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Abstract

A phylogenetic tree represents the evolutionary history for a collection of organisms. We consider the
problem of inferring such a tree given a certain set of data (genomic, proteomic, or even morphological).
Given the computational hardness of this problem, exact approaches are inherently limited. However,
exact techniques can still be useful to endow heuristic approaches with problem-awareness. We analyze
this hybridization in the context of memetic algorithms and branch-and-bound techniques. Focusing
in the ultrametric model for phylogenetic inference, we show that this combination can be synergetic.
We analyze the parameters involved in this hybrid model, and determine a robust setting for these. A
summary of related work is also provided.

1 Introduction

Phylogenetic trees provide a hierarchical representation of the degree of closeness among a set of organisms.
The reconstruction of phylogenetic trees from data is undoubtedly a task of paramount importance in
molecular biology. It has direct implications in areas such as multiple sequence alignment[20], protein
structure prediction[53] or molecular epidemiological studies of viruses[48], just to cite a few. Unfortunately,
this task turns out to be very hard from the computational point of view. First of all, the phylogeny
problem is intrinsically complex: NP -hardness has been shown for phylogenetic inference under several
models[11, 12, 13, 17, 62]. Secondly, while the utilization of a quality measure for evaluating hierarchies
implies the definition of an optimization problem, its global optimum has not the same significance as in
other classical problems: the existence of some uncertainty in the underlying empirical data may make
high-quality suboptimal solutions be equally valid.

Due to the reasons just mentioned, the use of classical exact techniques can be considered generally
inappropriate in this context. Indeed, the use of heuristic techniques in this domain seems much more
adequate. These can range from simple constructive heuristics (e.g., greedy agglomerative techniques such
as UPGMA[58]) to complex metaheuristics (e.g., evolutionary algorithms[9]). At any rate, it is well-known
that any heuristic method is going to perform in strict accordance with the amount of problem-knowledge it
incorporates[10, 61]. In this sense, while classical exact techniques are not adequate as stand-alone solvers for
this problem, they can still be very useful to create powerful problem-aware metaheuristics. We will precisely
explore this possibility here, presenting a model for the integration of branch-and bound techniques (BnB)[35]
and memetic algorithms (MAs)[45, 46, 47]. As it will be shown, this model can result in a synergistic
combination yielding better results than those of the intervening techniques alone.

2 A Crash Introduction to Phylogenetic Inference

The inference of phylogenetic trees is one of the most important and challenging tasks in Systematic Biology.
Such trees are used to represent the evolutionary history of a collection of n organisms (or taxa) from their
molecular sequence data, or from other form of dissimilarity information. The Phylogeny Problem can then
be formulated as finding the phylogenetic tree that best –under a certain optimality criterion– represents the
evolutionary history of a collection of taxa. For this purpose, it is clearly necessary to define an optimization
criterion. Essentially, optimization criteria for assessing the goodness of a phylogenetic tree T can fall within
two major categories, sequence-based and distance-based[29].
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In sequence-based approaches, each node of T is assigned a sequence. Such a sequence is known for
the leaves (i.e., the taxa being classified) and can be inferred via pairwise alignments for internal nodes.
Subsequently, the tree is evaluated using a criterion that in most situations is either maximum likelihood
(ML) or maximum parsimony (MP). ML criteria are based on the assumption of a stochastic model of
evolution[14], e.g., the Jukes-Cantor model[27], the Kimura 2-parameter model[31], etc. Such a model is
used in order to assess the likelihood that the current tree generated the observed data. The optimal tree
would be the one that maximizes this likelihood. On the other hand, MP is grounded on Occam’s razor,
whereby given two equally predictive theories, the simpler should be chosen. Thus, the MP criterion specifies
that the tree requiring the fewest number of evolutionary changes to explain the data is preferred.

As to distance-based approaches, they are founded on transforming the available sequence data into an
n × n matrix M . This matrix is the unique information subsequently used. More precisely, edges in T are
assigned a weight. We denote by w(T, e) the weight of edge e in T . The basic idea here is that Mij represents
the evolutionary distance or dissimilarity between taxa i and j. We thus have an observed distance matrix
M (the input data) and an inferred distance matrix M̂ obtained by making M̂ij = distance from i to j in
T . Let us represent trees using a LISP-like notation, i.e., trees are represented as (r, L, R), where r is the
root, L is the left subtree, and R is the right subtree. A leaf l is represented as (l). Also, let V(T ) and E(T )
respectively denote the set of vertices and edges of tree T , and let L(T ) denote the set of all leaves of tree
T . We further use T (v), where v ∈ V(T ), to denote the subtree of T rooted at node v, and π(T, v) to denote
the parent of v in T . Then, M̂ij = ∆(T, i, j) + ∆(T, j, i), where

∆(T, a, b) =
{

w(T, (a′, a)) + ∆(T, a′, b) if b /∈ L(T (a)), a′ = π(T, a)
0 if b ∈ L(T (a)) (1)

The quality of the tree can now be quantified in a variety of ways. On one hand, it is possible to consider
some meta-distance measure between observed and inferred distances, e.g., the L2 metric,

L2(M, M̂) =
n∑

i=1

n∑

j=1

(Mij − M̂ij)2, (2)

thus seeking a least-squares approximation of the observed distance. To do so, a quadratic program must
be solved in order to find the best edge weights for a given topology[40]. This may be computationally
demanding when used within a search-and-score method.

On the other hand, quality can be directly measured from T . This is typically the case when edge-
weighting has been constrained so as to have M̂ij > Mij , i.e., to have inferred distances greater than
observed distances. This constraint is based on the fact that the observed distance between two taxa will
be always a lower bound of the real evolutionary distance between them1. In this situation, minimizing
the total weight of T (i.e., the sum of all edge-weights) is usually the criterion. Notice that by taking Mij

as the minimum number of evolutionary events needed to transform i in j, this approach resembles MP.
Actually, distance-based methods can be generally considered as an intermediate strategy between ML and
MP, exhibiting good performance in practice as well[24]. For these reasons, we have focused in distance-based
approaches in this work. To be precise, we have forced M̂ to be ultrametric[2]. In this case, it holds that

M̂ij 6 max{M̂ik, M̂jk}, 1 6 i, j, k 6 n . (3)

If M̂ is ultrametric, the distance in T between any internal node h and any leaf l descendant of h is the
same — e.g., see Figure 1 where the optimum ultrametric tree for an arthropod dataset[26] is depicted. This
distance represents in each case the elapsed time since the corresponding evolutionary divergence event.
Hence, a constant evolution rate is implicitly assumed, in the line of the molecular-clock hypothesis[39].
Although this hypothesis is not in vogue nowadays, this condition still provides a very good approximation
to the optimal solution under more relaxed assumptions such as mere additivity2. Much more important,
it is also easy to compute: for a given tree T , and observed matrix M , edge weights can be determined in
O(n2) time[62]. This can be solved as follows: let the height of a subtree be computed as:

height(T ) =

{
0 if T = (l)
max

(
height(L), height(R), D(L,R)

2

)
if T = (h,L,R) (4)

1In essence, this is due to the existence of a set of phenomena –reversal, parallelism, and convergence– that make taxa appear
more related than they really are. These phenomena are collectively termed homoplasy[39].

2M̂ is additive if for any i, j, k, l, the maximum of M̂ij + M̂kl, M̂ik + M̂jl, M̂il + M̂jk is not unique.
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Figure 1: An example of ultrametric tree. Branch lengths represent the elapsed evolutionary time between
the corresponding species. Notice that the horizontal distance from an interior node to any of its leaves is
the same.

where D(L,R) = max {Mij | i ∈ L(L), j ∈ L(R)}. Now, the weight of an edge connecting two nodes i and j
is easily computed as

w (T, (i, j)) = |height (T (i))− height (T (j))| . (5)

Unlike this simple computation, finding optimal edge weights for an additive tree requires solving a linear
program with 2n − 2 variables (the number of internal edges), and n(n − 1)/2 binary constraints, one for
each pair of taxa (i,j), corresponding to M̂ij > Mij .

Notice that the number of possible phylogenetic trees for a given set of n taxa is huge: there are (2n−3)!!
rooted trees[24], where k!! is the double factorial of k (i.e., the difference between successive factors is 2 rather
than 1 as in the standard factorial). For example, there exist 8.2×1021 possible trees for 20 taxa. This clearly
illustrates the impossibility of applying exhaustive search to this problem. Furthermore, finding provably
good solutions constitutes a very hard combinatorial optimization problem for most optimality criteria, as
anticipated in the previous section. Exact techniques such as branch-and-bound can be used, but they are
computationally unaffordable for even moderate-size (say, 30-40 taxa) problem instances. Hence, the use of
heuristic techniques seems appropriate.

Most typical heuristics for phylogenetic inference are variants of the single-link [57], complete-link [32],
and average-link [58] algorithms. These are agglomerative clustering algorithms whose functioning matches
the generic template shown in Figure 2. As it can be seen, these algorithms proceed by iteratively joining in
a tree the two closest clusters, until just one group remains. They differ in the way intercluster distance is
defined. To be precise, they consider the distance measures shown in Table 1. Notice that complete-link can
be regarded as a greedy approach for the quality criterion we have chosen (the height of an internal node
is always one half of the largest distance between any of its leaves –recall equation (4)– and complete-link
makes local decisions trying to minimize this quantity).

Other popular heuristics for phylogenetic inference are based in metaheuristic approaches, such as for
example evolutionary algorithms (EAs). Next section will briefly overview previous work done in the appli-
cation of EAs in this domain.
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Agglomerative Clustering Algorithm

Input: An n× n distance matrix M .
Output: A tree T .

1 : for i = 1 : n do let Ti ← (i) end for
2 : let Nclusters ← n
3 : while Nclusters > 1 do
4 : Select Ti and Tj (1 6 i < j 6 Nclusters) for which

dist(Ti, Tj) is minimal.
5 : let Ti ← (h, Ti, Tj)
6 : let Tj ← TNclusters

7 : let Nclusters ← Nclusters − 1
8 : end while
9 : return T1

Figure 2: Pseudocode of an agglomerative clustering algorithm. In line 5, h represents an undistinguishable
internal node of the tree.

Table 1: Distance measures for determining the two closest clusters during agglomerative clustering.

Single-Link : dist(T, T ′) = min{Mij | i ∈ L(T ), j ∈ L(T ′)}
Complete-Link : dist(T, T ′) = max{Mij | i ∈ L(T ), j ∈ L(T ′)}
Average-Link : dist(T, T ′) = 1

|L(T )|·|L(T ′)|
∑

i∈L(T ),j∈L(T ′) Mij

3 Evolutionary Algorithms for the Phylogeny Problem

To the best of our knowledge, the first application of a genetic algorithm (GA) to phylogenetic inference
was developed by Matsuda. The GA was used to construct phylogenetic trees from amino acid sequences
using a ML approach[41, 42]. It was shown that the performance of the method was comparable to those
of other tree-construction methods (i.e., neighbor-joining[54], MP, ML and UPGMA combined with differ-
ent search algorithms). Later, an improved genetic algorithm was applied to rbcL sequence data of green
plants[38]. The results were really promising as the GA required only 6% of the computational effort re-
quired by a conventional heuristic search using tree bisection/reconnection branch swapping to obtain the
same maximum-likelihood topology.

Further work by Skourikhine[56] reported a self-adaptive genetic algorithm (GA) for the ML reconstruc-
tion of phylogenetic trees using nucleotide sequence data. The algorithm produced faster reconstructions of
the trees with less computing power and automatic self-adjustment of settings of the optimization algorithm
parameters. Other evolutionary proposals for searching the ML trees were developed by Meade et al.[43]
and Katoh et al.[28] (considering simple GAs), and Lemmon and Milinkovitch[37] (using a multi-population
GA). Parallel GAs under the ML optimality criterion were investigated by Brauer et al.[5] as well, with
encouraging results. Also in the ML context, Shen and Heckendorn[55] showed that discretizing edge lengths
changed the fundamental character of the search and could produce higher quality trees.

The representation issue has attracted a lot of interest in the application of EAs to the Phylogeny problem.
Indeed, the choice of representation (and subsequently, the choice of operators) has a clear influence on the
performance of the algorithm as shown by Reijmers et al.[51]. A number of different EAs –based on the use of
alternative representations (direct and indirect) and/or reproductive operators– were developed, compared
and evaluated using a distance-based measure by Cotta and Moscato[9]. The conclusion was that directly
evolving phylogenetic trees yields better results than indirect approaches using decoders. The exception to
this rule was shown by a greedy permutational-decoder based EA that provided the overall best results,
achieving near 100%-success at a lower computational cost than the remaining approaches. However this
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Branch and Bound Algorithm for the MUT Problem

Input: An n× n distance matrix M .
Output: The minimum ultrametric tree for M .

1 : Relabel taxa such that (1, 2 . . . , n) is a maxmim permutation
2 : Create the root node R = (h, (1), (2)) of the BBT representing

the unique topology with leaves 1 and 2
3 : let U ← Complete Link(M); UB ← w(U)
4 : let open ← {R}
5 : while open 6= ∅ do
6 : open ← {T | T ∈ open, LB(T ) < UB}
7 : Extract some T from open
8 : Compute MUTT (T ), w(MUTT (T )) and LB(T )
9 : if L(T ) = {1, 2, . . . , n} then

10 : if w(MUTT (T )) < UB then
11 : let U ← MUTT (T ); UB ← w(MUTT (T ))
12 : end if
13 : else if LB(T ) < UB then
14 : let open ← open ∪ children of T
15 : end if
16 : end while
17 : return U

Figure 3: Pseudocode of Branch and Bound Algorithm for the MUT Problem.

latter approach is less scalable than its direct counterpart. Poladian[49] also presented some results in this
line of research and proposed different representations for the phenotype and the genotype in two existing
algorithms for phylogenetic inference (i.e., neighbor-joining and ML) co-utilized within a GA. One conclusion
reached is that working directly with the trees presents some disadvantages as for instance to establish the
concept of distance between tree topologies. Also, separating the genotype from the phenotype requires
the use of a good mapping from one space to the other (although this case allows the use of a different set
of genetic operators). The direct representation is used in the Gaphyl package by Congdon[6], whereas a
permutational decoder is used by Kim et al.[30].

A potential difficulty for the inference problem may arise when different data sets provide conflicting
information about the inferred ‘best’ tree(s). Poladian and Jermiin[50] have proposed the application of
evolutionary multi-objective optimization algorithms (EMOOA) in this case. They showed that EMOOA
can resolve many of the issues concerned with analyzing multiple data sets that give conflicting signals about
evolutionary relationships.

There have been also evolutionary proposals based on the parsimony criterion. For example, Ribeiro and
Vianna[52] described a genetic algorithm that makes use of an innovative optimized crossover strategy which
is an extension of path relinking[19]. This proposal was shown to be computationally promising. Cotta[8]
described an approach based on scatter search[34] that uses path relinking too (although not based on the
parsimony criterion but on distance methods). Hill et al.[23] presented a GA-based approach for weighted
maximum parsimony phylogenetic inference, especially for data sets involving a large number of taxa.

This summary of evolutionary approaches to phylogenetic inference is not exhaustive. The reader may
check the survey by Fogel[16] for further information on applications of evolutionary computation to the
inference of phylogenies, and highlights of new and current challenges for facing this problem.

4 A BnB Algorithm for Phylogenetic Inference

As it was stated in Section 2, the min ultrametric tree with a given topology problem (MUTT (T )) can be
determined in time O(n2), for a topology T containing n taxa. Hence, it suffices to solve this problem for
each possible topology in order to find the best ultrametric tree (i.e., the one with minimum total weight –
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Figure 4: Partial Branch and Bound Tree.

the MUT problem). However, this approach is not suitable in practice as the number of topologies increases
exponentially with n. BnB algorithms can be used with the aim of reducing the size of the explored space.
For this purpose, the BnB algorithm[62] (see Figure 3) will explore a BnB tree (BBT) that contains in its
leaves all possible topologies of ultrametric trees with leaf set {1, . . . , n}. Let zero be the depth of the root
of the BBT and i + 1 the depth of a child of a node with depth i. Therefore, internal nodes in the BBT at
depth i correspond to topologies with leaf set {1, . . . , i + 2}. Observe that any topology corresponding to a
node in the BBT at depth i has 2 + 2i edges (see Figure 4). Accordingly, a branching rule that inserts the
next taxon into each edge of the current topology can be used to generate the BBT. In this way, a node at
depth i in the BBT has 2 + 2i children.

With the aim of pruning the BBT, the BnB maintains an upper bound corresponding to the weight of
the best ultrametric tree found so far. For each internal node Ti in the BBT corresponding to a minimum
ultrametric tree with leaf set {1, . . . , i}, a lower bound LB(Ti) on the weight of the minimum ultrametric
tree Tn with leaf set {1, . . . , n} whose topology contains Ti can be calculated using the following inequality:

w(Tn) > w(Ti) +
∑

i<j6n

min{Mkj | k < j}/2. (6)

If this bound exceeds the value of the current upper bound, the node Ti and all its children can be safely
pruned, as they will not lead to a better solution.

Initially, the complete-link algorithm described in Section 2 is used in line 3 to find a feasible solution, and
the weight of this solution is set as upper bound. Clearly, finding large lower bounds early in the exploration
of the BBT is helpful as the number of pruned nodes increases during the execution of the BnB algorithm.
With the aim of maintaining a lower bound as large as possible, a heuristic order for the n taxa will be used.
This way, as a preprocessing step, taxa are sorted to constitute a maxmin permutation, i.e., a permutation
(a1, a2, . . . , an) of {1, . . . , n} such that Ma1a2 = max(M) and mink<i{Maiak

} > mink<i{Majak
} for all

1 < i < j. Note that a maxmim permutation for an n× n matrix can be found in O(n2) time.
As to the root node of the BBT, an interesting property regarding optimal ultrametric trees is that

if Muv = max(M), then there exists a minimum ultrametric tree T = (r, L, R), such that u ∈ L(L) and
v ∈ L(R). Since taxa are organized in a maxmim permutation, M12 = max(M), and hence the root of the
BBT can be set as done in line 2.

The so generated BBT can be traversed in several ways. The most efficient (in terms of the number of
iterations required to find the optimum and prove its optimality) is best-first, i.e., expanding firstly the most
promising –according to the lower bound– nodes. However, the memory requirements can make this strategy
unrealistic for large problem instances. The alternative is using a depth-first traversal. This strategy does
not require large amounts of memory, but can expand much more nodes than best-first. A third option is
using a breadth-first traversal (i.e., every node in a level is explored before moving to the next). In principle,
this option would have the drawbacks of the previous two strategies, unless a heuristic choice is made: keep
at each level just the best (according to some quality measure) k nodes. This implies sacrificing exactness,
but provides a very effective heuristic search approach. The name beam search (BS) has been coined to
denote this strategy[3, 60].
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Memetic Algorithm

Input: An n× n distance matrix M .
Output: A tree T , inducing a near optimal matrix M̂ .

1 : for i = 1 : popsize do
2 : let pop[i] ← RandomTree(n)
3 : Evaluate(pop[i], M)
4 : end for
5 : let Neval ← 0.
6 : while Neval < maxevals do
7 : for i = 1 :offsize do
8 : if recombination is performed then
9 : let parent1 ← Select(pop); parent2 ← Select(pop)

10 : let offspring [i] ← Recombination(parent1, parent2)
11 : else let offspring [i] ← Select(pop)
12 : end if
13 : if mutation is performed then
14 : let offspring [i] ← Mutate(offspring [i])
15 : end if
16 : Evaluate(offspring [i], M)
17 : let Neval ← Neval + 1
18 : if local improvement is performed then
19 : let offspring [i] ← Improve(offspring [i])
20 : end if
21 : end for
22 : pop ← Replace(pop, offspring)
23 : end while
24 : let T ← Best(pop).
25 : return T

Figure 5: Pseudocode of the memetic algorithm.

Unfortunately, BnB algorithms alone need too much time to be practical, except for very small sets of
taxa. As we will show, a hybrid algorithm based on this latter strategy (BS) and a MA can provide better
performance.

5 A Memetic Algorithm for Phylogenetic Inference

Memetic algorithms constitute a family of metaheuristics that blend together concepts from population-
based techniques (e.g., evolutionary algorithms – EAs) and trajectory-based techniques (e.g., simulated
annealing). Their central philosophy thus relies in two major pillars: individual improvement plus popu-
lational cooperation. More precisely, a MA can be characterized as a population of agents that alternate
periods of self-improvement with periods of cooperation, and competition. The term ‘agent’ is purposefully
used to indicate that the population constituents are not mere ‘individuals’, that is passive entities; on the
contrary, they are active, and try to exploit all available knowledge about the target problem. This concern
for adapting to the problem is backed up by ground-breaking theoretical results such as the No Free Lunch
Theorem[61], and it is ultimately responsible for the impressive success record of MAs.

Adaptation to the target problem is achieved via the use of constructive heuristics, local-search methods,
exact techniques, etc. For this reason, it is often the case that MAs are used under different names, such as
‘Lamarckian EAs’, or more generally ‘hybrid EAs’. For the particular application we consider, namely the
inference of phylogenetic trees from distance matrices, our MA uses problem-specific operators for manipu-
lating solutions, and an ad hoc local-improvement scheme. The overall process is shown in Figure 5.

First of all, the population for this MA must be initialized. Each agent in the MA population represents
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Prune-Delete-Graft Recombination

Input: Two trees, T1 and T2 to be recombined.
Output: A tree, corresponding to the offspring.

1 : Select a subtree T from T2.
2 : for each l ∈ L(T ) do
3 : Find subtree U from T1 such that U = (h, (l), U ′)

or U = (h,U ′, (l)).
4 : Replace U by U ′ in T1.
5 : end for
6 : Select a random subtree V from T1.
7 : Replace V by V ′ = (h′, T, V ) in T1, where h′ is a new vertex.
8 : return T1

Figure 6: Pseudocode of the PDG recombination. 
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Figure 7: An example of PDG recombination.

a feasible tree, and hence the search is directly performed in the space of all possible phylogenetic trees[9].
These trees are initially created at random. Subsequently, the MA enters the main reproductive loop which
comprises selection, recombination, mutation, local improvement, and replacement. Among these, the first
and fifth components are rather problem independent, whereas the second to the fourth components are
specifically crafted to the problem. Let us focus in these problem-aware operators.

The recombination operator is intended to produce new solutions by mixing the information comprised
in several parental solutions. In this context, this mixing process amounts to the transference of tree-
topology information from parents to offspring. To do so, a branch-exchange procedure can be used, i.e.,
a subtree can be pruned from one of the parents, and grafted onto the second one, much like it is done in
the field of Genetic Programming[33]. Note however that phylogenetic trees are constrained to have exactly
n leaves, each one representing a different species. Therefore, the recombination operator has to be careful
of removing duplicates elements. Taking into account these considerations, the Prune-Delete-Graft
(PDG) tree crossover operator (see the pseudocode in Figure 6) has been used[9, 44]. PDG is a three-step
procedure for recombing two trees T1 and T2 by pruning a subtree T from T2, deleting from T1 all leaves
occurring in T , and grafting T at a randomly selected point in T1. This is illustrated in Figure 7.

As to mutation, its purpose is to introduce new information (i.e., new topological relationships) in a
certain solution. This can be accomplished in several ways. In this case, the MA considered uses the so-
called Scramble operator that first selects a subtree Q from the tree being mutated, and then rearranges its
topology in a random way – see Figure 8. Note that this mutation operator fulfills the previously mentioned
constraint regarding the presence of exactly n leaves in the tree.
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Scramble Mutation

Input: A tree T to be mutated.
Output: The same tree T after mutation.

1 : Select a random subtree Q from T .
2 : let k ← |L(Q)|
3 : let R ← RandomTree(k)
4 : Relabel leaves in L(R) as leaves in L(Q).
5 : Replace Q by R in T .
6 : return T

Figure 8: Pseudocode of the Scramble mutation.

Finally, local search has been applied to individuals in the population with the aim of improving solutions
produced by the recombination and mutation methods. In general, this is achieved by applying small changes
to a solution, keeping them if they produce a quality increase, or discarding them otherwise. Different
strategies would have been possible given the tree representation used in this problem[1]. In this work, the
improvement method chosen is based on performing rotations within the tree.

Four symmetric operations are used within the local search improvement method. The first one, ROT 1
R,

is defined as
ROT 1

R [ (h, (h′, TLL, TLR), TR) ] = (h, TLL, (h′, TLR, TR)) , (7)

where h and h′ are internal nodes. This operation moves TLR, the right subtree of the left subtree of h, to
the right so it becomes the left subtree of the right subtree of h. A ROT 2

R operation would have performed
the same movement on TLL rather than on TLR.

Analogously, ROT 1
L and ROT 2

L are mirror-inverted versions of the previous operations. For each interior
node of the tree, it is first checked whether a ROTR movement is possible, and if so, whether ROT 1

R or
ROT 2

R produce an improvement. If this were the case, the change would be retained, and the improvement
method would stop. Otherwise, ROTL movements would be analogously attempted. If no improvement is
possible either, the procedure is recursively applied to the left and right subtrees of h.

The application of this local improvement strategy may be costly if applied to every new solution created
by the MA. This circumstance has been also recognized in other domains[7, 25], where the use of partial
Lamarckism has been proposed. We have opted for a variant of this strategy, performing local search only
when the quality of a solution improves the current incumbent.

6 A Hybrid Algorithm

Branch-and-Bound and memetic algorithms represent two very different approaches for tackling the MUT
problem. These approaches are not incompatible though. In this section, we describe a hybrid model that
combines these two techniques. To be precise, it executes the BnB and MA in an interleaved way. The
goal is combining synergistically these two different solving approaches, exploiting the capability of BnB for
identifying provably good regions of the search space, and the power of the MA for exploring these. This
hybrid algorithm is described in Figure 9.

The algorithm starts by executing BS (i.e., Beam Search, see Section 4) for l0 levels of the search tree.
Afterwards, the MA and BS are interleaved until a termination condition is reached. Every time the MA
is run, its population is initialized using random nodes in the BS queue. Let us note that nodes in the BS
queue represent partial trees in which some taxa are included but another ones are not, so they must first be
converted in full trees. For this purpose, the greedy completion algorithm described in Figure 10 is applied
to every partial tree.

The intended goal of the initialization explained above is to lead the MA to these regions of the search
space (recall that the nodes in the queue represent subsets of the search space considered promising by the
BnB; hence, the MA is used for finding probably good solutions in this region). Upon stabilization of the
MA, control is returned to the BnB algorithm. The lower bound for the optimal solution obtained by the
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Hybrid Algorithm for the MUT Problem

1 : for l0 levels do run BS
2 : do
3 : select randomly popsize nodes from problem queue
4 : initialize MA population with selected nodes
5 : run MA
6 : if MA solution < BS solution then
7 : let BS solution ← MA solution
8 : for l levels do run BS
9 : until timeout or tree exhausted

10 : return BS solution

Figure 9: Pseudocode of the hybrid algorithm.

Greedy Completion Algorithm

Input: A tree T and a list of nodes ns.
Output: The tree obtained by inserting all nodes in ns into T .

1 : while ns 6= ∅ do
2 : Extract n from ns
3 : let best ←∞
4 : for each insertion point p in T do
5 : let Ttrial ← insert n at position p of T
6 : if w(Ttrial) < best then
7 : let best ← w(Ttrial); Tbest ← Ttrial

8 : end if
9 : end for

10 : let T ← Tbest

11 : end while
12 : return T

Figure 10: Pseudocode of the Greedy Completion Algorithm.
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Figure 11: Sketch of the hybrid algorithm.

MA is then compared to the current incumbent in the BnB, updating the latter if necessary. This may lead
to new pruned branches in the BS tree; see Figure 11 for an outline of the general process. This is repeated
until the search tree is exhausted or a time limit is reached.

Several parameters can be tuned to control the algorithm. The aim of parameters l0 and l is to control the
balance between MA and BS. Parameter l0 indicates how many levels the BS descends before starting running
the MA. A lower value for l0 would give more computation time to the MA component of the algorithm. On
the other hand, parameter l indicates how often, after this initial descent, should the MA be run. In this
case, a low value for this parameter would execute more often the MA component of the algorithm, thus
increasing its influence in the final outcome. Furthermore, parameter k controls the maximum number of
partial solutions maintained on each level of the BS. Increasing this parameter improves the quality of the
results obtained by the BS component, but a very high value may delay the descent along the search tree.

7 Experimental results

The evaluation of the hybrid model has been approached in two stages. Firstly, a sensitivity analysis was
performed to determine an appropriate parameterization. Subsequently, the model was deployed on a full
set of problem instances, and compared with its constituent algorithms as stand-alone techniques. Before
presenting these results, lets us briefly describe the experimental setting.

7.1 Experimental Setting

The experiments have been performed in a Pentium IV PC (2400MHz and 512MB of main memory). All
algorithms were coded in C and compiled using gcc 3.2. For the MA and hybrid algorithm, the experiments
were done using a steady-state evolutionary algorithm (popsize = 100, pm = 1/(2n − 1), pX = 0.9, binary
tournament selection). With the aim of maintaining diversity, duplicated individuals were not allowed in
the population.

The different algorithms have been applied to five data sets comprising real biological data. These
have been downloaded from TreeBASE3, an online repository of publicly available data, and comprise DNA
sequences for a number of taxa ranging from 85 up to 178 (see Table 2 for details). The selection of this test
suite is intended to cover uniformly a reasonable range of instance sizes. These are well beyond the tenable
limit for exact techniques such as branch and bound. In all cases, distance matrices have been computed
using the DNADIST program of the Phylip package4. To be precise, the Kimura 2-parameter model (with
default parameterization) has been used.

3http://www.treebase.org
4http://evolution.genetics.washington.edu/phylip.html

11



Table 2: Description of the data sets used in the experimentation.
M420 M1097 M877 M971 M808

number of taxa 85 107 134 158 178
sequence length 1016 2084 2684 1193 3453
data source [59] [18] [21] [4] [22]

7.2 Sensitivity Analysis on the Hybrid Algorithm

As noted in Section 6, the functioning of the hybrid algorithm can be tuned using several parameters. Aiming
to determine good values for these parameters, a sensitivity analysis was done for problems in the data set.
First of all, different values for k (the search breadth in BS) were tested. Figure 12 shows the evolution of
the hybrid algorithm for values of k ∈ {500, 1000, 1500, 2000, 2500, 3000}. As it can be seen, the best quality
of the solution is obtained for k = 1000. For k = 500, the performance of the hybrid algorithm degrades
because too few nodes are kept by the BS. For greater values, effectiveness also decreases since most of the
computation is dedicated to the BS part of the hybrid algorithm.
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Figure 12: Evolution of best fitness for different values of k for different instances.

Next, the l0 parameter was analyzed. Figure 13 shows the evolution of the hybrid algorithm for different
values of l0 (percentages are with respect to the number of taxa). The best performance of the algorithm
is obtained when the MA starts running after the BS has descended 50% of the number of taxa. For
l0 ∈ {30%, 40%} performance is slightly worse and it decreases considerably for greater values of l0. Lastly,
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Figure 13: Evolution of best fitness for different values of l0 for different instances.

for the l parameter, the best value is l = 3 (see Figure 14). Efficiency clearly improves with lower values for
l.
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Figure 14: Evolution of best fitness for different values of l for different instances.

7.3 Analysis of Results

After the preliminary study in Section 7.2, the parameters for the hybrid algorithm were set to: k = 1000,
l0 = 0.5n and l = 3. For the BS algorithm alone, the greedy algorithm described in Figure 10 was applied to
the best partial solution in each level of the BBT, to improve the incumbent solution. A single execution for
each instance was performed for the BS algorithm (it is a deterministic method) whilst 25 independent runs
per instance were carried out for the MA and hybrid algorithm. All algorithms were run for 3600 seconds.

First of all, results for the three basic agglomerative algorithms, as well as for the neighbor-joining[54] and
Fitch-Margoliash[15] algorithms are shown in Table 3. As expected, the complete-link algorithm provides
much better performance for the quality criterion selected than the other approaches. According to the
experience with smaller instances (for which the optimal solution can be calculated), this value usually lies
near the optimum for this evaluation model.

Table 3: Results of the classical heuristics on the data sets used.
M420 M1097 M877 M971 M808

single-link 2.93600 1.26385 53.82255 6.47470 66.51205
complete-link 2.35685 1.01205 10.15965 4.82025 11.58550
average-link 2.50110 1.04855 10.89800 5.15390 12.45225
neighbor-joining 3.44775 1.24985 18.21510 5.46825 38.20275
Fitch-Margoliash 2.63675 1.09675 29.09415 5.91770 31.86065

The results of the BS, MA and hybrid algorithms are shown in Table 4. Figure 15 compares the temporal
evolution of the best solution found for the BS, MA and hybrid algorithm for two different instances in the
data set. As it can be seen, the BS algorithm does not improve the initial bound provided by the complete
link algorithm. Results for the MA alone are worse than the ones provided by BS. The hybrid algorithm
provides better results than the constituent algorithms all over the run. This indicates the synergy of this
combination, thus supporting the idea that this is a profitable approach for tackling phylogenetic inference.

To test the significance of these results, a statistical analysis has been conducted. A Wilcoxon rank
sum test –also known as Mann-Whitney U test–[36] has been used for this purpose. Unlike t-test, this test
does not assume normality of the samples. In this case, the test indicates that the difference of the hybrid
algorithm with respect to the MA is always significant (at the standard 5% significance level).

8 Conclusions

In this paper we have investigated the effects of hybridizing an exact method (i.e., Branch and Bound) and a
heuristic technique (i.e., a memetic algorithm) for the reconstruction of phylogenetic trees, a computationally
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Figure 15: Evolution of best fitness for the hybrid algorithm, MA and BS for different instances. Curves for
the Hybrid and MA are averaged over 25 runs.

Table 4: Results of the hybrid algorithm, MA and BS on the data sets used.
Hybrid Algorithm

Problem best mean ± std. dev. worst median
M420 2.34905 2.34918 ± 0.00028 2.34995 2.34910
M1097 1.01160 1.01177 ± 0.00010 1.01190 1.01170
M877 10.14010 10.14025 ± 0.00025 10.14080 10.14010
M971 4.78780 4.79303 ± 0.00253 4.79920 4.79235
M808 11.51415 11.51685 ± 0.00237 11.52525 11.51610

Memetic Algorithm
Problem best mean ± std. dev. worst median
M420 2.35555 2.37937 ± 0.01516 2.41785 2.37475
M1097 1.01315 1.02676 ± 0.01024 1.04570 1.02660
M877 10.19010 10.25138 ± 0.03557 10.36410 10.24875
M971 4.83480 4.88207 ± 0.03494 4.94110 4.88340
M808 11.70265 11.81517 ± 0.07383 12.03925 11.80730

Beam Search Algorithm
Problem best mean ± std. dev. worst median
M420 2.355350 n.a. n.a. n.a.
M1097 1.012050 n.a. n.a. n.a.
M877 10.159650 n.a. n.a. n.a.
M971 4.820250 n.a. n.a. n.a.
M808 11.585500 n.a. n.a. n.a.

hard task. Our hybrid model tries to combine the best advantages of both techniques as well as minimize the
drawbacks of both methods as stand-alone techniques. The proposal is based on an interleaved collaboration
of both approaches where, basically, the MA provides improved bounds that the BnB algorithm can use
to purge the problem queue, whereas the BnB guides the MA to look into promising regions of the search
space.

A performance analysis conducted on data sets comprising real biological data shows that the hybrid
model outperformed each of its constituent techniques, as well as classical agglomerative algorithms and
other efficient tree-construction methods. At any rate, it must be noted that the hybrid model represents a
scheme whose performance depends on several parameters. To gain a better understanding of the model, we
have done a dynamics and sensitivity analysis of the model and provided some guidelines about the rationale
behind the setting of the parameters.

There is still room for improvements. For instance, more results could be obtained and analyzed by
taking into account another different ways to traverse the search tree in the BnB part, or by considering
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the possibility of transforming the hybrid algorithm in a complete anytime algorithm (via replacing BS by
alternatives models of BnB). Future work will also focus on the parallelization of the MA and BnB, leading
to better performance. In this case, a parallelized model would demand a new analysis about parameter
selection in order to achieve better understanding of the model.
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