could reach ter-

abases of sequences with trillions of reads. Metagenome assembly, the

process to piece together these pieces into genomes, requires software

tools that are both scalable and accurate. WGS-based computational

analysis is the focus of this book, as you will see in later chapters.

1.3.3 Single-cell Amplification Genome Sequencing

Unlike WGS metagenome sequencing that tackles the whole community

at once, single-cell amplification genome sequencing (SAGS) adopts a

“divide-and-conquer” strategy. With this strategy, we first isolate single

cells using the state-of-art droplet-based liquid handling techniques,
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then process their DNA in parallel (extract genomic DNA, amplify it,

and add a barcode), and finally combine the resulting barcoded frag-

ments for sequencing. Unlike in TAS that employs PCR to amplify only

a certain region of the genome, in SAGS, the whole genome is amplified

using a rolling circle amplification approach (RCA).

SAGS introduces significant technical hurdles in preparing sequenc-

ing libraries to gain an advantage in reducing downstream computa-

tional complexity. It is one of the most rapidly developing areas in

metagenomics. With a sufficient number of species covered, we can

obtain community diversity and structure as in TAS and WGS. When

enough cells from a species are sequenced, we not only can get a com-

plete genome of this species but also can understand individual genome

variations within this species that are not possible with other strategies.

We will discuss SAGS-based computational analysis in greater detail in

Chapter 9.

Table 1.1 provides a brief review of the three sequencing strategies

we just covered.



October 3, 2023 17:27 ws-book9x6 Introduction to Computational Metagenomics output page 10

10 Introduction to Computational Metagenomics
T
a
rg

e
te

d
A

m
p

li
c
o
n

S
e
q

u
e
n

c
in

g
(T

A
S

)

W
h

o
le

G
e
n

o
m

e

S
h

o
tg

u
n

(W
G

S
)

S
in

g
le

-c
e
ll

A
m

p
li

fi
c
a
ti

o
n

G
e
n

o
m

e
S

e
q

u
e
n

c
in

g

(S
A

G
S

)

S
e
q

u
e
n

ci
n

g
T
a
rg

e
ts

1
6
S

/1
8
S

m
e
ta

g
e
n

o
m

e
M

u
lt

ip
le

g
e
n

o
m

e
s

A
m

p
li

fi
ca

ti
o
n

/M
e
th

o
d

Ye
s/

P
C

R
M

a
yb

e
/P

C
R

Ye
s/

R
C

A

T
e
ch

n
ic

a
l

C
h

a
ll

e
n

g
e

L
o
w

L
o
w

H
ig

h

D
a
ta

A
n

a
ly

si
s

C
o
m

p
le

xi
ty

L
o
w

V
e
ry

H
ig

h
H

ig
h

R
e
co

ve
r

S
in

g
le

G
e
n

o
m

e
s?

N
o

M
a
yb

e
M

a
yb

e

C
o
st

L
o
w

H
ig

h
H

ig
h

A
p

p
li

ca
ti

o
n

s
D

iv
e
rs

it
y

D
iv

e
rs

it
y,

fu
n

ct
io

n
F

u
n

ct
io

n
,
va

ri
a
ti

o
n



October 3, 2023 17:27 ws-book9x6 Introduction to Computational Metagenomics output page 11

Computational Metagenomics: a metagenomics perspective 11

1.4 Metagenome Sequencing: Platforms

Thanks to the revolution of DNA sequencing technologies in the past

decade, we are now blessed with several sequencing platforms to in-

terrogate complex microbial communities. An understanding of these

sequencing technologies is a prerequisite for effective data analysis as

data from each platform carries unique characteristics. Here let us take

a brief overview of the current next-generation sequencing technology

platforms.

1.4.1 Illumina

Sequencing technology developed by Illumina is the predominant

next-generation sequencing technology. Genomic DNA or its amplified

derivatives are first fragmented, and adapters are added to each frag-

ment to make sequencing libraries. The resulting libraries are then se-

quenced in a massively parallel fashion, resulting in millions to billions

of short sequences (reads) of length 100-300 bases. The sequencing is

done by first synthesizing a new strand using the library DNA as a tem-

plate, where fluorescently labeled deoxyribonucleoside triphosphates

(dNTPs) are incorporated and “read” by image analysis one by one af-

ter their incorporation. This type of sequencing is called “sequencing by

synthesis”. Even though the sequencing process is done in a base-by-

base cycle (synthesis, imagining, removing fluorescence labels) and is

stopped after 150 cycles, sequencing throughput is achieved by simul-

taneously sequencing billions of short read templates. More often, the

DNA templates are sequenced from both ends to obtain a read pair, thus

effectively reading 300 bases per fragment. Sequencing errors could

be introduced during the synthesis or image analysis steps, but in gen-

eral at a very low rate (1-2%). More details can be found on the com-

pany’s website: https://www.illumina.com/science/technology/

next-generation-sequencing/beginners.html#how-it-works

Illumina sequencers each generate an enormous amount of data in

a single run, ranging from 120 gigabases (gigabase is a billion base, or

109 base) to 6,000 gigabases. Because of its low cost and high through-

put nature, the majority of the available metagenomic data are from

Illumina as of today.

https://www.illumina.com/science/technology/next-generation-sequencing/beginners.html#how-it-works
https://www.illumina.com/science/technology/next-generation-sequencing/beginners.html#how-it-works
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1.4.2 Pacific Biosciences

In the above Illumina sequencing, each DNA fragment was first am-

plified a few hundreds of times to form a "cluster", or a clone of

the original fragment, so that the fluorescent signal from a cluster is

more robust than that from a single molecule. The sequencing tech-

nology developed by Pacific Biosciences Inc (PacBio), in contrast, is a

single-molecule, real-time sequencing strategy. PacBio sequencing uses

large DNA molecules as templates, each undergoing an independent

sequencing-by-synthesis process that is captured optically into a real-

time movie. Signals contained in these movies are then analyzed to

predict the underlying DNA sequences. Because the sequencing re-

action is observed in real-time instead of going through sequencing

cycles, PacBio sequencing reads are much longer, up to 30kb, one of

the biggest advantages of this strategy. Because single-molecule se-

quencing has a low signal-to-noise ratio, PacBio sequencing has much

higher error rates ( 15%), predominantly insertion/deletion errors.

More details are available at https://www.pacb.com/smrt-science/

smrt-sequencing/.

The long read length greatly reduces the genome assembly com-

plexity, resulting in the rapid adoption of PacBio sequencing in single

genome assembly projects. Its adoption in metagenome sequencing,

however, is hindered by the relative high error rates and higher costs

of early generations of PacBio sequencers.

1.4.3 Oxford Nanopore Technology

Both Illumina and PacBio are using sequencing-by-synthesis tech-

niques, where DNA polymerases are employed to read the metage-

nomic DNA libraries. The nanopore sequencing technology (ONT) de-

veloped by Oxford Nanopore Inc is completely different. In ONT se-

quencing, a strand of DNA (which is negatively charged) is driven by

an electric current to pass through a protein pore on a membrane.

The current changes, caused by the blockage of different bases passing

through the pore, are captured and interpreted into sequences. (https:

//nanoporetech.com/how-it-works). ONT also has a long-read advan-

tage and high error rate disadvantage as PacBio. One of its sequencers,

the MinION, unlike the other sequencers that weigh in tons, weighs in

https://www.pacb.com/smrt-science/smrt-sequencing/
https://www.pacb.com/smrt-science/smrt-sequencing/
https://nanoporetech.com/how-it-works
https://nanoporetech.com/how-it-works
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grams and has the size of a USB drive. This portable sequencer has

been used in remote locations such as the International Space Station

nicholas2017whole.

As PacBio sequencing, ONT has not been broadly adopted in

metagenome sequencing. ONT’s PromethION-48 platform can rival the

largest Illumina sequencers for throughput, producing 7,600 gigabases

in a single run, which has the potential to sequence the most complex

microbial communities.

Table 1.1 provides a brief review of the three sequencing platforms

we just discussed.

Illumina Pacific
Biosciences
(PacBio)

Oxford Nanopore
(ONT)

Read length 150-300 1000-30,000 500-100,000
Single-Molecule
Sequencing?

No Yes Yes

Throughput Very high high high
Cost Low High High
Error Rate 1-2% 15% 10%?

Data from a single run
120 Gb (NextSeq 550

300 Gb (NextSeq 2000)
6,000 Gb (NovaSeq 6000)

20Gb (Sequel)
10-20 Gb (MinION)

7,600 Gb (PromethION-48)

Applications Amplicon, WGS, SAGS WGS WGS

https://www.illumina.com/systems/sequencing-platforms.html
https://www.pacb.com/products-and-services/sequel-system/
https://nanoporetech.com/products

1.4.4 Emerging technologies

For metagenome sequencing, we are caught in a dilemma between

high-throughput, accurate but shorter reads offered by Illumina, and

low-throughput, inaccurate but longer reads offered by PacBio and

ONT. Could we have the benefits of both worlds?

Assuming the errors are random, one strategy is to sequence the

same DNA molecule multiple times to increase accuracy. The follow-

ing plot helps to illustrate this point. For Nanopore-1D (70% accuracy),

PacBio (85% accuracy), and Illumina (98% accuracy), if we have 5 or

more reads that cover the same base, the accuracy is close to 100%

(Figure 1.2). PacBio’s latest technology uses the circular consensus

sequencing (CCS) mode that sequences the same molecule multiple

times, a consensus sequence can then be derived with a base accuracy

https://www.illumina.com/systems/sequencing-platforms.html
https://www.pacb.com/products-and-services/sequel-system/
https://nanoporetech.com/products
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over >99.5% (Wenger et al., 2019). ONT sequencing can also make

both strands of the DNA pass the nanopore to reduce errors (2-D se-

quencing). These high-fidelity versions, becoming less expensive with

improved throughput, could enable their rapid adoption in metagenome

sequencing.

Fig. 1.2 Sequencing coverage vs base accuracy at different error rates.

Another strategy is to use short reads to "synthesize" long reads.

These technologies, sometimes also called “read clouds” or “linked

reads”, first partition one or a few large genomic fragments into a liq-

uid droplet, where a mini short read library with a unique barcode is

generated. Each mini-library represents a “cloud” of reads originating

from a long fragment in the same droplet, or in other words, these

reads are “linked” by the barcode. The resulting mini-libraries are then

combined and sequenced using the Illumina platform, and the reads

from each large molecule can be separated based on their barcodes

and assembled. The assembly process is much more simplified as it

only has to deal with a few segments at a time, as opposed to the en-

tire metagenome. The assembled large fragments can then be further

assembled to reconstruct the metagenome.

Current sequencing technology continues evolving to bring longer

reads, reduced cost, and higher sequencing accuracy. Combining Inter-
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net of Things (IoT) and edge computing, future sequencing technologies

may enable "edge metagenome sequencing" directly from various habi-

tats, or sequencing is done on portable sequencers (such as an ONT

MinION) and data is sent directly to the cloud. This would be particular

important for metagenomics, as currently we do not have a technol-

ogy to monitor a microbial community in real time. To prevent another

global pandemic, such technology would allow us to quickly identify a

new pathogen, or a new strain of a known pathogen that is responsible

for an emerging infectious disease. Miniaturized automatic sequencers

as sensors would be essential for real-time surveillance of the evolution

of viruses in the wild.

1.5 Metagenomics: A great promise with abundant caution

Fueled by the recent development of sequencing technology and big

data analytic, our understanding of the microbiome is on steroids. Nu-

merous correlations have been established between specific microbes

or microbiome dynamics and a wide range of phenotypes that include

disease, responses to therapy, and environmental changes. These po-

tentially important correlations have led laboratories around the world

to explore the mechanisms that could establish causal links between

specific microbes and a phenotype. It is easy for us to imagine that in

the near future we will be able to digitally isolate each individual mi-

crobe in a complex environment, tease out its intricate genetic secrets

for adaptation, and predict its rise and fall with environmental changes.

However, here I would like to spell a few words of caution.

First of all, getting the sequence of a microbial genome is a rather

a new beginning, rather than an end. Genomics sequencing alone is

a poor predictor of the phenotype of a microbe. We would need to

combine it with metadata, or the environmental context the microbe

is living within, to further understand the potential encoded in its

genome. We could construct a metabolic map containing various pre-

dicted metabolic pathways from the genome, but these pathways tell

little about the physiology, metabolism, and habitat this organism can

adapt to. Too many published papers make too many speculations based

solely on metagenomic data. We need additional data, particularly func-

tion data such as transcriptomic, proteomic, metabolic, and physiologic
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data to faithfully interpret genome sequence data. Of course, obtaining

these data takes greater effort and cost, and this explains why they are

often missing from the study. Conclusions from a metagenomics study

without only genomics data should be always taken with a grain of salt.

Second, despite the fact that we have studied quite a few genes and

genomes, it is likely that what we have only sampled a tiny fraction of

the diversity of the microbial world. Even for one of the bacteria we

know best, Escherichia coli, still has about 17% of its proteins with

unknown functions and 34.6% of genes lack experimental evidence of

function (Ghatak et al., 2019). Every new genome we reconstructed

from the environment contains many more unknown proteins, some

genomes may be close to unrecognisable with few known genes. Just

like microbiology has a skewed representation by only a few pathogens

(E. coli, Salmonella, etc), current metagenomics is also heavily biased

towards the human microbiome as a subject.

Finally, the technologies employed in metagenomics all have biases,

gaps, noises, and other limits. For example, as other omics studies, we

may never get to 100% completeness. We may miss rare species, which

turns out to play vital roles in the community. These rare species are

actually much harder to get to, because it takes an increasing amount

of sequencing to see them, if we can distinguish them from noise.
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Chapter 2

Computational Metagenomics: a
data engineering perspective

Last decade marks a few events for the dawn of a big data era.

Founded at 2005, YouTube reaches 2.3 billion monthly active users

worldwide as of 2021 and hosts 720,000 hours of video uploaded ev-

ery day (https://www.oberlo.com/blog/youtube-statistics. Twit-

ter, created in 2006, now has 192 million daily active users and they

send out more than half a billion tweets each day (https://www.

oberlo.com/blog/twitter-statistics). The genomics big data era

also started around the same time frame. In 2005, the Sequencing-By-

Synthesis technology from a UK startup, Solexa, delivered over 3 mil-

lion bases from a single sequencing run to obtain the complete genome

of bacteriophage phiX-174. The next year, the first Solexa sequencer

was launched with the power to sequence 1 gigabase (Gb) of data in

a single run. While Youtube and Twitter have long passed their expo-

nential growth stage, the rate of increase in sequencing data is still

growing exponentially, and it has far surpassed the rate predicted by

Moore’s law (Figure 2.1). The number of nucleotide base pairs (bp) in

public repositories is estimated to reach exabase-scale (1018 bp) before

2025 (Stephens et al., 2015). Metagenomics data is one of the largest

contributors to this data growth.

Today’s metagenomics has largely become a data science problem,

as data generation has increasingly become a smaller part. Back to the

planning trip analogy I made at the beginning of the book, the data is

both cargo and fuel. The cargo aspect of data means they are a bur-

den on our computational metagenomics task, and larger data means

a heavier burden. The fuel aspect of data means they contain valuable

information for data mining engines, as more data translates into better

17

https://www.oberlo.com/blog/youtube-statistics
https://www.oberlo.com/blog/twitter-statistics
https://www.oberlo.com/blog/twitter-statistics
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Fig. 2.1 Sequence data growth in the National Center for Biotechnology Information

(NCBI) Short read archive (SRA) vs a hypothetical rate predicted by Moore’s Law (dou-

bling every two years). Data source: https://trace.ncbi.nlm.nih.gov/Traces/sra/

sra_stat.cgi

machine learning models.

In this chapter, we will get to know the various data types in com-

putational metagenomics, what are their specific applications, and the

strategies to effectively manage them. I will discuss computer algo-

rithms to process them in the next chapter, while leaving the discussion

of scalable big data analytics to Chapter 4.

2.1 An overview of metagenomics data management

Historically, genomics data used to be scarce. In the first generation

sequencing era dominated by Sanger sequencing, a good data man-

agement practice was to save every bit of data we generated, as data

generation was expensive at that time. We would make several copies

of the data so that accidentally losing one copy would not be conse-

quential. We would submit it along with the associated analysis results

to online databases so that everyone in the world can print them out

and make more copies. One person can easily do the whole process.

We seldom need to wait for hours or days to transfer our data, even

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra_stat.cgi
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra_stat.cgi
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though our hard drives and internet connections were slow and unreli-

able at that time. In the next-generation sequencing era with large data

volumes and various data formats, however, this ad hoc data manage-

ment strategy will no doubt fail us. An individual is no longer able to be

responsible for data backup, versioning, and sharing. Even with a dedi-

cated data management team, many institutions are struggling to come

up with an effective data management strategy as data volume grows

exponentially and their formats constantly evolve. The rapid develop-

ment of analytical tools also exacerbates the data management prob-

lem by creating more formats and versions. The prevalence of applying

next-generation sequencing to medical fields also makes the security

and privacy problem bigger to handle.

There may not exist a perfect data management strategy, but we

know a good data strategy should be defined by the underlying scien-

tific or business goals. For large organizations, a good strategy should

also consider a dedicated team led by a genomics data architect. Here,

I will assume that readers are more interested in data management at

the project level in a small team setting. The same principles could also

be applied when we need to scale up.

When we talk about metagenomic data management, there are three

aspects we have to consider: information, storage, and governance (Fig-

ure 2.2). From a metagenomics perspective, what kind of information

do we need to capture? For a typical metagenomics project, we capture

both sequencing data as well as the metadata that describes how the

experiments are carried out. From a data engineering perspective, after

these information are captured, where and how should we store them?

What file formats will be efficient for our downstream analytic tasks

from an algorithmic perspective? What database system should we use

to organize our data? What format will incur smaller costs? What infor-

mation should we keep secure and private? While the questions do not

stop here, I will walk you through these aspects of data management,

starting from the types of data to capture metagenomics information,

followed by data governance (database systems), and finally the consid-

eration of storage and process choices.
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Information Storage

Governess

Data Format

Security
Privacy

Database
Systems

Metagenomic 
Data Management

Fig. 2.2 Considerations for metagenomics data management.

2.2 Types of Data in Metagenomics

It seems that there are countless types of data in the world of data

science, and people are still inventing new ones. The data taxonomy it-

self is messy. It is easier to understand these data types if we look at

the three pillars of computational metagenomics introduced in the first

chapter, i.e, look at them in the context of metagenomics, data engi-

neering, and algorithms, respectively. The metagenomics context deals

with what information to capture and store to serve the scientific prob-

lem at hand, the data engineering context deals with how to represent

this information efficiently given the computing infrastructure at hand,

while the algorithm context deals with how to organize this information

for faster (or approximate) solutions.

2.2.1 Data types in the context of metagenomics

In the context of metagenomics, we have omics (genomics, transcrip-

tomics, proteomics, or metabolomics) data. These data types are named

after specific scientific questions or specific experimental technologies
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that produce them. There is also metadata, or data describing the de-

tails of the experiment from which our omics data derive. Metadata

of environmental samples often include where and when they are col-

lected, such as longitude and latitude, and some physiochemical de-

scriptions of the samples such as PH, humidity, and temperature). The

metadata of clinical samples often includes descriptions of the patients

such as gender, age, smoke/alcohol/antibiotic usage history. We often

collect as much metadata as possible, in various formats, voluntarily or

demanded by online repositories. Here I limit our discussion to DNA

sequences only, as we will mention other formats in later chapters

when we discuss specific software tools. I will introduce a few com-

mon data formats, but a comprehensive guide of next-generation se-

quence data formats can be found at The National Center for Biotech-

nology Information (NCBI) website: https://www.ncbi.nlm.nih.gov/

sra/docs/submitformats/.

2.2.1.1 DNA sequence data

Regardless of what sequencers generate our sequence data, we need

to capture at least three types of information: 1) the DNA sequence

itself; 2) as we mentioned in Chapter 1 sequencers have various error

rates, for each of the recorded sequenced bases we need the associated

probability of it being correct; and 3) some metadata about the source

of the sequence data and how they are generated.

FastQ

FastQ format is one of the most common sequence formats produced

by the next-generation sequencers. It records the ID, sequence, and

quality of a read. ID provides a unique identification of a read. It could

also contain some metadata information, albeit very limited. For ex-

ample, in a FastQ file generated by Illumina platform, the sequence ID

contains the machine type, flow cell information, coordinates of the flow

cell, read pair information, and barcodes, etc. Each sequence record

consists of four lines: an ID line begins with an extra “@”, the sequence

line, another ID line begins with an extra “+”, and finally the line of

quality scores. The second ID is often omitted as it is identical to the

first one. The PHRED quality score (integers between 0 and 90) is a

nonnegative quality value of each called base. It is the log-transformed

https://www.ncbi.nlm.nih.gov/sra/docs/submitformats/
https://www.ncbi.nlm.nih.gov/sra/docs/submitformats/
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error probability,

Q =−10∗ log10(Pe) (2.1)

In FastQ files, we actually do not represent quality scores as a nu-

merical format. Instead, they are encoded into a compact format so that

each quality score uses only 1 byte. In this encoding, the quality score is

represented as a character with an ASCII code equal to its value + 33.

The following table demonstrates the relationship between the error

probability, its corresponding PHRED score, and its encoded character:

Error prob. PHRED Score FastQ Encoding
Pe = 1.0 Q = 0 !
Pe = 0.1 Q = 10 +
Pe = 0.01 Q = 20 5
Pe = 0.001 Q = 30 ?
Pe = 0.001 Q = 40 I

The FastQ formatted files have extensions “fastq” or “fq”. As a plain

text, it is easy for humans to read but very inefficient for storage, so in

practice they are compressed by gzip, resulting in “fq.gz” as their file

extension.

The following are two read examples from FastQ files, the first one

is a pair of short reads derived from Illumina sequencing, the second

one is a single read from PacBio sequencing.

A read pair sequenced by Illumina NovoSeq, the sequence ID line

follows this format: @<instru-

ment>:<run number>:<flowcell ID>:<lane>:<tile>:<x-pos>:<y-pos>

<read>:<is filtered>:<control number>:<sample number>. More in-

formation can be found at https://help.basespace.illumina.com/

articles/descriptive/fastq-files/.

@HISEQ09:412:CBT0RANXX:5:1114:15323:37302 1:N:0:TAGCTT
ACAATAAATATTATTATCTTCATCAATTTTTTTTTTTTGTTTTAGTTTTTGTTTTTTTTTTTTTTTTTGGTTTTTTTTTTTTTT
TTTTTTTTTTTTTTTTTTTAAAATTATTAATTTTTTTATTATTTTTTTTTTTTTTTTTTTTTTTTT
+HISEQ09:412:CBT0RANXX:5:1114:15323:37302 1:N:0:TAGCTT
CCCCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGDGEED>CEDFG/FGGGGGGGGGGGG/C////::DGGGGGB///ED
GGGGGGGGGG########################################################
@HISEQ09:412:CBT0RANXX:5:1114:15323:37302 2:N:0:TAGCTT
ATATTCAATAAATAAAAAAAAAAAAAAACGTACAAAAAAAAAAAAAAAATAAAAAAAAAAAAATTAAAAAAATAAAAAAAAAAA
AAAAAATTTTTGAAAAATTTTTTTTTTTAAAAAATAATAAAAAAAAAAAAAAAAAAAAAAAAAAAA
+HISEQ09:412:CBT0RANXX:5:1114:15323:37302 2:N:0:TAGCTT
<3<001@E1@FG1@FGGG/EEGG//<EG//110=FGGGGGGGGGGGGA/09;0DGG/:CGG;/00;;9C@:/099DGECG//..
...6...////..///C.66//.......//6/..8//68DDGGGGGDGGG..CGGGGGGGDG###

A read derived from the PacBio Sequel II system. In this specific

https://help.basespace.illumina.com/articles/descriptive/fastq-files/
https://help.basespace.illumina.com/articles/descriptive/fastq-files/
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example, the ID line follows this format: @m_<Time of Run Start

(yymmdd_hhmmss)>/<Instrument Serial Number>/<Subread Region

(start_stop>.

\begin{linenumbers}
@m64021_191003_193626/4/0_3252
ACGAAACGTCCCTCTTAACGACCGCGACCGGACATTCCTACTTCGCCGGAGCACATAAATGGAATGCTTTGAAATGTAAGTCGA
TTCGCGTCCCGGAGTGACTGGAGTTGACTCTCGCGCTGGGGCGGGCAAAAGAAAGGTGGTCGAG
(many more lines are skipped)
GGAGGGGGGGGGGGTGGGGGGGGGGTGGGGGCAATAAGTGACAGTTGCGAGTCTGTTACGCCAGCGAGCCTGGGAATGGGGGGG
GGGAAGCCGTAAGAAGGGGGCGGTGGGGAGCGGGTGGAGGGGGGGGGGGGGGGCCACCCGAACA
+
####################################################################################
###############################################################
(many more lines are skipped)
####################################################################################
################################################################
\end{linenumbers}

FastA

In cases where sequencing quality is not important or not relevant,

sequences are stored in FastA format. Most reference genomes are

stored in FastA format, as their quality is presumed to be very high.

The FastA formatted files have extensions “fasta” or “fa”. As for FastQ,

FastA files are also plain text files, and they are often compressed to

have extensions such as "fa.gz". The following example is a representa-

tion of the first sequence in the above FastQ example in FastA format.

>HISEQ09:412:CBT0RANXX:5:1114:15323:37302 1:N:0:TAGCTT
ACAATAAATATTATTATCTTCATCAATTTTTTTTTTTTGTTTTAGTTTTTGTTTTTTTTTTTTTTTTTGGTTTTTTTTTTTTTT
TTTTTTTTTTTTTTTTTTTAAAATTATTAATTTTTTTATTATTTTTTTTTTTTTTTTTTTTTTTTT

SAM/BAM

If there is a reference available, the sequence data can also be rep-

resented in Sequence Alignment/Mapping (SAM) format. A reference

could be a set of known reference genomes of the species in the mi-

crobial community where the raw sequences are derived. It could also

be a metagenome reference assembled from the reads (see Chapter 8

for metagenome assembly). SAM format is produced by mapping the

sequence reads to the reference to determine the location of each read

on the reference. It contains all information in a FastQ file, and in ad-

dition it contains mapping information (the location of the reference

genome and the quality of the mapping). SAM format and its binary
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equivalent, BAM, are widely used in software tools developed for next-

generation data. We will see its application frequently in later chap-

ters. A complete specification of SAM/BAM format can be found here:

https://samtools.github.io/hts-specs/SAMv1.pdf. SAM/BAM files

can be sorted and indexed for fast random access. A SAM/BAM file con-

sists of two parts, a header portion that describes metadata (the refer-

ence and how the mapping is done), and a data portion that contains

the mapping information.

Below is an example of a SAM/BAM file. For illustration purposes,

it only shows two reference sequences and two reads, the first read is

mapped while the second one is not:

@HD VN:1.4 SO:unsorted
@SQ SN:NODE_2_length_815_cov_8.922368 LN:815
@SQ SN:NODE_1922_length_105_cov_1.460000 LN:105
HISEQ09:412:CBT0RANXX:5:1311:6356:89265 2:N:0:TAGCTT 16 NODE_1922_length_105_cov_1.460000 1
1522S105=23S * 0 0 TTCCTTTTCCTTTTCCTTTTCCTTTTCCTTTTTTCCTTTTTTCCTTTTTTCCTTTTTTTCCTTTTTTCC
TTTTTTTCCTTTTTTCCTTTTTTCCTTTTTTCCTTTTTTTCCTTTTTTCCTTTTTTTCCTTTTTTCCTTTTTTCCTTTTTT <@BGGGGBBGEB@8.8.=G@.GGGGGC>G<@E
EEDGC6GEEGGGGED=GGB>AGBGGGDDBGD@GGBGGGGGGGGGGGGGGGGGGGGGDFGFB<GEGDGC/GFGGGGGDGGFGGGGGGGGGGGGEGGGGGGGGGGGGGGFGGGGBCBB
@B NM:i:0 AM:i:15
HISEQ09:412:CBT0RANXX:5:1302:17219:76080 2:N:0:TAGCTT 4 * 0 0 * * 0
0 CAAAAAAAAAACCAAAACAACTCTTCCTTATGCGTATCATTGGATAAAGCTCTTTCTAGGTGTAACTCGACGCCACCAAACATAGGTTAAGGGGAGCCTTGAGTATTCGCCT
TTGTTCTTCCCCCATGGGTAACGCATGCGACCATAAAA <AB000=/E//</00<E1:0C=B1BFGGD11E1F<=/:DG:FGC>DCGF1:111:>FGGG>EGGGG0<BBGGB>/F
GGGGGEEG08;DGC00....../9:/6:@//8.6>>/D6DEGDDEGGGGG;.@BGGBGGGGG=@DD,>GGGGE

2.2.1.2 Annotation data

Another common type of genomics data is annotation data. Annota-

tion data describes the taxonomy or function of the genetic elements

(genes, transcripts, etc) or genetic features (repeats, promoters, vari-

ants, etc). Common annotation file types include GFF (General Feature

Format) and BED (BED (Browser Extensible Data). People in the clini-

cal genomics and population genomics fields also use VCF (Variant Call

Format) to annotate mutations/variants. In metagenomics, VCF has not

been widely adopted, reflecting this field is relatively young. We will

take a glimpse at the GFF and BED formats below.

GFF3

GFF format is specified by the GMOD project (http://gmod.org/

wiki/Main_Page). GFF format consists of one line per feature, each

containing 9 columns of data, plus optional track definition lines. The

following example is based on the Version 3 specifications from the

GMOD website, describing the annotation of a transcript, mrna0001

on chromosome ctg123.

https://samtools.github.io/hts-specs/SAMv1.pdf
http://gmod.org/wiki/Main_Page
http://gmod.org/wiki/Main_Page
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##gff-version 3
ctg123 . mRNA 1300 9000 . + . ID=mrna0001;Name=transcript1
ctg123 . exon 1300 1500 . + . ID=exon00001;Parent=mrna0001
ctg123 . exon 1050 1500 . + . ID=exon00002;Parent=mrna0001
ctg123 . exon 3000 3902 . + . ID=exon00003;Parent=mrna0001
ctg123 . exon 5000 5500 . + . ID=exon00004;Parent=mrna0001
ctg123 . exon 7000 9000 . + . ID=exon00005;Parent=mrna0001

It is worth noting that in the process of capturing experimental in-

formation, the above data formats discussed above were designed for

humans to read. In the big data era, these data types are neither space

efficient nor easy to access. We will discuss these issues later in this

chapter.

BED

BED format is specified by UCSC Genome Browser com-

munity (https://genome.ucsc.edu/FAQ/FAQformat.html#format1). It

provides a flexible way to define and display annotations. The above

GFF format can be converted to the following BED format:

track name=exampleBED description="An example of BED" useScore=1
ctg123 1300 9000 mrna0001 1000 + 1000 9000 255,0,0 2 1300,1050,3000,5000,7000 1500,
1500m3902,5500,9000

2.2.1.3 Metadata

From experiment design, sample collection, sequencing to data analy-

sis, each of the steps in the life cycle of a metagenomics project pro-

duces metadata that describes the sequence data and annotation data

we discussed earlier. These metadata contain important information for

understanding genomic data. The earliest metadata were handwritten

notes, and they later evolved into spread sheets. Researchers soon re-

alized that it was painful not to have common standards for sharing

and exchange of such data. In 2005, the Genomic Standards Consor-

tium (GSC) initiative was formed including several sequencing centers (

NCBI, EMBL, DDBJ, JCVI, JGI, EBI, Sanger, FIG)) to standardize the de-

scription of (meta)genomes. GSC specified the MIMS standard, which

stands for Minimum Information about any Metagenome Sequence, for

metagenome metadata (https://gensc.org/). Without going much de-

tail into the MIMS standard, I will use some mock examples from JGI to

illustrate how metadata is recorded.

https://genome.ucsc.edu/FAQ/FAQformat.html#format1
https://gensc.org/
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As JGI is a user facility, the metadata describing a user is shown in

Table 2.1:

Name Value

acct_id 0000
acct_purpose Programmatic
acct_scientific_program Metagenome
acct_user_program A JGI Partner
acct_year 2020

After JGI is committed to support a user’s research proposal, the

proposal information metadata is captured by a Table 2.2: "Scientific

proposal information".

Name Value

proposal_id 506431
proposal_pi Doe, John
proposal_title The purpose of this proposal is to study a problem

of highly relevant to DOE missions

The metadata describing the genomic sequencing itself, including

information about the sequencing library and sequencing platform, is

shown in Table 2.3: "Sequencing metrics".

JGI’s analysis pipelines produce metadata like those shown in Table

2.4: "Analysis summary".

The above tables just captured a tiny portion of the various meta-

data associated with a metagenomics project. Like the metagenome se-

quence itself, the size and variety of metadata are also getting bigger.

Next, we will explore data types from data engineering and algorithmic

contexts, to learn how to represent these data and how to process them

efficiently.

2.2.2 Data types in the context of data engineering

We just went over what information to capture and store (metagenomics

context), now let us see how these information can be represented and

organized. In the context of data engineering, data can be represented
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Name Value

sow_item_type Fragment
sow_lib_creation_specs Illumina Regular Fragment, 270bp
sow_lib_protocol Regular (DNA)
sow_logical_amt_unit Gb
sow_overlap_reads N
sow_platform Illumina
sow_poly_a_selection N
sow_prev_status Awaiting Collaborator Metadata
sow_purpose Anticipated Planned Work
sow_rrna_depletion N
sow_seq_model NovaSeq S4
sow_status Awaiting Collaborator Metadata
sow_target_dop 60
sow_target_logical_amt 11
sow_target_mass_lib_trial_ng 100
sow_target_run_type 2x150
sow_target_template_size_bp 270
sow_tight_insert N

Name Value

sp_actual_product Metagenome Minimal Draft
sp_actual_sam_map_strategy 1:All
sp_auto_sched_sow_items N
sp_comments 10 Gb

as textual, numerical, or binary types. Each of these types of data can

also adopt different formats. When choosing a data format, a data en-

gineer has to balance storage and access efficiency and makes a com-

promise if a trade-off is involved. To make data storage efficient, we

want to keep as little redundancy as possible, reducing both data and

information redundancy. To make data access efficient, we want to have

the ability to quickly sample or slice portions of the data without first

going through the entire body of data. The reason for efficiently sam-

pling data is two folds: the first reason is that we may not be able to

load all data in memory for analysis as many are too big to fit in; the

second reason, for some of the scientific questions such as evaluating

data quality and estimating community richness, is that we often do not
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need all data to be able to answer them.

2.2.2.1 CSV and JSON

For textual and numerical data, there are two predominant formats,

CSV and JSON, across many scientific domains. CSV, or comma-

separated values (sometimes tabs are used to separate values, hence

TSV), is the most common format to store textual or numerical data in

a tabular format. FastQ, FastA, GFF3, and BED data formats we dis-

cussed earlier are essentially variants of TSV format, and they can be

easily transformed into TSV format.

JavaScript Object Notation (JSON) provides an easily readable for-

mat by maintaining a dictionary-style structure. JSON is a versatile and

flexible data format in the context of web interactions. Metagenomics

data analysis services such as NCBI and MG-RAST (https://www.mg-

rast.org/), use RESTful APIs to provide access to their data and analysis

results by answering web queries with structured JSON data. JSON for-

mat is the format of choice for metadata, as an example, the previous

user and proposal metadata can be represented as the following JSON

format.

{
"user_info": [

"acct_id": "0000",
"acct_purpose”: "Programmatic",
"acct_scientific_program": "Metagenome",
"acct_user_program": "A JGI Partner",
"acct_year": 2020

],
"Scientific proposal information": [

"proposal_id": 506431,
"proposal_pi": "Doe, John",
"proposal_title": "The purpose of this proposal
is to study a problem highly relevant to DOE missions"

]
}

Both CSV and JSON formats are easy for humans to read, write,

and interpret. However, these formats are not space-efficient, neither

are they easy to access when files become very large. To improve their

space efficiency, they are often stored in compressed format on the stor-

age system. On Linux systems, gzip or tar.gz are the two most common

formats for compression. Compression unfortunately makes the acces-
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sible problems worse, as the files may have to be decompressed before

some software tools can analyze them. Another problem is that data in

these formats can only be accessed sequentially, much like songs stored

on a tape, we would have to read and skip all data before reaching the

data we want. For random access of data, we would need databases.

2.2.2.2 Databases

CSV and JSON formatted data can be stored in databases, where data

records are indexed to enable random access. There are two types

of databases: the traditional relational database and the new NoSQL

database. A Relational Database Management System (RDMS) stores

information as a series of related data tables. The vast majority of the

databases used in metagenomics are relational databases. The meta-

data tables we saw earlier are all part of JGI’s metadata database. These

tables have a fixed schema (a.k.a. structure), and the information stored

in these tables can be queried using SQL (Structured Query Language).

RDMS provides good performance when the data is relatively small, but

their performance degrades quickly as the data gets bigger. For exam-

ple, for a database table with billions of rows, adding a new attribute

to a single row would require billions of operations as a new column is

added to the entire table.

NoSQL databases are also referred as document databases. Instead

of storing related tables with structured data, they store data in key-

value pairs or JSON documents that are unstructured or semistruc-

tured. As Relational databases, NoSQL databases also index data for

random access. Unlike Relational databases, the flexible schema of

NoSQL allows adding/removing attributes with ease. NoSQL is the for-

mat of choice for storing big data as it offers high scalability, resilience,

and high availability (by default, data is replicated in multiple copies).

Readers can learn more about NoSQL from leading vendors such

as MongoDB (https://www.mongodb.com/nosql-explained). A variant

of NoSQL, NoSQL Graph database, that is very promising to model

the complex relationships among metagenomics knowledge, such as

metabolic networks, phylogenetic relationships, and interspecies inter-

actions. By representing relationships in native graph format, graph

databases bring effective relationship mining to big data.

https://www.mongodb.com/nosql-explained
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2.2.2.3 HDF5

For storage and access performance reasons, most data management

systems store sequence data in compressed CSV/JSON format since

they do not need random access, while storing structured metadata in

various databases for rapid information retrieval. There is a risk of po-

tential disconnection between the two, for example, the record of a se-

quence file path in a database is accidentally modified, or the sequence

file itself is unintentionally moved without updating its corresponding

record.

The Hierarchical Data Format version 5 (HDF5) solves the above

problem. It is an open-source file format that supports heterogeneous

data types. An HDF5 file is rather a “container”, as it organizes all data,

both sequence and meta-data, related to an experiment in a structured

way. It supports compression and slicing, which makes it both efficient

in storage and data access. It also has Application Programming In-

terfaces (APIs) that support many programming languages, including

Python and R. The ability to embed metadata inside the file makes

HDF5 self-describing, which facilitates data sharing and downstream

processing. Both PacBio and Nanopore raw sequencing data formats

are in HDF5 format. The metagenomics community has made a deriva-

tive of HDF5 by creating the BIOM file format, designed to be a general-

use format for representing biological samples. BIOM is a recognized

standard by the Earth Microbiome Project and the Genomics Standards

Consortium (https://biom-format.org/). The following are the re-

quired top-level attributes defined in BIOM v2.1:

id : <string or null> field that can be used to id a table (or null)
type : <string> Table type (controlled vocabulary)

Acceptable values:
"OTU table"
"Pathway table"
"Function table"
"Ortholog table"
"Gene table"
"Metabolite table"
"Taxon table"

format-url : <url> A string with a static URL providing format details
format-version : <tuple> The version of the current biom format, major and minor
generated-by : <string> Package and revision that built the table
creation-date : <datetime> Date the table was built (ISO 8601 format)
shape : <list of ints>, the number of rows and number of columns in data
nnz : <int> The number of non-zero elements in the table

https://biom-format.org/
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While HDF5 is a great compromise to balance the need to orga-

nize heterogeneous information in a metagenomics project and stor-

age efficiency, its performance in terms of data loading/saving and stor-

age/memory footprint are not as good as the formats that specifically

designed for big data analytic that we are going to discuss below.

2.2.3 Parquet and Arrow

For decades, the vast majority of data are row-oriented storage for-

mats, as early analysis involves reading, writing, and updating a few

rows at a time. When we need to look up a single attribute from a row-

oriented data format, we have to retrieve an entire row before we can

decide whether or not this row is desired. If the dataset contains bil-

lions of rows, this process becomes wasteful, as the majority of the data

we retrieve is discarded. Storing data in a column-oriented format, or

by separately storing each attribute, skips the retrieval of irrelevant

attributes and thus speeds up our query. Columnar data formats are

gaining popularity as high performance access is needed for very big

datasets. Apache Parquet (https://parquet.apache.org/) and Arrow

(https://arrow.apache.org/) are two column-oriented file formats for

data serialization (Box 1).

Box 1. Data serialization is the process of converting data objects present in
complex data structures into a byte stream for storage, transfer, and distribu-
tion purposes on physical devices. Computer systems may vary in their hard-
ware architecture, OS , addressing mechanisms. Source: Data Serialization -
Devopedia

To store data efficiently in the parquet format, data is serialized or

converted into a series of bytes that can be stored and transferred com-

pactly. In the de-serialization process, the data is converted back to

the original structure to be analyzed. As Parquet files require decom-

pressing and decoding before its contents can be analyzed, they achieve

space/IO-efficient at the expense of CPU utilization.

While Parquet format provides advantages in archiving data on

disks, its lack of rich data structure makes it not efficient for some anal-

ysis tasks such as random data lookup. Apache Arrow format also pro-

vides columnar data organization, but its structure is built for fast in-

memory computing. In big data applications, the two formats are often

https://parquet.apache.org/
https://arrow.apache.org/
https://https://devopedia.org/data-serialization
https://https://devopedia.org/data-serialization
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used together, such as in Apache Spark (which we will discuss later), to

store data in Parquet files and read them into memory in Arrow format.

Parquet and Arrow formats are widely used in the big data commu-

nity, but their adoption in genomics and metagenomics has not been sig-

nificant. Part of the reason is that the lion’s share of data, metagenome

sequence data is essentially lacking any structure. By now I have men-

tioned "data structure" several times without explanation, I will do this

for our next topic: data in the context of algorithms.

2.2.4 Data types in the context of algorithms

In the context of algorithms, data can be classified as structured and

unstructured data based on its structure (or lack thereof), or dense and

sparse data based on how the information is represented. Understand-

ing such data characteristics helps design efficient analysis algorithms.

2.2.4.1 Structured vs unstructured data

Structured data refers to data with a clear format or a consistent pat-

tern (schema). The above-mentioned GFF3, TSV, and JSON formatted

files are structured data. Having a well-defined blueprint or schema

makes it easy to design an efficient strategy for data storage and query,

since we know exactly how many bytes it takes to store our data and

what type to expect for our search results. Sometimes the schema of

the data can be too restrictive. In contrast, unstructured data does

not have a well-defined schema, for example, image, audio, video, and

metagenome sequences. For unstructured data, as they lack a pre-

dictable pattern (size, format, data type, etc), it is more difficult to de-

sign efficient storage and query methods.

Feature extraction, or mining patterns within data, is a technique

that extracts useful structured information from unstructured data.

As we will see in later chapters, we can assemble the unstructured

metagenome, read data from genomes, and then predict genes from

each genome, count the frequency of each genome, etc. These pro-

cesses convert unstructured data (FastQ) into structured data (TSV,

GFF3, etc). This conversion process is often incomplete, however, re-

sulting in information loss.
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2.2.4.2 Dense vs Sparse data

Suppose we want to store a large one million by one million table with

the majority of its elements being zeros, we have two format choices.

In a dense format, we write down each element including all zeros.

In a sparse format, we could just store the nonzero elements, along

with their coordinates (row and column numbers). The COOrdinate

(COO) format is one of the sparse formats, as there are several others,

each is suitable for a different application. Matt Eding has an excel-

lent blog about these formats (https://matteding.github.io/2019/

04/25/sparse-matrices/). It is obvious that the higher the percent-

age of zeros in the table (the higher sparsity), the more space we could

save storing it in a sparse format. The following Table 2.5 is an exam-

ple of a species abundance table represented in two formats: dense and

sparse (COO).

Dense Format Sparse Format
Genome\Sample S1 S2 S3 S4 Genome Sample Count
G1 0 0 3 0 G1 S3 3
G2 0 20 0 0 G2 S2 20
G3 0 0 0 17 G3 S4 17
G4 5 0 0 0 G4 S1 5

Sparse data format is everywhere in metagenomics, for example,

a species count table often has a large number of zeros due to some

species being either not present or not observed in certain samples. Be-

sides saving storage space, sparse format-based computation can also

perform faster and use less memory than the equivalent dense format,

which is especially helpful when working with large data sets. However,

for datasets that do not have sufficient sparsity (low percentage of zero

values), sparse-format may not improve storage and computation effi-

ciency, or even decrease them.

2.3 Data governess

Here is a typical scenario at a genome sequencing center: build-in com-

puter servers with high-throughput next-generation sequencers con-

vert image/video data into (raw) sequence data in real-time, the se-

https://matteding.github.io/2019/04/25/sparse-matrices/
https://matteding.github.io/2019/04/25/sparse-matrices/
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quence data is transferred to a central file storage via a high-speed net-

work connection, the production software pipeline then analyze these

data and the results, as well as the associated metadata, and these data

and their associated results are finally stored into a data warehouse.

Some of these data are later submitted to online data repositories, fol-

lowed by being archived to long-term storage.

Whether you are a data manager for a large genome center or an

individual data user, you may face the same data governess questions,

although the scale might be very different. Where should the data be

stored for short-term and long-term? How do I transfer a large amount

of data across different locations? What type of database should I use?

How do we enable data easily accessible but also ensure security and

privacy?

2.3.1 Location, Location, Location

Just like a good location makes a good real estate investment, a good

location is also crucial for us to store data to balance cost, security, and

performance. Metagenome data are typically stored in one or more of

these three types of locations: on-premises data warehouse, cloud stor-

age, or data silos. There are also hybrid strategies to optimize perfor-

mance/availability/cost, such as storing data in one place for computa-

tion while another for backup. I will explain each one and then compare

these options in the context of the above data governess questions.

2.3.1.1 On-premises data warehouse

A on-premise, or local, data warehouse is a data management system

containing both metadata and data. It is designed with high perfor-

mance (fast archive and retrieve), high availability (low downtime), and

scalability (growing with data volume) in mind. For sensitive data, these

data warehouses also have security features to provide different levels

of access to certain data. To have the ability to recover from hardware

failures or disasters, a data warehouse also needs to have redundancy,

such as saving another copy of the data in a different physical location.

From a data user’s perspective, probably the most important thing is

how to easily get data out, via either an Application Programming In-

terface (API) or a Graphical User Interface (GUI).
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Again, I will use JGI’s data warehouse as an example, as it is the

one I am most familiar with. The data warehouse, called JAMO (JGI

Archive and Metadata Organizer), stores comprehensive information

including sequence data, metadata, and analysis data. Its information

can be retrieved from a web interface called JGI Genome Portal (https:

//genome.jgi.doe.gov/portal/, and it also provides an API (called

"jamo") to conveniently retrieve data from the command line.

Below is the help information printed out from jamo that illustrates

its functionality.

usage: jamo <command> [<args>]
jamo commands :
fetch Retrieves files from jamo. Max number of files per call is 500
help Prints this message
info Prints info for the files that are returned for a query
keys list all the keys that match your query
link Retrieves files from jamo and links them in the current folder
report Runs a custom report with the returned metadata
show Shows all the metadata for a specific metadata id

There is a large amount of data generated by the scientific com-

munity and hosted by government-sponsored online repositories. These

repositories are on a massive scale, for example, NCBI’s short read

archive (SRA) hosts 52.6 petabytes of sequence data as of May 2021.

These hosting sites also provide toolkits and APIs for easy querying and

downloading. Flexible data access models enable users to keep their

private data while maintaining access to public data. Here is a short

list of publicly available, nonprofit online data warehouses that contain

metagenome data:

(1) NIH Short Read Archive (SRA) https://www.ncbi.nlm.nih.gov/sra

(2) EMBL-EBI MGnify https://www.ebi.ac.uk/metagenomics/

(3) DOE JGI https://img.jgi.doe.gov/

2.3.1.2 Cloud data repository

Many organizations that currently use on-premises data warehouses

are migrating or considering to migrate their data to cloud-based data

warehouses. Cloud data warehouses can provide the same function-

ality as the on-premises ones, minus the management hurdles. Part

or the entirety of the infrastructure can be provided as a service

(Infrastructure-As-A-Service, or IAAS). For example, Amazon Redshift

https://genome.jgi.doe.gov/portal/
https://genome.jgi.doe.gov/portal/
https://www.ncbi.nlm.nih.gov/sra
https://www.ebi.ac.uk/metagenomics/
https://img.jgi.doe.gov/
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(https://aws.amazon.com/redshift/) provides a platform for cus-

tomers to deploy their data warehouses. This platform offers clusters

of computer nodes with the desired amount of CPU, RAM and storage

space, and it can automatically scale up or down as demand grows

or shrink. Google’s BigQuery (https://cloud.google.com/bigquery)

takes one step further, providing both the hardware platform and the

data management system. Users can interact with BigQuery as if it

were an on-premises warehouse, scale up and down as needed, with-

out knowing about the underlying computing servers altogether. For

people who worry about getting locked into a particular vendor, or

want to leverage multiple cloud services for extra layers of redundancy,

Snowflake (https://www.snowflake.com/cloud-data-platform/) of-

fers "data warehouse-as-a-service", and it operates across multiple

cloud vendors, including Amazon Web Services (AWS) and Microsoft

Azure.

Since 2020, NCBI’s SRA data is available on the Google Cloud Plat-

form (GCP) and Amazon Web Services (AWS) clouds. All publicly avail-

able, unassembled read data and authorized access human data are

available for access and compute through these cloud providers. This

move may signify a transition to cloud-based genomics era and other

databases may follow suit.

2.3.1.3 Data silos (such as someone’s external hard drive)

Despite the availability of data warehouses and online repositories,

many researchers are still keeping their data in silos, such as their

own cluster storage or external hard drives, making the data inacces-

sible to others. There could be a few reasons responsible for metage-

nomics data ended up in silos. Since small sequencing centers may not

be able to afford to have on-premises data warehouses, they shift the

burden of data governess to individual users. An individual user faces

the choice between the cloud or their external hard drives. As the vol-

ume of metagenome data dramatically increases, so is the cost to store

them on the cloud. Thus, cheap external hard drives are still the only

choice for many. In many cases, they do not make backup copies of their

data or safeguard them. Some researchers are unwilling to share their

data, or the complicated compliance requirements imposed by online

https://aws.amazon.com/redshift/
https://cloud.google.com/bigquery
https://www.snowflake.com/cloud-data-platform/
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repositories prevent them from sharing. Even as government funding

agencies mandate publicly funded research to be shared, various barri-

ers still exist for the data to be accessed easily and fully.

2.3.1.4 A comparison of storage solutions

In summary, the data stored in silos have low cost and low performance.

It does not scale and can not be accessed easily. On-premises storage

can deliver very high performance, at the expense of high costs and

limited scalability. Hardware system maintenance or software bugs can

limit the availability of on-premises storage. In contrast, cloud storage

offers high availability, and it can scale to a large scale with a reason-

able performance and cost.

A comparison of the data storage reviewed in this chapter is in Table

2.6.

Features Silos On-premises Cloud

Availability Low Medium High

Scalability Low Medium High

Performance Low High Medium

Cost Low High Medium

Security Low High High

2.3.2 Data ownership and usage policy

In March 2021, DOE JGI was surprised that a preprint on BioRxiv had

used its embargoed data from 15,729 JGI metagenomes, metatranscrip-

tomes, and single cell genomes. The authors accessed this data from

NCBI’s SRA database where JGI’s data policy on usage restriction does

not apply, even though these data were automatically deposited in JGI’s

data warehouse. To protect the interests of its users, JGI halted all of

its automated data submissions to NCBI soon after the incident.

JGI is not the only institution that places restrictions on data usage.

The GISAID Initiative (https://www.gisaid.org/), which hosts data

from all influenza viruses and the coronavirus causing COVID-19. It

made crucial contributions to help researchers understand how viruses

https://www.gisaid.org/
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evolve and spread during epidemics and pandemics. GISAID also has

similar data usage policies that require users to acknowledge the au-

thors who produced its data. Distribution of data to third parties is pro-

hibited.

Besides bringing the awareness of data usage policies to my readers,

I will not go further into the controversy of these policies. The debate

about data ownership and usage policy probably will continue for some

time, but making data accessible to the research community broadly no

doubt will promote scientific discovery.

2.4 Data transfer

The massive volume sizes in many metagenome datasets have forced

data engineers to rethink the traditional paradigms to access and pro-

cess data. Making a fresh copy of a metagenome sequence data, or

downloading a full copy of NCBI’s microbial reference genome set, is

becoming increasingly expensive in both time and cost. To efficiently

process these datasets, data engineers are switching from a "bring-

data-to-compute" to a " bring-compute-to-data" paradigm – instead of

asking data to send to computing nodes for processing, new program

models favor computing from local data sources to keep data movement

at a minimum. In this section, we will discuss how we move the data

around. We will explore strategies on how to process them efficiently in

Chapter 4.

The best data transfer practice is actually to avoid it. Many data

warehouses mentioned above support certain analysis on the spot.

For example, with NCBI’s toolkit (https://www.ncbi.nlm.nih.gov/

toolkit), we can query the data stored there without downloading

them. However, if we need to analyze the unstructured sequence data,

or we need millions of queries in a short time (that exceeds the limit

of API calls), we may have to download the data. Another scenario that

involves moving data around is when we need to move the data from

one location to another, say, from JGI-JAMO to AWS’s cloud storage.

Sometimes we also need to move data from a low-performance storage

optimized for long-term, to a temporary but high-performance storage

system to speed up data analysis.

Unless the source and target of our data transfer are in the same

https://www.ncbi.nlm.nih.gov/toolkit
https://www.ncbi.nlm.nih.gov/toolkit
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network, we may have to consider the impact of network speed.

Many data centers have dedicated data transfer computer nodes that

connect to fast networks, such as DOE’s Energy Sciences Network

(ESNET, https://www.es.net/) or Internet2 (http://www.internet2.

edu/). Both are high-performance networks with backbones capable of

transferring 100 gigabits per second (Gbps).

Another consideration for data transfer is the software tools. Tra-

ditional tools based on FTP or HTTP such as Wget, rsync, and scp

are only suitable for small amounts of data. Vendor-specific tools are

preferred over these tools, for example, NCBI’s provides a toolkit

that can download large metagenome datasets stored in the Short-

Read Archive (SRA). Here, I want to highlight a tool called Globus

(https://www.globus.org) , which was specifically designed for mov-

ing large research datasets between two points. It provides a secure,

unified interface to your research data with its ’fire and forget’ feature.

As shown in Figure 2.3, with just a Globus client, a user can seamlessly

move data around various data locations, as long as they have a Globus

entry point.

Fig. 2.3 Globus’s provides a unified user interface to many data locations.

Source: https://www.globus.org/sites/all/themes/globus_bootstrap_theme/home_

images/graphic-unified@2x.png

https://www.es.net/
http://www.internet2.edu/
http://www.internet2.edu/
https://www.globus.org
 https://www.globus.org/sites/all/themes/globus_bootstrap_theme/home_images/graphic-unified@2x.png
 https://www.globus.org/sites/all/themes/globus_bootstrap_theme/home_images/graphic-unified@2x.png
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2.5 Metagenomics data management: Future perspectives

and cautions

The rate of genomics data is still growing exponentially (Figure 2.1),

but the rate is slowing down. According to JGI scientist and leader of

the IMG database, Nikos Kyrpides, the growth of microbial genomes

has become linear in recent years while the exponential metagenome

sequence data growth contributes to a larger and larger proportion. It

is conceivable that metagenome sequence data growth will also become

linear, likely bounded by economical factors. In the near future, data

growth is likely driven largely by analytic pipelines that produce sec-

ondary data rather than data acquisition in web labs. We may see more

flexible JSON-based data formats that adapt to the transition from data

acquisition to data analysis. This will in turn lead to the shift from struc-

tured, traditional relational database systems to NoSQL-based ones.

This transition also brings new challenges. For example, how could

we keep track of different versions of secondary data derived from

sequence data (for example, outputs from different software tools)?

How do we systematically measure the quality of these secondary data?

NoSQL is great to provide flexibility to capture outputs from different

software tools, but a poorly managed schema can actually lead to a

mess.

The migration from on-premises data management systems to cloud-

based systems is currently under way. Cloud-based systems are reliable

storage choices and are secure if good security practices are imple-

mented. However, some data governess issues still exist. As a person’s

genomic sequences could be used to uniquely identify that person, so

could his/her microbiome (Franzosa et al., 2015). In addition, one’s mi-

crobiome data may also inevitably get "contaminated" by one’s genome

data. After all, human is a "super organism" consisting of our own

genome and a "second genome" from our microbiome. This perspec-

tive raises the question whether or not microbiome data also need to

be HIPPA compliant, and if so, what practices should be implemented

to ensure the highest standards for not only security, but also privacy

and ethics.
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Chapter 3

Computational Metagenomics: an
algorithmic perspective

We have discussed in the previous chapters that computational metage-

nomics data can be understood from three aspects: metagenomics, data

engineering, and computer algorithms: the metagenomics aspect deals

with using what information to capture to answer our science ques-

tions; the data engineering aspect deals with how we represent and

organize our data so that information can be extracted; the algorithmic

aspect deals with how data is organized so that efficient algorithms can

take advantage of. Here let us discuss the computer algorithm aspect

in computational metagenomics.

This is probably the most complex pillar of computational metage-

nomics, as it involves various strategies to transform the unstructured

metagenome sequence data into structured knowledge. Our algorithms

need to sort through a corpus of billions of short DNA fragments to an-

swer questions like what organisms in there, what they do, and how

they interact with each other. Our algorithms need to accommodate

various data formats stored in various places. More significantly, our

algorithm has to consider the large scale and the inherent noisy nature

of the data. Where do we begin this seemly infinitely daunting task?

For many computational metagenomics problems, the ability to

solve them is largely dependent on how well we are able to rephrase

them into mathematical or computational problems. For example, we

could draw an analogy between some computational metagenomics

problems with Natural Language Processing (NLP). To understand the

message in an article or a book, we perform analysis at multiple scales:

letters, words, sentence, and paragraphs. We may also learn an author’s

style by analyzing all of his books. Metagenome sequences can be sim-

41
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ilarly analyzed at several levels: base, kmer, gene, pathways, genome,

and species. This is probably not a very good analogy to begin with, as

we know, a genome is not like a text that has only a linear representa-

tion. In cells, genomic DNA is organized in complex three-dimension

structures, distant parts (loci) can become physically close to each

other. Nevertheless, this analogy does solve some problems, thus we

will use these “scales” to organize a few algorithms as examples to ex-

plore the algorithmic pillar of computational metagenomics.

At least some of the complexity in computational metagenomics can

be attributed to its multiscale nature. The five scales presented here,

kmer, read, contig, genome, and metagenome, are rather from an algo-

rithmic angle than a metagenomics one. They are chosen so that it is

easier to explain the algorithms than their metagenomics counterparts:

oligo, short piece, large fragment, strain, species, and community.

3.1 kmer

Genome sequences are analogous to texts consisting of four letters

drawn from the alphabet A, G, C, T. Similar to the n-gram concept in the

field of NLP, kmers are obtained by applying a fix-length (of k) rolling

window to a given sequence. The analogy of kmers to words, however,

needs to be treated carefully. First, kmers have a fixed length but words

do not. More importantly, kmers do not carry biological "meaning" as

words do in our language. Despite these differences, kmers can be as

useful in genome analysis as words in NLP. I will try to illustrate this

point in the following sections. I will not provide a comprehensive list

of algorithms because there are so many of them, neither will I go into

great detail explaining them. For readers in the computer science field

who wish to learn more about this topic, I highly recommend an excel-

lent book by Mäkinen et al, "Genome-Scale algorithm design" (Mäkinen

et al., 2015).

3.1.1 kmer frequency as sequence representation

If you come from the genomics field, you probably are already familiar

with GC-content , or the percent of G or C bases in a sequence. GC-

based analysis is a special case of kmer frequency analysis (k=1). The
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"Thermal Adaptation Hypothesis" (Bernardi and Bernardi, 1986) pro-

poses that species control the GC% of their genomes as a way to adapt

to their environment. For example, organisms living in hot springs tend

to have high GC% so that their DNA does not melt at the high tempera-

ture in their environment. Despite its limited usage, GC-content can be

very useful for some applications such as quickly identifying contami-

nants that are GC% outliers.

Another special case is tri- and tetra-nucleotide frequency analysis

(k=3,4). Triplets within a protein-encoding gene are also called codons.

Different species may have different codon usage (triplet frequency) bi-

ases. There are 256 possible tetramer combinations, and the frequency

of tetra-nucleotides in prokaryotic genomes shows weak but statisti-

cally significant unique profiles.

Longer kmers enable fast sequence comparison algorithms. Here,

we can rephrase the question "how similar are these two sequences"

as "how similar are these two sequences if we treat them as text

documents", then we can apply established algorithms for text com-

parison such as "Jaccard index", by transforming the two sequences

into kmer frequency vectors and then comparing the two vectors.

Such comparison is much faster than traditional sequence compar-

ison methods based on sequence alignments such as BLAST. The

Jaccard index can be approximated using an algorithm called min-

Hash that reduces sequences to compressed sketch representations.

Minhash is a computer algorithm originally developed to detect du-

plicates among large collections of documents such as email and

web pages. For a detailed explanation of the algorithm, please re-

fer to an excellent blog (http://matthewcasperson.blogspot.com/

2013/11/minhash-for-dummies.html). Larger minHash sketches give

a more accurate estimation of sequence similarity and are thus more

sensitive to detect similarity. Smaller minHash sketches give faster

speed. This algorithm is implemented in Mash (Ondov et al., 2016),

which did an all-vs-all comparison between 54,118 genomes in 150 cpu

hours with a sensitive setting.

Longer kmers can also be used for taxonomy classification. By cat-

aloging species-specific kmers, or sets of kmers only occur in a spe-

cific species, we can infer the presence of this species when its unique

kmers are observed. Kraken is one of the algorithms that are based on

http://matthewcasperson.blogspot.com/2013/11/minhash-for-dummies.html
http://matthewcasperson.blogspot.com/2013/11/minhash-for-dummies.html
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this principle, and it can classify over 1 million reads per minute on a

single machine (Wood and Salzberg, 2014).

In many algorithms based on kmers, its size, k, must be carefully

considered. As there are 4k all possible kmers, a larger k yields a higher

dimensional, more sparse representation of a sequence. A larger kmer

captures more information of the sequence. A smaller k, on the other

hand, yields a lower dimensional and more dense representation, but

it loses more information because transforming a sequence into kmers

is a lossy operation. In the machine learning context, kmers are often

treated as "features" of the sequence. Recent advances in deep learning

also prompt researchers to explore kmer embedding methods to facili-

tate species identification (Woloszynek et al., 2019). It is worth noting

that although I only mentioned nucleotide kmers here, protein kmers

are also very useful to design algorithms to predict protein function.

Using large kmers on large sequence datasets can easily generate

a large number of kmers, which requires a large amount of RAM or

disk space, as well as significantly slows the kmer based matching al-

gorithms. To achieve the space efficiency of these algorithms, Roberts

et al. developed the concept of "minimizers" as a reduced representa-

tion of kmers (Roberts et al., 2004). A (w, k)-minimizer of a sequence

is the smallest kmer (of a chosen order, e.g. lexicographical) in a sur-

rounding window of w consecutive kmers on both strands. Therefore, a

minimizer can represent 2w kmers, which dramatically reduces storage

and speeds up kmer matching computations by a large factor, with only

slightly reduced sensitivity.

We only discussed perfect kmers in the above. What if there are er-

rors in the sequence, as we discussed in Chapter 1, caused by imperfect

sequencing technologies? Well, there are at least two solutions. First,

we could filter out the sequence errors and potentially correct them

by performing kmer analysis. Figure 3.1 illustrates the kmer frequency

from an ideal NGS dataset. Error-containing kmers can be filtered out

using a threshold that favors removing errors. Second, we could apply

algorithms that tolerate errors, such as locality-sensitive hashes.

Decomposing a sequence into kmers transforms the unstructured

sequence into structured kmer frequency tables or kmer to sequence

id maps. During this transformation, we lose some sequence informa-

tion, such as the order of the kmers in the sequence. Despite this, the
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Fig. 3.1 Kmer frequency and sequence errors. A kmer frequency histogram (black solid

line) is a formed by both error-free (blue dashed) and error-containing k-mers (orange

dashed) for a NGS data set. An empirical threshold ( f 0) is used to filter out error-

containing kmers, resulting the loss of some error-free kmers (α-labeled area) and the

remaining error-containing kmers (β -labeled area). The peak corresponds to the sequenc-

ing coverage of the genome. kmer frequency histograms from real metagenomic datasets

often do not show clear peaks due to the presence of many genomes. Credit: Image is

from (Zhao et al., 2018) License: CC-4.0

kmer frequency table (also called sequence composition) is a numerical

structured format, which enables fast, approximate algorithms such as

the sequence-sequence comparison and species identification methods

discussed in this chapter.

3.1.2 kmer graph as sequence representation

We can add order information to link the above kmers and create a

new data structure: directed graphs. Intuitively, we can use kmers as

nodes of the graph and use their overlaps as edges. As adjacent kmers

overlap by k − 1 bases, the edges between connected nodes are also

k−1 bases. If all kmers from this sequence appear only once, then the

graph becomes a linked list. This is seldom the case, however. kmers

often occur multiple times in the sequence, which create loops. This

type of graph is called Hamiltonian graph. Alternatively, we could use

the overlap between kmers as nodes and kmers as edges to create a de
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Bruijn graph. Using a simple sequence, we can create two kmer graphs

shown in Figure 3.2.

AGCT GCTT CTTG TTGA

TGAT

ATCG

Sequence

Hamiltonian
Graph

GATC

GATT

AGCTTGATCGTGATT

TCGT CGTG

AGC GCT TTG

TGAGAT

TCGATC

ATT

CGT GTG

CTT
AGCT GCTT CTTG

TTGA
TGATGATT

GATC

ATCG ATCG TCGT

CGTG

de
Bruijn
Graph

GTGA

Fig. 3.2 A Hamiltonian and a de Bruijn graph from the same sequence

Representing sequences as graphs opens the door to established

graph algorithms. Do we lose information by transforming sequences

into graphs? In the above example, the answer is no. As we can walk

either graph (graph traversal) to recover the original sequence. In the

Hamiltonian graph, we start from the beginning node (kmer) and visit

each node exact once until we stop at the last node. In the de Bruijn

graph, we try to visit each edge exact once instead.

An interesting characteristic of the kmer graph is that we will get

the same graph whether we start from a genome, or the reads obtained

from this genome (as long as the reads cover the entire genome). The

de Bruijn graph is the basic data structure for many metagenome as-

sembly algorithms, a topic we will cover in Chapter 8. Why not the

Hamiltonian graph? It turned out traversing a large Hamiltonian graph

is NP-complete (computer science jargon to describe a hard problem).

More explanations can be found in a nice article (Compeau et al., 2011).

About the de Bruijn graph and its traversal, there is actually a great

story about the great mathematician Leonhard Euler. Three hundred
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years ago, in the Prussian city of Königsberg (present day Kaliningrad

in Russia), seven bridges (edges) joined the four parts of the city (nodes)

shown as Figure 3.3. At that time people were wondering, is it possi-

ble to visit every part of the city by walking across each of the seven

bridges exactly once and returning to one’s starting location? Attempts

kept failing until in 1735 Euler brought the Eulerian path concept and

proved that such a problem is only solvable if a Eulerian path exists.

This is not the case for the seven bridges problem, unfortunately. Eu-

ler’s theory later became the first theorem of modern graph theory.

Fig. 3.3 The seven bridge problem. Source: Wikimedia Common https://commons.

wikimedia.org/wiki/File:K%C3%B6nigsberg_graph.svg.

kmer is widely used in computational metagenomics, and it is the

foundation of many computing algorithms. We only briefly discussed a

few examples. In later chapters, we will meet them over and over.

3.2 Read

From an algorithm perspective, this basic unit that comes off a se-

quencer is versatile. They can be represented as sets of kmers and used

to identify microbial species in the reference database with tools such

as Kraken (Wood and Salzberg, 2014). They can be used to construct

a de Bruijn graph from which genomes can be assembled, as they con-

tain kmer connectivity information. From a metagenomics perspective,

each read is an independent observation of a species, therefore from

the reads one could infer the abundance statistics of many species in a

community, and track their changes over time.

If the species we are interested among the microbial community has

https://commons.wikimedia.org/wiki/File:K%C3%B6nigsberg_graph.svg
https://commons.wikimedia.org/wiki/File:K%C3%B6nigsberg_graph.svg
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a reference genome, then we can accurately quantify the species by

mapping the reads to its reference genome. This process, short read

alignment, is one of the basic tasks in model organism genomics. In

the metagenomics setting, read mapping needs a detour as reference

genomes are not available and one has to assemble the reads to obtain

the reference.

The read alignment problem in computational metagenomics is the

following: we start with millions to billions of reads and one or more

large reference sequences (assembled contigs or genomes), and we

want to find what reads match what reference sequence and optionally

report all matching positions. A straight-forward solution is to construct

a dictionary with every possible kmers (with k equals to the length of

the read) of the reference and their locations. We can then use this

dictionary to locate each read as a kmer in a reference. However, this

solution is neither space- or time-efficient: the dictionary will be large

for large reference genome(s); and for a different set of reads with dif-

ferent lengths, we would have to rebuild the lookup dictionary.

From a computer algorithm view point, the alignment problem is

equivalent to locating shorter substrings among large strings. This view

inspires us to look for existing algorithms that can efficiently find sub-

strings of a string. We are in luck again, as the Burrow-Wheeler trans-

formation (BWT) and FM-index (Burrows and Wheeler, 1994; Ferragina

and Manzini, 2000) elegantly solved this problem. The idea is to trans-

form the reference genome using BWT so it can be easily compressed

and stored, and all of its sub-strings can be quickly found. The time

needed to map a short read only depends on the length of the short

read, not the length of the reference sequence. This algorithm led to

breakthroughs in short read alignment and inspired tools such as BWA

(Li and Durbin, 2009) and Bowtie2 (Langmead and Salzberg, 2012).

For long noisy reads such as those from PacBio or ONT sequenc-

ing technologies, BWT-based alignment algorithms will fail. Even if we

can correct the sequence errors in long reads (a topic to discuss in

Chapter 5), BWT-based algorithms will become slow as read length in-

creases. Given the error distribution within a long read is nonrandom,

we can expect that there are "stretches" of perfect segments in a long

read. Algorithms such as Minimap maps a long read to a reference

based on a linear chain of matched minimizers between the two (Li,
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2016). The second version, Minimap2, further improves to become a

versatile mapper and pairwise aligner for nucleotide sequences includ-

ing both DNA and spliced mRNA. It works with both short reads, long

reads, and even full-length genomes (Li, 2018). Modeling the compari-

son between two sequences as matching patterns of minimizers makes

Minimap a generic sequence comparison tool.

3.3 Contig

A contig refers to the contiguous DNA sequence constructed from a set

of overlapping short reads through the genome assembly process, rep-

resenting the sequence of a genome or a genomic region. We will dis-

cuss the metagenome assembly process in Chapter 8. Depending on the

quality of the assembly process, the length of contigs can vary greatly,

from a few hundreds of bases to hundreds of kilobases. Most of them

are still much shorter than genomes, but they can be much longer than

reads, thus supporting a more robust analysis than kmers and reads in

applications such as species identification. The above read-based anal-

ysis is also called "primary analysis". In "secondary analysis", we solve

problems like predicting genes from assembled contigs, classifying tax-

onomy, discovering new enzymes or pathways, etc.

Just like a sentence, a gene also has structure. For prokaryotic pro-

tein coding genes, they have an open reading frame (ORF, with start

and stop codons), a ribosomal binding site (RBS) to initiate translation.

If they are organized in an operon, they also share a promoter and a ter-

minator for transcription. Because genes are more conserved than non-

coding regions, their sequence compositions also show distinct charac-

teristics, such as higher GC-content. Combining these structural char-

acteristics, Hyatt et al. developed a gene prediction algorithm called

Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm)

(Hyatt et al., 2010). Identifying eukaryotic protein-coding genes, how-

ever, is inherently more challenging due to the exon-intron architecture

of an eukaryotic gene. Current methods heavily rely on the availability

of transcriptomics data.

Prodigal predicts genes using an expert model with manually se-

lected features combined with simple rules we learned over time. If a

gene has a homolog in the reference database, then we can also infer



October 3, 2023 17:27 ws-book9x6 Introduction to Computational Metagenomics output page 50

50 Introduction to Computational Metagenomics

its function or classification based on its known homologs. For exam-

ple, for taxonomy classification, we would search the small subunit of

ribosomal RNA genes in our metagenome dataset on online reposito-

ries such as the SILVA database (https://www.arb-silva.de/). Ho-

mology search in the context of metagenomics carries a computational

burden, however. SILVA already contains over 9 million small subunit

(ssu rRNA) entries in its version SSU 138.1. It would take QIIME, the

most popular software tool for taxonomy classification based on SSU

rRNA, more than 58 hours to index the SILVA database and days to

search a large dataset (Lu and Salzberg, 2020). Running the golden

standard tool for homology search, Blast, to search millions of gene

candidates against billions of reference genes, is more computationally

expensive. The above mentioned Kraken has been used for faster SSU

rRNA classification (Lu and Salzberg, 2020). For generic protein homol-

ogy search, DIAMOND (double index alignment of next-generation se-

quencing data) achieves 4 orders of magnitude of speedup over Blast by

several algorithms, including reduced sequence representation, spaced

seeds, and indexing both the query and reference for fast comparison

(Buchfink et al., 2015).

Discovering genes encoding novel enzymes from long assembled

contigs or long reads from bacteria and fungi brings bioprospecting

to the next level. To discover novel bioactive compounds with potential

pharmaceutical applications such as antibiotics, now it is even possible

to rapidly and reliably predict an entire biosynthetic gene cluster for a

compound. This is a very challenging problem, several algorithms (gene

cluster prediction, reference cluster homology search, domain homol-

ogy search, and chemical structure prediction) were stacked together

for this complex task (Medema et al., 2011).

We will revisit gene structure and function prediction in detail in

Chapter 7.

3.4 Genome

Having the high-quality genome assembly makes some of the analyses

based on kmers, reads, and contigs more robust. For example, com-

pared with SSU rRNA-based taxonomy classification, genome-based

methods not only produce more coherent results by resolving conflicts

https://www.arb-silva.de/
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(Hugenholtz et al., 2016), they can also classify genomes without SSUs

such as virus and phages. With a genome containing a full set of genes,

we can infer all metabolic pathways in this organism using the Meta-

Cyc Metabolic Pathway Database (https://metacyc.org/) and unveil

its metabolic capacity or potential.

As the whole is greater than the sum of its parts, a genome sequence

opens the door to many possibilities. For example, Zymomonas mobilis

ZM4 is a bacterium that can efficiently produce ethanol from various

carbon substrates and can tolerate up to 16% ethanol. Lee et al. com-

bined automated genome annotation, literature search and manual re-

vision to build a genome-scale metabolic model of this 2 Mb genome,

composed of 601 reactions and 579 metabolites (Figure 3.4, [Lee et al.

(2010)]). To make this network "functional", or to simulate the bac-

terium’s metabolism, traditional methods rely on computationally in-

tensive differential equations. In contrast, Flux Balance Analysis (FBS)

represents the metabolic network as a set of linear equations and solves

it by linear programming. By making assumptions that the network is in

a steady state and optimized for biomass growth, it requires very little

information in terms of the enzyme kinetic parameters and concentra-

tion of metabolites in the cell. As a result, FBS takes only seconds on a

personal computer to solve.

3.5 Metagenome

Producing a catalog of microbial species only solved the composition

problem, i.e., who is there in the community. We are more interested

to know how these species, together, define an ecological function and

how they respond to environmental changes. By tracing the same mi-

crobial community over time in a time-series study, or by comparing

multiple communities, we may learn metagenome-scale insights.

Before whole-genome sequencing dominants metagenomics, ecolo-

gists heavily relied on the composition of a community based on SSU-

based taxonomy profiling as a proxy for its function. For example, more

diversity in a gut microbiome suggests a healthier individual. However,

diversity measure is often a poor predictor for ecological function. To

improve this, Ramírez-Flandes et al. used 247 microbial metagenomes

from 18 biomes to determine whether each set of genes performs better

https://metacyc.org/
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Fig. 3.4 Procedure for the reconstruction of genome-scale metabolic network in Z. mo-

bilis and its application to metabolic engineering. License: Creative Commons Attribution

2.0 Generic

in characterizing global ecological differences Figure 3.5A. They found

oxidoreductase genes can effectively differentiate these biomes, while

other categories of enzymes, general protein-coding genes, transporter

genes, and taxonomic gene markers can not (Figure 3.5B). Functional

diversity, instead of taxonomic diversity, is relevant for understanding

biomes and quantifying the impact of environmental stressors on them.

(Ramírez-Flandes et al., 2019).

In the above study, the correlations between sets of genes and eco-

logical functions were calculated using their pairwise maximal infor-

mation coefficients (MIC). As part of the maximal information-based

nonparametric exploration (MINE) statistics, MIC uncovers variables

that not only have functional associations but are also statistically inde-

pendent. The combinatorial nature of MIC calculation with thousands

of sets of genes could take a long time. As each pair of MIC can be
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computed independently, the authors used a tool called RapidMic (Tang

et al., 2014) by taking the advantage of modern computer architectures’

hardware-level parallelism to speed up calculation. We will cover more

topics about hardware and software parallelism in the next chapter.

3.6 Conclusion and Future Perspectives

The success of many metagenomics problems largely depends on

whether or not we can formulate them as a computer science or mathe-

matics problem. Simpler tasks have taken advantage of available com-

puter algorithms. Complex tasks are convoluted, with no obvious simi-

lar problems in computer science. Strategies to solve complex problems

tend to break them into simpler problems via a "divide-and-conquer" ap-

proach. For problems without sound solutions, a common strategy is to

take an "ensemble algorithm": combining multiple available algorithms

to yield better results.

Although it has been long postulated to apply the language models

we learned from NLP to solve genomics problems, they have not been

widely adopted in practice. It should be possible to learn the structure

of the genome to identify genes while learning their semantics (gene

function), at least for simple genomes such as viruses. Recently, this

is accomplished by applying NLP to construct models that predict how

mutations affect fitness and escape from the host immune system. By

using a word-embedding algorithm, the authors were able to build mod-
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els for influenza A hemagglutinin, HIV-1 envelope glycoprotein, and se-

vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike gly-

coprotein (Hie et al., 2021).

The fast pace of advancement in computational metagenomics

drives the availability of bigger databases and datasets. With the in-

flux of metagenomics data, manual steps will gradually be displaced by

data-driven, automated algorithms. On 30 September 2012, the deep

learning-based AlexNet beat previous expert-based image classifica-

tion systems by a large margin, achieving an error rate more than 10.8

percentage points lower than that of the runner-up (Krizhevsky et al.,

2012). AlexNet does the trick by training on 1.2 million images without

expert input about the rules of image classification. In 2016, a team lead

by Craig Venter sequenced 10,000 human genomes. After they stacked

these genome together and visualized the regions devoid of variations,

the structure of genes becomes apparent without any prior knowledge

(Telenti et al., 2016). I could imagine that in the future many challeng-

ing metagenomics problems may be solved not by smart algorithms, but

by large amount of dumb data.
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Chapter 4

Hardware and software aspects for
scalable analysis

Let us go back to the analogy we made at the beginning of the book. We

relate a computational metagenomics problem to a transportation prob-

lem. By now, we should have some knowledge of the terrain: metage-

nomics problems and data types. We have mapped out our routes: com-

puter algorithms that help us process metagenome data. Now it is time

to deal with the vehicles that will take us to our destination faster: hard-

ware and software for computational metagenomics. In this chapter, we

will discuss the various hardware and software choices available to us,

and how to make the right choice so that we will efficiently process the

specific data.

The metagenome data problem is also a big data problem, and it

shares these four basic characteristics:

(1) Volume. Depending on number of species in a community, we need

to produce a large volume of data. In a typical experiment we have

tens of Gigabases of data, a human microbiome project produced

500Gb, our cow rumen project produced 1.2Tb, and the biggest

project to date, a world-wide ocean survey project produced 8 Tb.

Based on what we have learned about these projects, to get a fair

coverage of the microbes in soil, we would need sequence at least

200Tb.

(2) Variety. Besides metagenomic data, a multi-omics project can also

produce metatranscriptomic, metaproteomic, and metabolic data.

There are different types of metadata as well, such as image, audio

and textual data. We covered some of these types of data in Chap-

ter 2.

55
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(3) Velocity. Modern sequencers and sensors deployed in the filed are

generating data in an unprecedented speed. Innovation in genome

technologies keep generating new data varieties and larger vol-

umes, posing more challenges in velocity.

(4) Veracity. We have learned that different sequencing technologies

have different error rates in Chapter 1. Metagenome data can be

contaminated during data-generation process, including biological

contaminants such as host data, technological contaminants such

as sequencing adapters. If amplification is used, uneven coverage

biases could be introduced. Missing data is also a common problem

in metagenomics data. I will devote a whole chapter to discuss data

quality issues and how to improve them in Chapter 5.

Figure 4.1

Fig. 4.1 The four V’s of Big Data

Genomics big data is not typical big data. Besides the above four Vs,

genomics big data also has a "U", which means the majority of genomics

data are unstructured. Unstructured data is inherently much harder

than structured data to analyze. The "U" makes the four Vs worse. We

often need 200 times of space for temporary data, and we use a variety

of software tools that generate more varieties of data, and these tools
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inevitably introduce additional noise and biases on top of those coming

from the original data.

The above challenges in big metagenomics data also make it excit-

ing. In the past 10 years, while I am working on this problem, through

many failures, I gradually realize the ideal solution should have four cri-

teria: easy to implement, robustness, scale with data, and efficient. I put

easy to implement on the top of my list. The metagenomics field does

not have access to much experience with software engineers, many data

analysts that come from biological sciences prefer scripting program-

ming languages over engineer-level languages. The rapid change of

technologies constantly changes our data, existing software tools need

to rapidly adapt to these changes to avoid being obsoleted. As other big

data solutions, the ideal computational metagenomics solutions should

be robust, able to scale to data, and efficient.

It is not possible to cover this broad topic in just one chapter. I will

discuss a few common choices we face in computational metagenomics

in an "A vs B" format. In many cases, the choice depends on the un-

derlying data and problem, as well as our budget for the project. The

general rule of thumb is that we should seek a choice that is scalable to

big data, robust to failures, easy to implement, and low cost. Below we

will discuss various choices to achieve scalable analyses, in the context

of ease of implementation, robustness, efficiency, and cost.

4.1 Hardware scaling

When I started to work on the cow rumen metagenomics project back

in 2009, our first batch of Illumina short reads totalled at 17 giga bases

(Gb). By today’s standards this amount is tiny, but at that time this was

our biggest dataset and we could not find a single computer that has big

enough memory to assemble it using velvet, the one and only available

short-read assembler at that time. I took this need-for-memory problem

to a hardware engineer at JGI, Jeremy Brand, who later worked out a

computer system to help our project as illustrated in Figure 4.2.

From a hardware system architect’s perspective, my request for a

system with the biggest memory available can not be simply solved by

plugging in more memory modules on a machine. If the file storage

system (local hard drives, network file system) is not fast enough, the
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Fig. 4.2 A large memory system designed in 04/2010 for metagenomics

machine would just spend most of its time waiting for data to be loaded.

While the size of the physical memory (RAM) determines the largest

data that could be processed, it is often the speed of the file system, or

the performance of input/output (IO), measured in IOPS (input/output

operations per second), that becomes a bottleneck. Jeremy’s solution

for file system IO was a three-pronged strategy: 1) using local solid

state drives (SSDs) for caching intermediate files during analysis, as

SSDs are much faster than traditional magnetic hard drives; 2) using

multiple SSDs in parallel to further improve IO performance; and 3)

using faster network connections between computing nodes and the

network file system (10 gigabits links, fastest at that time).

While building this large system, we applied both vertical and hor-

izontal scaling techniques commonly used in the high-performance

(HPC) computing community. The distinction of these two scaling meth-

ods is illustrated in Figure 4.3. In vertical scaling, we increased the

capacity in a single machine: 512GB RAM, 32 CPUs from the largest

server at that time (128GB and 16 CPUs). We also increased the num-

ber of machines from 1 to 6 in horizontal scaling.
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Vertical scaling

Horizontal scaling

Fig. 4.3 Vertical vs Horizontal scaling

4.1.0.1 Vertical scaling

As the research community wanted bigger memory to assembly large

plant genomes and metagenomes, vertical scaling was the preferred

choice because the assemblers at that time can only work on a

single machine. These machines with large memory enabled large

metagenome assembly projects, without the extensive time or effort

required to reengineer the software tools for multiple nodes. However,

vertical scaling comes with a steep cost, each of the nodes in our big

memory system cost $50,000. And it is much harder to add more mem-

ory. In July 2010, the Pittsburgh Supercomputing Center (PSC) built

a shared-memory system, Blacklight, which has 4,096 CPU cores and

32 terabytes (TB) of memory, a system costing $2.8 million. Despite

this, these systems can still be the preferred choice in exploratory stud-

ies when the time to get results outweighs the computing cost. With

the availability of large memory nodes via cloud computing, people

only need to pay a small cost to use these nodes rather than to build

them. For example, AWS offers several instances with 9, 12, 18, and 24

TB of instance memory in 2019 (https://aws.amazon.com/blogs/aws/

ec2-high-memory-update-new-18-tb-and-24-tb-instances/). The

12TB instance, u-12tb1, costs up to $67 per hour to use.

Besides adding more memory, more storage, and more CPUs to a sin-

gle machine, vertical scaling also includes adding co-processors, such

as field-programmable gate arrays (FPGA)(Wikipedia, 2019a), graphics-

processing units (GPU)(Wikipedia, 2019b), and tensor processing unit

(TPU)(Jouppi et al., 2017). These special hardware architectures could

https://aws.amazon.com/blogs/aws/ec2-high-memory-update-new-18-tb-and-24-tb-instances/
https://aws.amazon.com/blogs/aws/ec2-high-memory-update-new-18-tb-and-24-tb-instances/
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be extremely helpful for a subset of metagenomics tasks that are

computing-intensive. However, unlike the above big memory machines,

these architectures require reengineering existing software tools be-

fore one can take advantage of them.

4.1.0.2 Horizontal scaling

Scaling up by upgrading the existing nodes with more capacity (cores,

memory, co-processing unit, storage, etc) as we discussed above can

be very costly beyond a certain point. Alternatively, we can do horizon-

tal scaling, or scale out, by adding more computing nodes to form a

computing cluster. The practice that aggregates the computing power

of many computers to deliver much higher performance than a sin-

gle computer is called high-performance computing (HPC). The above

HPC system we built at JGI is a small-scale system with 6 computers

or nodes. Many modern HPC systems contain hundreds of nodes. Mea-

sured by floating-point operations per second (flops), these systems can

deliver petaflops (1e12) computing performance instead of teraflops

(1e9) of that of a typical desktop computer or workstation. Some of the

world’s top HPC systems take horizontal scaling to an extreme scale

to make supercomputers. For example, the TOP500 list that publishes

the world’s fastest supercomputers, saw the top spot, the Japanese Fu-

gaku supercomputer, to set a new world record to have 7,630,848 cores

442 petaflops in November 2020 (https://www.top500.org/lists/

top500/2020/11/).

While delivering shocking computing performance, HPC has many

disadvantages. They are always on whether or not being used, incur-

ring high costs for power consumption. These systems require a pro-

fessional team for maintenance and upgrading, and each maintenance

likely makes the system unavailable for a period of time. These systems

are often located in one centralized location, which makes them vul-

nerable to unpredictable events such as power shutoffs. In addition, in

order to achieve a high utilization rate, the systems are shared by many

users, these systems are not able to isolate different types of workloads,

one rogue user may overwhelm the entire system. Extensive training is

often required before one can start to use these systems.

https://www.top500.org/lists/top500/2020/11/
https://www.top500.org/lists/top500/2020/11/
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4.1.1 Managed or hosted hardware scaling on the cloud

By now, you probably have realized that managing hardware is a cum-

bersome task and it does not contribute to the productivity of a compu-

tational metagenomics researcher. Wouldn’t it be nice if someone else

does this for us, so our data analysis tasks always get sufficient com-

puting resources whenever we need them and as however big we need

them?

The answer is definitely yes. Thanks to virtualization and cloud com-

puting technologies, both vertical and horizontal hardware scaling can

be easily done with only a few mouse clicks and without expensive hard-

ware procurement or hiring experienced hardware engineers. In recent

years, cloud computing has evolved to address the above limitations we

discussed in hardware scaling. There are quite a few cloud computing

vendors, such as Amazon Web Services (AWS), Google Cloud Platform

(GCP), Microsoft Azure Cloud, etc. We will use AWS as an example to

explain several key concepts of cloud computing and learn the oppor-

tunity it provides to significantly reduce the time and cost associated

with scalable data analysis.

4.1.1.1 Amazon Machine Image (AMI)

Stands for Amazon Machine Image. It is a template of a software envi-

ronment (operating system or OS, libraries, software configuration, per-

sonal data, etc), from which one can launch one or more instances. An

instance is analogous to a workstation, although it is virtual. One AMI

can be instantiated into many instances, each with a different hard-

ware setup (CPU, RAM, storage, etc). We can create an AMI from a

running instance, make changes to the instance (install or update soft-

ware, adding/removing data), and then create a new AMI for later use.

With the same AMI, we can then launch a fleet of instances to achieve

horizontal scaling with just a few clicks!

We can also share our AMI with the community and use an AMI

from the community, often to reduce the time needed to set up our

software environment. We could use commercial AMIs from the "AWS

Marketplace", and some may incur additional costs on top of AWS’s.

Conceptually, AMI is similar to docker containers. The difference lies

in that a docker container is more lightweight and portable. A docker
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container often contains a very small set of software and can be ported

to various platforms, while an AMI contains an entire machine (except

for the hardware) and is locked to the AWS ecosystem.

4.1.1.2 Amazon Elastic Compute Cloud (EC2)

An EC2 instance is a virtual machine initiated from an AMI. It can

be stopped(paused), resumed, and terminated. Launching an instance

needs an AMI, a machine type (CPU/RAM), a network, and a storage

system.

A running EC2 instance incurs charges depending on the resources

it consumes. To reduce its cost, we need to carefully choose the ma-

chine types to maximize resource utilization. For example, the short-

read mapping tasks such as BWA benefit from a server with many

CPU cores but not necessarily a large amount of RAM, therefore, we

could choose a compute-optimized instance such as a c5.9xlarge ma-

chine with 36 cores. In contrast, short-read assemblers like MetaS-

pades often require large amounts of RAM, therefore we could choose

a memory-optimized type such as r5.8xlarge with 32 cores and 256

GB RAM. More information about EC2 instance types is available at

https://aws.amazon.com/ec2/instance-types/

We can change the machine type of an instance after it is stopped.

Here is a useful trick to save money for a large computing job: we can

begin with a small instance, install the software tools and libraries nec-

essary for the job, get the data ready, test the setup to make sure it

works, and then stop it and switch to a larger instance type, without

the need to repeat the software configuration, to run the large job. This

is how easy "virtual" vertical scaling gets!

AWS also offers reserved and spot instances, which can further re-

duce the costs in an volume-/auction-based pricing model comparing

the normal mode (on-demand). Spot instances can offer large discounts

when using a large instance type or many instances. For a large job,

we can combine the previous trick and spot instance to get more cost-

saving. After we set up the software environment for a large job in the

previous step, we can save it as a new AMI image. We then launch a

large spot instance from it and run the large job. One downside is that

the spot instance system is based on a bidding system, it can be outbid

 https://aws.amazon.com/ec2/instance-types/
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by higher priority bidders, and your workload will be disrupted if that

happens. There are a few ways to minimize this kind of disruption.

4.1.1.3 Elastic Block Storage (EBS), Elastic File System (Ama-

zon EFS) and Simple Storage System (S3)

Amazon EFS, Amazon EBS, and Amazon S3 are AWS’ three different

storage types for different types of workload needs.

Amazon Elastic Block Storage (EBS) delivers high-availability block-

level storage volumes for EC2 instances. It stores data on a file system

that is retained after the EC2 instance is shut down. It stores data in

equally sized blocks and organizes them into a hierarchy similar to a

traditional file system. The size and performance of an EBS volume can

be manually configured based on your workload needed in a way similar

to a local disk drive on a physical machine.

Amazon Elastic File System (EFS) offers scalable file storage, also

optimized for EC2. It scales up and down automatically to meet dy-

namic workloads. EFS can be mounted on different AWS services and

accessed from all your virtual machines. EFS is equivalent to network

file systems (NFS).

The main difference between EBS and EFS is that EBS is only acces-

sible from a single EC2 instance in your particular AWS region, while

EFS allows you to mount the file system across multiple regions and

instances.

Amazon Simple Storage System (S3) is an object store good at stor-

ing vast numbers of backups or user files. Unlike EBS or EFS, S3 is not

limited to EC2. Files stored within an S3 bucket can be accessed pro-

grammatically or directly from services such as AWS CloudFront. Each

object has its own unique identifier or key, for access through web re-

quests from any location. S3 also supports static web content hosting

that can be accessed from the S3 bucket or from AWS CloudFront. And

S3 is notably secure by providing “eleven nines” - 99.999999999% of

annual data durability. That means one would likely be able to keep one

billion objects without losing a single one for a hundred years.
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4.1.1.4 Virtual Private Cloud (VPC)

Amazon Virtual Private Cloud (Amazon VPC) is AWS’s virtual network

service that closely resembles a traditional network but with the bene-

fits of using the scalable infrastructure of AWS. A virtual private cloud

(VPC) is a virtual network dedicated to your AWS account. We can

launch our EC2 instances into a logically isolated network with a VPC

to ensure security.

Almost all cloud computing vendors offer similar core components of

infrastructure: hardware configuration, OS templates, scalable storage,

and virtual networks.

4.2 Software scaling

As hardware, software tools also need to scale to data. In parallel com-

puting, or carrying out multiple operations simultaneously, software

can take advantage of the underlying hardware using one of the two

strategies: task parallelism or data parallelism.

4.2.1 Task parallelism

In task parallelism, our big computational metagenomics problem is

modeled as a big task, which is further divided into many small tasks.

Each task can then be executed on a thread. Many threads, either on

the same multiple processor machine or on multiple machines, are exe-

cuted in parallel to fully utilize the available processors and memory.

One example of task parallelism would be the short-read alignment

problem. Short-read aligners would create multiple tasks, with each

task working on a chunk of data. Through a task scheduler, each task is

then assigned to a separate thread for parallel processing.

Several programming models are currently available for task paral-

lelism. We will discuss a few common choices here.

4.2.1.1 Open MP

OpenMP is the a programming interface primarily used for shared

memory systems. In this programming model, all threads or processes

have access to all data in the shared memory. Programmers have more
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control over each thread’s behavior in OpenMP. Driven by the popular-

ity of shared-memory multiple-core systems, there are more OpenMP-

based tools (SPAdes(Bankevich et al., 2012).

4.2.1.2 Message Passing Interface (MPI)

OpenMP is limited to a single machine with shared memory. For HPC

systems with distributed memory (see above for horizontal scaling 4.3),

the Message Passing Interface (MPI) is a standard choice for task par-

allelism. MPI is a programming interface that specifies how tasks are

synchronized and how data are exchanged through messages across

nodes within a HPC cluster. MPI allows programmers to specify what

content is exchanged (Wikipedia, 2019c). MPI-based NGS short-read

aligner pBWA(Peters et al., 2012) and assembler such as Ray(Boisvert

et al., 2012), which can scale up to hundreds of thousands cores on a

HPC cluster.

Besides OpenMP and MPI, there are other task-parallel program-

ming models. One example is (PGAS)(Wikipedia, 2019d), is a dis-

tributed shared-memory programming model that combines the advan-

tages of OpenMP and MPI. Unified Parallel C (UPC)(UPC, 2002) and

UPC++(Zheng et al., 2014) are C and C++ extensions of PGAS model,

respectively. UPC-based tools like Meta-HipMer(Georganas et al., 2018)

can assemble a 2.6Tb metagenome dataset in just 3.5 hours on 512

nodes.

The biggest drawback of programming models based on task par-

allelism is that they are in general hard to program. Experienced soft-

ware engineers are required to handle issues such as memory local-

ity, data communication, and task synchronization. Software tools may

take a significant time to develop, combined with the rapid changes

in metagenomics data, inevitably drive up the development and mainte-

nance costs. Some recent community efforts aim to combine the ease of

programming such as Python with the superior efficiency of task paral-

lelism, e.g., the RAY project (https://github.com/ray-project/ray)

and DASK (https://dask.org/), which may encourage more metage-

nomics applications to take full advantage of modern HPC systems.

https://github.com/ray-project/ray
https://dask.org/
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4.2.2 Data parallelism

When the volume of the data being processed is getting big, moving

it around to where computing happens within the HPC system is get-

ting more expensive. If we could do computing locally, we would save

time by avoiding moving data too frequently. In data parallelism, the

data itself is divided and distributed across multiple CPUs or comput-

ing nodes, where the same operations are performed on each subset

in parallel. One example of data parallelism would be to divide the in-

put data into subsets and pass it to the threads performing the same

task on different CPUs. Hadoop and Spark are two examples of data

parallelism.

4.2.2.1 Apache Hadoop

The Apache Hadoop has two core components: a Hadoop Distributed

File System (HDFS), and an MapReduce programming model. A big file

is stored in small chunks that spread across a Hadoop cluster. These

chunks are replicated (default 3 times) and different copies are located

on different nodes, which ensures the data will not be lost in the event

of the failure of a node. To process these small chunks, the node man-

ager sends out "mapper" jobs and nodes run these jobs on their local

data before sending back the result. The results are then combined via

"reducer" jobs, into the final result.

Compared with OpenMP and MPI, Hadoop offers advantages includ-

ing data redundancy and data locality. In addition, communication be-

tween nodes is much lighter in Hadoop than MPI. However, Hadoop re-

lies on disk storage to store its computing objects, and its IO-intensive

nature makes Hadoop-based solutions inefficient compared to its equiv-

alent implementations in MPI and OpenMP. Since there is no state

shared between individual mapper and reducer tasks, Hadoop is not

suitable for iterative tasks, which limits its application to only a small

number of metagenomcis problems. Several Hadoop-based applications

have been developed for genomics, to name a few, NGS read alignment

(Zou et al., 2015; Abuín et al., 2015), genetic variant calling(Hung et al.,

2011), sequence analysis(Nordberg et al., 2013; Shi et al., 2017).



October 3, 2023 17:27 ws-book9x6 Introduction to Computational Metagenomics output page 67

Hardware and software aspects for scalable analysis 67

4.2.2.2 Apache Spark

To overcome the limitations of Hadoop, Apache Spark, which started

as a research project at the UC Berkeley AMPLab in 2009, innovated

in a few aspects over Hadoop. First of all, Spark relies primarily on

in-memory computing. It caches most of its computing objects in mem-

ory, which has much better IO performance than those on disk. Sec-

ond, Spark optimizes MapReduce task execution via a DAG (Directed

Acyclic Graph) scheduler. Third, Spark supports iterative options, which

opens the door to many new applications that require iteration. Finally,

Spark greatly improves programmability: it allows users to write appli-

cations quickly in Scala, Java, Python, R, and SQL; it includes libraries

for Spark SQL (DataFrames and Datasets), MLlib (Machine Learning),

GraphX (Graph Processing), and DStreams (Spark Streaming); one can

run Spark using a variety of cluster managers: its standalone cluster

manager, Apache Hadoop YARN, Mesos, or Kubernetes.

Many Spark-based genomics applications have been developed for

large-scale sequence processing on public or private cloud systems

(Guo et al., 2018; Shi et al., 2018; Zhou et al., 2017) and for a com-

prehensive review please refer to (Guo et al., 2018).

Despite its early success, there are several challenges faced by the

data parallelism programming model. Although in-memory data pro-

cessing has significantly improved IO performance, it still can be an

order of magnitude slower than MPI-based implementations. Learning

a totally different programming model can be a challenge for many pro-

grammers. Another challenge is that not all components in a complex

metagenomics data processing pipeline can be easily ported to Spark

due to the lack of corresponding libraries.

4.3 Future perspectives

I was only able to cover a few scaling strategies for metagenomics anal-

ysis in the context of ease of development, robustness, scalability, and

efficiency. One might have to combine several strategies, for example,

using a single node for development and HPC for large-scale produc-

tion. When the scale of the analysis exceeds one’s on-premises capacity,

they can "spillover" to cloud-based solutions for additional capacity.
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A significant challenge will remain for scalable computational

metagenomics is retaining software talent, in the context of big tech

companies are hungry for them. A primary reason why many appli-

cations fail to scale up to big data is poor software design. We may

continue to rely on unreliable software tools developed by amateurs

for a while. Meanwhile, Infrastructure-as-a-service (IAAS), software-

as-a-service (SAAS) platforms are reducing the hurdle to adopt scal-

able technologies. For example, cloud computing technologies make

it easy for users to scale up their infrastructure. DataBricks Inc

provides Apache Spark as a hosted service with a notebook inter-

face for exploring big data. We may see more cloud-based metage-

nomics solutions based on these infrastructures and software. Cloud-

based analytic systems integrate data management (store, access,

and share) and data analysis into one platform, provide flexibility to

scale in/out and up/down, and offer user-friendly, consistent, repro-

ducible data pipelines. In the biomedical field there are already such

solutions, e.g., Terra (https://app.terra.bio/), which unshackles

metagenomics data scientists from the burden of managing hardware

and software infrastructures and enable large team collaborations.

Effective scaling also requires close coordination between hardware

and software strategies. This may bring future solutions involving the

co-design hardware and software. In one of such pioneer studies, re-

searchers enabled FPGA chips to have direct access to the CPU memory

for speeding up kmer-based statistics (Haghi et al., 2020). The results

showed that co-design outperforms the alternative in both computing

and power consumption efficiency.

https://app.terra.bio/
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Metagenomics Data quality
improvement

After we obtain the metagenome data from our favorite sequencing

technologies, select the best algorithms for the underlying scientific

problem, prepare a scalable infrastructure for the large data volume,

are we ready for plugging in automatic pipelines to discover novel

metagenomics insights? Not quite yet. Almost all types of metagenomic

data and metadata contain noise, errors, gaps, and biases. Removing

errors and noise, filling in gaps, correct biases in the data, or data wran-

gling, are probably the least fun part of computational metagenomics.

If missed or not done properly, this step can lead to wrong or biased

conclusions (although some analysts blame data producers for that). It

is almost always necessary to manually explore the data to identify the

types and extent of potential quality issues. This step also takes a major

part of the manual time in our analysis project. In general, data uncer-

tainty or veracity is a common problem in big data analytics, one of the

four "Vs" we discussed in Chapter 4.

The central goal of data quality improvement involves identifying

and subsequently removing as many confounding factors as possible

to ensure successful downstream analyses. You will not find detailed

descriptions of this step in the published literature, yet many metage-

nomics data analysis workshops spend significant effort in this step.

The topic of data quality improvement itself may warrant an entire book

about it, here I will discuss some of the most common data quality is-

sues in metagenomics and how to deal with them.

69
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5.1 Removing Common Errors

5.1.1 Errors in sample metadata and annotation Data

I discussed the importance of metagenomics metadata in Chapter 2.

Like other types of metadata, metagenomics sample metadata is not

immune to human errors despite extensive scrutiny. Metadata errors

broadly exist in the domain of data science. For instance, a new re-

search by researchers at MIT suggests that labeling errors are preva-

lent at an average of 3.4%, across all popular datasets used in image

recognition machine learning (Northcutt et al., 2021). After these er-

rors were removed, the rank for best models were also changed. As

metagenome sequencing projects are carried out in centralized genome

sequencing centers or cores, during the processing and pooling of hun-

dreds of samples, some mislabeling is likely. Actually, sample mislabel-

ing is so prevalent in clinical samples that the National Cancer Institute

and the Food and Drug Administration launched a computational chal-

lenge to the research community to help to detect and correct specimen

mislabeling (Boja et al., 2018). There have not been systematic studies

of all types of errors in metagenomics sample metadata, but it is con-

ceivable that other types of errors are also prevalent. Unlike the base

quality associated with sequencing data, there is no established quality

measurement for sample metadata.

As we will see in the next chapters, assembling genomes and an-

notating them remain challenging despite the rapid improvements in

sequencing and computational technologies. These annotation errors

are generated at an incredible speed and are propagated more because

computational methods rely on them as references (Salzberg, 2019).

This type of errors are often difficult to identify, and correcting them

itself is the goal of numerous computational metagenomics studies.

5.1.1.1 Supervised methods for metadata correction

If we know what to expect in the metadata, or if we have the correct

metadata of existing samples, we could use supervised methods to de-

tect and correct errors in metadata for new samples. For example, we

can train a machine learning classifier based on the sequencing data

to predict sample labels using a set of samples with correct labels.
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This approach has been demonstrated to be feasible in a recent study,

where researchers were able to build either a random forest classifier

and a nearest shrunken centroid classifier to learn the true data labels

of the intentionally mislabeled samples (Knights et al., 2011). Random

forest and nearest centroid are both popular classification methods in

machine learning. For readers who are not familar with the nearest

centroid classifier, it assigns a new observation with a known class la-

bel that its mean (centroid) is closest to. To reduce noise in the ob-

servations, as noise is common in metagenomic data, a threshold is

also trained to shrink/move class centroids for better accuracy (for a

detailed explanation of this method and its application see [Tibshirani

et al. (2002)]). These classifiers can even tolerate a small percentage of

labeling errors in the training set, making them quite useful in the re-

alworld settings. The performance of these classifiers, however, starts

to decrease when the percent of mislabeled samples in the training set

exceeds a certain threshold (over 30%). They did not work well on cases

where the data categories are more subtle, either (Knights et al., 2011).

5.1.1.2 Unsupervised methods for metadata correction

Alternatively, we could use unsupervised methods to detect potential

sample mislabeling or errors in annotations. You may have already

been manually visualizing your data with histograms, box plots, and

scatter plots to explore the relationships between samples and to iden-

tify potential outliers/abnormalities. With a large number of samples,

and each sample has many tributes in its metadata, manually explor-

ing these data becomes impractical. Fortunately, anomaly detection is

one of the problems in machine learning that have been extensively re-

searched, and there are many algorithms available for us to use. Gold-

stein and Uchida provided a comprehensive review of these methods in

a review (Goldstein and Uchida, 2016). Among the algorithms they com-

pared in their review, k nearest-neighbor (KNN), clustering-based plot-

ting such as clustermap, and one-class SVM classifiers are frequently

employed to explore data at the beginning phase of analysis tasks to

detect potential errors in metadata. Unsupervised methods can even

be used to detect errors in golden standard taxonomy annotations in

NCBI, identifying missing or erroneous taxa classification (Wang et al.,
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2019b). In this unpublished work where I was involved, we built a graph

using the kmer composition of reference bacterial genomes in NCBI

and explored their similarities. We found that some of the unclassified

genomes may be classified as they are clustered together with the clas-

sified genomes, as shown in Figure 5.1.

Bacteroidia

Flavobacteriia

Cytophagia

Sphingobacteriia

unclassi�ed Bacteroidetes:
1. GCA_000333295.1
2. GCA_000163695.1 

U1

U2

Fig. 5.1 Unsupervised data clustering reveals taxonomic annotation gaps. Using

Genome Constellation software (Wang et al., 2019b), bacterial reference genomes from

the Bacteroidetes phylum are clustered based on similarity of their sequence composi-

tion. Two previously unclassified genomes (U1 and U2) can now be classified at least at

the Class level.

5.1.2 Errors in sequence data

Sequencing technology introduces various errors to the metagenome

sequencing data. There are multiple sources that could introduce er-

rors into the sequencing data. Some of the errors are introduced be-
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fore sequencing, for example, at the PCR amplification step in some

library preparation protocols. Some of the errors are introduced during

sequencing, either occurred by chance or caused by systematic biases

associated with the sequencing technology itself. Short-read sequenc-

ing technologies typically have an error rate of approximately 0.1–2%

of the bases sequenced, while errors in long-read sequencing technolo-

gies typically occur much higher. Some of the errors happen when se-

quencers misinterpret the signal or when the DNA polymerase incorpo-

rates the wrong nucleotide.

To identify errors in the sequencing data, the easiest way is to look at

the base quality scores. A quick refresher of what we learned in Chap-

ter 2, genomic sequencers estimate the confidence of each base they

called using a PHRED score, Q30 means it’s 99.9% sure the base is cor-

rect. In the ideal world, we can trust these scores determined by the

manufacturer of the sequencing machines. Unfortunately, the scores

are subject to various sources of systematic technical error, and they

also fail to reflect errors introduced from sources other than the se-

quencing reactions. Even if we could trust these scores, a 100-gigabase

dataset (1011 base) with an average quality score of Q30 still leaves us

with 108, or 100 million erroneous bases!

As the characteristics of sequencing errors derived from different

sequencing technologies are different, I will discuss the different strate-

gies that are independent of the base quality score for short-read and

long-read data, respectively.

5.1.2.1 Identifying errors in short reads using Bloom filter

For short reads, as the error rate is relatively low and the sequencing

depth is high, we can afford to filter out data containing errors without

worrying about correcting them. We can use the kmer representation

of sequencing data and transform the problem of identifying sequenc-

ing errors into identifying erroneous kmers. Because the error rate is

low , 1-2% for Illumina platforms, and if the errors are random, the

probability of an exact erroneous kmer is extremely low, only about

0.25 ∗ 0.01 ∗ 0.01 = 0.0000025, or one in 40,000. In other words, almost

all erroneous kmers just happen once. In contrast, in a single-genome

sequencing project, a genomic region is often sequenced 50-100 times,
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the correct kmers would occur 50-100 times on average. Therefore, we

can simply count the kmers and remove those occurring only once in

the dataset. For metagenomics datasets, however, this practice may un-

avoidably remove rare species or strains, especially when the commu-

nity diversity is high or sequencing depth is low. In applications that can

tolerate a low percentage of errors, such as mapping reads to reference

genomes, error filtering should be skipped. For metagenome assembly,

where erroneous kmers lead to branching in the assembly graph, it is

essential to remove them before the assembly. Filtering out erroneous

kmers can also reduce the data volume. In theory, only 53% of 31-mers

are correct given an error rate of 2%, hence removing erroneous kmers

can effectively cut the data volume by half.

Counting kmers in a small dataset is easy. We could simply build

a hash table with kmers are keys and their counts are values, and

pass the sequence data once to get kmers. Doing the same on really

large datasets will inevitably run into problems, as the hash table with

hundreds of billions of elements would exceed the memory a worksta-

tion has. Many computing algorithms have been developed for efficient

error filtering, a comprehensive comparison of these methods can be

found in a recent review (Mitchell et al., 2020). Here I will only illus-

trate how a popular data structure that achieves both space and time

efficiency.

In computer science, a Bloom filter is a space-efficient probabilis-

tic data structure, conceived

by Burton Howard Bloom in 1970 (https://en.wikipedia.org/wiki/

Bloom_filter#Distributed_Bloom_filters). It has a uniquely useful

feature, that is, it can efficiently test whether or not an element is in a

very large set with only a small false positive rate. This feature can be

used to distinguish erroneous kmers from the good ones, as the major-

ity of erroneous kmers appear only once in the dataset. To do this, we

can construct a Bloom filter to keep track whether or not we have seen

a kmer before, and only save that we have seen at least once. We will

still have a small number of erroneous kmers that pass through the fil-

ter. This is an inherent limitation of Bloom filters, but this small number

of false positives, if desired, can be further reduced by implementing

additional hash functions.

A Bloom filter with 1% false positive rate and an optimal value of

https://en.wikipedia.org/wiki/Bloom_filter#Distributed_Bloom_filters
https://en.wikipedia.org/wiki/Bloom_filter#Distributed_Bloom_filters
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hash size requires only about 9.6 bits per kmer — regardless of the

size of the kmer. This space-saving feature can be further improved, as

demonstrated in the error-correction tool, Lighter (LIGHTweight ERror

corrector, [Song et al. (2014)]). Lighter uses a pair of Bloom filters in-

stead of one. The first Bloom filter holds a random sample of all kmers in

the sequence. As we discussed above, erroneous kmers are less likely

to appear multiple times, therefore, correct kmers are more likely to

be sampled. This trick can dramatically decrease the size of the Bloom

filter. The other Bloom filter is obtained by passing the input reads a

second time through the first filter, and only holds kmers likely to be

correct. Finally, the erroneous kmers are corrected during the third

pass of the input reads, where a closely matched alternative correct

kmer replaces an erroneous one. Because Lighter only uses about a

third of the RAM compared to other methods based on Bloom filters, it

can hold the entire data structure in RAM instead of relying on disks,

which also gives it a speed advantage (Song et al., 2014).

5.1.2.2 Long-read error correction

In the above short-read base error correction process, kmers are as-

sumed to contain at most one error. This is a reasonable assumption

given the overall 99% base accuracy of Illumina sequencing. This as-

sumption does not hold for long-read datasets, however. Given a 15%

error rate, fewer than 1% of 31-mers contain no errors, while 96% con-

tain more than one error. Applying the above methods based on Bloom

filter would filter out the vast majority of the data. We need to correct

the errors so that the dataset becomes usable, but we would need dif-

ferent algorithms or strategies for long-read error correction.

There are three main strategies depending on whether or not we

have a matching short-read dataset from the same sample. If we do, we

could align the short reads to the long reads and use the consensus of

the aligned short reads to patch and polish the long reads. Alternatively,

we could also assemble the short reads into contigs, and then align

the contigs to the long reads and use the consensus (contig) sequence

to correct the long reads. If matching short-read data is not available,

we could align the long reads to one another to derive the consensus

sequences. Figure 5.2 illustrates these three strategies.
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Fig. 5.2 Long read base error correction strategies

Among the three, long-read only (Strategy 3) requires high coverage

for effective error correction, which is a disadvantage as long-read se-

quencing is relatively more expensive. Correction aided by short reads

can achieve better correction, especially when the long-read sequenc-

ing depth is low. Assembly-based methods (Strategy 2) have a scalabil-

ity advantage on large data sets than alignment-based methods (Strat-

egy 1). While a comparison of the methods based on the above strate-

gies can be found in a recent review (Zhang et al., 2020), a word of

caution about these base error correction methods in the context of

metagenomics: we might remove strain-level divergence as a conse-

quence of error correction. This could happen during both short and

long-read correction processes, where we correct the sequences from a

rare strain to those from its more abundant sisters. If strain diversity is

the question of interest, we will have to recover the diversity from the

uncorrected reads, or forgo error correction altogether.
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5.2 Missing data imputation

Missing data is everywhere in genomics studies: unmeasured modi-

fication status in epigenomic datasets, missing genotype information

in genome-wide association studies, and dropout events in single-cell

RNA-sequencing experiments (scRNA-seq). The missing data issue is

worse in metagenomics. Due to the limited sequencing depth, some

rare species may be out of luck in the random sampling game, and

their abundance appears to be zero ("false zero"). We can ramp up our

sequencing efforts to increase their chances to be seen, but after a cer-

tain point we hit "the law of diminishing returns", as more sequencing

simply produces more data from the abundant members of the commu-

nity. As a result, the species abundance matrix we obtained could be

very sparse, containing a large proportion of zeros. Some of them are

true zeros, i.e., the species does not exist in this community. Some of

them must be false zeros, for example, we observed a member in some

of the biological replicates but not in others, or a member appears in

some of the samples but not in others in a time-series experiment.

From a metagenomics aspect, the missing data issue impairs anal-

yses such as deferentially enrichment taxon analysis to identify taxa

that exhibit different abundances among samples. The difference in the

number of zeros between two samples can produce artificial statisti-

cal significance. From an algorithmic aspect, missing data can lead to

null values (e.g., during log-transformation) that may break the analysis

software.

There are a number of ways to handle null values, including deleting

rows with null values, replacing null values with the mean/median/mode

derived from all replicates, replacing null values with a new category

(eg. unknown), or predicting the values using machine learning. There

are several imputation tools developed for other types of genomics data

that may be applied to metagenomics data. For example, softImpute

iteratively fills in missing data using expectation maximization (EM)-

like algorithms (Mazumder et al., 2010). Many imputation methods

have achieved great successes in scRNA-seq, could the same imputa-

tion methods also be applied to metagenomics data? Jiang et al. (Jiang

et al., 2020) argued that they are not likely suitable for metagenomics

data due to three reasons. First, the diverse types of metagenomics data
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are much more complex than scRNA-seq data, as they include metadata

such as phylogeny that are not easily imputed. Second, while multi-

ple single-cell data from the same tissue or type are presumed similar,

thereby enabling imputation based on one another. This presumption

is not applicable to microbial communities. Instead, the structure of

a microbial community are more heterogeneous: multiple strains from

the same species, and multiple cells from the same strain are more di-

verse. Third, the smaller sample size of metagenomic datasets excludes

them from being suitable for deep learning-based imputation methods.

To overcome these challenges, the authors proposed a new software,

mImpute, that can impute on three types of data (sequence, taxa, and

metadata) to effectively reduce false zeros (Mazumder et al., 2010).

5.3 Remove irrelevant data: data filtering

Besides missing information, almost all metagenomics sequencing data

is plagued with extra information as well. As data from other NGS

experiments, metagenomics sequence data can contain sequencing

adapters or control sequences that have not been automatically re-

moved, common lab contaminants that get into the data during library

construction and sequencing processes. These extra data should be re-

moved by comparing to the known adapter sequences or known refer-

ences of the contaminants. For host-associated communities, the data

can contain a large proportion of genomic data of the host. Unless we

are studying host-microbe interactions, we may also want to remove

the contaminated host data.

If the sequencing library has undergone PCR amplification, it is also

necessary to remove the duplicates resulted from PCR, as they may con-

found count-based statistics such as community composition or gene ex-

pression level in metatranscriptomics studies. For metatranscriptomic

sequencing data, ribosomal RNA sequences are often not desirable and

need to be filtered out.

Some of the irrelevant data are project-specific as the experimental

design can greatly confound data filtering. These often can be identified

or removed if we know our expectations or if controls are available.

For example, increasing throughput in DNA sequencers has enabled

multiplexing, a routine practice to sequence several samples in one se-
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quencing run. Data derived from each sample can be distinguished by

a sample-specific short oligo "barcode". If the "demultiplex" step has

not completely removed the barcode sequences, we may have to imple-

ment extra steps to remove them. Sometime "barcode cross-talk" can

occur, where some data of one sample can be assigned to a different

one because their barcode sequences are similar. This problem is much

pronounced in single-cell genome sequencing projects, and we will re-

visit this issue and potential solutions later in Chapter 9.

5.4 Control noise and biases

After the above extensive data filtering and error correcting, now it is

time to combat statistical and biological noise and biases. For people

who are familiar with transcriptomics analyses, microbial taxa count

data share many characteristics with the gene count data in skewed-

distribution, zero-inflation, and over-dispersion. The species abundance

distribution in many communities can be highly skewed, instead of a

symmetrical normal distribution. A few dominant species are highly

abundant, while the vast majority of other species have very few counts,

leading to a distribution with a very long tail. As we discussed ear-

lier in the imputation of missing data, many rare species would have

zero counts due to the limited sequence depth, or we would have a

zero-inflation problem. Because of the inherent biological variability

among samples, counts of the same species between different repli-

cates could vary greatly, with abundant species varying much more

(over-dispersion). These noises and biases lead to challenges in down-

stream statistical analyses. Not just taxa count data, the sequence data

can carry biases, too. For example, it is well known that Illumina short-

read sequencing biases against genomic regions or species with ex-

treme GC-content, so that AT- or GC-rich regions or genomes have poor

sequencing coverage.

Fortunately, several methods have been developed to combat these

noises and biases. Data normalization is a standard process to trans-

form the data to control noise and biases. We can scale the taxa counts

by dividing the total read count of a sample followed by a log transfor-

mation so that we can compare the counts across samples at the same

scale. We can standardize the counts so that it has a mean of zero and
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a standard deviation of 1. We can also normalize the counts between

replicates so that their distributions have a similar shape, as this is as-

sumed by some statistical methods. The choice of normalization meth-

ods are highly dependent on the underlying data and the pertained sci-

entific question, I will not go into details here, but do want to point you

to an excellent review about this topic (Calle, 2019).

Besides biological variations between individual samples, an often

overlooked complication in genomics studies is batch effects, or vari-

ations among different batches of samples, or different studies, intro-

duced by laboratory, experiment/computation protocol, and personnel

differences. This becomes one of the major reasons why metagenomics

findings could not be replicated among different studies. Normalization

technique does not effectively remove batch effects, as it corrects the

global data distribution instead of specific subsets of the data affected

by batch effects. In metagenomics, the effect of batch effects has not

been systematically studied, but several studies have uncovered that

they can exert a major influence on, and in some cases account for the

main findings (Randall et al., 2019; de Goffau et al., 2021). During the

exploratory phase of data analysis, unsupervised methods such as prin-

cipal component analysis or hierarchical clustering may reveal whether

the major differences are due to true biology or batch. If the samples

are clustered strongly by batches (lab, protocol, study, processing time,

etc), it is an indication that strong batch effects exist, and they must be

accounted for before a conclusion could be made.

5.5 Pitfalls in metagenomics data improvement

We often need to explore the data to get to gain some insight before

laying out a quality improvement plan. This step can become a lengthy

process in many analysis projects. At this step, it is crucial to start with

a small fraction of the data, work out the strategy first with a small

amount of computing resources, and then apply the strategy to the big

dataset with the desired computing resources.

There is an old saying "better underdone than overdone", this should

similarly apply to the data quality improvement process for three rea-

sons. First, once the data is filtered out, it is harder to get them back.

It is advised to only fix the relevant data quality issues that confound
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a particular analysis task. If we decide an additional filtering step is

needed for another analysis task, we would have the option to further

filter the data. Second, filtering itself may take a considerable amount

of computing resources. For example, to remove potential contami-

nants, we would search the data against a large collection of potential

contaminant genomes. Finally, some of the steps, such as error cor-

rection and normalization, could introduce unintended changes to the

data. For example, kmer-based error correction has been proved very

successful in single-genome projects, but it is not known whether or not

this process masks the information of subspecies or strains. In theory,

we could have corrected the data from a relatively rare strain to its

more abundant sister strain.

Many of the common data quality issues nowadays are handled by

automatic QA/QC pipelines. While these automatic pipelines are great

for generic purposes, we need to keep in mind that sometimes they

are not complete, and can remove critical information required for our

project-specific information. For example, most of the QA/QC pipelines

run in batches, so they do not remove batch effects, and in some cases

different versions of these pipelines can actually create batch effects.

In addition, ribosomal RNAs are typically removed from metatranscrip-

tomics data, but these data could be used for getting taxonomic in-

formation about the community, a topic we will delve into in the next

chapter.
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Chapter 6

Exploring community diversity:
taxonomic analyses

By now, probably only a caveman does not know that one needs a di-

verse microbiome to be healthy, as the media has done a great job asso-

ciating the human microbiome with human health. We are told to have

a diverse diet to increase our microbiome diversity, and we need it for

the health of our immune system to defend infections. Lack of diver-

sity in the gut microbiome can lead to obesity. Microbiome diversity

also underlies many chronic inflammatory diseases, such as psoriasis

in the skin and colorectal cancer in the colon. A baby inherits its mi-

crobiome from its mother during natural birth, but a baby delivered

through cesarean section may lack a healthy microbiome diversity to

start with ... There are numerous studies on microbiome diversity, and

experts are hotly debating what consists a healthy microbiome. These

debates were summarized by a science journalist, Michael Eisenstein,

in a commentary published in Nature Outlook on January 29th, 2020

(https://www.nature.com/articles/d41586-020-00193-3).

Studying diversity is one of the most important questions in ecology.

Microdiversity, a new discipline, did not have any theory to begin with,

so it had to borrow from macrodiversity, its close sibling. The diversity

of a community provides a low resolution of the community function,

and in some cases the diversity itself is used as a proxy of commu-

nity function, e.g., gut microbiome diversity is an indicator of human

gut health. Changes in diversity can be correlated with microbial dy-

namics to identify drivers and make predictions of community function.

Factors that increase niche availability, such as diverse resources or

increased niche area, or that limit microbial growth, such as frequent

disturbances or chronically extreme conditions, are expected to drive

83

https://www.nature.com/articles/d41586-020-00193-3
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diversity in opposite directions. Understanding microbial diversity and

the factors driving their changes not only provides insights into human

health, but also presents a unique opportunity for us to understand the

interplay between microbes and our environment, an issue becoming

more urgent given the current trend of climate change.

What is diversity anyway? In this chapter, I will introduce the con-

cept of microdiversity and methods to accurately measure it.

6.1 What is microdiversity?

When we talk about the microdiversity of a community, we may refer to

two different things depending on context. Taxonomic diversity refers

to the diversity measured at the species level, while functional diversity

refers to diversity at the gene or pathway level.

6.1.1 Taxonomic diversity

Taxonomic diversity measures how many types of microbes or taxa are

within a sample or community. Taxonomic diversity can be measured

at the level of many taxonomic ranks (superkingdom, phylum, class,

order, family, genus, and species), and species is the most commonly

used. Very often, operational taxonomic units (OTUs, I will explain this

later) are used in the literature, which is equivalent to species.

We are concerned with two common properties of a community in

the context of taxonomic diversity: how many species are in the com-

munity and how evenly they are distributed. The former is also re-

ferred as community composition or richness, and the latter is also

referred as community structure. The measured diversity within a sam-

ple/community is also called alpha diversity, to be distinguished be-

tween sample diversity (beta diversity). The concepts of the two diver-

sity metrics, as well as within- and between-sample diversity, are illus-

trated in Figure 6.1.

6.1.1.1 Within sample diversity indices: alpha diversity

In practice, the observed richness in a sample is likely an underesti-

mate of the true community richness, as rare species are harder to
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Fig. 6.1 Alpha diversity vs Beta diversity. The diversity within a sample or a community

is called alpha diversity. The diversity between different samples or communities is called

beta diversity. In the illustration, the number of different species (richness) is shown on

the x-axis, and the species evenness is shown on the y-axis. Each circle represents a

sample. Different insects (bugs) are used to represent different microbes, as sometimes

the microbes are also called "bugs".

detect given a limited sampling depth. In a community with high rich-

ness, the probability that a species will be observed more than once can

be low. Conversely, in a low diversity community, the probability that a

species will be observed more than once will be higher, and more abun-

dant species will be observed multiple times in a sample. Is it possible

to count the unobserved one? This is actually also a common problem

faced in macroecology studies, and Chao et al. developed a good esti-

mator, called Chao1 index(Chao, 1984). Chao1 index is also borrowed

by microecologists for estimating the number of unobserved members

of a community. Assuming the number of species that appear only once

in the sample is f1 and the number of species that appear twice is f2,

and the true community richness R̂ can be estimated from the observed

richness R using the following Chao1 index formula:

R̂ = R+
f1( f1 −1)
(2 f2 +1)

(6.1)

Chao1 index assumes that the number of observations for taxa has

a Poisson distribution and it corrects for variance by adding a term to

count the unobserved taxa. When f1 >> 1 and f2 >> 1, the term can

also be approximated as
f 2
1

2 f2
. If the majority of the species have a single
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count, then the Chao1 estimated richness would be large, with a max-

imum value of R2 when all species in the sample are singletons. This

index is particularly useful for data sets skewed toward low-abundance

species. Using simulated datasets, Hughes et al. found the Chao1 in-

dex is a reasonably good estimator of the true richness over alternative

methods (Hughes et al., 2001).

To measure how evenly the species are distributed within a commu-

nity, a commonly used diversity metric is the Shannon diversity index.

This metric weighs the number of observed species by their relative

evenness data. To calculate Shannon diversity index, we first calcu-

late the relative proportion pi of a species i, and then multiply it by

its natural logarithm log pi. The resulting product is summed across all

R species in the sample, and multiplied by -1:

H =−
R

∑
i=1

pi log pi (6.2)

As you can see from the above equation, the Shannon diversity index

(H) of a community increases with richness (R). When Richness is fixed,

H reaches a maximum when the proportions of all species are equal.

From an evolutionary perspective, diversity can also be measured

by phylogenetic diversity (Faith, 1992). Phylogenetic diversity is a met-

ric based on phylogeny, defined by the combined branch length of all

species within the community on a phylogenetic tree that span the

members of the set. This metric is not only a quantitative measure of

the total amount of species diversity within a community, but also can

measure the different consequences of losing some species. In the il-

lustration in Figure 6.2, losing the sole member in a deep brunch can

lead to a collapse in overall diversity.

There are a few other alpha diversity indices that are used in the

literature. For an in-depth understanding of these indices and how they

are used, please refer this review (Finotello et al., 2018).

6.1.1.2 Between sample diversity indices: beta diversity

Unlike alpha diversity, beta diversity is a metric to highlight the taxo-

nomic difference between a pair of samples. This metric will be useful

when we compare two samples, for example, to see how the microbes

react after we apply a physical stress.
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Fig. 6.2 Phylogenetic diversity. It is defined as the combined branch length of all species

within a community on a phylogenetic tree that span the members of the set. The

branches in gray represent species that are not present in the community. The num-

bers represent relative phylogenetic distance. Losing a member from the community (C

in community 1) with deep brunch can lead to a large decrease of the overall phylogenetic

diversity.

Like alpha diversity, several metrics have been developed for beta

diversity. The simplest Jaccard distance ignores species abundance and

just uses the number of matched/mismatched species, weighing each

species equally (Figure 6.1). UniFrac distance is a commonly used

metric used for beta diversity (Lozupone et al., 2007). It has both a

weighted variant that accounts for abundance and an unweighted vari-

ant that only accounts for presence/absence. UniFrac is based on phy-

logenetic distance. After all taxa in both samples are placed on a phylo-

genetic tree, each branch is classified as either "shared" or "unique" ac-

cording to its leading to a shared taxon from both samples. The UniFrac

distance between a pair of samples is then calculated as the unique

fraction of the total branch.

If we have many samples, we would end up with a pairwise Jac-

card or UniFrac distance matrix. We can then visually explore the re-

lationship among these samples by a technique called principal coordi-

nates analysis (PCoA). PCoA is one of the ordination methods to repre-

sent sample relationships as faithfully as possible in a low-dimensional

space.

It is worth noting that the PCoA introduced here is related to Princi-

pal Component Analysis (PCA) that you might be already familiar with.

While both are used to explore sample relationships, there is an im-

portant distinction between the two. In PCoA, we perform ordination

with a distance matrix as input. In PCA, on the other hand, we start

with a sample-OTU frequency matrix as input, compute the Euclidean

distance matrix between samples, and then run PCoA. Therefore, PCA
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is a special case of PCoA. Since we prefer to use the distance matrix

specifically developed for beta diversity, PCoA is much more common

than PCA in microecology studies.

QIIME2 is a software package that supports the calcula-

tion of most of the diversity indices. Here is a post show-

ing how to run the commands: https://forum.qiime2.org/t/

alpha-and-beta-diversity-explanations-and-commands/2282

6.1.1.3 The effect of sampling depth in calculating diversity

The depth of sampling, or sequencing coverage in the metagenome se-

quencing context, can affect at least two aspects of diversity measure-

ment. We have discussed the underestimation of the true richness using

the observed richness. In addition, the sampling depth also confounds

our comparison of the richness between a pair of samples. Suppose we

sequence 1 million reads from a community and count the number of

occurrences of each taxon. We would like to compare those from the

same community that a colleague sequenced at an earlier time point, to

see whether or not the richness changes between these two time points.

For the earlier time point, she only sequenced 0.5 million reads. We are

likely to observe a higher richness number in our sample because our

sequence depth is twice as high as hers and we can detect more rare

species. How do we make a fair comparison?

We could simply randomly sample each sample to the same depth

before computing the richness index. To reduce the randomness asso-

ciated with sampling, we could repeat the same process multiple times

and take an average. Actually, there is a more statistical robust way to

do this. We could produce a rarefraction curve, a technique also first

developed for macroecology, to plot the average of richness at differ-

ent sampling depths (Sanders, 1968). Figure 6.3 illustrates three rar-

efraction curves. With rarefraction analysis, we can see sample A has

a similar diversity index to sample B despite their sequencing depth is

dramatically different, while sample C has much higher diversity.

After the sampling depth goes beyond a certain point, our ability to

detect rare species stops increasing, and the curve reaches a plateau.

Therefore, rarefaction is not only used for comparing the diversity be-

tween different samples, it can also be used to determine whether or

https://forum.qiime2.org/t/alpha-and-beta-diversity-explanations-and-commands/2282
https://forum.qiime2.org/t/alpha-and-beta-diversity-explanations-and-commands/2282
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Fig. 6.3 Rarefraction curve illustration

not sufficient sampling has been reached in a given sample, based on

whether or not the curve is converged.

6.1.2 Functional Diversity

Taxonomic composition alone can only provide a rough estimate of

community function. Identification of genes, gene families, and spe-

cific metabolic pathways can understand the functional capabilities of

the community. Gut microbiomes of very different compositions can

have very similar functional gene profiles among different individuals. A

2009 study found that different human individuals share an extensive,

identifiable ‘core microbiome’ at the gene, rather than at the species

level (Turnbaugh et al., 2009). The same diversity indices used for tax-

onomic diversity can be applied to functional diversity, by replacing

species with gene families or metabolic pathways. We will learn how to

identify genes and pathways using computational approaches in Chap-

ter 7.

6.2 Taxonomic classification in metagenomics

We have discussed diversity metrics without mentioning how we de-

rive taxa from metagenome sequence data. From an algorithmic per-

spective, taxonomy involves grouping similar organisms (functionally

or genetically) into groups to form taxa (clustering) and assigning new
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organisms to an existing or known taxon (classification). Driven by ex-

perimental technology development, the taxonomy system has evolved

from morphology-based (microscopy), to molecular-based (16s rRNA),

and finally to whole genome-based. The process of assigning taxa sci-

entific names is called nomenclature. In nomenclature, the "two-term

naming system" is used to name a species, which is composed of two

parts, a generic name identifying the genus and a specific name identi-

fying the species within the genus. The names were intended to both la-

bel species and carry some biological meaning. However, the taxonomic

nomenclature can be ambiguous. For example, some of the species are

named after their morphology. Bacillus subtilis (Bacillus in Latin means

"stick" while subtilis being the Latin for "fine") was used to describe a

group of bacteria found on grass whose cells look fine sticks under the

microscope. Clearly, there are so many stick-like bacteria that can be

totally unrelated in either function or phylogeny to Bacillus. For now,

let us just keep in mind that the scientific names are just labels of

taxa. Here, we are going to focus on taxa formation or classification,

i.e., forming new taxa or inferring the presence of known taxa given

metagenomic sequence data. More specifically, we will deal with the

problem of predicting the taxa of the microbial species in a community,

with their genomes may or may not have been assembled.

We mentioned at the beginning of the book that a large percent-

age of the species we find in a metagenome project are often unknown.

Therefore, discovering novel taxa is one of the main tasks of computa-

tional metagenomics. A recent study surveyed datasets from the human

microbiome and recovered thousands of potential new species (Pasolli

et al., 2019). Our current understanding of the scale of microorgan-

ism diversity is probably much underappreciated, as an experiment that

overcomes sampling biases by obtaining samples from a diverse envi-

ronments revealed (Rinke et al., 2013).

Suppose we have a species whose genome is assembled from the

metagenome data (we will cover the assembly process in Chapter 8),

how do we know whether or not it represents a new taxa group? The

process is called phylogenetic inference, or placing the species on the

phylogenetic tree to determine its evolutionary history with a set of

related species.

From an algorithmic perspective, formulating the problem this way
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can effectively model it as a supervised machine learning problem:

Given a set of reference species with known taxonomic labels, pre-

dict the label of new genomes. As other machine learning problems,

we would need features (or attributes) of a genome for training a model

and making predictions. As both references and queries are genomic se-

quences, the taxonomy classification can also be modeled as a sequence

similarity search problem, i.e., finding the best match of a sequence in

a reference database (and assuming the taxonomic information of the

target).

6.2.1 Super features: phylogenetic markers

Early taxonomy classification of microorganisms was based on qualita-

tive or qualitative morphology differences such as those in cell shape.

In the early 1970s, Carl Woese (1928-2012) realized that the sequence

of 16S ribosomal RNA (rRNA) serves as a much more precise and sta-

ble marker for bacteria phylogeny. By analyzing the 16S rRNA of some

"extremophiles" that live at temperatures up to 100°C, Woese discov-

ered Archaea, a third domain of life that is distantly related to bacte-

ria and eukaryotes. Since then, 16S rRNA became a universal marker

for prokaryotes, and 18S rRNA for eukaryotes. Using 16S/18S rRNA

gene (rDNA) as a super feature, the taxonomic classification problem

becomes searching a query rRNA sequence against a database of la-

beled rRNA sequences. In the following, we will discuss 16S/18S rRNA

sequencing and then briefly review rDNA databases.

6.2.1.1 16S/18S sequencing

Targeted amplification sequencing (TAS) of 16S/18S rRNA is currently

one of the most used strategies for the identification and quantification

of microorganisms in a community. The 16S/18S rRNA gene contains

regions that are highly conserved between species and regions that are

highly variable or discriminative between species. Polymerase chain re-

action (PCR) primers can be designed from conserved regions to am-

plify one or more variable regions and subsequently sequence them

using high-throughput sequencing technologies such as Illumina. The

size of the whole 16S and 18S rRNA genes are around 1.5kb and 1.9kb,

respectively, which are much larger than the read length from the short-
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read sequencing technology(less than 300 bases). One or more shorter

variable regions of the gene are therefore targeted for sequencing. The

biggest advantage of TAS is its low sequencing cost, as only a tiny frac-

tion of a genome is sequenced, and with a fixed sequencing budget one

can get better coverage of the taxonomic diversity. 16S/18S-based TAS

sequencing has become a method of choice to survey the taxonomic di-

versity of complex microbial communities (taxonomic profiling), as it is

sensitive, qualitative, and quantitative.

In addition to the sequencing errors in Illumina-sequenced ampli-

con data, PCR also introduces errors, both needing to be distinguished

from the true variations observed among different species. Given the

presence of these confounding errors, how could one reliably quantify

each of the species in the community? There are two common strate-

gies: OTU-based and ASV-based. In the first strategy, sequencing errors

can be addressed by clustering the reads into operational taxonomic

units (OTUs) using a predefined sequence identity threshold (typically

97%). In TAS, OTUs refer to a cluster of similar sequence variants of

the 16S/18S rDNA sequences. With the risk of merging several real

sequences into one, a consensus sequence from each cluster contains

much fewer errors. Each OTU represents a taxonomic unit of a mi-

crobial species (sometimes a genus when a lower sequence identity

threshold is used). In contrast to the clustering strategy in OTU-based

analysis, the Amplicon Sequence Variant (ASV) strategy uses an error

model to compute the statistical confidence of a given read at a given

frequency that is not due to sequencer error. ASV has the advantage

over OTU in that it uses exact sequences instead of consensus ones (or

"fuzzy" sequences), allowing much higher resolution (at strain or sub-

strain levels) for taxa identification. For a detail explanation of these

strategies, please refer to this blog (https://www.zymoresearch.com/

blogs/blog/microbiome-informatics-otu-vs-asv).

There are a few limitations of 16S/18S-based taxonomic profiling.

First, primers designed using conserved regions can have biases, as

they could favorably amplify some species but unfavorably amplify oth-

ers. These primers will only target prokaryotes or eukaryotes, but not

viruses and phages. Second, as only shorter variable regions of the gene

are targeted due to the short sequencing length, the resolution of this

technology can be significantly compromised, especially at species level

https://www.zymoresearch.com/blogs/blog/microbiome-informatics-otu-vs-asv
https://www.zymoresearch.com/blogs/blog/microbiome-informatics-otu-vs-asv
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(Johnson et al., 2019; Jeong et al., 2021), urging the need to switch to

long-read sequencing technologies to target the whole gene.

6.2.1.2 Ribosomal RNA databases

Reads or OTU consensus sequences derived from 16S/18S rDNA genes

are mapped to known rRNA databases and are assigned to known taxa,

and their number is used to calculate the abundance of each taxon.

Among the rRNA databases, SILVA, RDP, and Greengenes are the most

popular ones.

The SILVA database (https://www.arb-silva.de/) is a manually

curated database that includes 16S/18S rRNA sequences for all three

domains of life (Bacteria, Archaea, and Eukarya). It is the most widely

used database in 16S/18S-based taxonomic classification analysis. The

latest release of SILVA (138.1 as of August 27, 2020) contains 2,224,740

total and 510,508 nonredundant 16S/18S rRNA reference sequences.

Besides the large collection of reference sequences, SILVA also offers

several related software tools as well as comprehensive data analysis

services.

The Ribosomal database project (RDP, https://rdp.cme.msu.edu/)

curates 16S rRNA (Bacteria and Archaea) and 28S rRNA (Fungi) se-

quences. The latest release, RDP Release 11 Update 5 (September 30,

2016), contains 3,356,809 16S rRNAs and 125,525 Fungal 28S rRNAs.

The Greengenes database (https://greengenes.lbl.gov/) is dedicated

to Bacteria and Archaea. Although Greengenes is still included in some

metagenomic analyses packages, it has not been updated since 2017.

6.2.2 Features based on whole-genome statistics

16S/18S sequences are considered by many microbiologists as the

"molecular clock" of evolution. However, this clock seems to run at a

slightly different speed among different phylogenetic groups, and or-

ganisms belonging to closely related yet distinct species may have very

similar 16S/18S sequences if the rDNAs evolve slower than the other

genomic regions. A common practice in 16S/18S-based taxonomic anal-

ysis is grouping rRNA sequences into OTUs at the 97% sequence iden-

tity level. This threshold is considered the golden standard for distin-

guishing species. The ideal threshold cutoff has not been extensively

https://www.arb-silva.de/
https://rdp.cme.msu.edu/
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researched, for example, a systematic evaluation of the false discovery

rate under it, until recently(Rodriguez-R et al., 2018). A more strin-

gent threshold, 98.5% 16S rRNA sequence identity cutoff, was pro-

posed to be more accurate. Even at this threshold, the 16S rRNA gene-

based, one-size-fits-all approach still underestimates species diversity

by ~12%, compared with the features based on genome-based statis-

tics discussed below.

As in typical machine learning methods, we can include more fea-

tures to improve taxonomic classification accuracy. These features in-

clude Average Nucleotide Identity (ANI), Average Amino Acid Identity

(AAI), and Single Copy Genes (SCG).

6.2.2.1 ANI/AAI

ANI and AAI are genome-based metrics. The ANI is defined as the aver-

age nucleotide identity among all shared genes between two genomes

(Konstantinidis and Tiedje, 2005). Similarly, AAI is the average amino

acid identity between the two genomes. Calculating ANI/AAI involves

first identifying homologous protein pairs between the two genomes,

and then the pairs are aligned and their identity averaged to obtain ANI

or AAI. ANI gives better resolution than AAI for closely related species

(at the species or genus level), while AAI can be applied to remotely

related species beyond the genus level.

Genome-based statistics provide more accurate metrics for taxo-

nomic diversity, in contrast to 16S rRNA gene-based metrics that likely

underestimate species richness by at least 10 to 15% (Rodriguez-R

et al., 2018). They should also be more robust, as these statistics are de-

rived from many genes rather than a single one, effects such as recent

horizontal gene transfer (also known as lateral gene transfer, which is

the nonsexual movement of genetic information between genomes in-

stead of vertically through inheritance) should be minimized. As many

genomes assembled from metagenome datasets (Chapter 8) or derived

from single-cell metagenomics (Chapter 9) are incomplete and often

lack ribosomal genes, ANI/AAI metrics are particularly suited for taxo-

nomic analysis in metagenomics.

The downside of genome-based metrics is that they require more

computation to calculate. Calculating ANI/AAI for a large number of
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genomes is very computational expensive, as all-vs-all alignments have

quadratic time complexity, that is, the computing time quadruples as

the number of genomes doubles. For example, JGI’s IMG/M database

contains over 90,000 genomes as of May 2021, and it will require over

8 billion comparisons to compute ANI/AAI for the entire dataset.

Several algorithms have been developed to scale up ANI/AAI com-

putation. If we use the similarity of kmer frequencies between two

genomes to approximate their ANI, then we could borrow existing al-

gorithms from the big data world, as this problem is analogous to com-

paring two web pages based on word frequencies. MinHash is such

an algorithm applied to ANI calculation and the program based on it,

Mash, achieves several orders of magnitude of speedup over Blast-

based methods (Ondov et al., 2016). The speed comes with a cost,

though. As other kmer-based approaches, Mash is very sensitive to mu-

tations. The number of shared kmers dramatically decreases as the two

species become more divergent, and the statistics become less reliable.

To overcome this problem, FastANI (Jain et al., 2018) uses a minimizer-

based MashMap algorithm to align more divergent sequence segments

between two genomes, while maintaining high speed, up to three or-

ders of magnitude faster than Blast-based methods.

While ANI/AAI-based metrics can quickly estimate the similarity be-

tween two genomes, they fail to consider the percent of shared genes.

In an extreme case, two genomes share a single, identical gene (say, due

to a recent horizontal gene transfer event) but nothing else, and their

ANI/AAI would be 100%. Therefore, in practice an “Alignment Fraction”

(AF), or the proportion of genes shared, is also considered. Only after

AF exceeds a predefined threshold, the ANI/AAI metrics would be con-

sidered.

6.2.2.2 Multiple phylogenetic Markers

Having assembled genomes also enables methods that consider mul-

tiple phylogenetic markers to overcome the limitations of a single

marker, the 16S/18S rDNA gene. Software tool GTDB-Tk (Chaumeil

et al., 2020) uses a set of 120 bacterial and 122 archaeal marker genes

for taxonomic classification. GTDB-tk uses a three-step procedure to

classify a query genome. First, it assigns the query genome to the do-
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main with the highest proportion of identified marker genes. In the sec-

ond step, the genome is placed on a bacterial or archaeal phylogenetic

tree, based on which domain it is assigned during the first step. In the

last step, the taxonomic classification is inferred based on the place-

ment of the genome on the tree. Ambiguities raised from the tree-based

classification are resolved by either consulting ANI metrics or phyloge-

netic distance.

Recently, Almeida et al. collected 286,997 genomes derived from hu-

man gut microbiomes and clustered them into 4,616 bacterial and 28

archaeal species using genome-based metrics (an ANI threshold of 95%

over at least a 30% AF) (Almeida et al., 2021). Their taxonomy was pre-

dicted using GTDB-tk. This large-scale study unveiled the scale of mi-

crobial diversity in human gut microbiomes. More strikingly, this study

showed that more than 70% of these species have not been cultured,

and 40% lack functional annotations.

6.2.3 Features based on reads

Each metagenome read can be individually classified and assigned to

known taxa, if we could find a match in the reference database. Given

the large number of reads (millions to billions) and an increasing num-

ber of known genomes in the reference database (millions), it is often

expensive, if not impractical, to match all reads against all reference

genomes. For taxonomic classification software tools based on individ-

ual short reads, reducing the search space to increase computing effi-

ciency is more important than classification accuracy, as the short read

length inherently provides very limited taxa resolution.

Various strategies have been developed to reduce this search space.

We mentioned about Kraken in Chapter 4, which match reads and ref-

erences in the kmer space. Kraken and similar methods pre-compile a

reduced representation of the reference database using kmers so that

it can be efficiently searched against in memory. As a result, these tools

are fast but require a large amount of memory. Some tools, such as

MetaPhlan, build a database containing only a subset of genes that

could be used to unambiguously differentiate one species from another,

or clade-specific marker genes. Search is therefore limited between

metagenome reads and a small set of reference genes (Segata et al.,
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2012). MetaPhlan has both low memory requirement and fast speed,

but it biases for sequences with selected marker genes. A recent re-

view provided a comprehensive comparison of the performance of these

tools (Simon et al., 2019).

Because reads are typically very short, they could be matched to

different taxa with shared sequences in the above read-based taxon-

omy classification tools. Methods based on short reads are generally

not capable of discriminating different strains of the same species. By

assembling reads into longer contigs and using contigs for taxonomic

classification should increase the classification resolution, as well as

reduce the number of queries for faster database search. However,

metagenome assembly is a challenging process, a topic we will discuss

in depth in Chapter8.

6.3 Future perspectives

Most environmental microbial communities have high richness, such as

those residing in lakes, oceans, or soil. Given our current set of refer-

ence genomes only captured a limited proportion of such diversity, a

large proportion of the species are expected to be novel. This implies

that the diversity we observed or inferred based on current taxonomic

profiling methods may likely be an underestimate of the true diver-

sity. Only a small number of communities might be outliers, such as

those associated with human or cattle. In the case of the human micro-

biome, comprehensive catalogs of microorganisms have been compiled

through large-scale studies from the Human Microbiome Project (HMP)

in the United States (Huttenhower et al., 2012) or the metagenomics of

the human intestinal tract (MetaHIT) project in Europe (Ehrlich et al.,

2011). Being able to scale up taxonomic classification on combined data

resources is a key for this cataloging effort.

Many taxonomic classifiers have been developed to efficiently as-

sign metagenomic reads to our limited knowledge of microbial diversity.

They are still facing challenges such as high false negative rates for

low-abundance species (metagenomics perspective) and the exponen-

tial growth of reference databases (data engineering perspective). The

largest challenge, however, is the lack of ability to detect and character-

ize unknown species, a common problem for all supervised classifica-
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tion methods. The quick expansion of the reference database, combined

with future development of unsupervised approaches, may alleviate or

solve this problem.

It is worth noting that the presence of a microorganism in a commu-

nity, or its abundance, does not directly translate to its importance to

the community. This is why functional diversity is often preferred over

taxonomic diversity. To identify these "important" species such as those

carrying unique metabolic capabilities, researchers often adopt enrich-

ment methods to artificially increase their proportions in the sample.

For example, to limit the analysis to the active portion of microbes,

but not the inactive or dead microbes, stable isotopes could be used

to label the active proliferating cells and subsequently capture and se-

quence them. This technology is called stable isotope probing (SIP), and

it can be used to label both DNA or RNA to enrich actively replicating

or transcribing cells, respectively (reviewed in [Singer et al. (2017)]).
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Chapter 7

Functional metagenomics: gene and
pathway-based Analyses

Every microorganism, however small, encodes a full set of genetic al-

gorithms that ensure their ability to survive in and adapt to the un-

predictable environment. They rely on various genes and pathways

that provide unique metabolic capabilities. Functional metagenomics

involves the identification of genes and pathways in a metagenome

dataset and the annotate of their function. Functional metagenomics

not only addresses the fundamental question in metagenomics: "what

do they do?", but also provides a deep understanding of community di-

versity, as taxonomic similar organisms such as strains within a species

can have dramatic different functions. For example, most Escherichia

coli (E. coli) strains are normal constituents of our gut microbiome that

provide us nutrients such as vitamins, but a small number of strains are

pathogenic and cause diseases from mild to severe bloody diarrhea. Dis-

coveries in functional metagenomics also greatly expanded the reper-

toire of potential microbial natural products that have potential biomed-

ical or industrial properties, a process called microbial bioprospecting.

According to a report that catalogs the small molecule drugs used for

cancer in the last 30 years, 74.8%, are either natural products or their

"mimics" (Newman and Cragg, 2012).

In this chapter, we will review various computational strategies to

identify genes and pathways and predict their function. Readers need

to be aware that functional metagenomics is also carried out by func-

tional screening based on biochemical activity, which is an experimental

approach that relies on the construction and high-throughput screen-

ing of metagenomic DNA libraries (Lam et al., 2015). Experimental ap-

proaches had been a predominant strategy for functional metagenomics

99
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before the birth of high-throughput sequencing. Here we will not dis-

cuss the experimental approaches involved to discover new functions

or validate functional predictions, neither will we cover the genetic or

biochemical engineering involved to improve the biochemical proper-

ties of microbial natural products. An in-depth review of these topics

can be found in a recent publication (Robinson et al., 2021).

Similar to the taxonomic analyses we discussed in the last chapter,

the goal of functional analyses also has two folds: to discover new func-

tions encoded by new genes, gene families, or metabolic pathways; and

to profile diverse functions of a community and study their changes be-

tween conditions, spatial or temporal changes.

7.1 Gene Discovery

The concept of genes was proposed by Gregor Mendel, the "Father of

Genetics" in 1966. In 1972, Walter Fiers and his team at the Labora-

tory of Molecular Biology of the University of Ghent (Ghent, Belgium)

sequenced the first gene, the Bacteriophage MS2 coat protein. Pow-

ered by next-generation sequencing and gene prediction algorithms, it

is now possible to determine the entire set of genes in an organism,

large or small. For instance, the human genome is estimated to carry

between 25,000 to 30,000 protein-coding genes, while E. coli carries

about 4,000.

It is not straightforward to determine the full set of genes encoded

by a microbial community, however, especially those with high species

richness and uneven species abundance. Limited by the sequencing

depth, genes from rare species are often missed from detection. By

combining multiple samples, one could potentially increase the chance

to observe genes from rare species, as rare species from one sample

may not be so rare in another, or they become less rare in the combined

dataset. This strategy has begun to reveal the enormous functional di-

versity encoded by microbial communities. In a recent study, Braden

Tierney at Harvard Medical School and his colleagues analyzed a large

cohort of 3,655 human oral or gut metagenomic samples and found a

staggering functional diversity (Tierney et al., 2019). 46 million genes

were found in this study, among which more than 50% are uniquely tied

to individual people. As the observed genes may still represent a small
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fraction of the total function diversity, the team estimated that the total

number of genes in the collective human microbiome could be around

232 million! This prediction is supported by the human gut microbiome

meta-study where over 280,000 genomes were analyzed (Almeida et al.,

2021), as over 171 million unique proteins were found. This diversity is

just about the human-associated microbial communities, and the en-

tire gene repertoire encoded by the earth microbiome is probably an

astronomical number. One of the online genome databases, JGI’s Inte-

grated Microbial Genomes and Microbiomes (IMG/M), recorded over

63.8 billion genes as of April, 2021 – we should still be at the dawn of

discovering microbial genes.

There are two main strategies to discover genes from a metagenome

dataset. Both requires assembly, a process that pieces together short

reads, either at the nucleotide level or at the protein level. Both can pro-

duce a catalog of genes for functional diversity, and gene abundances

in each sample can be found by mapping of reads to the gene catalog

to infer functional composition.

7.1.1 Discover genes based on metagenome assembly

I will devote the next chapter to discuss the metronome assembly. Here,

at a high level, one can employ state-of-the-art assemblers to assemble

the short reads based on the de Bruijn graph. We briefly discuss the de

Bruijn graph in Chapter 3: it uses kmers as edges and their overlaps

as nodes. The traversal of such graphs obtains contigs, many of which

are long enough to contain one or more genes. And then a gene pre-

diction program is applied to these contigs to predict genes, based on

either their similarity to existing genes or via preestablished gene mod-

els. Similarity-based methods are useful to discover genes that have

significant homology to genes in the reference databases, and they are

the method of choice to identify noncoding genes including tRNA and

16/18s rRNA genes for taxonomic analyses. However, because the ma-

jority of protein-coding genes from a metagenomic dataset do not have

known homologs in our limited database, the ab initio gene prediction,

or gene prediction using gene models is the major driving force that

fuels the exponential growth in gene numbers.

Prokaryotic protein coding genes have common sequence features,
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including structure features such as open reading frames (ORFs) and

ribosomal binding sites (RBSs), and composition features such as GC-

content and codon usage statistics. Various machine learning models

are trained based on these sequence features to predict genes, and

among them Prodigal (Hyatt et al., 2010) and MetaGeneMark (Zhu

et al., 2010) are the most successful ones. The success of these algo-

rithms can be attributed to the availability of a large number of diverse

known genes that offers a better training set, and the improved knowl-

edge of microbial genes that enables a better estimation of gene model

parameters.

It is worth noting that gene prediction is still an active research area

and several aspects are being improved constantly. For example, the

availability of metatranscriptomics data enables accurate prediction of

eukaryotic protein-coding genes (Carradec et al., 2018). Taxa-specific

models are improving gene prediction accuracy in certain taxa over

generic gene models such as viral gene prediction (Zhang et al., 2019),

and deep learning methods are being explored to automatically extract

sequence features rather than relying on the human expert system to

manually select features(Al-Ajlan and El Allali, 2019).

7.1.2 Discover genes by protein assembly

For functional diversity and bioprospecting, the proteins encoded by a

microbial community may be all what we want. It is also possible to as-

semble the protein directly without taking the detour of metagenome

assembly and gene prediction. Protein assembly could also bypass the

complexity faced in de Bruijn graphs caused by strain-level genetic vari-

ations and repeats.

There are very few de novo protein assemblers. One of them, Plass,

is particular interesting (Steinegger et al., 2019b). Plass uses a greedy

iterative assembly strategy without constructing a graph. The basic

idea of Plass is first identify the overlap between protein fragments

(translated from short reads), and then iteratively extend the frag-

ments by "walking" via overlap. The key challenge is identifying overlap

among billions of short fragments. Plass avoids all-vs-all comparison by

inventing a kmer based approach that scales linearly in runtime and

memory. Plass was used to assembly some of the largest datasets such
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as the TARA ocean metagenome project (Steinegger et al., 2019b).

Like Prodigal, Plass could not reliably predict eukaryotic genes due

to the presence of exon-intron structure. For eukaryotic gene discov-

ery, most eukaryotic gene callers require transcriptomics data or an

annotated close relative related organism in addition to sequence fea-

tures to train gene models (Levy Karin et al., 2020). Neither of the two

are reliable, however. The sequence features are less conserved among

eukaryotic genomes than prokaryotic genomes, and the eukaryotic ref-

erence genome databases are much smaller.

7.2 Function annotation

Most gene prediction programs provide structural information such as

the start and end positions of the gene, start and end positions of the

CDS (CoDing Sequence) for protein coding genes, and for eukaryotic

genes, exon/intron coordinates. Function annotation is a process that

computationally assigns putative functions to a predicted gene found in

the gene discovery process. In the metagenomics context, protein func-

tion annotation is the main focus, although noncoding RNA genes can

be annotated using a similar approach. From a metagenomics perspec-

tive, the goal of function annotation is to predict the molecular function

of a gene’s products. As it is assumed that sequence similarity indicates

an functional similarity, we can infer a query protein’s function based

on its sequence homology to known reference proteins (homologs). If

a query to its target are orthologs, or they directly share an ancestor

instead of related via gene duplication events (paralogs), function infer-

ence can be more reliable, as ancestral functions are more likely to be

retained between orthologous genes than between paralogs (Tatusov

et al., 1997).

From a data engineering perspective, the function annotation pro-

cess labels a gene with a vector of probabilities, with each probability

representing how likely this gene has a known function. The resulting

matrix would be very sparse if all results are kept for millions of genes

and tens of thousands of known functions. Most of the time, however,

only the largest probability is kept for each of the millions of genes

predicted from a metagenome dataset to reduce space. As many other

computational metagenomics problems, function annotation also faces
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a data engineering problem: millions of proteins often need to be anno-

tated in a single experiment.

From an algorithmic perspective, the functional annotation prob-

lem is analogous to find the nearest neighbor of a new protein and

take their labels (known functions). These labels are often derived from

Gene Ontology (GO terms, http://geneontology.org/). For example,

GO describes the activities of gene products at the molecular level with

11,169 terms as of May 2021. To find the nearest neighbor, either an

alignment-based sequence homology search is performed to find the

best hit, or a model-based search is performed to assign a protein to

known protein families.

7.2.1 Alignment-based protein annotation

The enormous amount of sequence in a typical metagenomics over-

whelms traditional sequence alignment-based tools such as BLAST. If

we could afford to sacrifice sensitivity by limiting the search to highly

similar sequences, there are faster algorithms such as BLAT(Kent,

2002) and Usearch(Edgar, 2010). These methods are based on the seed-

and-extend paradigm for sequence comparison, in which the exact oc-

currences of seeds (or kmers) contained in the query can be quickly

found in the reference sequences, and these seed matches are then ex-

tended via a slower, full alignment process between the queries and

potential target references. Shorter seeds increase sensitivity, whereas

longer seeds increase speed. BLAT employs longer seeds, whereas Use-

arch uses multiple short seeds for prioritization, and both achieve 100

times faster than BLAST.

These programs, however, are still not fast enough to query mil-

lions of metagenomic sequences against a growing database with tens

of billions of genes. By combining the advantages of modern comput-

ing architecture and breakthroughs in algorithms, a recent algorithm

achieves a speed 20,000 times faster than BLAST with similar sensi-

tivity (Buchfink et al., 2015). Here, I want to highlight a few of the

algorithmic tricks that this software, DIAMOND, uses to speed up the

homology search.

DIAMOND is also based on seed-and-extend strategy. As many other

programs, DIAMOND indexes the seeds from the reference database,

http://geneontology.org/
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which allows the rapid identification of potential matches. With a large

reference database, the seed index becomes very big. Since some of

the amino acids are similar to each other (as organisms tend to use

them interchangeably, such as K and R), they can be grouped together

to be treated as one during the similarity search. These "interchange-

able" amino acids could be inferred from a large number of BLAST

alignments. Originally developed by Dr. Yuzhen Ye’s group at Indiana

University in its "Reduced Alphabet based Protein similarity Search

(RAPSearch) tool, the reduced alphabet can greatly reduce memory us-

age and increase search speed (Zhao et al., 2012). Here, instead of

using the full 20 amino acids as the alphabet, DIAMOND only uses 11,

effectively reducing the size of the seed index.

Besides the reduced alphabet, a second trick that DIAMOND uses

is spaced seeds. A spaced seed is essentially a longer seed, but only a

subset of its positions are used. A single spaced seed can be faster than

a contiguous seed, while retaining sensitivity by adding more subsets

of its position to be used.

The unique trick that distinguishes DIAMOND from other programs

that are also using reduced alphabets and spaced seeds, is that it also

indexes the query sequences. A DIAMOND index is an ordered list of

seed-location pairs. By indexing both query and reference sequences,

DIAMOND translates the homology search problem into a well-known

computer science problem, i.e., database sort-merge joining, as each

index is essentially a database.

DIAMOND represents an excellent example of combining innova-

tions in metagenomics (reduced alphabet), data engineering (seed in-

dexing), and many algorithms (spaced seeds, sort-merge joining) to

tackle a computational metagenomics problem.

Can the sequence homology search go even faster? Surely it can.

The reference database contains a large number of very similar se-

quences (redundancy), it is not necessary to compare this group of very

similar sequences if the query shares no homology with a representa-

tive sequence in the group. Martin Steinegger and Johannes Söding de-

veloped a tool called Linclust, which clusters the reference sequences

into clusters and selects a representative sequence from each cluster.

This way, the homology search can be 1600 times faster than DIAMOND

(Steinegger and Söding, 2018). The authors similarly took a strategy to
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derive a reduced representation of each protein sequence (a group of

kmers), and leveraged existing sorting algorithms in computer science

to cluster similar proteins. Linclust clustered IMG/M 1.59 billion pro-

tein sequences into 424 million clusters in 10 hours on a 2×14-core

server.

7.2.2 Model-based protein annotation

A cluster of similar sequences can be aligned together to derive a se-

quence model, which is a statistical representation of this group of pro-

teins. Given a multiple sequence alignment, we can either build a Posi-

tion Specific Scoring Matrix (PSSM) to model the probability of amino

acids at each position, or a probabilistic Hidden Markov Model (HMM)

that also includes position-specific probabilities for insertions and dele-

tions. Searching query proteins with protein models instead of the se-

quences themselves increases sensitivity, as models suppress evolution-

ary noise while elevating true signals.

You may already be familiar with NCBI’s PSI-BLAST (Position-

Specific Iterative Basic Local Alignment Search Tool), which derives

a PSSM from the multiple sequence alignment of sequences returned

from a regular Blast search. This PSSM is then used to search the

database for new matches and is updated for subsequent iterations with

these newly detected sequences. While PSI-BLAST provides a means of

detecting distantly related homologs, its computational intensive na-

ture prevents its application in large-scale protein annotation.

Without going into details about how HMM works as it should be

explained in most of many basic bioinformatics textbooks, I will focus

the remaining of this section on its application in large-scale function

annotation. A major benefit of HMM-based annotation is due to the

Pfam databases (http://pfam.xfam.org/), the HMMER software suite

(http://hmmer.org/, [Eddy (2011)]), and computing resources derived

from them. The identification of protein domains via HMM can provide

insights into the potential function of a query protein. In the cow rumen

metagenome project I was involved in, we identified 27,755 candidate

genes with a significant match to at least one relevant catalytic domain

or carbohydrate-binding module, suggesting their potential function in

carbohydrate metabolism (Figure 7.1, [Hess et al. (2011)]).

http://pfam.xfam.org/
http://hmmer.org/
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Fig. 7.1 Candidate enzymes discovered from the cow rumen metagenome project

There are some limitations of HMM-based homology search. First,

the protein families annotated in Pfam are not comprehensive. For ex-

ample, a HMMER search using over a billion nonredundant protein

sequences from EMBL-EBI’s metagenomics database was able to an-

notate 58% of the sequences (https://f1000research.com/posters/

8-444). The researchers were able to build 699 novel protein families

from some large protein clusters with over 1000 sequences. Second, the

speed of HMMER is comparable to BLAST, so it would be impractical to

use HMMER on a dataset with billions of sequences. Finally, HMMER

does not produce orthologs of the queries (neither does DIAMOND), as

the best hit of a query is not a guarantee of an ortholog. Annotations

derived from paralogs may greatly reduce accuracy because paralogs

are more likely to evolve different functions.

While building new curated HMM models may take time, the last

two limitations can be partially relieved by new algorithms. For exam-

ple, the eggNOG-mapper pipeline uses a two-step process by first using

DIAMOND to find highly similar homologs, followed by using HMMER

for a more sensitive search (Huerta-Cepas et al., 2017). It then applies

taxonomic restrictions to ortholog discovery to reduce the search space

as well as to increase true positives.

https://f1000research.com/posters/8-444
https://f1000research.com/posters/8-444
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7.2.3 Detecting distant protein homology

DIAMOND and tools alike are up to four orders of magnitude faster than

BLAST, making it possible to search massive amounts of metagenome

sequences, assembled or not, for highly similar matches among the fast-

growing databases of reference sequences. Profile HMM-based meth-

ods such as HMMER, with a small cost in decreasing speed, further in-

crease the search sensitivity, enabling the annotation of many more pro-

tein sequences. However, as we have seen in the above billion-sequence

HMMER project, no homology could be found for a large fraction (42%)

of the proteins predicted from metagenomes.

DIAMOND and HMMER are useful to detect similarities between

sequences that have not diverged beyond "the twilight zone" of se-

quence similarity (defined as 20 %-30% sequence identities). However,

the protein structure may stay the same while the underlying sequence

changes significantly during evolution. This distant homology is much

harder to detect, but could be very useful in the context of metage-

nomics, and greater diversity often translates into greater divergence.

To prioritize real distant homologs over background noise, two

strategies are currently being explored. First, one could add structural-

level similarity on top of sequence-level similarity, for example, incorpo-

rate secondary structure information to prioritize those homologs with

lower sequence similarity. Second, instead of using query sequences di-

rectly to search a database of sequences or models, one could construct

a HMM model first, and then use the model to search a database of mod-

els. By summarizing multiple similar sequences in the query set into a

model, the search can be faster and the results can be more sensitive to

detect weaker homology. The HH-Suite3 software tool implements both

strategies for sensitive search to detect distant homologs (Steinegger

et al., 2019a).

7.3 Pathway Analysis

To understand the function of a gene, it is often necessary to put it in its

context. Linking multiple genes that perform related reactions such as

those in a metabolic pathway and analyzing them as a unit, or pathway

analysis, offers a higher level view of the function diversity of a micro-
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bial community. Some metabolic pathways are encoded in clusters of

physically adjacent genes, known as biosynthetic gene clusters (BGCs).

Mining BGCs has the promise to discover novel microbial natural prod-

ucts that have potential biomedical or industrial properties.

Similar to protein function profiling, pathway profiling maps anno-

tated genes to those contained in reference pathway databases and pro-

duce both the presence/absence and the abundance of each reference

pathway in a metagenome dataset (compositional analysis). Through

pathway enrichment analysis, one could track the dynamic changes in

the functional diversity of a community.

7.3.1 Common pathway databases

7.3.1.1 Kyoto Encyclopedia of Genes and Genomes (KEGG)

KEGG is a widely used reference database that contains high-order

function annotations (pathways, modules, etc. https://www.genome.

jp/kegg/). Its latest release, Release 98.1 on May 1, 2021, contains

781,736 pathways and 545 maps (manually curated knowledge about

molecular interactions, reactions, and relations). The database is up-

dated regularly and offers rich APIs as well as web interfaces for path-

way analysis. KEGG maps are represented as graphs, where nodes are

molecules such as proteins or compounds, and edges represent relation

types between the nodes, such as activation or phosphorylation. KEGG

organizes maps in an organism-independent manner, i.e., the maps rep-

resent our current knowledge of known biochemical reactions, regard-

less whether or not these reactions are present in the same organism.

Therefore, an organism rarely contains the full set of all reactions an-

notated in a KEGG map. Figure 7.2 shows an example of a KEGG map.

7.3.1.2 MetaCyc Metabolic Pathway Database

MetaCyc is a curated database of experimentally elucidated metabolic

pathways from all domains of life (https://metacyc.org/). Currently,

MetaCyc contains 2,937 pathways from 3,295 different organisms. In

contrast to KEGG that organizes pathways according to compounds and

biochemical reactions, MetaCyc organizes pathways according to their

physiological role in an organism. These pathways are also organism-

https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
https://metacyc.org/
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Fig. 7.2 An example of a KEGG map, showing mathane metabolism, with the mathano-

genesis between mathane and acetate highlighted in red. Enzyme names or their EC

numbers are in boxes, while compounds are in small circles. The map can be explored

from this link: https://www.genome.jp/pathway/map00680+C04832

specific, i.e., there could be multiple representations of a KEGG path-

way in different organisms that differ by a few reactions. MetaCyc also

offers options to show all organisms in one pathway, with each organ-

ism represented in color. Figure 7.3 shows an example of a MetaCyc

pathway.

7.3.2 Metabolic pathway profiling

To identify and quantify the metabolic pathways encoded in a commu-

nity, one could first identify the functions encoded using the algorithms

we discussed in the above section, and then map these functions to

https://www.genome.jp/pathway/map00680+C04832
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Fig. 7.3 An example of a MetaCyc pathway, showing mathanogenesis between mathane

and acetate. Metabolites are nodes, biochemical reactions are shown on the left of the

edges, and enzyme names/EC numbers are shown on the right. Species names are shown

in purple color. The map can be explored from this link: https://metacyc.org/META/

NEW-IMAGE?type=PATHWAY&object=METH-ACETATE-PWY&&EXP-ONLY=NIL&ENZORG=NIL

reference pathways included in databases such as KEGG or MetaCyc.

There are two challenges one has to solve, however. First, as we dis-

cussed several times already, genes representing important pathway

components can fall out of detection due to the low sequencing depth

or that they are too divergent to be identified by the function annota-

tion process. Second, the same genes could exist in multiple pathways

in different pathways that are difficult to partition (redundancy).

MinPath (Minimal set of Pathways) is a parsimony approach to con-

servatively identify metabolic pathways by determining the minimal set

of biological pathways that must exist to explain the input protein se-

quences sampled from a biological system. MinPath addresses both in-

complete and redundant challenges (Ye and Doak, 2009).

https://metacyc.org/META/NEW-IMAGE?type=PATHWAY&object=METH-ACETATE-PWY&&EXP-ONLY=NIL&ENZORG=NIL
https://metacyc.org/META/NEW-IMAGE?type=PATHWAY&object=METH-ACETATE-PWY&&EXP-ONLY=NIL&ENZORG=NIL
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Built upon the pathways identified by MinPath, HUMAnN (the HMP

Unified Metabolic Analysis Network), uses a tiered approach to effi-

ciently tackle the incomplete problem: it first maps the reads to marker

genes, and then maps the reads to the pangenomes identified by the

marker genes. Both of these two steps are efficient as short read align-

ment is efficient. After these two steps, a third mapping step, the least

inefficient step, is done at the translated protein level to recruit more

unmapped reads. Pathway abundance is derived by using several tricks

to reconcile the redundancy problem (Franzosa et al., 2018).

7.3.3 Pathway enrichment analysis

By the presence or absence of certain pathways, we may infer the

metabolic capacity of an organism, or compare those of different or-

ganisms. In the metagenomics context, compositional analysis (what

pathways are present/absent) is not as useful as comparative analysis

that tracks community changes in different conditions or time points.

To illustrate this point, let me share a study I was involved in 2014.

The study aimed to account microbial organisms in sheep rumen

for methane production, as methane is the second largest contributor

to global warming with about a third from livestock as a byproduct

(Shi et al., 2014). The main source of methane production is a group

of archaea known as methanogens. Previously, people observed that

one group of sheep consistently produced more methane than the other

from the same breed with the same feed, so gut microbiome must be

responsible for the difference, rather than sheep genetics or food. To

identify which microbial organisms or metabolic pathways are responsi-

ble for this difference, we built a reference metagenome by assembling

short-read DNA sequences, as well as generating metatranscriptome

sequences from each sample. By mapping the transcriptome reads to

KEGG pathways, we were able to compare their activity among differ-

ent samples and identify what pathways are associated with methane-

producing phenotype. We found the methane metabolism pathway was

the most significantly enriched pathway among about 300 known KEGG

pathways and further identified several novel gene clusters encoding

this pathway (Shi et al., 2014).

How does one map an annotated gene to a reference pathway? In
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the above study, we used Blast to associate a query protein with a KEGG

function by assigning it a KEGG Orthology (KO) number, with each num-

ber being a manually curated protein family. As we discussed above,

Blast is not an efficient way for large metagenomic datasets. HMM-

based methods have also been developed for KO number assignment

with better accuracy and speed. For example, KofamScan searches

against a database of profile hidden Markov models (KOfam) with pre-

computed adaptive score thresholds (Aramaki et al., 2020). Testing it

on a dataset with 20 prokaryote genomes showed that it took only 12

minutes for KofamScan while a Blast alternative took over 16 hours for

KO number assignment.

How could one associate a pathway with a particular phenotype?

Like gene set enrichment analysis used in transcriptomics, pathway en-

richment analysis is a specific type of enrichment analysis that tests

whether or not a list of genes in a pathway is enriched in a particular

sample. There are several methods developed for pathway enrichment

analysis. Most of them are developed in the context of clinical genomics,

as there is great interest to study disease-associated genetic pathway

changes. Nevertheless, the same methods can be similarly applied in

metagenome datasets. A practical guide to perform an enrichment anal-

ysis can be found in [Reimand et al. (2019)]. When applied any of the

methods in metagenomics, one needs to consider two key questions:

what kind of statistical tests should be used to maximize power and

how false discoveries are controlled.

7.3.4 Discovering BGCs

Microbes produce secondary metabolites to increase their survival or

compete with other organisms. Unlike the primary metabolites (lipids,

amino acids, carbohydrates, and nucleic acids), these small molecules

are not necessary for their growth or reproduction, but play key roles

in increasing the fitness of the microbial organisms that produce them

in diverse, changing environments. Many of these natural products

have special therapeutic properties, such as cholesterol-lowering, anti-

tumor, or antibiotic activities. Secondary metabolites are produced by

enzymes encoded by biosynthetic pathways. The enzymes are often

organized in a cluster of genes that are in physical proximity in the
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genome, and thus named as biosynthetic gene clusters (BGCs). The

curated Minimum Information about a BGC (MIBiG) database (ver-

sion 2.0, https://mibig.secondarymetabolites.org/, [Kautsar et al.

(2020)]) includes 1,434 manually curated BGCs with known func-

tions. Besides microbes, plants can also produce secondary metabo-

lites, as MIBiG includes 19 derived from plant species. In a recent

study, researchers identified 1,159 BGCs from just a few hundreds

of genomes from soil samples from a northern Californian grassland

(Crits-Christoph et al., 2018). Most of these BGCs lacked any homology

to gene clusters from MIBiG, suggesting that known BGCs are a tiny

fraction of the total BGC diversity.

Discovering BGCs from assembled metagenomes is a challenging

process involving two major steps: gene cluster prediction and sec-

ondary metabolite prediction. The software tool, AntiSMASH (Blin

et al., 2019), is a central tool for the identification of biosynthetic

gene clusters of secondary metabolites. AntiSmash maintains a profile

HMM database built from core genes in known BGCs (signature gene

pHMMs) and uses it to identify candidate gene clusters from a input

metagenome. Clusters of signature gene pHMM hits spaced within a

certain distance are used to define gene clusters. Once the clusters

are identified, they are subject to several downstream analysis in paral-

lel, including domain architecture analysis, substrate specificity, stereo-

chemistry, and final structure prediction. The software provides a user-

friendly web interface and uses JSON format for ease of API integration

with other tools.

7.4 Future Perspectives

The gene-revolved analysis sits in between the taxonomy-revolved we

discussed in the last chapter and the genome-revolved analysis we are

going to learn in the next chapter. Gene- and pathway-level analysis,

especially comparative analysis, not only reveals the functional poten-

tial of microbial communities, but also correlates these potentials with

the observed phenotype. With more functional omics data, including

metatranscriptome, metaproteome, and metabolome, we can validate

the functional predictions based on the metagenome. Moreover, recent

advances in fluxomics (flux-based modeling of metabolism) have made

https://mibig.secondarymetabolites.org/
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it possible to model microbial communities (Henry et al., 2016).

Although alignment-based and HMM-based methods remain as the

mainstream methods for function annotation, methods that include

structural information are emerging. The paucity of solved protein

structures and the lack of structure prediction algorithms have ham-

pered their adoption. With the fruits of high-throughput structural ge-

nomics initiatives and deep learning-based structure prediction tools

like AlphaFold2, in the near future, we may be able to significantly

improve the accuracy of function annotation, especially for detect-

ing distant homologs. This possibility was recently demonstrated in a

study that discovered several new protein families from the Tara Ocean

metagenome dataset using structural prediction (Wang et al., 2019a).

Both sequence-based and structure-based homology to infer pro-

tein function belong to a broad category of hypothesis-driven or super-

vised methods. These methods are not designed to uncover new func-

tions, or "unknown unknowns". Metagenome gene annotation pipelines

would label a large fraction of proteins as "hypothetical proteins" as

they do not have any closely related homologs that we can learn from.

Similarly, BGCs predicted from AntiSmash are also "known knowns"

or "known unknowns". We expect to see the rise of unsupervised or

data-driven approaches in the future. The decRiPPter (Data-driven Ex-

ploratory Class-independent RiPP TrackER) tool is an example of unsu-

pervised approaches, and it relies on the detection of outlier operons

from a pangenome rather an homology (Kloosterman et al., 2020).
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Chapter 8

Deconvolute community
metagenome into single genomes

Resolving a community metagenome into individual constituent

genomes is a prerequisite for many downstream metagenomics anal-

yses, ranging from assessing an individual genome’s metabolic ca-

pacity, discovering new branches of the tree of life, to interrogating

interspecies interactions. There are both experimental and informat-

ics strategies to deconvolute a metagenome. Experimental strategies

include high-throughput, single-organism microculture and single-cell

metagenomics. We will further discuss this topic in the next chap-

ter. These experimental approaches are limited by the number of

species they can reach and incur high experimental costs. Therefore,

the vast majority of projects resolve to informatics strategies such as

metagenome assembly and binning. In this chapter, I will focus our dis-

cussion on informatics strategies. I will cover quite a few topics, first

the challenges associated with metagenome assembly, then the assem-

bly itself, followed by metagenome binning and clustering, two proce-

dures that complement the assembly process. I will discuss how one can

evaluate the quality of the assembled genomes. At the end of this chap-

ter, I will discuss new technologies that are being developed to improve

metagenome assembly.

8.1 An overview of metagenome assembly

Before the invention of a future sequencing technology that can read an

entire chromosome or genome from the beginning to the end, prokary-

otic genomes and eukaryotic chromosomes must be broken into smaller

pieces for sequencing, resulting in reads, via a whole-genome shotgun

117
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(WGS) approach. Assembly is the opposite process: it computationally

pieces together these reads into chromosomes or genomes. Therefore,

the genome assembly problem is formally defined as the inference of

a genome G with length L given one or more sets of reads R derived

from G, where R’s mean read length l << L. Similarly, the metagenome

assembly problem is to infer the entire set of genome sequences of a

community of microbial species G1,G2, ...Gn, given one or more sets of

sequence reads R, where the mean read length l is much smaller than

the mean genome length L.

Although modern metagenome assemblers have greatly streamlined

the process of metagenome assembly, in practice, metagenome as-

sembly still involves quite a few steps and many variations created

by including/excluding certain optional steps. A metagenome assem-

bly pipeline generally starts with some preprocessing steps to format

and clean the read data, a topic covered in Chapter 5. The reads can

be optionally clustered into read clusters, and the clusters are subse-

quently processed in parallel. In the assembly step, assembly graphs

are built from the reads, pruned, and then traversed into larger frag-

ments (contigs) without gaps. In some experiments, long-range mate-

pair libraries are used to further connect the contigs into scaffolds,

even larger fragments with gaps representing unsequenced genomic

regions. Because the assembly and scaffolding steps rarely produce

genomes in their entirety, contigs and scaffolds are further grouped

to form genome bins in the binning step. Finally, a quality assessment

step will select high-quality genome bins as metagenome-assembled

genomes (MAGs) for further analysis. This quality evaluation step can

either be based on available reference genomes or some generic char-

acteristics. A overview of the process is in Figure 8.1.

8.2 Challenges in metagenome assembly

Greek philosopher Aristotle once said, "the whole is greater than the

sum of its parts". This also applies to comparing the challenges as-

sociated with metagenome assembly to those associated with single

genome assembly. The metagenome assembly problem is not only sub-

ject to the general challenges faced in single-genome assembly, but also

faces some of its unique ones. To better illustrate these challenges, I will
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Fig. 8.1 An overview of metagenome assembly.

try to explain them in the context of the three aspects of computational

metagenomics: metagenomics, data engineering, and algorithm.

8.2.1 Metagenomics challenges

The first set of challenges metagenome assembly needs to overcome are

the limitations of metagenome sequencing technology and the lack of

existing knowledge of most microbial communities. These limitations,

combined with the complexity of metagenome datasets, create several

unique challenges for metagenome assembly.
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8.2.1.1 Short read length vs repeats

Initially thought as a unique feature in eukaryotes, repetitive DNA el-

ements (repeats) have been increasingly found in prokaryotes as well.

Repeats are sequences that exist in multiple copies in a genome. There

are many types of repeats with sizes ranging from a single nucleotide

(homopolymer), a short stretch (e.g., transposon), or an entire gene

cluster (e.g., ribosomal gene cluster). The number of copies of a repeat

in a genome can go from only a few to millions. The similarity among

copies of repeats can vary from nearly identical to highly divergent.

Their locations can scatter among the genome or organize together at

one locus as tandem repeats. Regardless their type or organization in

the genome, repetitive regions that are longer than the read length

are causing problems for de novo assembly. Most genome assemblers

give up repetitive regions in the assembly, leaving gaps at where they

are located. As a result, genomes assembled from short-read datasets

can contain thousands of fragments. In addition to leaving gaps in the

assembly, repeats can also cause assemblers to make mistakes during

the graph traversal stage, by predicting more copies (repeat expansion)

or fewer copies (repeat condensation), or rearranging genome regions

(mis-assemblies).

In metagenome assembly, repeats within a genome are similarly

causing the above problems. There are also "between-genome repeats"

that are unique to metagenomes, including transposons, horizontally

transferred genes, and homologous regions that are shared among dif-

ferent genomes. An extreme case of these is that many species can have

several highly similar strains within a community. Different strains of

the same species share over 97% nucleotide sequence identities, mak-

ing them difficult or impossible to resolve using short reads. Another

special case is the ribosomal RNA genes, which are highly conserved

among different species, are also problematic for metagenome assem-

blers. Despite their usefulness in taxonomy profiling as we discussed in

Chapter 6, they are repetitive sequences in the eyes of an assembler.

8.2.1.2 Limited sequencing depth vs community diversity

In single-genome assembly projects, we start with a sequencing depth

typically at 30-50x, to ensure the majority of the genome can be
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covered by sequencing. This is because the distribution of the WGS

reads follows a Poisson distribution, in the ideal world, an average of

20x read coverage will be required to cover 99% of the regions of a

genome at least 10x. As the read coverage is biased instead of be-

ing perfectly Poisson (e.g., genomic regions of extreme GC-percentage

are poorly sequenced in Illumina sequencing), we would need much

higher read depth (typically 30-50x) in practice. The required sequenc-

ing for a 3-megabase bacterial isolate genome with 30-50x sequenc-

ing depth translates into 0.6 to 1 million 150bp reads (genome length×
sequencing depth)÷ read length. The larger the genome, the more reads

would be required for a good genome coverage and assembly.

If all species in a community have equal abundance, then the re-

quired sequencing depth for a metagenome is solely determined by the

community richness, or the combined length of all genomes in the com-

munity. However, such communities are almost nonexistence in the real

world. The species abundance distribution of most communities is very

skewed, leading to biased datasets where the majority of the reads are

derived from only a few dominant species, while reads from a large

number of rare species are hardly seen. We discussed that sequencing

depth can limit our ability to study the diversity of a microbial com-

munity in Chapter 6 because of the same reason. Similarly, sequenc-

ing depth also limits the assembly of rare species. For a metagenome

project, it is often not possible to predetermine how many reads we

would need for its assembly, as we need to factor in the species abun-

dance distribution to estimate the sequencing effort.

For readers in computer science or other non-biology disciplines,

the following analogy may help understand the above concept. As a

genome is analogous to a book, a metagenome is analogous to a library

of books. Metagenome richness roughly translates to the number of

species in a community, or the number of different books in a library. In

a catastrophic event, our library of books, thousands of different books,

and millions of volumes, all get shredded into smaller pieces. This hap-

pens in every metagenome sequencing experiment. The length of the

book varies from several thousands to tens of millions of letters. De-

pending on the sequencing technologies we use, some pieces are short,

about 100 letters long, and some are long, several thousands or tens of

thousands of letters. Sequencing is all about sampling enough of these
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pieces so that we may recover most of the books, including those rare

ones with only a few copies. Intuitively, we will need to sequence a lot of

small pieces for thicker books, and much more if the library has many

different books with some are rare editions.

8.2.1.3 Lack of reference genomes for assembly quality as-

sessment

Being able to directly sequence all microbes without lab cultivation

brings an exciting opportunity to fully comprehend the vast diversity

of the microbial world and discover novel microbial species we have

not seen previously. As much as we want to study environmental habi-

tats that are full of new species, we would have little idea about the

quality of the assembly after we assemble them because we could not

have similar species to reference to. Since the first dawn of computa-

tional metagenomics to today, researchers have been struggling with

this challenge. Now they can assemble many genomes in a single ex-

periment, but how do they assess the quality of those complete novel

ones? How do they know the genome is complete when they do not

know what to expect? How do they identify contaminants if both the

target and contaminant are both novel? These questions have led to

many new creative solutions, and I hope to cover some of them in this

chapter.

8.2.2 Data engineering challenges

There are two main data engineering obstacles in front of a good

metagenome assembly. First, the scale of the input data. For commu-

nities with high richness and more skewed species abundance distribu-

tion, we need more sequencing depth as we discussed above, but this in-

evitably produces a larger volume of data. The first MetaHIT ((METAge-

nomics of the Human Intestinal Tract) project produced 500Gb (Li

et al., 2014), and DOE JGI’s cow rumen project produced 1.2Tb (Hess

et al., 2011). The biggest project to date, the Tara Oceans Project, a

world-wide ocean survey project, has already produced over 8 Tb (Suna-

gawa et al., 2020). The title may not hold very long, as the ocean micro-

bial community is not the most complex one. Based on what we have

learned about these projects, to get a fair coverage of the microbes in
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the forest soil, we would need to sequence at least 200Tb. Remember,

we discussed in Chapter 4 that unstructured metagenome data may ex-

plode 200 times during analysis!

The other obstacle is the complexity of the assembly process itself. A

typical assembly pipeline contains three major steps, each step involves

running multiple software tools. We need to clean up the data through

a preprocess step, as we discussed in Chapter 5, remove contaminants

and sequencing errors. We then need to construct a graph that con-

tains all kmers using some graph data structures to represent the data,

which we introduced in Chapter 3 but we will discuss in some detail

in the following section. And finally, we would traverse the graph or

find a path among kmers to recover the genomes. Each step may have

very different requirements for computing resources. The preprocess

step is in general IO-intensive, as we are moving large amounts of data

across the network, reading/writing them from/to file storage systems,

and load/unload them from the memory. The graph construction and

graph traversal steps are both memory- and computing-intensive, as

the kmer graph may contain billions of nodes and trillions of edges, and

parallel processing is required for efficient constructing and traversal.

While combining these steps in a single software pipeline greatly re-

duces the effort to run a metagenome assembly, sometimes it is not an

efficient way for utilizing computing resources. We would have to pro-

vision the system with a large enough amount of memory to satisfy the

most memory-demanding step in the pipeline, and at the same time a

large number of CPU cores to meet the need of the most computing-

demanding step. This leads to underutilization of the computing re-

sources if most of the time the cores are sitting idle or the memory is

largely not occupied. Finally, metagenome assemblers often run a sub-

stantially longer time on large datasets, inevitably increasing the risk

of hardware/software failures.

8.2.3 Algorithmic challenges

As we discussed in Chapter 3, we can translate the genome assem-

bly problem into a graph problem in computer science and solve it.

In this case, reads can be treated as strings of an unknown super-

string (genome), and the genome assembly problem is very similar to
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the shortest superstring problem (SSP) in computer science. Unfortu-

nately, the SSP is a NP-hard problem, as it takes exponential time for

a solution that always finds the shortest superstring. This means given

billions of short reads, we are out of luck, as we may never be able

to find the optimal assembly in our lifetime. For a detailed description

of this problem and related problems, readers are encouraged to read

more about Traveling Salesman, Hamiltonian Paths, NP-hardness, and

NP-completeness (Chapters 34 and 35 of “Introduction to Algorithms”

by Cormen, Leiserson, Rivest and Stein (Cormen et al., 2009)).

The SSP problem is probably an oversimplified version of the

genome assembly problem, for the reasons we discussed above in the

metagenomics aspect (Nagarajan and Pop, 2009).

8.3 Metagenome assembly

Before we discuss metagenome assembly, let us briefly review single-

genome assembly process. There are two general strategies for single-

genome assembly: reference-based and de novo strategy. In reference-

based assembly, we choose a reference genome from the same species

or a closely related one as a blueprint to guide the assembly process. We

use reference-based assembly to discover variations in the new genome

by comparing to the reference genome. In de novo assembly, we recon-

struct the genome directly, without the aid of reference genomes. We

can use de novo assembly to discover genomes from novel species that

are not similar to those we know. In metagenome assembly, we seldom

have known references to perform reference-based assembly, therefore

I will limit our discussion to de novo assembly only.

Most genome assemblers are based on graph algorithms, and pre-

dominantly on a single type of graph: the de Bruijn graph. Let us briefly

review several key points about this graph structure we introduced in

Chapter 3. First, we can represent a genome using a de Bruijn graph of

kmers, where edges of the graph are kmers and nodes are the shared

part between two adjacent edges (k-1 mer) as illustrated in Figure 8.2.

In this representation, the genome is a path, or a walk, that visits all

edges of this graph at least once. Second, we can construct the de

Bruijn graph from sequence reads, and traverse (walk) graph to re-

cover the genome. This is an oversimplified view of genome assembly.
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Metagenome assembly follows a similar paradigm like single-genome

assembly. The presence of sequencing errors and repetitive elements

that we mentioned above will add tips and loops to a de Bruijn graph,

which makes graph traversal difficult. In practice, metagenome assem-

bly is a much more complicated process, as you will get some ideas

from the following discussion.

Sequence AGCTTGATCGTGATT

AGC GCT TTG

TGAGAT

TCGATC

ATT

CGT GTG

CTT
AGCT GCTT CTTG

TTGA
TGATGATT

GATC

ATCG ATCG TCGT

CGTG

de Bruijn
Graph

Fig. 8.2 A illustration of a de Bruijn Graph. Pink color represents repeats.

8.3.1 Metagenome de Bruijn graph construction

In de Bruijn-based single-genome assembly, the most influential param-

eter is the size of kmers. We face a dilemma when choosing an optimal

k. On the one hand, a bigger k reduces the complexity caused by re-

peats and simplifies the graph structure. In the graph we showed in

Figure 8.2 the loop structure will be gone if we increase k to 5 from 4.

However, the longer the k, the higher the chance that a kmer will con-

tain errors, and erroneous kmers lead to dead ends during the graph

traversal and fragmented assembly. This problem is more pronounced

in genomes sequenced at low coverage. On the other hand, shorter

kmers increase the percentage of correct kmers, but inevitably lead

to a more complex graph structure that are more prone to traversal

errors. Thus, the choice of k is a trade-off between contiguity and cor-

rectness. Many modern single-genome assemblers can try assembling

the data under several k and pick the best among them. In metagenome

assembly, however, there may not be one k that fits all genomes, as dif-

ferent genomes can have very different k parameters for their optimal

assembly.
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Inspired by the transcriptome assembly problem, where a multi-k

approach is adopted to tackle that different transcripts have very dif-

ferent sequencing coverage, some metagenome assemblers, such as

metaHipmer, similarly use a multi-k approach. Instead of using a fixed

k to construct the de Bruijn graph, metaHipmer first uses a small kmer

for the initial graph, then iteratively increases the kmer size in subse-

quent graphs (Hofmeyr et al., 2020).

8.3.2 Metagenome de Bruijn graph simplification

After the de Bruijn graph is constructed in a single-genome assembly

project, the graph is then subjected to a graph simplification process

to merge unique paths, remove tips caused by erroneous kmers, and

resolve small bubbles caused by repeats. Even though the base correc-

tion step in the preprocess step (discussed in Chapter 5) can remove

the majority of sequencing errors, some remaining errors can lead to

tips, sometimes even alternative paths on the graph. Because of the low

error rate in short-read sequences, kmers at these tips or paths have a

much lower abundance than the main path (below the coverage cutoff

threshold), and they can be safely removed.

In metagenome assembly, the graph simplification process may have

an unintended consequence. If there is a dominant species and a closely

related species with low abundance, kmers from the low abundance

species could be accidentally removed because they may appear as "er-

rors".

Even after extensive graph simplification, the resulting assembly

graph could still have a complex structure. A nice visualization of an

real example is in Figure 8.3 (Wick et al., 2015).

8.3.3 Parallel graph construction and traversal

Compared with single-genome assembly, metagenome assembly in-

volves working with a much larger set of kmers, and it is often not

possible to hold all kmers in the memory of a single computing node.

Distributed assemblers such as metaHipmer uses a global kmer hash

table that is distributed to many nodes, each with a subset of kmers but

can be addressed by all nodes. To speed up graph traversal, metaHip-

mer intelligently allocates kmers belonging to the same region of the
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Fig. 8.3 Assembly graphs constructed from a real metagenome dataset. Different

genome bins are indicated by different colors. Image source: https://tylerbarnum.com/

2018/02/26/how-to-use-assembly-graphs-with-metagenomic-datasets/

graph to the same computing node to reduce the computing cost asso-

ciated with kmer lookup (Hofmeyr et al., 2020).

Table 8.1 lists the differences between single-genome and

metagenome assembly.

Single Genome Metagenome

Assembly strategies Reference-based, de novo de novo

kmer size single multiple

coverage cutoff yes maybe

https://tylerbarnum.com/2018/02/26/how-to-use-assembly-graphs-with-metagenomic-datasets/
https://tylerbarnum.com/2018/02/26/how-to-use-assembly-graphs-with-metagenomic-datasets/
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8.3.4 Long reads and other types of graphs

Long reads derived from PacBio or Oxford Nanopore sequencing tech-

nologies gradually entered the metagenome sequencing space. The

high error rate in the raw reads makes them not suitable for de Bruijn

graph-based assemblers without error correction, as the majority of the

kmers contain errors. However, they can be used in a different type of

graph – the overlap graph (Myers, 1995), which is constructed by us-

ing the reads as nodes and their overlap as edges. To construct such a

graph, we would first compute the pairwise read alignments to derive

their overlaps (edges). This is a computationally expensive step, as we

will have to compute n(n−1)/2 number of read pairs (n is the total num-

ber of reads) for their overlap. To traverse this graph, we will derive

the shortest path so that the nodes are visited at least once. For the

overlapping regions, we can derive a consensus to remove sequencing

errors. This algorithm is called OLC (overlapping layout consensus), as

illustrated in Figure 8.4.

ATGCTAG TAGTGGC
CTTGATC AGAGCTT CGATCGA

ATGCTAG

TAGTGGC

3

CTTGATC

3
AGAGCTT

CGATCGA

43

TGGCAGA

4

TGGCAGA

TAGTGGC

CGATCGA

ATGCTAG

TGGCAGA

CTTGATC
AGAGCTT

ATGCTAGTGGCAGACTTGATCGA

Reads

Overlap
Graph

Concensus

Fig. 8.4 A illustration of the Overlap Layout Consensus algorithm (OLC).

OLC assembly algorithm actually predates the de Bruijn graph. It

was the core algorithm used in the Human Genome Project (HGP). The

underlying data for the HGP was generated by the Sanger sequencing

technology, now referred as first generation sequencing, which contains

reads of 500-1000 bases in length and less than 0.1% errors. The de-
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velopment of next-generation sequencing (NGS) exacerbated the chal-

lenges faced by the OLC approach. First, NGS reads are much shorter

but are many more, which makes pairwise overlap detection computa-

tionally intractable as it grows quadratically with the number of nodes.

Second, it is more difficult to distinguish a short but real overlap be-

tween two reads from that caused by random chance, as NGS reads

have a much higher error rate (2%).

Long-read sequencing has since revived OLC in genome assembly,

at least for small genomes. For metagenome assembly, long reads can

be used in the de Bruijn graph simplification stage, as small repeats

can be resolved by them. The long-read assembler CANU (Koren et al.,

2017) uses a MinHash-based algorithm for rapid overlap detection and

a sparse graph, making it possible for assemble large genomes, even

metagenomes, using long noisy reads. Another long-read assembler,

metaFlye, uses a creative repeat graph to better resolve repeats using

long reads (Kolmogorov et al., 2020).

8.3.5 Coassembly vs multiassembly

Metagenome assembly projects, especially those longitudinal studies

that track community changes over time or comparative studies across

habitats, are increasingly depending on a large number of samples. For

such multisample datasets, we could choose two alternative strategies

to assemble them: assembly each sample individually and then com-

bine the assemblies (multiassembly), or combine the sequence data

and assembly them together (coassembly). Each strategy has its own

pros and cons. Coassembly can benefit rare species that are present in

multiple samples, as pooling samples increases their sequencing depth.

This allows a more robust assembly of these genomes and leads to

more assembled genomes with greater completeness. The drawback

of coassembly, compared to multiassembly, is that it increases the chal-

lenges faced in the metagenome assembly : 1) coassembly has to deal

with a much larger dataset (data engineering challenge); 2) coassembly

has to deal with a much more richer dataset, as species from different

samples are mixed. Strains of the same species are brought together as

well, increasing the complexity of de Bruijn graph traversal (metage-

nomics and algorithmic challenge). Multiassembly is less challenging



October 3, 2023 17:27 ws-book9x6 Introduction to Computational Metagenomics output page 130

130 Introduction to Computational Metagenomics

during the assembly stage, but it has to merge different assemblies

together and remove duplicated sequences. Merging assembly has its

own algorithmic challenges. In addition, multiassembly may miss rare

species. In practice, most metagenomes are assembled via the multi-

assembly strategy, as many metagenome assemblers can only work on

a single computing node, and data from a single sample can easily take

over the entire available computing memory.

With the advent of distributed metagenome assemblers such

as metaHipmer that makes it possible to assembly large datasets,

coassembly was applied to a complex, large (822 GB) Tara Ocean

metagenome dataset and its results were compared to those from mul-

tiassembly (Hofmeyr et al., 2020). Coassembly was found to be able to

assemble both high and low-abundance genomes, and with fewer dupli-

cated sequences.

8.4 Metagenome binning

The metagenome assembly process we discussed above transforms

short reads into much larger contigs or scaffolds. Due to the various

challenges during the assembly process, most of these contigs are still

small, from a few kilobase (kb) to a few hundred kb, much smaller than

most microbial genomes (megabase range). Metagenome binning, or

binning, is a process to predict a set of bins given a set of contigs from

the metagenome assembly step, such that the contigs within each bin

are likely originated from the same genome. Unlike scaffolding that de-

termines the relative order of the contigs on a chromosome, binning

determines the genome membership of the assembled contigs or scaf-

folds. Within each bin, the order of the contigs in the genome is not

determined.

From an algorithmic perspective, the binning problem could be

treated as either a classification or a clustering problem. The former,

or supervised binning, involves the prediction of the taxonomy of each

contig, then bin contigs according to the predicted taxon. Because our

knowledge of microbial diversity is limited, supervised binning does not

work well in practice, especially in communities with a large fraction of

unknown members. In the following, we will focus on the latter, or un-

supervised binning, which bins contigs based on the intrinsic character-
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istics of the data rather than relying on any known reference genome.

There are two main types of data characteristics unsupervised binning

relies on: sequence composition and contig abundance. Most of the

metagenome binning tools are based on one or both of these charac-

teristics.

8.4.1 Sequence composition

As we discussed in Chapter 3, a genomic sequence can be represented

as a bag of kmers. Studies have shown that kmer frequency profile, or

composition, is a unique signature of a prokaryotic genome, and it can

be used to discriminate different species. This signature is also genome-

wide, which means that fragments of the same genome display a similar

kmer frequency profile. Multiple studies suggest that the tetra-mer nu-

cleotide frequency (TNF, k = 4) has the greatest discriminative power

(Karlin and Mrázek, 1997; Abe et al., 2003; Dick et al., 2009).

There are 44 = 256 possible tetra-mers. Because some kmers are so-

called "canonical" kmers, there are only 138 distinct "canonical" tetra-

mers. For example, "AATT" is identical to the reverse complement of

"TTAA", both are counted as "AATT", the lexicographically smaller of

the two. As a result, each contig is transformed into a frequency vector

of 138 in length. Now we can formulate the metagenome binning prob-

lem into a mathematical one, i.e., "what contigs belong to the same

species?" becomes "what vectors are close to each other in the same

138-dimensional space?". After this translation, we could apply the al-

gorithms developed for clustering vectors to cluster metagenome con-

tigs.

While being computationally efficient to compute and generically

applicable to both prokaryotic and eukaryotic genomes, TNF has two

major limitations. First, TNF signals get more noisy when the contig

size is small, and most metagenome binning tools will give up on con-

tigs smaller than 1kb. Second, TNF does not distinguish closely related

species or strains from the same species. Therefore, TNF is seldomly

used by itself, and it is almost always combined with other metrics for

binning.
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8.4.2 Contig abundance

Another metric that is generically applicable to all datasets is contig

abundance. Defined as the read coverage of the contig, it is compu-

tationally efficient to calculate from the mapped reads. The observed

abundance of contigs from the same genome is expected to reflect the

abundance of the genome in a sample, so two contigs with a large differ-

ence in abundance are less likely coming from the same genome. This

metric does not have much statistical power until we have many sam-

ples from the same community, as the abundance of contigs from the

same genome is expected to highly correlate with each other across

samples. The more samples we have, the better this metric becomes.

Like TNF, we can represent the contig abundance as a vector whose

length is the total number of samples, and apply vector-based cluster-

ing algorithms.

Unlike TNF, the contig abundance metric has the potential to dis-

criminate different strains of the same species, if they have different

abundance across samples. However, this metric becomes unreliable

when the number of samples are small, or species that are present at

low abundance or show little variation in abundance across samples.

Combining the TNF metric and the contig abundance metric across

multiple samples has enabled a few metagenome binning tools to au-

tomatically perform metagneome binning in a scalable fashion. In the

MetaBAT tool developed by my research group at JGI, we applied

Bayesian statistics to calculate probabilistic distances between pairs of

contigs based on TNF and contig abundance, and used a graph-based

algorithm for metagenome binning (Kang et al., 2019).

8.4.3 Ensemble binning

In machine learning, it is a common practice to ensemble several pre-

dictive models to obtain better predictive performance than any of the

models by itself. This practice is called "ensemble learning". Here, we

could similarly apply an "ensemble binning" algorithm, by combining

the results from several different metagenome binning tools. Ensemble

binning method can achieve better binning results than any individual

binning method (Sieber et al., 2018). By doing so, however, one could

significantly increase the computing effort as more tools need to be run.
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Furthermore, it may become difficult to optimize the binning process,

as the parameter space to search exponentially increases as more tools

are added.

8.5 Metagenome clustering

I hope by now I have convinced you that metagenome assembly is a very

difficult problem. Computer scientists often use a "divide-and-conquer"

strategy for approaching difficult problems. By dividing a big problem

into two or more smaller problems, and sometimes solving one may

greatly expedite another. Could we divide the metagenome assembly

problem and conquer it?

The answer is yes. We could group the reads from the same

organism together, or apply metagenome clustering, and transform

the metagenome assembly problem into assembling many individual

genomes. Once reads are clustered, there are already many good solu-

tions for single genome assembly that could be applied to the clusters.

This process is also called read binning. This strategy has two imme-

diate benefits. First, each individual read cluster can be assembled in

parallel. Second, we could optimize individual genome assembly using

their own parameters. The read clustering algorithm is also much sim-

pler to implement. We first determine whether or not two reads overlap.

If they do, then it is likely they are derived from adjacent positions of the

same genome. We can use the number of k-mers two sequences share

to estimate their overlap. Second, we build a read graph with reads

as nodes and their overlaps as edges. We then partition the graph into

read clusters using a graph partitioning algorithm, such as the label

propagation algorithm (Shi et al., 2018).

Although read clustering is much easier than metagenome assembly

to implement, it still faces many challenges faced by metagenome as-

sembly: repetitive elements, complex community structure, and large

data sizes. It requires higher read coverage for effective clustering of

short reads, as a single gap in sequencing coverage will break reads

from the same genome into two clusters. Read clusters, however, offer

much more robust statistics than single reads, and they could be further

merged by sequence composition or abundance covariance similarly as

in metagenome binning.
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8.6 Genome quality assessment

By combining affordable high-throughput sequencing, modern data en-

gineering, and new algorithms, the number of genomes assembled from

metagenome datasets (metagenome-assembled genomes, or MAGs) is

growing exponentially. It is now possible to identify over 100,000 MAGs

in a single study (Pasolli et al., 2019). However, there are increasing

concerns regarding the quality of these MAGs. Are they complete, or do

they contain all genetic information in this organism? Are they free of

contamination from other species? To quantitatively measure the qual-

ity of MAG of bacteria and archaea, a set of criteria, the minimum in-

formation about a MAG (MIMAG) standard, was specified in 2017 by a

group researchers (Bowers et al., 2017).

MIMAG classifies MAGs into four categories: finished, high,

medium, and low-quality (Table 8.2). Here, the completeness of a MAG

is defined as the percent of observed single-copy marker genes of the

total expected single-copy marker genes. Contamination is the per-

centage of unexpected single-copy marker genes, or single-copy maker

genes that appear more than once. The single-copy marker genes refer

to a core set of universally conserved genes that are present in almost

all species across the three domains of life. The set of core genes that

have not gone through gene duplication, the single-copy core genes,

can serve as marker genes to estimate the completeness and contami-

nation in the MAGs. Almost all of these genes are involved in the protein

translation machinery and are likely to play essential roles in the sur-

vival of the species(Harris et al., 2003). To increase the resolution of

such estimation, domain-specific, or even clade-specific marker genes

can be used. For instance, CheckM tool (Parks et al., 2015), defines

single-copy marker genes as those present in at least 97% of genomes

in a domain (bacteria: 104 markers; archaea: 150 markers).
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MIMAG, as its name suggests, only provides a minimum set of stan-

dards to report MAG quality. Some assembly quality evaluation tools,

such as MetaQuast, report much more information (Mikheenko et al.,

2016). These include assembly statistics (N50, L50, largest contig, num-

ber of contigs, assembly size, percentage of reads that map back to the

assembly, and number of predicted genes per genome, etc). These tools

can be more useful with some known references. In that case, they can

not only report more accurate metrics such as genome recovery rate,

but can also report misassemblies.

8.7 Metagenome assembly in the context of rapid evolving

technology: longer reads, longer range

The large gap between metagenome reads and high-quality MAGs is

shrinking, thanks to research efforts coming from sequencing technol-

ogy, high-performance computing, and new algorithms. Two areas are

particular interesting: reads are getting longer, and long range infor-

mation are becoming available.

8.7.1 Longer reads

Longer reads reduces the computation requirement, improves gene

cluster discovery, and improves assembly quality. By applying longer

reads to simplify the assembly graph, we can increase the portion of

unique paths in the graph by smoothing more bubbles and resolving

more forks. Long reads can be obtained either synthetically or experi-

mentally. Their length can go from a few kbs to hundreds of kbs.

8.7.1.1 Synthetic long reads

Several metagenome library preparation techniques enable sequencing

large DNA fragments in parallel. Short reads derived from each frag-

ment are assembled into a long read. To be distinguished from the true

long-read sequencing that we will discuss below, this type of sequencing

is called "synthetic long-read sequencing". For example, Illumina syn-

thetic long-read technology begins by fragmenting genomic DNA to ap-

proximately 10 kilobases, each fragment is then amplified and marked
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with a unique barcode. The short reads resulted from subsequent se-

quencing are then separated based on their barcodes and assembled

into synthetic long reads.

8.7.1.2 Single-molecule, long read sequencing

Low throughput and high error rates associated with earlier gener-

ations of single-molecule, long-read sequencing have prevented their

wide adoption in metagenome sequencing. In recent years, the se-

quencing cost of PacBio or ONT sequencing is getting closer to that

of Illumina. ONT Prometheon sequencing can generate several Tbs se-

quences in a single run, making it applicable to complex microbial com-

munities. Algorithms employing self-error correction, combined with

sequencing the same molecule multiple times to derive a consensus,

have greatly reduced the error rate in long reads to a level rivaling Il-

lumina. In a recent study, Singleton et al. sequenced over 1 Tb from

microbial communities from a Danish wastewater treatment plant us-

ing ONT sequencing and recovered over 1,000 high-quality MAGs, in-

cluding many circular genomes (Singleton et al., 2020). These circular

genomes, representing microbial complete genomes end to end, include

full-length rRNA genes that are often missed in MAGs assembled from

short-read datasets. This achievement is made possible by new scalable

long-read assemblers such as CANU (Koren et al., 2017) and metaFlye

(Kolmogorov et al., 2020).

8.7.2 Longer range

In metagenome sequencing, we often employ pair-end "jumping li-

braries". A jumping library is a library of large genomic fragments, nor-

mally several kbs in length, that are sequenced from both ends. They

provide longer ranges, which is useful to resolve alternative paths in

the assembly graph. The maximum size these libraries can go is lim-

ited by molecular biology to about 20kb, a size enough to resolve genes

or even gene clusters, but not strains. Is it possible to get even longer

ranges?

Genomic DNA within a cell, be it a prokaryotic or an eukaryotic one,

forms complex 3D structures by DNA binding proteins. These struc-

tures bring loci that are distant along the chromosome or between dif-
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ferent chromosomes in physical proximity. These long-range genetic in-

teractions could be harnessed to facilitate metagenome assembly and

binning. One of such techniques is Hi-C. It starts from chemically cross-

linking of cells to fix the DNA/protein complexes, followed by digestion

with restriction enzymes and ligation of the interacting loci. These loci

are then detected by high-throughput whole-genome shotgun sequenc-

ing. Figure 8.5 provides a schematic view of a typical Hi-C experiment

to reveal two interacting loci. As Hi-C can catalog genome-wide long-

range interactions, it should facilitate metagenome binning.

Locus
A

Locus
B

Chromosome
R1 R2 R1 R2

Chromosome
R1 R2

R1 R2

Chromosome

R2
R1a R1b

Cell

restriction sites biotin labels
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PCR amplification,
sequencing two ends

Mapping read pairs to the reference
genomes

cis-
ligation

trans-
ligation

Digest
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trans-

trans-
duplicates
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trans-

Hi-C Experiment1

Sequencing2

Informatics3

Fig. 8.5 An overview of Hi-C.
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8.8 Future perspectives: a roadmap for a finished

metagenome assembly

Currently, very few genomes assembled from metagenomes have "fin-

ished" quality, i.e., with 100% of the genes in a single ungapped se-

quence and without any contamination (according to MIMAG stan-

dards). There is no formal definition of a finished metagenome yet. Here

Let us tentatively define it as 99.99% of the genomes in the community

have been assembled with a "finished" status. While achieving this is

not required for most metagenomics studies and currently we are far

from that for any complex community, it is nevertheless a fun exer-

cise to imagine a potential road map that might lead us to a finished

metagenome assembly in the future.

In the near future, sequencing reads are getting longer and more

accurate. Eventually, the read length will reach or exceed the current

upper limit of high molecular weight DNA libraries, around 200 kb.

As they are much bigger than the repetitive sequences, the size of the

assembly graph will be greatly reduced and its traversal becomes much

easier. Misassemblies will be rare. Many small genomes, such as viruses

and plasmids, do not need assembly at all. Highly similar strains, even

those with 99% identities, will be reliably resolved. Highly conserved

gene clusters such as ribosomal gene clusters and tRNA gene clusters,

will not be missed any more.

In the near future, the assemblers will be much more efficient

and smarter. With longer reads, building and traversing assembly

graphs will happen in minutes, not in hours and days, even for large

metagenome projects. With increasingly more genomes available in the

reference database, the assemblers will leverage known information

as an assembly guide for faster and more accurate assembly. The fu-

ture smarter assemblers will take an iterative approach to optimize as-

sembly. It will automatically build machine learning models based on

the initial assembly, and then iteratively improve the assembly of each

genome by recruiting new reads in each iteration. It will automatically

fill small gaps under the guidance of a well-trained, deep generative

neural network. For that, a JGI researcher, Robert Riley, kindly wrote a

poem to help us imagine the future metagenome assembler:
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Though now less a science, than art

Metagenome assemblers, if smart

Will use new information

At each iteration

With AI, build the whole from its parts
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Single Cell Metagenomics

In previous chapters, we discussed computational approaches to dis-

sect the complexity of metagenomics. To get a high-level, low-resolution

view of a community and answer taxonomic diversity questions such as

“who is there?”, we use targeted analysis of marker genes such as the

16S rRNA gene. To understand the functional diversity, we would turn

to gene discovery and pathway prediction using whole metagenome

shotgun sequencing (WGS) that sequences the community as a whole.

To gain a higher resolution at the single species level, we employ

metagenome assembly and binning to reduce a microbial community

into individual species.

In parallel with the rapid development of informatics approaches,

experimental methods have also made great strides in reducing the

complexity of metagenomics. Various strategies have been developed

that can effectively decrease the richness of a community. For example,

partitioning a community into subcommunities by separating microbial

cells based on their physical properties such as size, DNA content, or

the presence/absence of certain markers. Subcommunities of interest

can also be selected based on the metabolic properties of their mem-

bers, such as using "enrichment culture" techniques to select a sub-

set of microbes that can grow in a particular predefined culture con-

dition. While these partitioning strategies can make the computational

metagenomics problem more manageable, they face similar data and

algorithmic challenges in metagenome assembly and functional anno-

tation. They are not able to reliably distinguish organisms at the sub-

species level or at the individual cell level. Taking this partitioning strat-

egy to an extreme, it is possible to use high-throughput technologies to

141
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culture and sequence single cells in parallel. 7,781 genomes were ob-

tained this way in a recent study of the human gut microbiome(Groussin

et al., 2021). These genomes span 339 species, and 13% of them were

missed by previous studies with the WGS approach. With genomes de-

rived from single clones, the authors were able to draw the conclusion

that human gut bacteria continuously acquire new functionality via hor-

izontal gene transfer (HGT), and the rate of HGT is linked to the host’s

lifestyle.

With technologies such as Fluorescence Activated Cell Sorting

(FACS) and droplet microfluidics, a community can now be partitioned

into individual cells. Advances in sequencing also enabled sequenc-

ing the genome from a single cell without culture, so began the era

of single-cell genomics era. In this chapter, we will discuss single-

cell metagenomics, or using single-cell genomic sequencing to study

a microbial community, one cell at a time. Here, I would like to draw

the distinction between metagenomics based on single-cell genome se-

quencing and metagenomics based on high-throughput isolate genome

sequencing (single-colony sequencing) mentioned above. In both ap-

proaches, single cells can be isolated from environmental samples using

serial dilution, microfluidics, FACS, or micromanipulation, and subse-

quently processed in a high-throughput manner. In single cell genome

sequencing, single cells are directly sequenced without culture, there-

fore the original state of their genomes (DNA sequence, modification,

etc) is preserved. In contrast, single-colony sequencing involves cul-

turing and sequencing single cells in parallel via lab automation tech-

nologies. By combining droplet microfluidics and high-throughput DNA

sequencing, single-colony sequencing can also analyze millions of dis-

tinct microbial cells (Villa et al., 2019). This is an exciting new devel-

opment and it may combine the best of two worlds: isolate genomics

and metagenomics. This "colony-in-parallel" approach is very powerful

and can be applied to communities with low species richness, however,

it may miss species that are not amendable to lab culture. In the fol-

lowing sections, I will focus on the computational aspects of single cell

metagenomics, although they could be applied to single-colony metage-

nomics as well.
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9.1 Single-cell Amplified Genome (SAG)

With a full set of genetic instructions (genome) and a full set of bio-

chemical machinery, a single cell is the fundamental unit of life. They

can form highly specialized cell types in multicellular eukaryotic organ-

isms, but in bacteria, archaea, and protists, an individual cell is a com-

plete organism. The need to fully understand genetic and metabolic

variations within a species, as well as their interactions, drives the

rapid development of single cell omics, including genomics, transcrip-

tomics, proteomics, and metablomics, all at the single cell level (Wang

and Bodovitz, 2010). Here I will focus our discussion on single cell ge-

nomics in the context of metagenomics.

Unlike a high eukaryotic cell that has a large genome with two

or more copies, most bacterial cells have a single-copy, small-sized

genome. For comparison, a human cell contains two copies of a 3Gbp

genome, about 6 picogram of DNA (a picogram is one trillionth of a

gram or 10−12g). In contrast, a bacterial cell with a single copy 3Mbp

genome contains only 3̃ femtograms (or 6∗10−15g). For reference, we of-

ten need nanograms (10−9g) or even micrograms (10−6g) of DNA to con-

struct a sequencing library, which translates into millions to trillions of

bacterial cells! Therefore, an effective method to amplify genomic DNA

from a single cell millions of times is a prerequisite for single cell se-

quencing. The most common amplification method is multiple displace-

ment amplification (MDA, [Dean et al. (2002)]). MDA employs a high-

fidelity DNA polymerase derived from a bacterial phage, Phi29 is used

to amplify genomic DNA released from the lysis of a single cell. MDA

can yield tens of micrograms of DNA from a single bacterial cell, equiv-

alent to billions of copies of its genome. With MDA, it is now possible

to assemble a single cell bacterial genome, and the genomes obtained

this way are called Single-cell Amplified Genomes (SAGs).

A typical single cell metagenomics workflow is illustrated in Figure

9.1 (Xu and Zhao, 2018). After single cells are isolated, they are lysed to

release their DNA content for MDA-based amplification. The amplified

DNA is then undergoing sequencing library construction. During the li-

brary construction, DNA from many single cells are pooled together af-

ter a unique barcode is added to each cell. The library is then sequenced

by next-generation sequencing. Like the metagenomic sequence data,
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the single-cell sequence data are processed before they can be used to

study taxonomy- and function diversity, gene and species discovery, etc.

Fig. 9.1 Single cell metagenomics workflow. Image was taken from "Single-cell metage-

nomics: challenges and applications"(Xu and Zhao, 2018). Creative Commons Attribution

4.0 International License (http://creativecommons.org/licenses/by/4.0/)

http://creativecommons.org/licenses/by/4.0/
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9.2 Unique challenges and solutions associated with SAG

assembly

The power of MDA brings the possibility of SAG, but at the meantime it

also brings some unique challenges. First, because MDA amplifies DNA

billions of times, even a tiny DNA contamination will also get ampli-

fied by a significant amount, and it sometimes overwhelms the target

genome. Second, MDA amplification is highly uneven: some regions of

the genome can have thousands of copies while some can be completely

missed. This violates the assumption in single-genome assembly tools

that the genome coverage follows a Poisson distribution. Finally, the

highly branched DNA synthesis procedure in MDA can produce DNA

rearrangements and thus changes the original genome (Zhang et al.,

2006). Below I will attempt to discuss solutions to combat these chal-

lenges.

9.2.1 Contamination

Besides the common types of contamination associated with metage-

nomics experiments such as sequencing adapters and host DNA we

have discussed in Chapter 5, sequence data from single cell metage-

nomics are often contaminated by data from unexpected sources. For

example, a minuscule amount of bacterial DNA is often present in

lab reagents, either from engineered bacteria strains that produce en-

zymes, or from the skin micorbiome of lab workers. Because MDA am-

plifies DNA millions of times, these types of contamination become vis-

ible and sometimes may become dominant. Removing these types of

contamination is relatively easy, as they would appear in almost every

single cell library of the same batch of experiments. They could be re-

moved from the sequence reads by matching the reads to a database

containing common lab sources of contamination such as human and

pets.

For microbial contaminants not included in the reference database,

one could also identify them after the reads are assembled into contigs.

If some contigs appear in most of the single cell libraries, and they

could not be explained by a dominant species in the community, then

they could likely be derived from a common source of contamination.



October 3, 2023 17:27 ws-book9x6 Introduction to Computational Metagenomics output page 146

146 Introduction to Computational Metagenomics

Some contamination is platform-specific. For example, it is a typi-

cal practice to use a multiplex strategy, or sequencing multiple samples

(in both a multiwell plate or a droplet format) from the same library,

by indexing each sample using a unique, molecular index (UMI), or se-

quence barcode. A recent paper (Costello et al., 2018) systematically

examined the "index switching" problem, that is, a certain percentage

(2–10%) of reads from one sample are assigned to the wrong one. This

phenomenon is a wide-spread problem, especially for the Illumina se-

quencing platform. Improving the library construction procedure may

reduce the problem. Moreover, combined with a second UMI (dual in-

dexing) should help eliminate this problem because unexpected combi-

nations can be removed.

There are some contamination types that are harder to remove. A

low percentage of single cell libraries are not derived from single cells,

but instead they are from two, or even a few cells. These doublets,

triplets ... are essentially "mini metagenomes", and they should be iden-

tified. Tools used for assessing the quality of MAGs that we discussed

in the previous chapter can be used here to identify SAGs that contain

multiple single-copy marker genes.

9.2.2 Uneven coverage

Many existing single-genome de novo assembly algorithms have built-in

functions to exclude regions in the assembly that have extremely high

or low coverage. These regions could be derived from contaminants

that have different abundance. High-coverage regions could also be

derived from repetitive elements. Low-coverage regions, on the other

hand, could be the result of sequencing errors. Excluding these re-

gions where the coverage falls out of the norm reduces the complexity

of the de Bruijn graph and makes its traversal manageable. In MDA-

amplified single cell genome datasets, sequencing coverage across a

genome becomes highly uneven due to a combination of several factors,

including random sampling noise and MDA-amplification biases. Chit-

saz et al. compared the extent of coverage biases between sequencing

datasets derived from either cultured or single-cell sequencing experi-

ments. In their study, the cultured dataset has a roughly normal distri-

bution peaked at 600x coverage with most genomic positions between
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450-800x coverage. In contrast, the single cell samples with an average

600x coverage, genomic positions with very small coverage are predom-

inant, and a long thin tail with coverage well above 1000x(Chitsaz et al.,

2011). While novel experimental strategies are being developed to re-

duce this extreme unevenness in genomic coverage, we will discuss a

couple of algorithmic innovations to enable single-cell genome assem-

bly. Readers are encouraged to read more about sequencing depth and

coverage in genomic analyses in the literature (Sims et al., 2014) .

The Velvet-SC algorithm is a modified Velvet genome assembler to

salvage low-coverage regions . After the de Bruijn graph is built, instead

of removing low-coverage edges using a fixed threshold, it uses an in-

crement threshold that starts at 1 and gradually increases. By merg-

ing low-coverage regions with high-coverage regions Velvet-SC avoids

eliminating low-coverage regions and is capable of assembling SAGs

with over 90% of genes captured (Chitsaz et al., 2011).

Instead of accommodating the uneven coverage of single-cell

genome datasets with a specific genome assembler, some algorithms

chose to normalize the coverage so that existing genome assemblers

can be used. For example, NeatFreq bins reads based on their kmer

frequencies. Reads with high kmer frequencies are randomly sampled

to reduce the coverage of the genomic regions they originate from (Mc-

Corrison et al., 2014). Similar "digital normalization" techniques can

also be applied to metagenomic datasets as well, to suppress dominant

species and encourage the assembly of rare species (Howe et al., 2014).

9.2.3 Drop-out genomic regions

Chitsaz et al. also found that a few percents of the single cell genome

had no sequencing coverage at all, despite of an average 600x genome

coverage (Chitsaz et al., 2011). The missed representation of some re-

gions is likely caused by amplification biases in amplification or loss

of genetic material during the library preparation steps. This problem

also exists in single-cell sequencing of human cells, but it is more pro-

nounced in microbial experiments because the genomic DNA only exists

in a single copy. Starting with extremely low amounts of genetic mate-

rial and handling them along the library preparation process is very

challenging, sometimes an entire cell can get lost. In theory, there is
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no way to recover these "drop-out" genomic regions if we have only a

single cell for this microbial organism.

If we are lucky, however, a SAG experiment may include several

cells from the same organism, giving us an opportunity to recover the

full genome of this organism. Mangot et al. sequenced two microbial

eukaryotes (14 and 9, respectively) from the Tara Ocean marine com-

munity (Mangot et al., 2017). While assembling individual single cells

produces incomplete genomes, with genome coverage rates of 18.7%

(±9.7) and 14.1% (±5.4) for the two organisms. Increasing sequenc-

ing depth did not increase genome recovery. As 18S rDNA sequence

similarity is not able to discriminate different strains, the authors used

Average Nucleotide Identity (ANI) threshold of 97–99% to group differ-

ence cells from the same strain together for coassembly. Adding data

from more cells gradually increase genome completeness, and eventu-

ally they increased genome completeness to 74.2% and 68.2% for the

two organisms (Mangot et al., 2017).

Coassembly of multiple cells may defeat the purpose of single-cell

sequencing, as individual genetic variations could get lost. These infor-

mation could be partially recovered by mapping reads from individual

cells back to the assembly. In addition, merging data from multiple cells

may inevitably increase the chance of contamination.

9.2.4 Chimeras

Chimeras (also called mosaics) are prevalent in genome assemblies

from next-generation sequencing datasets. They refer to assembly ar-

tifacts with two or more different genomic locations fused at the same

location . Chimeras can originate from experimental procedures, for

example, two different DNA fragments are ligated at low frequency

when sequencing adapters are ligated. They can also be resulted from

misassemblies during assembly graph traversal, for example, taking a

wrong path in a repetitive region. Many genome assemblers have built-

in mechanisms to eliminate chimeras. Rare experimental chimeras can

be removed when low-coverage edges are pruned. By searching for

abrupt sequencing coverage changes along the assembled genomic se-

quences, it is possible to identify chimeric contigs and break them at

the junctions.
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In MDA-amplified single cell genomes, the above chimera elimina-

tion strategy would fail. The Phi29 DNA polymerase used in MDA can

randomly "jump" to a different DNA template, artificially linking these

two templates to create chimeras. These chimeras can get further am-

plified in subsequent rounds of amplification. Therefore, filtering low-

coverage edges may not be as effective as it is in single-genome assem-

bly experiments. To make things worse, as we discussed above, we may

want to preserve low-coverage edges in single-cell assembly. Further-

more, the sequencing coverage assumption is also violated in single-cell

genome assembly, also discussed above, the uneven coverage is a hall-

mark in these datasets.

Again, there is not much we could do if there is only a single

cell from a particular organism in the microbial community. We could,

however, leverage multiple cells from the same organism to eliminate

the chimeras discussed above, as chimeras from one cell are unlikely

present in other cells due to their random occurrence.

9.3 Leveraging MAGs for SAGs, the best of two worlds?

Both assembly methods based on metagenome or single cells success-

fully produce a large number of genomes, MAGs and SAGs, respectively.

They each face their unique challenges. SAG sequencing discussed in

this chapter requires expensive lab instrumentation and lengthy exper-

imental procedures. MDA brings the possibility to assemble a single

copy of a bacterial genome, but drop-out events and chimeras prevent

us from getting a complete and accurate SAG. For metagenome se-

quencing, limited sequencing depth on complex communities leads to

incomplete and contaminated MAGs. How do we choose between these

two technologies for metagenomics? This was the exact question Al-

neberg et al. sought to answer in a recent study (Alneberg et al., 2018).

This study did a comprehensive comparison between the SAG and

MAG approaches for recovering prokaryotic genomes. While these two

methodologies are in general in strong agreement with each other,

MAGs tend to be larger and more complete than their corresponding

SAGs. On the other hand, SAGs can resolve closely related strains, as

well as report genetic variants specific to individual cells.

Would it possible to make the two methodologies leverage each



October 3, 2023 17:27 ws-book9x6 Introduction to Computational Metagenomics output page 150

150 Introduction to Computational Metagenomics

other’s benefits to overcome each other’s disadvantages? Currently,

there are no assemblers that take both data types as inputs. There are

several "hacks" to combine the two in the literature. For example, one

can integrate contigs from a MAG and corresponding SAGs to produce

an improved assembly (Mende et al., 2016). One can also recruit corre-

sponding metagenomic sequences to SAGs to improve their complete-

ness (Roux et al., 2014). Or, single-cell data can be used as a guide

for metagenome binning process (Arikawa et al., 2021). While gaining

some preliminary success, these early efforts increased the assembly

complexity by combining two challenging problems into one.

9.4 Future perspectives

Due to experimental challenges, single-cell RNA-seq of microbial com-

munities is still in its infancy (Imdahl and Saliba, 2020). Obtaining

other types of omics from single bacteria is even more challenging.

Once these technical hurdles are surpassed, numerous informatics so-

lutions developed for high eukaryote systems will become applicable.

New technologies may even enable generating multiple omics data from

the same single cell (DNA, RNA, epigenetic modification, etc), provid-

ing direct links between a cell’s phenotype to its genotype. Integrating

these heterogeneous types of data will remain a significant challenge,

as it is nearly impossible to derive multi-omics data simultaneously from

the same bacterial cell. In addition to these measurements of a single

cell, emerging technologies should also make temporal and spatial pro-

filing possible. These technologies will bring new challenges in com-

putational single-cell metagenomics to map the spatial organization of

species within a community and track their response to environmental

changes.

For complex microbial communities with high species richness and

high unevenness, single-cell sequencing may never be able to cover ev-

ery species due to technical and budget limitations. In the near future,

single-cell sequencing will remain an important complementary analy-

sis to metagenome sequencing. More creative ways are needed to com-

bine single-cell sequencing and metagenome sequencing beyond dis-

criminating strains or linking viruses to their hosts. For example, SAGs

could form a training for optimizing the metagenome assembly process
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for the entire community, as they represent a subset of the community.

Hypotheses established from metagenomics analysis can be indepen-

dently validated by targeted single-cell sequencing.
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Chapter 10

Interactions between microbes and
their environment

In previous chapters, we have reviewed computational metagenomics

methods to explore the taxonomic and functional diversity of a micro-

bial community. These methods provide insight into the genetic "part

list" of a community, but they do not reveal how the community func-

tions as a whole, especially in the context of its environment. Within a

community, microbial organisms form partners among themselves, and

as a team they interact with other teams, their hosts, and their envi-

ronment. These interactions can be competitive or beneficial in nature,

and most of these interactions are likely to be conditional or contex-

tual. For millions of years, they adapt to each other and become part of

each other’s biological functions. As a community, microbial organisms

are subject to selection pressure together. Being able to model both

interactions within microbial communities and interactions between a

community with its environment is a critical component of bigger ques-

tions such as modeling the role of microbes in human health and climate

change.

In the final chapter of this book, let us discuss recent advances made

in computational metagenomics to understand microbial interactions.

I will first review computational methods to study microbial interac-

tions within a community, followed by those to study the interaction

between a community with its environment, and finally individual- and

community-level metabolic modeling.

153
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10.1 Interactions within a community

Studying the interplay between microbes is inherently challenging. Like

many genomics problems, studying microbial interactions is also an

inherent "curse of dimensionality" problem. People in the clinical ge-

nomics field are well aware of this problem, as they routinely rely on a

few thousands of individuals to identify genetic variants that are asso-

ciated with a particular disease out of millions of variants and billions

of possible combinations. Here, the curse of dimensionality in microbial

interactions is similarly caused by the lack of enough number of sam-

ples/observations for the large number of species within a community.

Exhaustively quantifying all possible interactions among all species is

a combinatorial problem. For a microbiome with n species, there could

be n(n− 1)/2 pairwise interactions. If we consider all possible interac-

tions between n species, then the total number of possible interactions

is 2n − 1. For a small community with only 100 species, we would have

nearly 5,000 possible pairwise interactions, and over 1030 possible in-

teractions to consider! This effect is also known as the combinatorial

explosion, as n approaches thousands of species, even just considering

the pairwise interactions quickly becomes intractable.

It is generally assumed that species interactions within a community

are sparse, i.e., most of the species do not interact with each other, and

a species only interacts with a very small number of other species. In

addition, most of the interactions may not be relevant to the underlying

scientific question. Identifying relevant interactions between species

within a community is therefore an effective way to greatly reduce the

dimensionality and generate testable hypotheses with a limited num-

ber of samples. By focusing on species interactions that are relevant

to the underlying scientific question (hypothesis-driven), we can avoid

the "curse of dimensionality" problem that considers all possible inter-

actions.

There are several types of interactions between microbial species.

In an ecological context, two species can manifest a variety of relation-

ships. If they rely on the same resource, they are in a competition re-

lationship. This often happens between closely related species as they

tend to have similar nutritional requirements. Distantly related species

can form a symbiotic relationship, where they benefit each other (mu-
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tualism), or only one gets the benefit without harming the other (com-

menalism), or one gets the benefit by harming the other (parasitism).

In extreme cases, if one species feeds on another, the behavior is called

predation. Inferring these relationships from metagenomic data is one

of the key questions in metagenomics. Below, I will use two examples

to demonstrate the power of computational metagenomics in studying

species interactions.

10.1.1 Identifying phage-bacteria pairs

As eukaryotic cells are infected by viruses, bacterial cells are also

commonly infected by bacteriophages, also called phages for simplic-

ity. Identifying phage–host relationships is not only important to un-

derstand microbial diversity dynamics, but may also lead to potential

novel medical and industrial applications. Identifying phage-bacteria

pairs traditionally relies on cultivation approaches, and more recently

sequenced-based approaches including single-cell sequencing and Hi-C

sequencing as we discussed in Chapter8. These approaches are either

labor-intensive or technically challenging, or both. It would be econom-

ical to mine metagenomics datasets to discover phage-host pairs be-

cause they are readily available. However, is it possible?

The existence of phages depends on their hosts. If we have multiple

independent observations (e.g., metagenome time-series samples), we

would expect a large probability that they cooccur in the same sample.

By mining 313 samples from the Tara Oceans dataset, Lima-Mendez

et al. built species-species co-occurrence networks and inferred 1,869

positive associations between viruses and their hosts (Lima-Mendez

et al., 2015). This study may have underestimated the true number

of interactions, as rare and low abundance species had been excluded

from the network construction, and a simple binary network was used

(we will learn more about co-occurrence networks later in this section).

Because this approach has no assumption, it is expected to general-

ize to many communities to infer any type of predation or similar re-

lationships requiring tight cooperation. However, most metagenomics

datasets have only a small number of samples, which significantly lim-

its the statistical power of these co-occurrence networks.

The observation that phages and their hosts adopt similar sequence
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composition profiles can also serve as a generic feature to discover

phage-host pairs. This similarity likely reflects the various strategies

that phages employ to adapt to their hosts. For example, phages need

to avoid certain kmers that are recognized by host restriction enzymes,

while sharing a similar codon usage as their hosts to ensure their genes

to get efficiently translated. Therefore, recognizing phage-host pairs

is equivalent to finding the nearest neighbors of kmer profiles (Roux

et al., 2015). Searching similar sequence composition is computation-

ally efficient, and it is robust even with incomplete genomes and small

percentages of contamination, two common problems in metagenome-

assembled genomes (MAGs). However, closely related species can have

similar sequence composition, which may lead to false positives.

We can make additional assumptions to increase the specificity of

the prediction. Some phages "borrow" genes or other elements from

their hosts, and if the borrowed genes provide a selection advantage,

these genes will be retained in the offsprings of the phages. Some

phages can also "lend" genes that can are beneficial to their hosts

and indirectly increase their own chances of survival (Lindell et al.,

2005). These genetic exchanges, if happened recently, leave homol-

ogous genes between phages and their hosts. These genes include

auxiliary metabolic genes, tRNAs, etc, can be detected by sequence-

alignment based methods to detect homology (Edwards et al., 2016).

This method also applies to phages that integrate their entire genomes

into their hosts’ instead of a few of their genes. The integrated phages,

called prophages, share significant homology with free phages if the

integration event was recent. These assumptions, however, rely on the

availability of genomes with high completeness. In addition, these as-

sumptions can not be universally applied to all phage-host pairs.

We can also utilize some features of the bacterial host defense sys-

tem to identify their pahges. Bacteria uses the CRISPR–Cas system to

"label" invading phages with CRISPR spacers and subsequently use

them to recognize future invasions. These spaces can be used to predict

bacteria-phage pairs in several studies including this most recent one

(Dion et al., 2021).

A more comprehensive evaluation of computational strategies to

identify phage-host pairs can be found in a review paper (Edwards

et al., 2016). It is worth noting that a few machine learning-based meth-
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ods that aim to integrate several features we discussed above and ob-

tained encouraging results. As more phage-host pairs are being dis-

covered, these methods may benefit from the availability of a larger

training set and become mainstream in the near future.

10.1.2 Identifying other types of relationships

For a simple community such as the Drosophila gut microbiome, it is

possible to exhaustively search all pairwise species interactions via ex-

perimental approaches (Gould et al., 2018). This is probably the most

reliable way to infer species interactions. For the most complex mi-

crobial ecosystems, one would have to rely exclusively on computa-

tional prediction. These prediction methods fall into two general cate-

gories: methods that infer species relationships based on whole genome

metabolic models, and methods based on the generalized species co-

occurrence network. We will discuss modeling-based approach later

in this chapter. Here we will discuss the generalization of the binary

co-occurrence networks we mentioned above in phage-host prediction,

and explore how they have been used to predict microbial interactions.

Many metagenomics data pipelines output an abundance matrix

(sometimes also called taxa abundance table) with each row represent-

ing a taxa and each column representing the observed abundance of

each taxa in a sample. To build a co-occurrence network, we first de-

rive a square similarity matrix by measuring the similarity between all

possible pairs of species over multiple samples using some similarity

measure (for example, Pearson, Spearman, hypergeometric distribu-

tion, and the Jaccard index) (Faust and Raes, 2012). We then only use

the significant pairwise relationships (above a threshold) to construct

a co-occurrence network for visualization, where nodes are species

and edges are their similarity, and the edge weight can represent the

strength of the relationship (Faust and Raes, 2012). This method is sum-

marized in Figure 10.1. In the above simple phage-host co-occurrence

network, the edge weight was set one if the phage and host are both

present in a sample, otherwise it was zero (therefore a binary network).

On datasets with many samples, such as those from the Human Micro-

biome Project (HMP), co-occurrence networks can be very powerful to

detect species interactions. Faust et al. analyzed 726 samples across
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18 body sites, 5,026 HMP samples to build a global human microbiome

network. They applied an ensemble method based on multiple similar-

ity measures to infer 3,005 significant relationships. They were able to

capture known relationships as well as predicted many previously un-

characterized interactions (Faust and Raes, 2012).

Fig. 10.1 Methodology for constructing co-occurance network. Multidimensional

species abundance matrix were analyzed by two complementary approaches: a com-

pendium of Generalized Boosted Linear Model (GBLMs) and an ensemble of similarity

and dissimilarity measures. Each approach produced a network in which each node rep-

resented a microbial taxon within one body site, and each edge represented a signif-

icant association between microbial or whole clade abundances within or across body

sites. The two networks were then merged into a single co-occurance network. Please

refer the cited publication for details about GBLM fitting and filtering. Image taken

from https://doi.org/10.1371/journal.pcbi.1002606.g001(Faust and Raes, 2012).

Creative Commons Attribution 4.0 International License (http://creativecommons.org/

licenses/by/4.0/)

However, there are a few pitfalls associated with methods based on

the co-occurrence network. For example, to measure the significance

of the relationship between a species pair in question, a p-value is de-

rived based on a statistical test that tests whether or not the similarity

score is drawn from a randomly permuted score distribution. This back-

ground distribution, or "null distribution" in the statistics term, may

artificially inflate the significance of the p-value if not properly cho-

sen(Connor et al., 2017). As we are doing many such statistical tests

for all possible pairs, the p-value threshold for significance is also need

to be adjusted for multiple testing to control for false discoveries. The

correlation analysis of the abundance data also has some weakness.

Because the absolute abundance of species is not known, it is approx-

imated using observed relative fractions of marker genes or species.

https://doi.org/10.1371/journal.pcbi.1002606.g001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Friedman and Alm showed that this approximation is unreliable and is

prone to false discoveries (Friedman and Alm, 2012). They proposed a

Bayesian estimator of the true abundance fractions to correct the ob-

served counts, and then used an iterative approach on the corrected

data to derive a better estimation of the true species correlations.

10.2 The impact of microbial communities on their envi-

ronment

The best understood systems to study the interaction between microbial

communities and their environment are probably microbiomes associ-

ated with animal hosts, especially human. Microbial organisms influ-

ence host functions such as pathogen defence, nutrition, metabolism,

affect their neurological activities, and even shape their reproduction.

The extent of such influence is surprisingly large. According to a study

done in mice, a significant portion of the metabolites in host plasma,

including those involved in the metabolism of amino acids and organic

acids, are directly impacted by its gut microbiome (Wikoff et al., 2009).

Understanding the interaction between microbiomes and their hosts

plays a central role in understanding how functional diversity is trans-

lated into ecological dynamics. These knowledge can also serve as a

guide to develop new methods for various applications to intervene dis-

ease progression, prevent agricultural degradation, or reduce green-

house gas emissions.

Adding the complex host biology into the already complex micro-

biome multiplies their overall complexity and the resulting problem be-

comes seemly intractable. Taking the human microbiome as an exam-

ple, it contains trillions of microorganisms colonized in various anatom-

ical regions of the human body. Deciphering the interaction between

the human microbiome and its host requires consideration of several di-

mensions. We need to consider the variations of an individual’s genetics

("host-dimension"), as well as the host’s lifestyle since the microbiome-

host interaction is constantly impacted by changes in the host’s lifestyle

changes such diet and hygiene, making it necessary to control these

environmental factors. We need to consider the different body sites

the microbiome resides ("spatial dimension"). Furthermore, we need

to consider a "time dimension", as the microbiome also manifests a "de-
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velopment" cycle as their host does: it is established in early childhood,

stably maintained in adulthood, and then deteriorates as the host gets

old.

Despite the challenges dealing with its complexity or because of,

microbiome-host interaction is one of the most active and exciting re-

search areas in computational metagenomics. Although it is currently

at a very early stage, I will try to summarize a few strategies here that

tackle the complexity. Readers need to be aware that the methods in-

troduced here may be quickly displaced, or totally replaced by better

ones as this research field is rapidly evolving.

10.2.1 Enterotype-based study of microbe-host interac-

tions

If we assume that the contribution of individual microbes to a phe-

notype (e.g. diabetes) is additive, we can apply dimensional reduc-

tion algorithms such as principal component analysis (PCA) to explore

microbial-host interactions. Applying PCA and clustering analysis to 33

human gut microbiome samples formed three distinct clusters (Aru-

mugam et al., 2011). These clusters were designated as "enterotypes",

and taxonomic and functional differences among them reflect different

combinations of microbes with distinct modes of interaction with the

human hosts (Arumugam et al., 2011). If we further assume that the

species with greater variation in abundance contributes more to the

host phenotype, then the enterotype classification may lead to testable

hypotheses of individual species-host interaction. In the above study,

each of these three enterotypes are dominated by the abundance varia-

tion of three genera: Bacteroides (enterotype 1), Prevotella (enterotype

2), and Ruminococcus (enterotype 3). Enterotype-based analysis is sim-

ple to compute, although it ignores the contribution of nonlinear inter-

actions between species to the host phenotype (Costea et al., 2018).

Overall, it offers a low-resolution view of microbe-host interactions and

paves the way to higher-resolution, function-based views we are going

to discuss next.



October 3, 2023 17:27 ws-book9x6 Introduction to Computational Metagenomics output page 161

Interactions between microbes and their environment 161

10.2.2 Function-based study of microbe-host interactions

Instead of looking for statistical associations at the species level be-

tween microbial species and human phenotype, Tierney et al. decided

to "break" the gut microbiome into "microbial features" (species, path-

ways, and gene families) and use them for association analysis. The

total number of features is very large, as they include 6,832 species,

76,251 pathways, and 1,167,504 gene families. They applied a method

developed in human genetic analysis, “meta-analyses”, that aggregates

many datasets from multiple studies to increase statistical power. This

type of analysis has been used to search among millions of genetic vari-

ants for those associated with certain diseases, a task only possible with

a large number of samples. The authors obtained 2,573 human gut mi-

crobiome samples from seven disease studies. They found previously

unrecognized high-resolution genetic and taxonomic signatures associ-

ated with these diseases. Interestingly, they found that gene-level asso-

ciations are more robust than species-level associations, and gene-level

associations are also more reproducible when tested on independent

datasets. To combat the multiple hypothesis testing problem (https:

//en.wikipedia.org/wiki/Multiple_comparisons_problem) and the

potential different confounding factors across different datasets, the

authors had to use a very conservative threshold to filter for statisti-

cally significant features. This may lead to a lower false discovery rate

at the expense of a lower recall rate.(Tierney et al., 2021).

Function-based approaches offer a high resolution view of the con-

tribution of microbes to their hosts or environments. The large number

of genes and gene families drive the "curse of dimensionality" problem

worse and computing costs are high.

10.3 The influence of environment on metagenome com-

munities

In the above discussions, we focused our discussion on the influence

of the microbiome on their host’s phenotype. Understanding of these

influences not only provides insights into the mechanism of interac-

tion, but also inspires new clinical interventions. The converse question

is, is microbiome composition determined by host genetics? If so, to

https://en.wikipedia.org/wiki/Multiple_comparisons_problem
https://en.wikipedia.org/wiki/Multiple_comparisons_problem
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what extent host genetics shape microbiome composition? If not, what

other environmental factors that drive the dynamic change of the host

microbiome? Answers to these questions are important to develop per-

sonalized microbiome interventions that are tailored to an individual’s

genetics.

Again, I will use the human microbiome as an example to discuss

strategies addressing the above questions. If the abundance of each

microbial organism in the microbiome can be viewed as a microbial

quantitative trait locus (mbQTL), the same way many other QTLs such

as height or BMI were developed, then quantitative trait mapping meth-

ods can be used to look for associated host genetic variations. Sev-

eral large-scale mbQTL studies in people and mice have started to sug-

gest significant associations between genetic loci and microbiome (re-

viewed in [Kurilshikov et al. (2017)]). However, these studies all faced

a major challenge of multiple hypothesis testing. mbQTLs could include

hundreds of species, thousands of genetic pathways and gene families

if function-based analysis is desired, which significantly increases the

likelihood of false discoveries. Most of the findings from these studies

could not be replicated (Kurilshikov et al., 2017).

A recent study may challenge the findings related to mbQTL. Roth-

schild et al. studied microbial–genetic and microbial-environmental as-

sociations using 1,046 individuals. Contrary to earlier studies, their re-

sults demonstrate that gut microbiome composition is not significantly

associated with the host’s genetics (Rothschild et al., 2018). Estimated

from 2,252 twins, the heritability of the gut microbiome at the taxa

level is merely 1.9%. In contrast, they found that there is significant

similarity among the microbiomes of genetically unrelated individuals

who share a household, and over 20% of the variance in microbiome

β -diversity can attribute to environmental factors such as diet and

lifestyle. It appears that both microbiome and host genetics indepen-

dently contribute to the host phenotype, as incorporating microbiome

data with human genetic data substantially improves the ability to pre-

dict host phenotype (Rothschild et al., 2018).
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10.4 Advances in microbial community modeling

Each individual microbial genome is equivalent to an algorithm, as it

programs the build of the cellular machinery and all its functions. Given

a limited set of inputs (nutrients) in the environment, the genome algo-

rithm maximizes its number of copies through replication (measured by

growth or total biomass produced). A microbial community is a pool of

such genome algorithms. As we know more about these genome algo-

rithms, we may be able to simulate a digital clone of an organism, or

even an entire community in the future. Scientists at Stanford Univer-

sity and the J. Craig Venter Institute actually developed the first digital

organism, a simulation of a simple organism called Mycoplasma geni-

talium in 2012. It models the interactions of 28 categories of molecules

— including DNA, RNA, proteins, and metabolites. The comprehensive

model predicted many previously unobserved cellular behaviors and

molecular processes (Karr et al., 2012).

Currently, we are no way near modeling an unknown bacterium, let

alone an entire community with many unknown species. As the British

statistician George E. P. Box once said, "All models are wrong, but some

are useful". Being able to model a microbial organism or a community,

even with many knowledge gaps, may still provide interesting insights

into how it functions and its interaction with the environment. In this

section, we will briefly overview the research progress in metabolic

modeling of microbial organisms and communities.

10.4.1 Individual microbial genome models

With the availability of assembled and annotated genomes, it is now

possible to generate metabolic networks at a genome scale, even be-

fore experimental data is collected. Genome-scale network reconstruc-

tion (GENRE) largely consists of two phases. The first phase involves

annotating the genome to get a complete list of metabolic reactions.

During this phase, annotated genes from the genome of interest are

searched against known metabolic databases, such as KEGG (Kyoto En-

cyclopedia of Genes and Genomes), MetaCyc20, and SEED, to identify

the enzymes and reactions they catalyse (Feist et al., 2009).

The second phase involves compiling a mathematical representa-
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tion of these reactions. Starting from a genome-scale metabolic net-

work of every metabolic reaction, we can apply a technique, Flux Bal-

ance Analysis (FBA), to explain how the network functions as well as

to make predictions about how the network responses to environmen-

tal changes. FBA represents the metabolic network as a stoichiometric

matrix with rows representing unique metabolites. The metabolic reac-

tions are represented in columns, as a vector of stoichiometric coeffi-

cients of the metabolites participating in a reaction. Metabolites con-

sumed (left side of a stoichiometric reaction) take negative coefficients,

while the metabolites produced (right side of the reaction) take positive

ones and nonparticipating metabolites get zeros (Orth et al., 2010).

The representation of a genome-scale metabolic network as a nu-

merical matrix opens the door to the linear programming world in

mathematics where efficient algorithms are available. Matrix computa-

tion is also computationally efficient, and the COBRA Toolbox (https:

//opencobra.github.io/) is a popular toolbox for performing linear

calculations. By applying constraints to balance reaction inputs and out-

puts and keep experimentally observed bounds of the system, it is pos-

sible to optimize a phenotype such as biomass production (Orth et al.,

2010).

It is worth noting that the reconstruction of a high-quality genome

scale metabolic network usually involves many manual steps and lit-

erature search, which is very labor and time intensive. It could take

several months for several people to construct a network and then

many years to iteratively refine the network as new evidence emerges

(Thiele and Palsson, 2010). Fortunately, you may find it is not neces-

sary to start building a model from scratch, as over 100 models have

been constructed and they are freely available at the BiGG database

(http://bigg.ucsd.edu/).

10.4.2 Microbial community models

As a genome-scale metabolic model is essential for quantitative predic-

tion of individual organism behavior, a community of these models are

central to understand the community function and behavior in chang-

ing environments. For most of complex microbial communities such as

the human gut microbiome, it is not feasible, given the the time and la-

https://opencobra.github.io/
https://opencobra.github.io/
http://bigg.ucsd.edu/
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bor involved, to build a high-quality metabolic network for every mem-

ber of the community. The above-mentioned model reconstruction pro-

cess has almost 100 steps, many of those are manual (Thiele and Pals-

son, 2010). To overcome this limitation, Henry et al. automated most of

these steps and developed the Model SEED, a web-based resource avail-

able at https://modelseed.org/, to rapidly create new draft metabolic

models (Henry et al., 2010). Magnúsdóttir et al. further built a semi-

automatic metabolic reconstruction pipeline on top of the draft models

from Model SEED and KBase (US Department of Energy Systems Biol-

ogy Knowledgebase, http://kbase.us). These models were refined us-

ing a comparative approach, which propagates any manual refinement

to one metabolic reconstruction to other similar processes (Magnúsdót-

tir et al., 2017). These improvements greatly streamlined and sped up

the model construction process. Using this method, the authors were

able to generate draft models for 773 human gut bacteria.

With a pool of models in the same microbial community, even in the

draft form, now it is possible to predict species interactions. Magnús-

dóttir et al. used the models they built and investigated pairwise growth

interactions (‘co-growth’). They used FBA to compare the growth of

every pair in a community to their individual growth and infer their

relationships. They were able to discover parasitism, commensalism,

or competitive interactions under different environmental conditions

such as diet. For example, they found that the high fiber diet led to a

higher proportion of commensal and mutualistic interactions (Magnús-

dóttir et al., 2017), which provides insights into the role of fiber diet in

maintaining a healthy gut microbiome.

Extending the above framework to the entire community is, how-

ever, not straightforward. We would need to model the metabolic ex-

changes between many taxa and run into the above-mentioned "curse

of dimensionality" problem. In addition, we would face the challenge of

selecting an objective function, as optimizing community growth may

contradict optimizing individual growth. A recent study offered one so-

lution to these two challenges. Instead of optimizing the maximal com-

munity growth, Diener et al. created a trade-off between optimal com-

munity growth and individual growth by limiting community growth to

only a fraction of its maximum rate. They then applied a technique

called L2 regularization to the individual growth rate (Diener et al.,

https://modelseed.org/
http://kbase.us
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2020). The resulting human gut microbiome models were able to in-

tegrate individual genome-scale metabolic models, dietary information

as flux bounds, and taxa abundance estimates from metagenomic data.

They applied their models to 186 human microbiomes to analyze the

interaction between microbiome and host in healthy people and people

with diabetes (Diener et al., 2020).

10.5 Future perspectives

Advances in assembling the metagenome, annotating gene functions,

and reconstructing metabolic networks at the community level start to

unravel the natural complexity of microbial ecosystems. Efficient com-

putational approaches have been developed to model many aspects of

these systems, including taxonomic and functional diversity, species

interactions, and community dynamics in response to environmental

changes. However, current efforts have been focused on discovering

new species, new functions, and new interactions. As a step towards

transnational clinical research, these new discoveries are being associ-

ated with various human phenotypes via microbiome-wide association

studies (MWAS) to discover new biomarkers for diseases.

So far, the modeling exercises assume a homogeneity among the mi-

crobial communities. New evidence increasingly suggests that the lo-

cal spatial organization of these communities heavily influences inter-

microbial, host-microbe, and various community properties. These in-

teractions, in turn, change the spatial organization of the microbial

community. With the advent of spatial metagenomics technologies, such

as Metagenomic Plot-sampling by sequencing (MaP-seq) (Sheth et al.,

2019), the biogeograghy of the intricate networks of microbes and their

environment are being mapped. These new evidences, combined with

our understanding at the microbial diversity, representing an exciting

direction of metagenomics to understand the structural elements that

contribute to phenotypic variations of a microbial community (D’Souza,

2020).

As the field of genomics in moving from sequencing or "reading"

genomes to synthesizing or "writing" genomes, metagenomics is also

likely make the transition from sequencing communities to synthesizing

communities. By synthesizing communities, I do not mean mixing sev-
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eral known species and use them as standards for method development.

Instead, I refer a systematic effort to make "designer" communities,

first in silico and then in realworld involving back-and-forth iterative op-

timizations, with relevant traits useful for clinical intervention of human

diseases, optimizing agricultural output, or geochemical applications

such as cleaning up pollution. How far are we to an era of synthetic

metagenomics? It is probably sooner than what we think. As we make

big strides in synthetic biology, it has been proposed to design synthetic

communities, chemically synthesize all members, and then encapsulate

them in a yeast cell (Belda et al., 2021). A strong core metagenome

can be modelled and synthesized, while habitat-specific metagenomes

can be customized by swapping in or out certain metabolic pathways.

These models can be further personalized for specific clinical or indus-

trial applications, by including genetic variants that maximize benefits

to human hosts or maximize output of an industrial product. Regard-

less what route will take us there, computational metagenomics would

be indispensable for this dream.
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