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Modal logics with weak forms of

recursion: PSPACE specimens
S. Demri

abstract. We analyze the computational complexity of exten-
sions of the multimodal version of the standard modal logic K by
finite addition of axiom schemes that can be read as the produc-
tion rules of a formal grammar. By using proof-theoretical means,
we show that every right linear grammar logic has a satisfiability
problem in deterministic exponential time and we exhibit count-
ably infinite classes of right linear grammar logics that contain
weak forms of recursion for which the satisfiability problem can
be solved in polynomial space.

———————-

1 Introduction
In order to explain the algorithmic properties of many modal logics, a 
possible approach consists in studying very expressive decidable logical 
theories in which can be easily embedded the modal logics. The modal 
µ-calculus (see e.g. (Kozen 1983)), the guarded fixed point logic µLGF 
(Grädel and Walukiewicz 1999) and the monadic second-order theory 
of two successors (Rabin 1969) are good representatives of such theo-
ries. Weaker logical theories such as the Propositional Dynamic Logic 
(see e.g. (Pratt 1979, Fischer and Ladner 1979)) and the guarded frag-
ment (Andreka et al. 1998) are also serious candidates although strictly 
less expressive, respectively. Moreover, since both the µ-calculus and 
the guarded fixed point logic µ LGF with bounded arity have an EXP-
TIME-complete satisfiability problem (Grädel and Walukiewicz 1999), 
those logical formalisms inherit the algorithmic properties of weak ex-
tensions of the modal logic K (by adding the universal modal connec-
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2 / S. Demri

tive for example) that are already of the same complexity level. By
contrast, many standard modal logics are known to be in PSPACE
(Ladner 1977, Halpern and Moses 1992) and this algorithmic property is
not reflected by the analysis of most identified fragments of second order
logic. As far as we know, a rare exception can be found in (Marx 1997)
(see also (Lutz et al. 1999, Marx et al. 2000b)), where a PSPACE first-
order fragment is defined capturing multimodal logics with K, T and B
modal connectives plus inclusion, to quote a few examples of logics. This
situation is all the more surprising since many modal logics with weak
forms of recursion (K4, S4, . . . ) are also in PSPACE. So, what is the
adequate first-order/second-order fragment that is responsible for the
algorithmic behavior of PSPACE modal logics? This question could
become meaningful for optimizing the efficiency of mechanical reasoning
for such logics and thus avoiding a blind translation into a rich decid-
able logical theory, possibly algorithmically more expensive in the worst-
case. Although we have no answer for this question, this motivates the
developments made in this paper. We study a countably infinite class
of multimodal logics that can be embedded uniformly into first-order
logic with the relational translation. The target fragment is not known
to belong to identified decidable fragments but we exhibit modal logics
with weak forms of recursion that are in PSPACE.

In order to understand the PSPACE modal logics with weak forms
of recursion, a class of multimodal logics that are worth investigating are
the grammar logics defined in (Fariñas del Cerro and Penttonen 1988)
that are closely related to formal grammars. With each production rule
i1 · . . . · in → j1 · . . . · jn′ in the grammar is associated a reduction princi-
ple [i1] . . . [in]p ⇒ [j1] . . . [jn′ ]p (see e.g. (van Benthem 1976)) which is a
particular form of Sahlqvist formula (Sahlqvist 1975). Observe that the
logical view on grammar presented in (Kracht 2000) differs from the ap-
proach in (Fariñas del Cerro and Penttonen 1988). In the present paper,
we mainly study the extensions of the multimodal logic Km with m inde-
pendent K modal connectives by finite addition of axiom schemes of the
above form such that the associated finite set of production rules forms
a right linear formal grammar. The right linear grammar logics contain
a weak form of recursion although different from the one in the logics
defined in (Halpern and Reif 1983) (e.g., we do not assume any deter-
minism). For instance, consider the multimodal logic L = K5 + [1]p ⇒
[3][2]p, [2]p ⇒ [4][1]p, [2]p ⇒ [5]p. Each modal connective of L corre-
sponds to a PDL modal connective (see e.g. (Demri 2000)). For exam-
ple, [2] in L corresponds to the PDL modal connective [(c4; c3)∗; (c2 ∪
(c4; c1) ∪ c5)]. Though the PDL equivalent of [2] contains the star op-
erator, in the paper we show that L-satisfiability is in PSPACE (The-
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orem 8.1(1)). By contrast, the bimodal logic K2 + [1]p ⇒ [1][2]p is
EXPTIME-complete (see Theorem 7.5). More generally, we wonder
which grammar logics are in PSPACE. In the paper, by proof-theore-
tical means we characterize a class of right linear grammar logics that
are in PSPACE.

A standard way to find PSPACE upper bound for modal logics
consists in designing sound and complete tableaux-like calculi (see e.g.
(Kripke 1963, Ladner 1977, Halpern and Moses 1992, Basin et al. 1997,
Massacci 1998, Baader and Sattler 2000, Marx et al. 2000a)) augmen-
ted with adequate strategies, most of the time depth-first visit of the
proof tree with a controlled amount of contractions. One can however dis-
tinguish the works that establish PSPACE upper bounds but not nec-
essarily the tightest ones (see (Ladner 1977, Halpern and Moses 1992))
from the works that improve the space function by reducing the expo-
nents of the polynomials (see e.g. (Huldelmaier 1993, Hudelmaier 1996)).
This is also sometime a matter of natural chronology as determining the
decidability status of a logic may precede its computational complexity
characterization. The present work belongs rather to the first category
since we wish to establish PSPACE complexity upper bounds by proof-
theoretical means in a uniform way. Although we know that improve-
ments are possible in many cases, we rather concentrate on the gain of
generality and uniformity. Moreover, we want to refine the borderline
between EXPTIME-hard right linear logics and PSPACE right linear
logics in order to partially answer to the following question inspired from
(Vardi 1997, Grädel 1999): why so many (multi)modal logics with weak
forms of recursion are in PSPACE?

For any right linear grammar logic, we shall define an additive se-
quent calculi that is proved to be sound and complete. In the spirit of
(Ohnishi and Matsumoto 1957), the calculi use neither labels nor a gen-
eralized form of sequents. Other kinds of sequent-style calculi for these
logics already exist in the literature, see e.g. (Kracht 1996, Sza las 1996,
Basin et al. 1998, Baldoni 1998) and we believe that the present formu-
lation of the calculi is quite adequate to find complexity upper bounds
mainly because of our treatment of contraction. Then, we show that
given a right linear grammar G and a modal formula φ, deciding whether
the formula is satisfiable in the extension ofKm with axiom schemes from
G can be done in deterministic exponential-time in the size of G and φ.
We refer to this problem as the general satisfiability problem for right lin-
ear grammar logics. The complexity upper bound is established by using
a standard loop checking method dual to the one in (Pratt 1979). An
extension is also presented for the global logical consequence problems.
This improves upper bounds from (Baldoni 1998, Baldoni et al. 1998).
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We also easily show that the general satisfiability problem for right linear
grammar logics is EXPTIME-hard by exhibiting a decidable countably
infinite class of EXPTIME-hard right linear grammar logics. Further
classes of EXPTIME-hard grammar logics can be found in the com-
panion paper (Demri 2000).

In the second part of the paper, we propose a characterization of
PSPACE decision procedures from the sequent calculi that allows us
to show uniformly that all the right linear grammar logics from some
identified countably infinite classes of logics are in PSPACE. We have
indeed found decidable sufficient syntactic properties of the right lin-
ear grammars that guarantee that the generated logics from the gram-
mars are in PSPACE. All the complexity upper bounds established in
the paper are obtained by analyzing proofs in the sequent calculi and
thus this follows the proof-theoretic alternative described in Section 8 in
(van Benthem 2000) to explain the algorithmic behavior of modal logics.

For instance, we are able to show that given a bimodal extension of
K2 obtained from K2 by additing axiom schemes from either a left linear
or a right linear grammar, deciding whether the satisfiability problem
of the logic is in PSPACE can be done in linear-time in the size of
the grammar. Although the right linear grammars generate the same
class of languages as the left linear grammars, this correspondence is
not relevant at the level of grammar logics.

2 Logics

Given the set PRP = {pi : i ∈ N} of propositional variables, the set
FORM of modal formulae is defined as the smallest set such that PRP ⊆
FORM and, if φ, ψ ∈ FORM, then φ∧ψ ∈ FORM, ¬φ ∈ FORM and for
i ≥ 1, [i]φ ∈ FORM. For m ≥ 1, we write Lm to denote the restriction of
the modal language to the modal connectives in {[i] : i ∈ {1, . . . ,m}}.
Standard abbreviations include ∨, ⇒, 〈i〉. A necessity formula is a
formula of the form [i]φ for some i ≥ 1. The set sub(φ) of subformulae
of the formula φ is defined in the standard way. The modal depth
of an occurrence of a formula ψ in φ is the number of occurrences of
modal connectives that dominate ψ in φ. We write md(φ) to denote the
maximal modal depth of the subformulae of φ. An occurrence of the
subformula ψ in φ is positive [resp. negative] def⇔ it is in the scope of
an even [resp. odd] number of negations. The possibility weight [resp.
necessity weight] of a formula φ, denoted pw(φ) [resp. nw(φ)], is the
number of occurrences of subformulae of the form [i]ψ with negative
[resp. positive] polarity. The notation Γ, φ, where Γ is a finite multi-set
of formulae and φ is a formula, designates a multi-set which is the union
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of Γ with the singleton multi-set containing only φ. Let f be a map
f : FORM → N. If Γ = φ1, . . . , φn is a finite multi-set of formulae, by
f+(Γ) we mean the natural number f(φ1) + . . . + f(φn). Similarly, for
i ∈ {1, . . . ,m}, for any multi-set Γ = φ1, . . . , φn of formulae, we write
[i]Γ [resp. ¬Γ] to denote [i]φ1, . . . , [i]φn [resp. ¬φ1, . . . ,¬φn]. We also
write Set(Γ) to denote the set of formulae occurring in Γ and φ ∈ Γ for
φ ∈ Set(Γ).

For any Lm-formula φ, we write r(φ) to denote the rank of φ; that is,
the number of occurrences of members of PRP ∪ {¬,∧} ∪ {[i] : 1 ≤ i ≤
m}. For example r(p ∧ (q ∧ ¬p)) = 6. Under reasonable hypothesis, the
length of an Lm-formula φ, noted |φ|, is in O(r(φ)× (log r(φ) + log m)).
As usual in complexity theory, the extra logarithmic factor is due to the
fact that we need an index of size log r(φ) for the different propositional
variables.

An Lm-frame is a structure F = 〈W,R1, . . . , Rm〉 such that W
is a nonempty set and for i ∈ {1, . . . ,m}, Ri is a binary relation on
W . An Lm-model is a structure M = 〈W,R1, . . . , Rm, V 〉 such that
〈W,R1, . . . , Rm〉 is an Lm-frame and V is a valuation V : PRP → P(W ).
The standard definition of the satisfiability relation |= is omitted here
(see e.g. (Blackburn et al. 2001)). An Lm-formula φ is said to be true
in the Lm-model M (written M |= φ) def⇔ for all x ∈W , M, x |= φ. An
Lm-formula φ is said to be true in the Lm-frame F (written F |= φ) def⇔
φ is true in all the Lm-models based on F .

In this paper, a modal logic L is understood as a pair 〈Lm,S〉 where
Lm is a modal language with m modal connectives and S is a nonempty
class of Lm-frames. The class S is usually defined in terms of properties
that the relations in the frames of S are supposed to satisfy. An Lm-
formula is said to be L-satisfiable def⇔ there is an Lm-model based on
some F ∈ S and x ∈ W such that M, x |= φ. An Lm-formula is said
to be L-valid def⇔ for all the L-models M based on some frame in S,
φ is true in M. L-satisfiability and L-validity can be easily extended to
finite sets of formulae understood as conjunctions.

3 Grammar Logics
For any alphabet Σ (finite set of symbols), we write Σ∗ [resp. Σ+] to
denote the set of [resp. nonempty] finite strings built over elements of
Σ. ε denotes the empty string and u1 · u2 denotes the concatenation of
two strings. For any finite string u, we write |u| to denote its length. For
any u ∈ Σ∗, we write uk to denote the string composed of k copies of u.
By convention, u0 = ε.

A (formal) grammar G is a quadruple G = 〈N,Σ, P, S〉 such that
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N and Σ are disjoint finite sets of nonterminal symbols and terminal
symbols, respectively (in the paper we allow Σ empty). P is a finite set
of production rules, each production rule is of the form u → v such
that u ∈ (N∪Σ)∗N(N∪Σ)∗ and v ∈ (N∪Σ)∗. Finally, S ∈ N is a special
symbol called the start symbol (see e.g. (Hopcroft and Ullman 1979)).
For the grammar G, the size of G, denoted |G|, is

|G| def= (card(N)+card(Σ)+Σu→v∈P (|u·v|+1))×log(card(N)+card(Σ))

Let ⇒G be the direct derivation relation defined as the subset of (N ∪
Σ)∗ × (N ∪ Σ)∗ such that u ⇒G v

def⇔ there is a production rule u′ →
v′ ∈ P such that u = u1 · u′ · u2, v = u1 · v′ · u2, u1, u2 ∈ (N ∪ Σ)∗. Let
⇒∗

G be the reflexive and transitive closure of ⇒G . For i ∈ (N ∪ Σ), we
write Li(G) to denote the set of strings {u ∈ Σ∗ : i⇒∗

G u}. For instance,
for i ∈ Σ, Li(G) = {i}. A grammar G is said to be strongly finite [resp.
finite] def⇔ for i ∈ N , {u ∈ (N ∪ Σ)∗ : i ⇒∗

G u} is finite [resp. Li(G) is
finite]. It is possible that for some i ∈ N , Li(G) is empty although G is
not strongly finite.

In the rest of the paper we assume that each grammar 〈N,Σ, P, S〉
satisfies N = {1, . . . , k} for some k ≥ 1, Σ = {k + 1, . . . ,m} for some
k ≤ m (we allow Σ to be empty) and S = 1.

Let G = 〈N,Σ, P, S〉 be a grammar and ; be the binary relation
in N × (N ∪ Σ)∗ such that i ; u

def⇔ either there is j → u ∈ P such
that i ⇒∗

G j or u ∈ N and i ⇒∗
G u. If G is right [resp. left] linear,

then by using the technique for eliminating the unit production rules
(Hopcroft and Ullman 1979), one can compute in polynomial-time in
|G| a right [resp. left] linear grammar G′ = 〈N ′,Σ′, P ′, S′〉 such that
N = N ′, Σ = Σ′, S = S′, P ⊆ P ′ and for 〈i, u〉 ∈ (N ∪ Σ)∗, i ; u in
G iff i → u ∈ P ′. For i ∈ N , we have {u ∈ (N ∪ Σ)∗ : i ⇒∗

G u} = {u ∈
(N∪Σ)∗ : i⇒∗

G′ u}. In the case when G is either left linear or right linear
(called regular in the sequel), ; can be computed in polynomial-time
in |G| and for all i ∈ N ,

∑
i;u |u| ≤ |G|. Although G and G′ generate

the same language (L1(G) = L1(G′)), in the sequel we do not assume
that the grammars are necessarily of the form of G′. Indeed, grammars
generating the same language, may engender different grammar logics.
The binary relation ; is used in Section 4 to define sequent calculi.

Let G be a grammar and S be a class of Lm-frames. We write SG
to denote the subset of S such that for any F = 〈W,R1, . . . , Rm〉 ∈ S,
F ∈ SG def⇔ for any production rule i1 . . . ik′ → j1 . . . jk′′ in G, Rj1 ◦ . . .◦
Rjk′′ ⊆ Ri1 ◦. . .◦Rik′ . For the logic Lm = 〈Lm,Sm〉 where Sm is the class
of all the Lm-frames, we write LGm to denote the logic 〈Lm,SGm〉. LGm is
said to be a grammar logic (Fariñas del Cerro and Penttonen 1988).
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For any string u = i1 · . . . · in in {1, . . . ,m}∗, we write Ru to denote
Ri1 ◦ . . . ◦Rin . When u = ε, Ru

def= {〈x, x〉 : x ∈W}. Moreover, we write
[u]φ to denote the Lm-formula [i1] . . . [in]φ where u = i1 · . . . · in. If u = ε,
then [u]φ is simply φ.

Theorem 3.1 Let G = 〈N,Σ, P, S〉. For u, v ∈ (N ∪ Σ)∗, (I) u ⇒∗
G v

iff (II) [u]p ⇒ [v]p is LGm-valid iff (III) for all LGm-models Rv ⊆ Ru.

The equivalence between (II) and (III) is a classical correspondence
result in modal logic theory (see e.g. (van Benthem 1984)). (I) implies
(II) can be proved by induction on the length of the derivation whereas
(II) implies (I) can be shown by using part of the proof of Theorem 3
in (Chagrov and Shehtman 1994). In order to study the grammar logic
LGm, what is essential is the value of the set P of production rules whereas
once P is fixed, the value of the start symbol S and the distribution of the
terminal and nonterminal symbols are immaterial for LGm-satisfiability.
Hence, semi-Thue rewriting systems are also appropriate to define gram-
mar logics.

The general satisfiability problem GSP(REG) [resp. GSP(LIN),
GSP(RLINf ), GSP(RLIN)] for regular grammar [resp. linear grammar,
finite right linear grammar, right linear grammar] logics is defined as
follows:

• Inputs: a regular [resp. right linear, finite right linear, linear] gram-
mar G and an Lm-formula φ;

• Question: Is φ LGm-satisfiable?

The above general satisfiability problems can be viewed as syntac-
tic variants of satisfiability problems for fragments of the well-known
description logic ALC augmented with role value maps (see details in
(Demri 2000)).

It is known that the multimodal logic Km, m ≥ 1, has a PSPACE-
complete satisfiability problem (see e.g. (Halpern and Moses 1992)). Ad-
ding a regular set of modal axioms preserves the PSPACE complexity
lower bound.

Theorem 3.2 Let G be either a regular grammar or a context-free gram-
mar with a nonempty set of terminal symbols. Then, LGm-satisfiability is
PSPACE-hard.

A natural proof consists in reducing satisfiability for either the modal
logic K or the modal logic T into LGm-satisfiability. The only difficulty
in the proof is to show that for any binary relation R there is an LGm-
frame with Rm = R. Additionally, GSP(LIN) is undecidable. This can
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Γ, φ ` ∆, φ (initial sequents)
Γ ` ∆, φ

Γ,¬φ ` ∆
(¬ `)

Γ, φ ` ∆
Γ ` ∆,¬φ (` ¬)

Γ, φ1, φ2 ` ∆
Γ, φ1 ∧ φ2 ` ∆

(∧ `)
Γ ` ∆, φ1 Γ ` ∆, φ2

Γ ` ∆, φ1 ∧ φ2
(` ∧)

FIGURE 1 Initial sequents and standard rules for propositional connectives

be proved by reducing the problem of empty intersection between linear
languages into GSP(LIN) (see e.g. (Rozenberg and Salomaa 1994)) by
using either prefixed tableaux calculi (Baldoni et al. 1998) or the equa-
tional characterization of context-free languages (Demri 2000).

4 Sequent calculi
4.1 Definitions
Let G be a right linear grammar. The basic syntactic objects in the calculi
are sequents. A sequent is an expression of the form Γ ` ∆ where Γ
and ∆ are finite multi-sets of formulae, Γ is the antecedent and ∆ the
succedent. We write SEQm to denote the class of all sequents built
over the modal language Lm. The additive sequent calculus GLGm for the
logic LGm contains the rules from Figure 1 for the propositional fragment
of LGm. The rules are read upwards and other rules depending of G are
presented below. The left-hand side introduction rule [i] is defined below
only if i⇒∗

G ε:
Γ, [i]φ, φ ` ∆
Γ, [i]φ ` ∆

([i] `)

The right-hand side introduction rule for [i] is defined as follows. For
i ∈ {1, . . . , k}, let ; (i) = {ui,1, . . . , ui,li} where given a binary relation
R on U and x ∈ U , R(x) def= {y ∈ U : 〈x, y〉 ∈ R}. For j ∈ {1, . . . ,m}
and for i ∈ {1, . . . , k}, let startij = {〈i, k′〉 : ui,k′ = j · vi,k′}. Let i ∈
{k + 1, . . . ,m}. The (` [i]) rule is defined as follows:⋃

〈1,k′〉∈start1i
[v1,k′ ]Γ1, . . . ,

⋃
〈k,k′〉∈startki

[vk,k′ ]Γk,Γi ` φ

Γ′, [1]Γ1, . . . , [k]Γk, [i]Γi ` [i]φ,∆
(` [i])

Moreover, we assume that in Γ′, there is no formula of the form [j]ψ for
some j ∈ {1, . . . , k} ∪ {i}. It remains to define for i ∈ {1, . . . , k}, the
(` [i]) rule:

Γ′1, . . . ,Γ
′
k ` φ

Γ′, [1]Γ1, . . . , [k]Γk ` [i]φ,∆
(` [i])

where for j ∈ {1, . . . , k}, if j ; i, then Γ′j
def= Γj , otherwise Γ′j

def= ∅
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(empty multi-set). Moreover, we assume that in Γ′, there is no formula
of the form [j]ψ for some j ∈ {1, . . . , k}.

For i ∈ {1, . . . ,m} we abbreviate the (` [i]) rule by

Γ[i] ` φ
Γ ` [i]φ,∆

(` [i])

where the appropriate definition of Γ[i] from Γ is immediate from the
above cases.

The ([i] `) rules and the (` [i]) rules are defined from the strings u
satisfying i ; u and not only from the ones satisfying i→ u ∈ P . This
is the price we may have to pay in the (` [i]) rules since we want to
introduce a [i]-formula at the right-hand side and to take into account
the grammatical properties of the logic simultaneously.

An implicit contraction is operated in the ([i] `)-rule (if i ⇒∗
G ε)

whereas implicit contractions can be found also in the applications of
the (` [i])-rule but this depends on the structure of G (see e.g. Section 8
for calculi with no implicit contractions). In order to get the PSPACE
upper bounds, our main task is to control contraction and this requires
a careful analysis.

Example 4.1 Let Grl = 〈{1, 2}, {3, 4}, {1 → 3·3·1, 1 → 2, 1 → 4·2, 2 →
4 · 4 · 4 · 2}, 1〉 be a right linear grammar. The (` [4]) rule is defined as
follows:

[2]Γ1, [4][4][2](Γ1,Γ2),Γ4 ` φ
Γ′, [1]Γ1, [2]Γ2, [4]Γ4 ` [4]φ,∆

(` [4])

Observe the duplication of Γ1.

As is usual, a proof Π in GLGm is a tree whose nodes are labelled by
sequents satisfying the following conditions: the topmost sequents of Π
are initial sequents and every sequent of Π, except the lowest one is an
upper sequent of an inference whose lower sequent is also in Π. A sequent
Γ ` ∆ is provable in GLGm

def⇔ there is a proof where the lowest sequent
is Γ ` ∆. A formula φ is provable in GLGm

def⇔ the sequent ∅ ` φ (also
noted ` φ) is provable in GLGm. A sequent Γ ` ∆ is consistent def⇔
Γ ` ∆ is not provable in GLGm.

A sequent Γ ` ∆ is downward saturated def⇔ for φ ∈ Γ and for
ψ ∈ ∆:

• φ = φ1∧φ2 implies φ1, φ2 ∈ Γ; φ = [i]φ1 and i⇒∗
G ε imply φ1 ∈ Γ;

• φ = ¬φ1 implies φ1 ∈ ∆; ψ = ¬ψ1 implies ψ1 ∈ Γ;
• ψ = ψ1 ∧ ψ2 implies either ψ1 ∈ ∆ or ψ2 ∈ ∆.
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A derivation is defined as a proof except that the topmost sequents
are not necessarily initial sequents. The derivations are supposed to grow
upwards. If Π is a derivation of Γ ` ∆ we write σ = Γ0 ` ∆0 ≺ (r1)Γ1 `
∆1 ≺ (r2) . . . ≺ (rn−1)Γn ` ∆n to denote the fact that there is an
initial segment σ of a branch in Π from the root Γ0 ` ∆0 = Γ ` ∆
such that for i ∈ {0, . . . , n − 1}, Γi+1 ` ∆i+1 is one of the premisses
of the inference of the rule (ri+1) with conclusion Γi ` ∆i. We omit to
write the ri’s when they are of no use. We write Ant(σ) [resp. Suc(σ)]
to denote the antecedent set

⋃
0≤i≤n Set(Γi) [resp. the succedent set⋃

0≤i≤n Set(∆i)]. We write last(σ) [resp. first(σ)] to denote Γn ` ∆n

[resp. Γ0 ` ∆0]. The sequence σ is said to be local def⇔ no ri is the
right-hand side introduction rule (` [j]) for some j ∈ {1, . . . ,m}. The
sequence σ is said to be consistent def⇔ all the Γi ` ∆i are consistent.
The sequence σ is said to be maximal def⇔ σ is local and Ant(σ) `
Suc(σ) is downward saturated. The maximal and consistent sequences
play the role of downward saturated sets in the standard terminology for
tableaux (see e.g. (Goré 1999) for further details and historical notes).
This complication is due to the fact that we consider multi-sets instead
of sets in the sequents. The reward is that we can more easily control
contraction and this shall be helpful to get PSPACE complexity upper
bounds.

4.2 Properties
Let φ be a formula. The closure of φ with respect to G is the smallest
set clG(φ) of formulae such that clG(φ) is closed under subformulae,
sub(φ) ⊆ clG(φ) and if i ; u and [i]ψ ∈ clG(φ), then [u]ψ ∈ clG(φ). One
can prove that card(clG(φ)) is bounded by |G| × r(φ). We write SEQ(φ)
to denote the set of sequents Γ ` ∆ such that

⋃
ψ∈Γ,∆ clG(ψ) ⊆ clG(φ).

Lemma 4.2 Let Γ ` ∆ be a sequent. Then, every formula occurring in
a derivation of Γ ` ∆ belongs to

⋃
ψ∈Γ,∆ clG(ψ).

The (easy) proof is by induction on the depth of the proof tree. Fol-
lowing for instance the terminology from (Goré 1999), GLGm has there-
fore the analytical superformula property and obviously GLGm does not
have necessarily the subformula property.

Lemma 4.3 Γ ` ∆ is a provable sequent in GLGm iff Γ ` ∆ has a proof
in GLGm such that all the initial sequents are of the form Γ′,p ` p,∆′

where p is a propositional variable.

The proof of Lemma 4.3 is standard. It is sufficient to show in the
induction step that for every initial sequent Γ′, φ ` φ,∆′ with r(φ) ≥ 2,
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there is a proof of Γ′, φ ` φ,∆′ such that all the initial sequents are of
the form Γ′, ψ ` ψ,∆′ with r(ψ) < r(φ).

A rule is invertible def⇔ for every inference of the rule, the conclusion
has a proof iff the premises have proofs.

Lemma 4.4 The rules (∧ `), (` ∧), (¬ `), (` ¬) and ([i] `) if i⇒∗
G ε

are invertible.

The proof of Lemma 4.4 uses Lemma 4.3 and is not difficult to show.
For instance, invertibility of ([i] `) if i⇒∗

G ε, is immediate.

Lemma 4.5 Let Γ ` ∆ be a consistent sequent. Then, there is a maxi-
mal and consistent sequence σ = Γ0 ` ∆0 ≺ Γ1 ` ∆1 ≺ . . . ≺ Γn ` ∆n

with Γ0 ` ∆0 = Γ ` ∆.

Proof. Since Γ ` ∆ is consistent, we know that no proof of Γ ` ∆ exists
and there is no propositional variable occurring in both Γ and ∆. Let
Γ0 ` ∆0 = Γ ` ∆. If Γ0 ` ∆0 is downward saturated, then we are done.
Now suppose that σi = Γ0 ` ∆0 ≺ Γ1 ` ∆1 ≺ . . . ≺ Γi ` ∆i is a local
sequence, Ant(σi) ` Suc(σi) is not downward saturated and each Γj `
∆j , 0 ≤ j ≤ i, is consistent. For instance, suppose that φ1∧φ2 ∈ Ant(σi)
and φ1, φ2 6∈ Ant(σi). Hence, φ1∧φ2 ∈ Γi since otherwise φ1, φ2 ∈ Γi′ for
some i′ < i. Apply the (∧ `)-rule to an occurrence of φ1 ∧φ2 in Γi ` ∆i

and let Γi+1 ` ∆i+1 be (Γi \ {φ1 ∧ φ2}), φ1, φ2 ` ∆i. Since the (∧ `)-
rule is invertible (see Lemma 4.4), Γi+1 ` ∆i+1 is also consistent. If
Γ0 ` ∆0 = Γ ` ∆ and Ant(σi) ` Suc(σi) is not downward saturated for
some other reason, we use a similar reasoning with obvious adaptations
(we may have to choose between two branches). Lemma 4.2 guarantees
termination and the length of σ can be bounded by card(clG(Γ,∆)). a

4.3 Completeness
Following (Rautenberg 1983) (see also (Goré 1999)), we introduce the
central notion of model graph. We prove completeness using the well-
known technique due to Schütte (see e.g. (Schütte 1967, Takeuti 1975)).

Definition 4.6 A model graph for some sequent Γ ` ∆ is an Lm-
frame of the form 〈W,R1+m, . . . , R2×m〉 such that W is a countable set
of maximal and consistent sequences such that

1. for σ ∈W , Ant(σ) ∪ Suc(σ) ⊆
⋃
ψ∈Γ,∆ clG(ψ);

2. there is σ0 such that Set(Γ) ⊆ Ant(σ0) and Set(∆) ⊆ Suc(σ0);
3. for σ ∈ W , if [i]φ ∈ Suc(σ) for some i ∈ {1, . . . ,m}, then there is
σ′ ∈W such that σRi+mσ′ and φ ∈ Suc(σ′);
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4. for σ, σ′ ∈W , if σRi+mσ′ and j ; i ·u for some 〈i, j〉 ∈ {1, . . . ,m}
× {1, . . . , k}, and [j]φ ∈ Ant(σ), then [u]φ ∈ Ant(σ′);

5. for σ, σ′ ∈ W , if σRi+mσ′ for some i ∈ {k + 1, . . . ,m}, and [i]φ ∈
Ant(σ), then φ ∈ Ant(σ′).

A direct consequence of Definition 4.6(4) is that Definition 4.6(5)
holds true even for i ∈ {1, . . . , k}. The cornerstone of the completeness
proof is the following result.

Theorem 4.7 If there is a model graph for Γ ` ∆, then Set(Γ) ∪
Set(¬∆) is LGm-satisfiable.

Proof. (sketch) For i ∈ {1, . . . , k}, there is li ≥ 0 such that i→ ui,1, . . . ,
i → ui,li are the only production rules in P having i as left-hand side.
Let W be a countable non-empty set and Rm+1, . . . , R2×m be binary
relations on W . Let f : P(W ×W )m → P(W ×W )m be the map such
that

f(R1, . . . , Rm) def=

〈(R1+m ∪
⋃

1≤j≤l1

Ru?
1,j

), . . . , (Rk+m ∪
⋃

1≤j≤lk

Ru?
k,j

), Rk+1+m, . . . , R2×m〉

where u?i,j is a string obtained from ui,j by replacing i ∈ {k+ 1, . . . ,m}
by i+m. Let ≤ be the binary relation on P(W×W )m defined as follows:
〈R1, . . . , Rm〉 ≤ 〈R′1, . . . , R′m〉

def⇔ for all i ∈ {1, . . . ,m}, Ri ⊆ R′i. The
structure 〈P(W ×W )m,≤〉 is a complete lattice and f is continuous and
order-preserving. By Kleene’s Theorem, the least fixed point of f exists
and is equal to

µ(f) =
⋃
i∈N

f i(∅, . . . , ∅) def= 〈R1, . . . ,Rm〉.

By construction, 〈W,R1, . . . ,Rm〉 is an LGm-frame such that for i ∈
{1, . . . ,m}, Ri+m ⊆ Ri and Ri ⊆ (Rm+1 ∪ . . . ∪R2×m)∗.

Let 〈W,R1+m, . . . , R2×m〉 be a model graph for Γ ` ∆. We define an
LGm-modelM = 〈W,R1, . . . ,Rm, V 〉 as follows: 〈R1, . . . ,Rm〉 is the least
fixed point of f defined with R1+m, . . ., R2×m and for any propositional
variable p, V (p) def= {σ ∈W : p ∈ Ant(σ)}.

By induction on formulae we can show that for all σ ∈ W , for φ ∈
Ant(σ) ∪ Suc(σ), if φ ∈ Ant(σ), then M, σ |= φ otherwise M, σ 6|= φ.
Moreover, there is σ0 ∈ W such that Set(Γ) ⊆ Ant(σ0) and Set(∆) ⊆
Suc(σ0). Consequently, M, σ0 |= Set(Γ) ∪ Set(¬∆). a

Theorem 4.8 For any sequent Γ ` ∆, (
∧
φ∈Γ φ) ⇒ (

∨
φ∈∆ φ) is LGm-

valid iff the sequent Γ ` ∆ is provable in GLGm.
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Proof. The soundness proof is standard by using an induction on the
depth of the proof tree. In order to prove completeness, we assume that
(
∧
φ∈Γ φ) ⇒ (

∨
φ∈∆ φ) is LGm-valid and suppose that Γ ` ∆ is consistent.

The first step is to create a maximal and consistent sequence σ0 starting
with Γ ` ∆ (see Lemma 4.5). Since σ0 is consistent, last(σ0) is consistent.
We use this fact to construct an Lm-frame whose infinite limit will be a
graph model. This is a meta-level construction for which we can visit all
derivations for last(σ0), choosing nodes at will, since all such derivations
cannot be completed as proofs. We use the successor relations Ri, 1 ≤
i ≤ m while building this frame. By Theorem 4.7, (

∧
φ∈Γ φ)∧(

∧
φ∈∆ ¬φ)

is LGm-satisfiable which will lead to a contradiction.
Let us show how to build the model graph. If no [i]φ occurs in the

succedent part of last(σ0), then the structure 〈{σ0}, ∅, . . . , ∅〉 is a model
graph for Γ ` ∆. Otherwise, for i ∈ {1, . . . ,m}, let ψ1

i , . . . , ψ
si
i be all the

formulae such that [i]ψji occurs in the succedent part of last(σ0). Let
Γ′ be the antecedent part of last(σ0). Since last(σ0) is consistent, for
i ∈ {1, . . . ,m}, for j ∈ {1, . . . , si}, Γ

′[i] ` ψji is also consistent. For i ∈
{1, . . . ,m}, for j ∈ {1, . . . , si}, create a maximal and consistent sequence
σi,j starting with Γ

′[i] ` ψji and put σ0Riσi,j . The sequences σi,j are said
to be of level 1.

∑m
i=1 si is bounded by |G| × (

∑
ψ∈Γ r(ψ) +

∑
ψ∈∆ r(ψ))

and this shall hold true at any level. Continue to create the nodes of
further levels in a similar way. Either this procedure can go forever (but
the infinite limit frame is a model graph for Γ ` ∆) or the procedure
stops after a finite amount of time (the number of level is finite as well
as the resulting model graph). a

5 GSP(RLIN) is EXPTIME-complete
No single rule (` [i]) for some i ∈ {1, . . . ,m} in GLGm captures all the
properties of the relation Ri in the LGm-frames unlike the combination of
all the introduction rules for necessity formulae. As in the single steps
calculi in (Massacci 1994) (see also (Goré 1999, Massacci 2000)), the clo-
sure property of the LGm-frames (see the proof of Theorem 4.7) is encoded
step by step and this is the key point to characterize the complexity of
GSP(RLIN). That is why, we can improve the complexity upper bound
of GSP(RLIN) from (Baldoni 1998, Baldoni et al. 1998).

Theorem 5.1 GSP(RLIN) is in EXPTIME.

Proof. We use a technique that is dual to the method in (Pratt 1979)
that shows that PDL satisfiability is in EXPTIME. By Theorem 4.8, φ
is LGm-satisfiable iff ¬φ is not provable in GLGm and therefore we concen-
trate on validity instead of satisfiability since our procedure is determin-
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istic. Actually, we use a variant of GLGm, namely SETGLGm, where the
sequents are pairs of finite sets (instead of finite multi-sets). A contrac-
tion is explicitly operated for the rules (` ∧), (∧ `), (¬ `) and (` ¬).
Following the developments of Section 4, one can show that X ` Y is
provable in SETGLGm iff the formula (

∧
φ∈X φ) ⇒ (

∨
φ∈Y φ) is LGm-valid.

Let φ be a formula for which we want to know whether φ is LGm-valid. The
rules of the proof system SETGLGm can be computed in polynomial-time
in |G| since the binary relation ; can be computed in polynomial-time
in |G| and all the rules are of size in O(|G|). Their applicability can be
checked in polynomial-time in |G| and in the size of the premiss and con-
clusion sequents. The cost of the computation of SETGLGm is relevant
here since G is part of the inputs.

The cardinality of the set clG(φ) is at most |G|×r(φ). Let SETSEQ(φ)
be the finite set of sequents X ` Y for X,Y ⊆ clG(φ). SETSEQ(φ) is
obviously a subset of the countably infinite set SEQ(φ) where only sets
can occur in the sequents of SETSEQ(φ). The cardinality of SETSEQ(φ)
is bounded by 2|G|×r(φ)+1 and the size of each X ` Y is at most 2×(|G|×
|φ|)2. Obviously, ` φ belongs to SETSEQ(φ). We define a sequence of
sets Z1 ⊆ Z2 ⊆ Z3 ⊆ . . . included in SETSEQ(φ). Z1 is defined as the set
of sequents X ` Y from SETSEQ(φ) such that X ∩Y 6= ∅. Now suppose
that Zi is defined and let us define Zi+1. For X ` Y ∈ SETSEQ(φ),
X ` Y ∈ Zi+1

def⇔ either (C1) X ` Y ∈ Zi or (C2) there are X1 `
Y1, Xl ` Yl ∈ Zi such that

X1 ` Y1 . . . Xl ` Yl
X ` Y (r)

is a correct inference of the rule (r) in SETGLGm. The index l takes the
value either 1 or 2 according to the form of the rule (r). Since card(X)+
card(Y ) ≤ 2×|G|×r(φ), each formula in X ` Y can be principal in only
one rule, checking the condition (C2) can be done in exponential time in
|G|+|φ|. If ` φ ∈ Zi+1, we stop and return ’yes’ φ is LGm-valid. Otherwise,
we continue the construction. Since Zi ⊆ Zi+1 and SETSEQ(φ) has at
most 2|G|×r(φ)+1 elements, this construction terminates after at most
exponentially many stages. Computing Zi+1 can be done in deterministic
exponential time in |G|+ |φ|. Hence, the whole construction can be done
in deterministic exponential time in |G|+ |φ|. Whenever Zi = Zi+1 and
` φ 6∈ Zi, we return ’no’, φ is not LGm-valid. The procedure can be shown
to be correct. a

The procedure in the proof of Theorem 5.1 is more suited for proving
theoretical results than for being used in applications. It can be viewed
as the addition of a highly inefficient loop checking to the calculi GLGm
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(see e.g. (Ladner 1977, Fitting 1983, Cerrito and Cialdea Mayer 1997,
Heuerding 1998) for related matters). Besides the EXPTIME upper
bound is sharp enough.

Theorem 5.2 For m ≥ 2, there is a decidable countably infinite set of
right linear grammars such that LGm-satisfiability is EXPTIME-hard.

Proof. (sketch) Let Gi, i ≥ 1, be the right linear grammar

〈{1}, {2, . . . ,m}, {1 → ε, 1 → 2i · 1}, 1〉.

For any two different prime numbers n, n′, we have L1(Gn) 6= L1(Gn′). By
Theorem 3.1, this guarantees that we have defined a countably infinite
set of essentially different right linear grammar logics. Let L(2) be the
standard modal language for the modal logic K. Let K-GSAT be the
set of standard modal formulae φ such that there is a Kripke model
M = 〈W,R, V 〉 satisfying M |= φ. The global satisfiability problem K-
GSAT is known to be EXPTIME-hard (Chen and Lin 1994) (see also
(Hemaspaandra 1996)). Let φ be a formula of L(2). One can show that
φ belongs to K-GSAT iff

∧
0≤α≤i−1[2α · 1]φ′ is LGi

m -satisfiable where φ′

is obtained from φ by replacing every occurrence of 2 by [2]. a

Theorem 5.3 GSP(RLIN) is EXPTIME-complete.

There is also a natural log-space transformation from GSP(RLIN)
into satisfiability for the µ-calculus with multiple fixed points (see e.g.
(Park 1981, Streett and Emerson 1989, Grädel et al. 2000). By way of
example, the translation t([2]φ) of [2]φ for the right linear grammar
logic L from Section 1 is

νX2(X1, X2, X3).〈[1]X3 ∧ [3]X2, [2]X3 ∧ [4]X1 ∧ [5]X3, t(φ)〉

where X3 is used as a renaming variable. The principle behind this exam-
ple can be generalized to any modal connective of a right linear grammar
logic. However, by using a polynomial-time transformation into satisfi-
ability for PDL with finite automata one can show that GSP(REG),
the extension of GSP(RLIN) with left linear grammars, is EXPTIME-
complete (Demri 2000).

The general global logical consequence problem for right linear gram-
mar logics GGLC(RLIN) takes as inputs a right linear grammar G and
two Lm-formulae φ, ψ and checks whether for all LGm-models M, M |= φ
implies M |= ψ. For any right linear grammar G, GLC(LGm) denotes the
problem obtained from GGLC(RLIN) by fixing the grammar to G. The
calculus GLGm can be extended in order to deal with GGLC(RLIN). The
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sequents are of the form Γ `φ ∆ for the Lm-formula φ. GLGm is extended
by writing `φ instead of `. However, one rule is added:

Γ, φ `φ ∆
Γ `φ ∆

glcφ

glcφ is an obvious adaptation of existing rules for capturing global logical
consequence (see e.g. (Fitting 1983, Heuerding 1998, Massacci 2000)).
One can show that for any sequent Γ `φ ∆, the formula 〈φ, (

∧
ψ∈Γ ψ) ⇒

(
∨
ψ∈∆ ψ)〉 ∈ GLC(LGm) iff the sequent Γ `φ ∆ is derivable in GLGm +

glcφ. Similarly, one can show that GGLC(RLIN) is in EXPTIME by
adapting the proof of Theorem 5.1.

6 A sufficient condition for PSPACE decision proce-
dures

The completeness proof of Theorem 4.8 and the proof of Lemma 4.5
induce a depth-first systematic procedure to determine whether a se-
quent Γ ` ∆ is provable in GLGm or not. In the proof of Lemma 4.5, in
order to obtain a maximal sequence σ starting from a given sequent in
a derivation ` φ, essential backtracking points are introduced when the
rule (` ∧) needs to be applied. Moreover, the length of such a sequence
σ is bounded by |G| × r(φ). By Lemma 4.2 and since card(clG(φ)) is
bounded by |G| × r(φ), the number of backtracking points is bounded
by |G|× r(φ). Similarly, in the proof of Theorem 4.8, other backtracking
points are introduced when the rule (` [i]) for some i ∈ {1, . . . ,m} needs
to be applied. The number of such backtracking points is also bounded
by |G|×r(φ). So one can use a bit-string of length |G|×r(φ) to remember
which choices have been already tried. Consequently, in order to show
that a given right linear grammar logic LGm has a polynomial space satis-
fiability problem (or equivalently a polynomial space validity problem),
it is sufficient to show that there is a polynomial p(.) such that in the
depth-first systematic procedure for proving ` φ, the (` [i]) rules are
applied on a branch at most p(|φ|) times (see also the proof of Lemma
6.1). This means that in the proof of Theorem 4.8 the number of levels
is finite and is bounded by a polynomial in the size of the input sequent
Γ ` ∆.

This observation is not really surprising, but all the point now is to
refine the above statement in order to be able to prove the polynomial
space upper bounds for countably many right linear grammar logics.

Let 〈S,�〉 be a well-founded set, meas : SEQm → S be a map and
pcard(.), plength(.) be polynomials such that for any Lm-formula φ,

(C3) for Γ1 ` ∆1, . . . ,Γn ` ∆n ∈ SEQ(φ), meas(Γn ` ∆n) � . . . �
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meas(Γ1 ` ∆1) � meas(` φ) implies n < pcard(|φ|);
(C4) for any inference

Γ1 ` ∆1 . . . Γl ` ∆l

Γ ` ∆
(r)

(a) with (r) different from (` [i]) for all i ∈ {1, . . . ,m} (l ∈ {1, 2}
according to the form of the rule (r));

(b) Γ1 ` ∆1, . . . ,Γl ` ∆l,Γ ` ∆ ∈ SEQ(φ);
we have for i ∈ {1, l}, either meas(Γi ` ∆i) � meas(Γ ` ∆) or
meas(Γi ` ∆i) = meas(Γ ` ∆);

(C5) for any sequence of sequents in SEQ(φ),

σ0 ≺ (` [i1])Γ1 ` ∆1 ≺ σ1 ≺ (` [i2]) . . . σn−1 ≺ (` [in])Γn ` ∆n

such that for i ∈ {0, . . . , n−1}, σi is maximal and n > plength(|φ|),
we have meas(Γn ` ∆n) � meas(first(σ0)).

The condition (C3) holds true when {meas(Γ ` ∆) : Γ ` ∆ ∈
SEQ(φ)} is finite since 〈S,�〉 is a well-founded set. For example, this is
the case with meas(Γ ` ∆) = md(

∧
ψ∈Γ,∆ ψ).

Lemma 6.1 Let G be a right linear grammar. If there exist a well-
founded set 〈S,�〉, a map meas : SEQm → S and polynomials pcard(.),
plength(.) satisfying the conditions (C3), (C4) and (C5), for any Lm-
formula φ, then LGm-satisfiability is in PSPACE.

Proof. (sketch) The proof is by an easy verification by using the depth-
first systematic procedure induced by the proofs of Lemma 4.5 and The-
orem 4.8 in order to check whether ` φ is provable in GLGm. a

The above method is not new (see e.g. (Ladner 1977, Fitting 1983,
Massacci 1998)) but it allows us to use a uniform depth-first procedure
from the proof of Theorem 4.8 and from the proof of Lemma 4.5.

Let Grl be the right linear grammar defined in Example 4.1. Because
of the duplication of Γ1 in the application of the (` [4])-rule, none of
the obvious measures work to prove the polynomial space upper bound.
Obviously, Grl is finite since L1(Grl) and L2(Grl) are empty.

7 Finiteness implies PSPACE
This section is devoted to show that for any finite right linear grammar G,
the LGm-satisfiability problem is in PSPACE (forthcoming Theorem 7.4
is even a bit more general). We need to introduce a few definitions. Let
G be a finite right linear grammar. The set N of non terminal symbols
can be partionned into three sets N1, N2 and N3 such that for i ∈ N ,

• i ∈ N1
def⇔ Li(G) = ∅;
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• i ∈ N2
def⇔ i 6∈ N1 and for some j ∈ N1 and u ∈ Σ∗, i⇒∗

G u · j;
• i ∈ N3

def⇔ i 6∈ N1 ∪N2.

N1, N2 and N3 can be computed in polynomial-time in |G|. A N2 → N1-
derivation is a sequence of the form

i0 ⇒G u1 · i1 ⇒G . . .⇒G u1 . . . un−1 · in−1 ⇒G u1 . . . un · in
such that n ≥ 1, {i0, . . . , in−1} ⊆ N2 and in ∈ N1. The main properties
of the partition {N1, N2, N3} are the following.

Lemma 7.1 Let G be a finite right linear grammar and {N1, N2, N3}
be the partition on N defined above. Then,

(I) if i⇒∗
G u with i ∈ N1, then u ∈ Σ∗ ·N1;

(II) if i0 ⇒G u1 · i1 ⇒G . . .⇒G u1 . . . un · in is a N2 → N1-derivation,
then

1. for j ∈ {0, . . . , n− 2}, ij 6= ij+1;
2. n ≤ card(N2)− 1; |u1 · . . . · un| ≤ |G|;

(III) if i⇒∗
G u with i ∈ N3, then u ∈ (Σ∗ ·N3) ∪ Σ∗;

(IV) if i⇒∗
G u with i ∈ N2 ∪N3 and u ∈ Σ∗, then |u| ≤ |G|.

For i ∈ N ∪ Σ, we define wG(i), the weight of i in G, as follows:

• for i ∈ N1 ∪ Σ, wG(i) def= 1;
• for i ∈ N3, wG(i) def= max{1 + |u| : u ∈ Li(G)};
• for i ∈ N2,

wG(i) def= max({1 + |u| : u ∈ Li(G)} ∪ {1 + |u1 · . . . · un| :

i⇒G u1i1 ⇒G . . .⇒G u1 . . . unin N2 → N1−derivation}).
Observe that for i ∈ N ∪ Σ, wG(i) ≤ |G|. Lemma 7.2 contains the main
properties of the map wG(.).

Lemma 7.2 Let G be a finite right linear grammar. Then,

(I) if i ; u · i′ with i ∈ N3 and u ∈ Σ+, then i′ ∈ N3 and |u| − 1 +
wG(i′) < wG(i);

(II) if i ; u with i ∈ N3 and u ∈ Σ+, then |u| < wG(i);
(III) if i ; u with i ∈ N2 and u ∈ Σ+, then |u| < max{1 + |v| : v ∈

Li(G)} ≤ wG(i);
(IV) if i ; u·i′ with i ∈ N2, i′ ∈ N3 and u ∈ Σ+, then |u|−1+wG(i′) <

wG(i);
(V) if i ; u·i′ with i, i′ ∈ N2 and u ∈ Σ+, then |u|−1+wG(i′) < wG(i).
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Proof. By way of example, we show (V). Assume i ; u · i′ for some
i, i′ ∈ N2 and u ∈ Σ+. It is obvious that

max{|v|+ 1 : v ∈ Li′(G)}+ |u| − 1 < max{|v|+ 1 : v ∈ Li(G)}.
It remains to show that

max{1 + |u1 · . . . · un| : i′ ⇒G u1i1 ⇒G . . .⇒G u1 . . . unin}+ |u| − 1

< max{1 + |u1 · . . . · un| : i⇒G u1i1 ⇒G . . .⇒G u1 . . . unin}.
Since i ; u · i′, there are non terminal symbols i0, . . . , iα, α ≥ 0, such
that i0 = i and i0 ⇒G i1 ⇒G . . . ⇒G iα ⇒G u · i′. In the case all the
non terminal symbols i0, . . . , iα belongs to N2 we can easily conclude
the proof since

max{1 + |u1 · . . . · un| : i⇒G u1i1 ⇒G . . .⇒G u1 . . . unin}

≥ |u|+max{1 + |u1 · . . . · un| : i′ ⇒G u1i1 ⇒G . . .⇒G u1 . . . unin}.
Suppose ij ∈ N3 for some j ∈ {1, . . . , α}. If ij ∈ N3, then there is some
j′ ∈ N1 such that ij ⇒∗

G v·j′, which leads to a contradiction by definition
of the partition {N1, N2, N3}. Suppose ij ∈ N1 for some j ∈ {1, . . . , α}.
Hence ij ⇒∗

G u · i′ and u · i′ 6∈ Σ∗ · N1 which is in contradiction with
Lemma 7.1(I). a

We define the maps pwa : FORM → N and pws : FORM → N
as follows (“a” stands for antecedent and “s” for succedent). Let φ
be an Lm-formula. Let [i]ψ be the occurrence of a formula occurring
negatively [resp. positively] in φ. To be precise, one should define the
notion of occurrence (as a finite sequence of natural numbers for in-
stance). For the sake of simplicity, this is omitted here. In order to de-
fine pwa(φ) [resp. pws(φ)], we define an auxiliary value pwa(φ, [i]ψ).
Let [i1]ψ1, . . . , [in]ψn, be the positive [resp. negative] occurrences of
necessity formulae of φ such that the very occurrence of [i]ψ is a sub-
formula of each [ij ]φij (if any). In the case when some element of N1

is in {i1, . . . , in}, pwa(φ, [i]ψ) def= 0 [resp. pws(φ, [i]ψ) def= 0], otherwise
pwa(φ, [i]ψ) def= 1 +

∑n
j=1 wG(ij) [resp. pws(φ, [i]ψ) def= 1 +

∑n
j=1 wG(ij)].

We are now in a position to define pwa(φ) [resp. pws(φ)]. pwa(φ) def=∑
pwa(φ, [i]ψ) [resp. pws(φ) def=

∑
pws(φ, [i]ψ)] where the sum is on the

set of negative [resp. positive] occurrences of necessity formula in φ. For
each ψ ∈ clG(φ), the number of negative occurrences of necessity formula
is bounded by |G| × r(φ) as well as the number of positive occurrences
of necessity formula. So for ψ ∈ clG(φ),

max(pwa(ψ),pws(ψ)) ≤ |G|2 × r(φ)2 × (|G|+ 1).



20 / S. Demri

Theorem 7.3 Let G be a finite right linear grammar logic. Then, LGm-
satisfiability is PSPACE-complete.

Deciding whether G is a finite right linear grammar can be done in
polynomial time in |G|.
Proof. (sketch) Let us define S, meas, pcard and plength. We shall write
mdN (Γ ` ∆) to denote the maximal nesting of modal connectives [i]
with i ∈ N in

∧
ψ∈Γ,∆ ψ. Observe that for Γ ` ∆ ∈ SEQ(φ), mdN (Γ `

∆) ≤ r(φ). We write pw′(Γ ` ∆) to denote

pw′(Γ ` ∆) def= max({pwa(ψ) : ψ ∈ Γ} ∪ {pws(ψ) : ψ ∈ ∆}).

• 〈S,�〉 def= 〈N2, <〉 where < is the standard lexicographical ordering
on N2 extending the standard < on N;

• meas(Γ ` ∆) def= 〈mdN (Γ ` ∆),pw′(Γ ` ∆)〉;
• pcard(x) = 1 + |G|2 × (|G|+ 1)× x3; plength(x) = 1.

Let φ be an L-formula. Condition (C3) is satisfied because

card({meas(Γ ` ∆) : Γ ` ∆ ∈ SEQ(φ)}) ≤ |G|2 × (|G|+ 1)× |φ|3.

The condition (C4) is obviously satisfied. In order to check the condition
(C5), by way of example consider an inference of a (` [i]) rule for some
i ∈ Σ (see notations in Section 4.1). Since for j ∈ N and u ∈ (N ∪ Σ)∗,
j ; u implies u ∈ Σ∗ ∪ Σ∗ · N , for j ∈ {1, . . . , k}, mdN ([j]Γj) ≥
mdN (

⋃
〈j,k′〉∈startji

[vj,k′ ]Γj). Additionnally, mdN ([i]φ) = mdN (φ), which
guarantees that mdN (.) does not strictly increase (when reading the rules
upwards).

In order to show that pw′(.) strictly decreases, it is sufficient to see
that pws([i]φ) = 1 + pws(φ) and to check that

• for j ∈ N1, max({pwa(ψ) : ψ ∈ [j]Γj}) = max({pwa(ψ) : ψ ∈⋃
〈j,k′〉∈startji

[vj,k′ ]Γj}) = 0 by Lemma 7.1(I);
• for j ∈ N2 [resp. j ∈ N3],

max({pwa(ψ) : ψ ∈ [j]Γj}) ≥

max({pwa(ψ) : ψ ∈
⋃

〈j,k′〉∈startji

[vj,k′ ]Γj})

by Lemma 7.2(III,IV,V) [resp. by Lemma 7.2(I,II)].

a
Theorem 7.4 below is slightly stronger than Theorem 7.3.

Theorem 7.4 GSP(RLINf ) is in PSPACE.
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The proof of Theorem 7.4 follows the line of the proof of Theorem 7.3
by observing that for any sequent Γ ` ∆ ∈ SEQ(φ), mdN (Γ ` ∆) ≤ r(φ)
and pw′(Γ ` ∆) ≤ |G|2 × (|G| + 1) × |φ|2. Moreover, from the space
analysis in Section 6, we can decide whether ` φ is provable in GLGm in
polynomial space in |G|+ |φ|.

It seems difficult to extend Theorem 7.4 to a larger class of finite
context-free grammars. Indeed, for the finite left linear grammar Gll =
〈{1}, {2}, {1 → 1 · 2}, 1〉, LG

ll

2 -satisfiability is already EXPTIME-hard
(see Theorem 7.5(1) below). By contrast, for any strongly finite context-
free grammar G, LGm-satisfiability is in PSPACE. This can be shown by
translation into PDL without Kleene star. By analogy to Theorem 7.4,
it is open whether the general satisfiability problem for strongly finite
context-free grammar logics is in PSPACE.

By using Theorem 7.3 and (Demri 2000), one can characterize the
complexity of all the bimodal regular grammar logics.

Theorem 7.5 Let LG2 be a bimodal regular grammar logic, that is N ∪
Σ = {1, 2} (m = 2) and S = 1.

1. If 1 → 1 · 2i is a production rule of G for some i ≥ 1, then, LG2 -
satisfiability is EXPTIME-complete.

2. If G is right linear and finite [resp. infinite], then LG2 -satisfiability
is PSPACE-complete [resp. EXPTIME-complete].

Theorem 7.5 exhausts all the possibilities of bimodal regular gram-
mar logics. As a corollary, given a bimodal regular grammar logic LG2 ,
deciding whether LG2 is PSPACE-complete can be done in linear time in
|G|. EXPTIME-hardness is roughly due to the fact that the concerned
bimodal logics contain a modal connective [2] and another one [1] that
is a variant of its reflexive and transitive closure (noted [2∗]), see also
(Spaan 1993, Sattler 1996, Castilho et al. 1999) for logics with a simi-
lar attribute. For instance, if M, x |= 〈1〉φ ∧ [1]ψ for some LG

ll

2 -model
M, then there is y ∈ R1(x) such that M, y |= φ and for all z ∈ R∗2(y),
M, z |= ψ, in symbols M, y |= φ∧[2∗]ψ. These are typically the formulae
of that form that are responsible for the EXPTIME-hardness of PDL
(Fischer and Ladner 1979, Spaan 1993). However, not every variant [1]
of [2∗] leads to EXPTIME-hardness. Consider the right linear gram-
mar G = 〈{1}, {2}, {1 → 2 · 1}, 1〉 that is closely related to Gll. Although
[2] [resp. [1]] can be viewed as the PDL modal connective [c2] [resp.
[c∗2; c1]], LG2 cannot isolate the modal connective [c∗2] (or equivalently
[2∗]) because in [c∗2; c1], there is always a last step that is a c1 tran-
sition. Indeed, we have shown (see Theorem 7.3) that LG2 -satisfiability
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is in PSPACE. By Theorem 3.2 we conclude that LG2 -satisfiability is
PSPACE-complete.

8 Infinity and PSPACE
Theorem 7.3 roughly states that finiteness for right linear grammars
implies an PSPACE complexity upper bound for the corresponding
grammar logics. By contrast, we can show that infinity does not imply
EXPTIME-hardness. The class of right linear grammar logics intro-
duced below contains for m ≥ 2, countably infinite PSPACE logics LGm
with N ∪ Σ = {1, . . . ,m}.

Theorem 8.1 Let G = 〈N,Σ, P, S〉 be a right linear grammar such that
for i ∈ N , (1) i ; u implies |u| ≥ 1 and (2) i ; j · u and i ; j · u′ for
some j ∈ Σ imply u = u′. Then, LGm-satisfiability is PSPACE-complete.

If G is viewed as a finite automatonA, the assumption (2) in Theorem
8.1 can be interpreted as a requirement on the determinism of A.

Proof. (sketch) Let us define S, meas, pcard and plength:

• 〈S,�〉 def= 〈N, <〉; pcard(x) = x+ 1; plength(x) = 1;
• for any sequent Γ ` ∆, meas(Γ ` ∆) = pw+(Γ) + nw+(∆) (see

Section 2 for the definitions of pw+(.) and nw+(.)).

The assumptions of Lemma 6.1 can be shown to hold. a
For any grammar G satisfying the assumptions of Theorem 8.1, the

proof system GLGm involves no rule with implicit contraction. For m ≥ 5,
let G = 〈{1, 2, 3}, {4, . . . ,m}, P, 1〉 be the infinite right linear grammar
with P defined as the union of {1 → 4m} with⋃
i∈{5,...,m}

{1 → i(2
m)·2, 2 → (i·(i+1)·. . .·m)i·3, 3 → ii·(i+1)i+1·. . .·mm1}

The grammar G is not finite but by Theorem 8.1, LGm-satisfiability is in
PSPACE.

In Theorem 8.1, it is unlikely that one can significantly relax the con-
dition |u| ≥ 1 by allowing |u| = 0. By Theorem 7.5(2), LG2 -satisfiability
is EXPTIME-hard for the right linear grammar G = 〈{1}, {2}, {1 →
ε, 1 → 2 · 1}, 1〉.

9 An open problem
By a proof-theoretical analysis, we have designed polynomial space de-
cision procedures in a uniform framework for countably infinite right
linear grammar logics. Understanding the complexity/decidability sta-
tus of context-free grammar logics by proof-theoretical means seems to
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be a challenge worth being attacked in order to further characterize
the complexity of modal logics. More precisely, let G be a context-free
grammar such that for i ∈ N , {u ∈ (Σ ∪ N)∗ : i ⇒∗

G u} is a regu-
lar language. In (Demri 2000) it is shown that LGm-satisfiability can be
polynomially reduced to PDL satisfiability by replacing any occurrence
of [i] by [πi] where πi is a regular expression (program) generating pre-
cisely the language {u ∈ (Σ ∪ N)∗ : i ⇒∗

G u}. Hence, LGm-satisfiability
is in EXPTIME and showing that LGm-satisfiability is in PSPACE is
equivalent to showing that PDL satisfiability restricted to the program
expressions π1, . . . , πm (if Σ∪N = {1, . . . ,m}) is in PSPACE. Is there
a natural class of PSPACE context-free grammar logics? K4, S4 should
preferably fall into this hypothetical class.
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Classical Logics. Studia Logica 60(1):119–160.

Blackburn, P., M. de Rijke, and Y. Venema. 2001. Modal Logic. Cambridge
University Press. to appear.

Castilho, M., O. Gasquet, and A. Herzig. 1999. Formalizing action and change
in modal logic I: the frame problem. JLC 9(5):701–735.

Cerrito, S., and M. Cialdea Mayer. 1997. A Polynomial Translation of S4
into T and Contraction-free Tableaux for S4. Logic Journal of the IGPL
5(2):287–300.



24 / References

Chagrov, A., and V. Shehtman. 1994. Algorithmic aspects of propositional
tense logics. In CSL-8, 442–455. LNCS 933, Springer.

Chen, C., and I. Lin. 1994. The complexity of propositional modal theories and
the complexity of consistency of propositional modal theories. In LFCS-3,
69–80. LNCS 813, Springer.

Demri, S. 2000. The complexity of regularity in grammar logics and related
modal logics. Submitted.
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