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Abstract. We introduce a new learning setting, called two-way predic-
tive learning, as a special case of relational learning. We demonstrate
that this learning setting has some properties that make an alternative
learning approach, which we refer to as transposed learning, possible. We
show how existing tasks fit this setting, discuss related work, and demon-
strate experimentally that transposed learning can yield better results
in multi-target learning.

1 Situating two-way learning

Consider the following relational learning context: we have two types of objects
A and B, and a relation R between them. The objects of type A have attributes
Ai, i = 1, . . . , nA; the objects of type B have attributes Bi, i = 1, . . . , nB ; and
the tuples in R have attributes Ri, i = 1, . . . , nR as well as a special attribute T
called the target attribute. We denote the set of attributes of A, B,R as Attr(A),
Attr(B), Attr(R), and their respective extensions as A, B, R. The relation R is
complete: there is a relationship between each a ∈ A and each b ∈ B. Figure 1
summarizes this in an entity-relationship diagram.
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Fig. 1. ER-diagram summarizing the data types available for learning. T is the target
attribute.

The task is to predict T from the other available information. This task is
an instance of relational learning [5]: we predict an attribute of a relation from
information about the participating objects. Propositionalization (representing
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Table 1. Overview of two-way learning settings. In the table, * means ‘non-empty’.

Attr(A) Attr(B) Attr(R) \ {T}
∅ ∅ ∅ bare two-way learning
* ∅ ∅ single-decorated two-way learning
∅ * ∅ single-decorated two-way learning
* * ∅ double-decorated two-way learning

∅/* ∅/* * relational learning with deterministic background

the data using a single table) would cause redundancy (each object from A and
B is described multiple times) and loss of information (the case where two rows
refer to the same a can no longer be distinguished from that where two rows
describe different objects with the same attribute values). Yet it is special, in
the sense that the relation is complete (each a is linked to each b), so there is
no information in the structure of the relation itself.

This Two-way learning setting is relevant for many applications; including
molecular biology microarray data, recommender systems, multi-target predic-
tion [2], and the related problem of multi-task learning [4]. Several toy examples
in statistical relational learning, such as the student-course-grade example [6],
essentially describe a two-way prediction problem.

We can consider multiple specific settings, depending on what attributes are
available. Table 1 provides an overview. The settings covered by the ER-diagram
can be called ”relational learning with deterministic background” (since each
instance of R is linked to exactly one A and B). Two-way learning, as defined
here, covers the cases where Attr(R) = {T}.

In the remainder of this paper, we focus on bare two-way learning. Since, in
this setting, R is complete, Attr(A) = Attr(B) = ∅, and Attr(R) = {T}, the
data set D is simply a matrix. For each ai and bj , we denote the corresponding
T value as tij .

This is the type of data we get in microarray data and in the context of
recommender systems [1].

It may seem strange that we want to predict tij from no information at all,
since Attr(A) = Attr(B) = ∅, but the point is that the values of T themselves
carry information. We can predict tij from the information in the tik, k 6= j, or
from the tkj , k 6= i, or even from the tkl, k 6= i, l 6= j.

Bare two-way predictive learning can be addressed in different ways. Sup-
pose we need to predict a single Tij element. We distinguish the following main
approaches:

Row-based: We learn a function f that predicts T.j from T.k, k 6= j. That
is, we reduce the task to a standard learning task, treating the rows as instances
and the columns as attributes. The target attribute is T.j , and the predictive
attributes are T.k with k 6= j.

Column-based: This is the same as above, except that we treat the columns
as instances and the rows as attributes; the target attribute is Ti., and the
predictive attributes are Tk., k 6= i. We call this transposed learning, as it really
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corresponds to transposing the matrix that represents the data set and then
using a standard learning method.

These two alternatives also exist in single-decorated and double-decorated
two-way learning, as shown on Figure 2.

Matrix factorization [9]: in this approach, we try to find two matrix factors
W and H such that T ≈ W · H. Each column T.i is then approximated by a
linear combination of the columns of W , weighted by the components of H.i. W
forms a set of vectors optimized for the linear approximation of T , which will
only give a good approximation if these basis vectors discover latent structure
in the data. This method predates the approaches proposed in this paper, and
has been successfully applied in the field of recommender systems [10].
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Fig. 2. We can learn a function f that generalizes over A, predicting target values t.i
from a.j and t.k or we can learn a function f that generalizes over B, predicting target
values ti. from bj. and tk.. In the second case, the ti. targets will only become available
when the new example becomes available.

2 The effects of transposition

In the two-way learning setting, rows and columns are to some extent inter-
changeable. Consider again Figure 2. Given a new object a, we need to predict
the Tj values for it. First consider the user’s point of view: rows are examples,
columns are attributes. We get a new example and need to fill in some target
values. If we have already learned a function f in the standard (row-based) way
we can now apply it to predict those values.

Alternatively, we can consider a learner using the transposed view on the
data. To this learner, a is a new (target) attribute. Since a is unknown during
training, it is not possible to learn a function f till prediction time. At prediction
time, f can be learned using the known components of a as known target values.
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In the column-based approach, our inductive learner is thus used lazily (or,
transductively).

This transposition also turns a multi-target problem in to a single-target
problem and vice versa. This can be seen in the example in Figure 2. The row-
based approach results in a multi-target function f which predicts (t.4, t.5, t.6)
given (a.1, a.2, a.3, t.1, t.2, t.3) while the column-based approach results in a single-
target function which predicts t5. given (b1., b2., a1., t2., t3., t4.).

3 Applications

3.1 Microprocessor-data

For this application [8], the data consists of a set of performance numbers ob-
tained by executing 26 benchmark programs1 on a number of (different) ma-
chines. Based on these data, we wish to predict the performance of each of the
machines for new programs. When a new program becomes available, the idea
is to execute it on a limited number of machines (“predictive machines”) and
use this information together with the data about the benchmark programs to
predict the performance of the remaining machines (“target machines”). Fig. 3
illustrates the task. Since we use no descriptors of the machines or the programs,
besides the performance numbers, this is a bare two-way learning problem.
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Fig. 3. Problem statement and terminology

We here compare row-based and column-based inductive learning. Our goal
is to see whether the less natural column-based approach can offer an advantage
over straightforward row-based learning.

1 From the SPEC CPU20006 suite, http://spec.org/cpu2006.



Predictive Learning in Two-way Datasets 5

We used three different machine learning algorithms from the Weka col-
lection [7]: a multi-layer perceptron (MLP), a Support Vector Machine using
Sequential Minimal Optimization (SVM-SMO), and linear regression (Linear
Regression). Each algorithm was run both row-based and column-based. The
fourth algorithm to which we compare our results consist of a matrix factoriza-
tion algorithm [9].

Default parameters were used for each algorithm and the performance is
estimated using cross validation.

Table 2 shows that column-based prediction yields much better results than
row-based prediction. One way to interpret this is that generalization over ma-
chines is easier than generalization over programs.

Of particular interest is the result of the Matrix Factorization, which can only
be applied to two-way datasets. As can be seen in table 2, the MF algorithm
outperforms all other algorithms for the row-based approach but the MF method
is outperformed by the other algorithms in the column-based approach. The MF
method does not benefit from a transposition.

Table 2. Spearman Rank correlation for the predicted microprocessor data.

Row-based Column-based
Neural Network 0.82 0.93
SVM 0.77 0.90
Linear Regression 0.82 0.91
Matrix Factorization 0.85 0.85

3.2 Ecological data

Next, we consider an ecological application [3]. Biologists take samples of river
water to measure its quality, recording quantities of a number of micro-organisms,
and physico-chemical parameters (such as oxygen concentration) in these sam-
ples. The goal is to learn to predict the physico-chemical parameters (PCP,
for short) from the micro-organism quantities. This problem corresponds to a
standard multi-target problem on which we can perform both row-based and
column-based learning.

We use the same four algorithms as for the micro-processor data. Results
are shown in Table 3. Here, column-based prediction outperforms row-based
prediction for the MLP and SVM, while row-based prediction works better for
linear regression. This indicates that the optimal learning direction can depend
on the learning algorithm.

4 Conclusions

We propose a new setting for machine learning that we call two-way predic-
tive learning. The setting is characterized by the existence of two types of data
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Table 3. Mean Squared Error (MSE) for the ecological dataset.

Row-based Column-based

Neural Network 1.127 0.9
SVM-SMO 2.43 1.46
Linear Regression 3.07 4.04
Matrix Factorization 1.40 1.40

elements, pairs of which are labeled with target values to be predicted. The
two-way learning setting is encountered in many application domains. It covers
multi-target learning as a special case, and is itself a special case of relational
learning. It has some pecularities that motivate a separate study of this setting.
In particular, it raises interesting questions about the interchangeability of ex-
amples and attributes, which itself sheds new light on the difference between
inductive and transductive learning.

Experiments on two different application domains demonstrate the useful-
ness of this discussion: by running an inductive learner on the transposed data
matrix, one can obtain better predictive results. While this approach is prac-
tically very simple, it is not straightforward to practitioners, partially because
it requires a view of the data that is often unnatural (thinking of attributes as
examples and vice versa), and partially because it requires one to use an induc-
tive learner transductively (the learning process can only be started once a new
test instance has arrived). Our experimental results show, however, that this
alternative approach can yield important performance gains.
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