
Forms of Semantic Specification

MS-CIS-91-61
Logic & Computation 37

Carl Gunter

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

September 1991

THE LOGIC IN COMPUTER SCIENCE COLUMN

Yuri GUREVJCH

Electrical Engineering and Computer Science Department
University of Michigan, Ann Arbor, MI 481 09-21 22, USA

Forms of Semantic Specification

Carl A. G.unter
University of Pennsylvania

The way to specify a programming language has been a topic of heated debate for some

decades and at present there is no consensus on how this is best done. Real languages are

almost always specified informally; nevertheless, precision is often enough lacking that more

formal approaches could benefit both programmers and language implementors. My purpose

in this column is to look at a few of these formal approaches in hope of establishing some

distinctions or at least stirring some discussion.

Perhaps the crudest form of semantics for a programming language could be given by pro-

viding a compiler for the language on a specific physical machine. If the machine architecture is

easy to understand, then this could be viewed as a way of explaining the meaning of a program

in terms of a translation into a simple model. This view has the advantage that every higher-level

programming language of any use has a compiler for at least one machine and this specification

is entirely formal. Moreover, the specification makes it known to the programmer how effi-

ciency is best achieved when writing programs in the language and compiling on that machine.

On the other hand, there are several problems with this technique, and I do not know of any

programming language that is really specified in this way (although I'm told that such specifi-

cations do exist). First of all, the purpose of a higher-level programming language is usually to

provide some mediation between the way a programmer would like to provide instructions and

the way a machine needs to have them. If the programmer is forced to think of the meanings

of his programs in terms of how they will be compiled, then most of the advantage of having

a higher-level language is lost. Second, a description of how to compile the language on archi-

tecture X may not be convenient for understanding the best way to compile it for architecture

Y. The temptation would be to simulate X on Y, but this may not be efficient and an attempt to

implement it by some more direct means must cope with the question of what are the invariants

that must be preserved. For this, the X compiler alone will provide no clue.

Table 1: ALGOL 60 semantics for assignments.

4.2.2. Examples

s := p[O] := n := n + 1 + s

n := n + l

A := BIC-v-qxS
S[v, k + 21 := 3 - arctan(s x zeta)

v := Q > Y A Z

4.2.3. Semantics

Assignment statements serve for assigning the value of an expression to one or several vari-

ables or procedure identifiers. Assignment to a procedure identifier may only occur within the

body of a procedure defining the value of a function designator (cf. section 4.4.4). The process

will in the general case be understood to take place in three steps as follows:

4.2.3.1 Any subscript expressions occurring in the left part variables are evaluated in sequence

from left to right.

4.2.3.2 The expression of the statement is evaluated.

4.2.3.3. The value of the expression is assigned to all the left part variables, with any subscript

expressions having values as evaluated in step 4.2.3.1.

One approach to resolving this problem is to give a compiler for the language to an abstract
machine rather than a physically existent piece of hardware. If this abstract machine is cleverly

chosen, then it may be possible to simulate it on a wide range of concrete (actual) machines

in an acceptably efficient manner. This will aid the portability of the language and, if the

abstract machine is easy to understand, it will free implementers from the need to deal with a

possibly more complex compilation for a machine they do not need to know about. Moreover, a

programmer could safely think in terms of the abstract machine and still write efficient programs.

Now, the notion of an 'abstract machine' could correspond to just about anything, but the nature

of this objective suggests that an abstract machine must be fairly similar to the architectures on

which it is to be implemented. In short, an abstract machine is a least common denominator for

the class of machines over which it is an abstraction.

The problem with abstract machines, therefore, is that they may be abstract enough for some,

but still too low-level for others. Every programmer who uses a higher-level language must un-

derstand its semantics at some level of abstraction. A compiler for an abstract machine is likely

to be hard to understand in detail, even for the clearest language and simplest abstract machine.
Hence programmers ordinarily understand the semantics of a language through examples, intu-

itions about the underlying machine model, and some kind of informal semantic description. By

way of illustration, an excerpt from one such specification appears in Figure 1. The example is

Table 2: Syntax for a simple imperative programming language.

I e identifier

N E numeral

B ::= true (false (B and B (B or B I not B I
E < E I E = E

C ::= skip 1 C;C I I : = E 1 .
if B then C else C fi 1 while B do C od

taken from page 10 of the Algol 60 revised report [Nau63] and describes the semantics of the

assignment statements in that language. The example is not chosen to point out any particular

strength or failing of such informal semantic descriptions, but merely to give a good example of

one. In the best circumstances, an experienced programmer's intuition about the meanings of the

phrases fills in any omissions in the description, and it can be viewed as a simple, succinct, and

readable account of the meanings of language constructs. At worst, however, the description can

be fatally ambiguous or misleading and programming errors or compiler implementation errors

could result.

Research in the semantics of programming languages has sought to find alternatives to low-

level abstract machines and informal, unrigorous semantic descriptions. One of the earliest ideas

for another approach was that of a meta-circular evaluator in which the meaning of a language

construct of language L is explained in terms of an interpreter written in language L itself. Such

a program can be illuminating, but it cannot explain all of the details about the semantics of

the language and must therefore serve as an auxiliary form of semantic description. Another,

somewhat idealistic, approach to the semantics of a programming language is to see it as a

vocabulary for describing elements of a mathematical model. For example, a program might be

viewed as a term in an algebra with an appropriate signature and modelled by a standard choice

of algebra having that signature. Ideas such as this date back to the late 1 9 6 0 ' ~ ~ but, before

discussing it in more detail, I would like to look at a more recent form of specification.

The syntax for a simple language appears in Table 2. The semantics of the language could

no doubt be described quite clearly using computerese, but it is not much harder to give a formal
semantics for this language. Our semantics will be defined in terms of an abstract representation

of a machine memory as an assignment of integer values to identifiers of the language:

mem = identifier -+ Z.

Assume that semantic functions for arithmetic expressions and boolean expressions are already

known:
[B] : mem -+ {true, false}
[El : mem -+ Z

(It can be assumed-for the sake of uniformity-that these semantic functions were also defined

by a means similar to that being used here for commands.) The meaning [C] of a command

C will be defined as a partial function from mem (input) to mem (output). We will define

the semantic function in terms of a concept of a machine configuration consisting of a (possi-

bly empty) control part and a data part (representing the current memory). More precisely, a

configuration is either

a pair (C, s) consisting of a command C and a memory s, or

a memory s.

Rules for evaluating a program of the simple imperative language are given in terms of a binary

relation + on configurations; this is defined to be the least relation that satisfies the rules in

Table 3. In the transition rules for assignment, the evaluation of the command results in a new

memory in which the value associated with the identifier I is bound to the value of the expression

E in memory s. The notation used there is defined as follows for a value n E Z:

n i f I r J

s(J) otherwise

Now, let -++ be the transitive closure of the relation -+ (that is, -++ is the least transitive

relation that contains +).

Lemma 1 I f y +f s and y -+f sf for a configuration y, then s = s'.

The meaning of a program C can now be defined by:

if (C, s) -++ s'
[CIS e

undefined otherwise

where the symbol cx is being used rather than = to emphasize that [C] is a partial function
which may be undefined on some memories s.

This semantic description now gives rise to a set of equations between programs if we take C
to be equivalent to C' when [C]] = [C']. It is a virtue of this equivalence that it ignores important

Table 3: Transition semantics for a simple imperative programming language.

(skip, s) + s

(if B then Cl else C2 fi, S) -+ (Cl, S) if [B] s = true
(if B then Cl else C2 fi7 S) 4 (C2, S) if [BIs = false

(while B do C od, s) -+ s if [IBIS = false
(while B do C od, s) + (C; while B do C od, s) if [B]]s = true

aspects of a program such as its efficiency. It is this separation of concerns that makes it possible

to develop a theory of program transformations; we could not say when the replacement of one

program by another is legitimate without saying what property is to be preserved under such a
replacement.

The form of semantics I have just described is usually called a structural operational se-
mantics or S0S.l It is sometimes also called a 'Plotkin style' operational semantics because of

an influential DAIMI technical report of Gordon Plotkin [Plo81] and several papers in which

he used this form of specification. I prefer to use the term transition semantics for the kind of

operational semantics given in Table 3 since 'transition' is more descriptive in this context than

'structural' or 'Plotkin-style'. The terminology is also familiar from the use of similar systems

in the study of process algebras (see [Hen881 for example). On the other hand, this more general

term has the drawback of including a range of operational semantics-such as those for automata

and Petri nets-that seem quite different from the semantics in Table 3.
In looking at the transition semantics it is natural to wonder if it is possible to describe the

relation (C, s) ++ s' more directly. Rather than using rules to describe transition steps 4, why

not use rules to describe +f itself? This is indeed possible and one way of doing it appears in
Table 4. The desired connection can be described precisely:

'1 have sometimes also seen the term structured operational semantics. Is this terminology meant to suggest that
other forms of operational semantics are unstructured?

Table 4: Natural semantics for a simple imperative programming language.

[B]]s=true (C,,s) l , lsr
(if B then C, else C2 f i , ~) JJ sf

[B]S = false (C,, S) sf
(if B then Cl else C2 f i , s) l.J s1

% B ~ s = false
(while B do C od, s) l,l s

[B]s = true (C, S) l,l sf (while B do C od, s f) l,l S"
(while B do C od, s) s"

Lemma 2 For any program C and memory s, (C, s) ++ sf i f , and only i f , (C, s) JJ sl.

This approach to operational semantic description is very popular now and has many ap-
pealing characteristics which I will discuss briefly below. It is sometimes called a 'structural
operational semantics7 since the rules follow the structure of the terms of the language, just as for
the transition semantics. This clash of nomenclature can be confusing though, since the binary
relations -+ and JJ are very different from one another. I do not know full details of the history

of the use of the U form of semantic specification. It is largely avoided by Plotkin in [Plo81].

Here is a short passage from that report discussing the tradeoff involved in directly establishing

rules for whole derivations as opposed to axiomatizing via sequences of steps:

It could well be argued that our formalization is not really that direct. A more
direct approach would be to give rules for the transition sequences themselves (the
evaluations). For the intuitive specification refers to these evaluations rather than any
hypothetical atomic actions from which they are composed. However, axiomatizing
a step is intuitively simpler, and we prefer to follow a simple approach until it leads
us into such difficulties that it is better to consider whole derivations.

The JJ form of semantic description does appear in an article of Martin-Lof (see page 547
of [Mar79]):

To execute c(a), first execute c. If you get (X x) b as a result, then continue by

executing b(a/x) . Thus c(a) has value d if c has value (Xx)b and b(a/x) has

value d.

This is the call-by-name rule with 'has value' for the l) relation. The rule for call-by-value in

this form appears in [Plo75] as part of the discussion there of Landin's SECD machine. Such

a semantics is sometimes termed a natural semantics and has been carefully studied and used

by Gilles Kahn and others (see [DDDK86] for example). There are those who take exception

to this term (is it really the most natural form of semantic description?) but, in its favor, there

is also a similarity between derivations of l) relations and proofs in natural deduction. When

the binary relation M 4 V is instead the relation M : t between a term and its type, then the

connection with natural deduction has some technical basis (the Curry-Howard correspondence).

Those who have attempted to find another terminology seem to leap from the frying pan into the

fire by using vague and misleading terms like 'relational semantics'. For practical applications,

the use of natural semantics is so robust and easy to work with that it has been used to provide

a formal semantic specification for Standard ML [MTH90, MT911.
Now, thinking as a logician, let me note that the function [while B do C od] was not

explicitly defined from the functions [B] and [C] using a semantic function W and an equation

such as:

[while B do C od] = W ([B] , [C]) .

This is inconsistent with the way a semantics is ordinarily given for an object language in logic.

Consider, for example, the way Tarski's semantics of first order logic is given. If 4 and q$ are

first order formulae and p is an assignment of meanings (in the universe of the model) then

[+ A $ I p is true if, and only if, (I$]]p and [$]]p are both true. For a variable x, [Vx. d] p is true

if, and only if, for every element a of the model, [d]p [a /x] is true. Other meanings are defined

similarly.

Indeed, in research on natural language, this form of semantic description is also stressed.

The idea that the meaning of the whole should be described in terms of the meanings of the parts

using semantic functions is called compositionality and the idea dates back at least to the writings

of Frege at the turn of the century. From a computer science engineering perspective, the goal

is, at least in principle, a very desirable one. Compositionality can be an excellent property

for controlling complexity (although attempts to achieve compositionality can also introduce
complexity). So, let us see how far we can go in getting a compositional semantics from what

we have done so far in Tables 3 and 4.
As before, let us treat the meaning of a command C as a partial function [[C] on memories.

Clearly [skipjs = s. Sequencing is interpreted by composition of partial functions, lC1; Cz]s =

I[C2]([Cl]s) and assignment is 'updating', [I := Ens = s[[E]ls/ I] . We interpret branching by

I[C1]s if IBIS = true
[if B then C1 else C2 fils =

[C2]s if [B]s = false

So far, so good. However, when we write down the intuitive explanation of the meaning of the

while loop a problem appears:

if [BUS = false
[while B d o C od]s =

[while B do C od]([C]Is) if IBIS = true

In particular, the expression while B do C od, which we are trying to define, appears on both
sides of the equation. What we mean is that [while B d o C od] is some form of canonical
f ied point of this equational characterization. To put i t another way, it is a fixed point of the
functional F : [mem - mem] -+ [mem - mem] where

if [B]s = false
F i i) (s) = { ;([Cns) if [B]s = true

Now [while B d o C od] = f ix(F) really is a compositional description because the definition
of F was made in terms of [rC] and [B] only.

But how do we know that such a fixed point even exists? If it does, is there a canonical
choice of such fixed point that will match the meaning that we gave with our operational seman-

tics above? These are the central questions that the theory of semantic domains and its associated
techniques for relating operational and fixed-point semantics are meant to address. There is an

elegant and simple mathematical theory that provides the necessary fixed-points as elements of

certain kinds of spaces (called domains). The spaces typically used may be viewed as partially

ordered sets or (sometimes) as metric spaces or topological spaces. This form of semantic de-

scription has sometimes been called 'mathematical' semantics. It has its origins in the work of
Scott and Strachey in the late 1960's [SS71, Sto771. I dislike the defining term 'mathematical',
since the operational descriptions above (transition semantics and natural semantics) are them-
selves mathematically rigorous and abstract. It has also been called 'compositional' semantics
for the reasons I outlined above. I prefer to call it a 'fixed-point' semantics since that provides
a helpful description of the primary tool that underlies the method.

The most common term for descriptions in the style of Scott and Strachey (which I've rarely

heard called a 'Scott-Strachey-style semantics') is denotational semantics. With the examples we
have at hand, it is hard to see why this term distinguishes fixed-point semantics from operational
semantics. It appears to me that the equation

if (C, s) -++ s'
[CIS -

undefined otherwise

Table 5: Call-by-name evaluation for PCF.

O V O true JJ true false false

M U 0 M & succ(V)
zero?(M) & true zero?(M) false

MI 4.t true M2 U V MI l) false M, U V
if MI then M2 else M, J.,l V if MI then M2 else M3 0 V

[px : t. M/x]M .U. V
px:t. M V V

indicates that C is the denotation for a particular function from memories to memories. In
the case of a natural operational semantics, I have sometimes heard it claimed that the relation

M lJ V indicates that V is the meaning or value of M and hence M is a denotation for V. Thus

natural operational semantics is denotational. While this intuition is an attractive one, I believe

that it breaks down in non-trivial cases. To illustrate the point, let me introduce a slightly more

substantial toy programming language.

The syntax for PCF is given as follows:

t ..- ..- num 1 boo1 1 t + t

M ::= 0 I succ(M) I pred(M) I true 1 false (zero?(M) (
x : t I Ax : t. M I M(M) I px : t. M 1 if M then M else M

where x ranges over a primitive syntax class of variables. This language is essentially the one

introduced by Gordon Plotkin in [Plo77] modulo a recasting of numerals and a binding construct

px : t. M in place of a constant Y. A natural operational semantics for the terms of the language

can be found in Table 5. The expression [M/x]N denotes the result of substituting term M for

free occurrences of variable x in term N with the usual conventions insuring that free variables
of M are not captured by bindings of N. If we read M 4 V as an assertion that V is the value
of M, then the rules tell us the meaning of M in terms of its structure. This assignment of

meaning is not compositional though, since the rule for recursion does not define the meaning

for px : t . M in terms of the meaning of a subexpression but instead in terms of the possibly

more complex expression [px : t. M/x] M. On the other hand, the fixed-point semantics of

PCF does define the meanings of PCF programs compositionally using a fixed-point operator

to define the meaning of px : t . M in terms of the meaning of M.
,My primary interest in introducing this example was not to remake the point about

compositionality-the point here concerns denotation. If M Q V is supposed to indicate the
meaning of M as V, then the semantics in Table 5 is a very disappointing one. Note, in par-

ticular, that the value of Ax : t . M is simply Ax : t. M. This form of 'denotation' in which

a term denotes itself might be termed 'fully concrete' (by contrast with the notion of a fully

abstract fixed-point semantics) and does not directly provide any useful idea of identification

between programs of higher type. This notion must come through some other means in which

the meaning of a function is given by the rule for application with the idea that Ax : t . M defines

a function from input values to output values. If t happens to be itself a higher type, this view

is problematic since a value of type t needs to be a function rather than an expression if we are

to get a reasonable theory.

I am not arguing that one cannot use natural operational semantics to reason about programs;

indeed, it can be very useful for proving certain properties. I am arguing that, for higher types,

the operational rules in Table 5 do not really say that M denotes V if M U. V (unless denotation

is here being taken in a trival sense) and I see no immediate way of repairing this short-coming

by, say, a reshuffling of the form of the rules. To get a semantics in which a program is associated

via a semantic function with an element of an abstract realm of mathematical meanings requires

some further elaboration of the significance of the operational rules.

Despite these equivocations on what is denotational, it is certainly the case that natural

semantics and fixed-point semantics have great similarity when viewed as interpreters. It is

often remarked that the descriptive component of a denotational semantics, as one finds in

references such as [Gor79], is like a A-calculus evaluator for the language being interpreted.

Indeed, the functional fragment of a language like ML is excellent for writing interpreters for

other languages. On the other hand, the natural semantics for a language is like an interpreter

written with Horn clauses and can be evaluated by a form of proof search familiar from logic

programming. In my experience, such semantic descriptions do not use unification beyond

pattern matching or do any backtracking, so the interpreter involved is simpler than that required

for prolog.

The traditional view of fixed-point semantics as compositional semantics has been challenged

by recent developments in the semantics of programming languages. In languages such as PCF,
as described above, there is a close relationship between the syntactic structure of a term and the
typing rule that applies to the term. For example, there is exactly one typing rule for application,

which has the following form:

where H is a type assignment associating types with free variables in M (N) . If the types of M
and N are uniquely determined by the terms, then so too is the type t of the application. Since

the meaning of M (N) is given by a fixed-point semantics in terms of the meanings of M and

N, we may think of the semantics as following the structure of the typing rules just as well as

thinking of them as following the structure of the term. In the case of PCF, this simply provides

two ways of thinking of the same inductive definition. But for most of the calculi that involve

subtyping, this coincidence breaks down. The problem can usually be traced to the subsumption
rule:

where s < t means that s is a subtype of t. If subtyping is non-trivial, then some terms will have

more than one type. But, more significantly, in most calculi with such a rule, a given typing

judgement M : t may have more than one proof. In particular, there is a real difference between

defining the meaning of a term inductively in its structure and defining its meaning inductively

in terms of a proof of a typing judgement for it. Moreover, if an assignment of meaning follows

the structure of a proof, then it is necessary to show that the meaning attached to a term is the

same regardless of the choice of the proof. This is called the coherence problem for the semantic

function. The reader can find some discussion of this in [BCGS91]; there has been substantial

progress on understanding the role of coherence results in calculi without subtypes as well.

Discussions of the kinds of formal specification techniques for programming languages often

Qvide these into three categories: operational (including structural), denotational (fixed-point),

and axiomatic. The term 'axiomatic semantics' sounds like an oxymoron to a logician of course,

but it sometimes has a certain legitimacy. Hoare triples, for example, embed the programming

language in a logic whose semantics is understood and thereby indirectly impart meaning to

programs. It is worth noting that such an axiomatic semantics is usually given compositionully
using rules that explain properties of programs in terms of properties enjoyed by component

parts. On the other hand, there are cases where the rules are not compositional, especially for

logics of concurrent programs.

Let me turn now to a discussion of abstract machines and how they are related to other forms

of operational semantics. The most familiar example of an abstract machine in the context of

functional programming is Landin's SECD machine [Lan64, La11651 for call-by-value evaluation
of the untyped or typed A-calc~lus.~ As I discussed earlier for abstract machines in general, a
characteristic of the SECD machine is the similarity of its basic instructions to those of standard

21t is also possible to adapt the call-by-value machine to call-by-name execution, thereby more closely matching
the evaluation for PCF in Table 5.

computer architectures. The SECD machine is described in dozens of sources, so let just very

briefly recall a variant of it here. A state of the machine is a four tuple (S , E , C, D) where

S is the Stack, E is the Environment, C is the Code and D is the Dump. The action of the

machine is described by a collection of transitions driven by the next operation in the code list C.
Instructions in the code list can be formed from the X-terms together with a primitive instruction

up for application. The stack component S is simply a stack of closures, i.e. terms paired with

environments. An environment E is a partial function from variables to closures. The dump is

either nil or it is an (S, E, C, D) tuple. The following transition rules cover all of the cases that

can arise starting from a tuple (nil, 0, M, nil) where M is a closed X-term:

(Cl :: S, E , nil, (S f , El, C', Dl)) + (CI : S', E', C', D')
(S , E ,x :: C, D) + (E (x) :: S, E , C, D)
(S , E , (Ax. M) :: C, D) t (((Ax. M) , E) :: S, E, C, D)
(((Ax . M) , E') :: CI :: S, E,ap :: C, D) -+ (nil, Et[C1/x], M , (S , E , C, D))
(S , E , (M (N)) :: C, D) + (S , E , N :: M :: up :: C, D)

The double colon :: denotes cons for lists here; both S and C are being represented as lists.
The thing to notice about this SECD semantics is that there are no rules with hypotheses,

just transitions. The representation of a term includes its own stacks for holding intermediate

values during computation. By contrast, at the opposite extreme, a natural operational semantics

suppresses as much detail about this aspect of computation as possible. Instead of using rewriting

as the driving force of computation, it uses search for a proof. The transition semantics provides

a sort of half-way house in which computation is a combination of rewriting and proof search.

If we think of rewriting as a 'horizontal' kind of computation (represented as a sequence of

arrows from left to right) and search as a 'vertical' kind of computation (represented with a
tree), then the difference between abstract machines, transition semantics, and natural semantics

can be graphically illustrated as in Figure 1.

A detailed introductory exposition of many of the relationships I have discussed here for the

Simple Imperative Language in Table 2 can be found in the new book of Hanne and Flemming

Nielson [NN91]; similar languages are examined in [Tengl]. My own book [Gun921 focuses on

the language PCF and its extensions. There is a growing literature on the relationships between

various forms of operational semantics. Research of John Hannan [Han9 1, HM921 has helped to

clarify some of the distinctions between these different forms of operational semantics and I refer

the reader to his work for a further treatment. There is also an approach to operational semantics

that focuses on evaluation contexts; it has been used to study the relationships between different
forms of semantic specification in languages that include control constructs [FFKD87] and the
approach seems to work well for proofs that type systems exclude certain kinds of errors [WF91].

Before closing, let me make a comment on a methodology implicit in the discussion above:

the use of 'toy' languages such as the simple imperative programming language. Can we really

Abstract Machine

Transition Semantics

M U V .
Natural Semantics

Figure 1: Three forms of operational semantics.

learn anything about the semantics of 'real' languages by studying rarefied theoretical ones?
The question is a serious one, because the control of complexity is a key element of a clear
description of a language. Two methods that look equally reasonable for a language with a
grammar less than a half-page long may not be so for a language 20 times as complex. Do ali
of the semantics discussed above scale up equally well? Opinions seem to vary on the matter,
but I think most researchers in semantics will agree that complexity is a serious problem for the
formal semantics of a substantial language-no matter what approach is used

Nevertheless, there is a strong case for the study of 'toy' languages aside from the obvious
fact that the compIete semantics for a 'real' language will not fit in a journal-length article.
When there is a focus on conceptual issues, a simple language can illustrate the basic question
in isolation where it can be studied in some depth. In a real language, one has trouble seeing the

forest because of all the trees. I believe that programmers implicitly use what they understand

about 'toy' sublanguages as a way of reasoning about their very real programs. If a component

of a program has been written in a small fragment of a much larger language, then one can

employ reasoning principles that apply to that small fragment. For example, if a procedure in

a larger program is written in a purely functional fragment of the programming language, then

certain reasoning principles will be available for that procedure. The full language specification

is likely to hide these principles under the bulk of state and control features usually included in

a 'real' language. In this way one trys to proceed by conceptual layers in reasoning from the

simple to the complex.

In writing on the topic of forms of semantic specification, one is forced into a certain

immodesty. Since there are so many different approaches, it seems that the ones mentioned

are distinguished unfairly from those omitted. For example, there are such techniques as the

Vienna Definition Language (VDM) [Weg72], the action semantics of Peter Mosses (see the

references in [Mos90]), the evolving algebras of Yuri Gurevich [Gur88] and many others. In

the end, I believe that no single approach to semantic specification is best for all tasks. The

practical application of formal specifications relies on a variety of specification techniques, an

understanding of which purposes are best served by each, and a foundational theory of the

relationships between them. I hope that the discussion in this column can provide some impetus

for further comparison and analysis of the varieties of semantic specification techniques now

available.

I would like to express my appreciation to the people who made many helpful comments

and suggestions based on an earlier draft of this note: Peter Baumann, Bard Bloom, Matthias

Felleisen, Yuri Gurevich, James Huggins, Gilles Kahn, Gordon Plotkin, Jon Riecke, and Robert

Tennent. Not everyone agreed with me on every point (or agreed with one another, for that

matter!), but their views contributed substantially to the perspective of my exposition.

References

[BCGS91] V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov. Inheritance as

implicit coercion. Information and Computation., 93: 172-221, 199 1.

[DDDK86] D. ClCment, J. Despeyroux, T. Despeyroux, and G. Kahn. A simple applicative

language: mini-ML. In Symposium on LISP and Functional Programming, pages 13-

27, ACM, 1986.

[FFKD87] M. Felleisen, D. P. Friedman, E. E. Kohlbecker, and B. Duba. A syntactic theory

of sequential control. Theoretical Computer Science, 52:205-237, 1987.

[Gor79] M. J. C. Gordon. The Denotational Description of Programming Languages.

Springer, 1979.

[Gun921 C. A. Gunter. Semantics of Programming Languages: Structures and Techniques.

To be published by the MIT Press, 1992.

[Gur88] Y. Gurevich. Logic and the challenge of computer science. In E. Boger, editor,

Trends in Theoretical Computer Science, pages 1-57, Computer Science Press, 1988.

[Han91] J. Hannan. Making abstract machines less abstract. In J. Hughes, editor, Proceedings

of the Conference on Functional Programming and Computer Architecture, Springer-

Verlag LNCS, 1991.

[Hen881 M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[HM92] J. Hannan and D. Miller. From operational semantics to abstract machines. Mathe-

matical Structures in Computer Science, 1992. To appear.

[Lan64] P. Landin. The mechanical evaluation of expressions. Comput. J., 6:308-320, 1964.

[Lan65] J. Landin. An abstract machine for designers of computing languages. In IFIP
Congress, pages 438439, North-Holland, 1965.

[Mar791 Per Martin-Liif. Constructive mathematics and computer programming. In Interna-

tional Congress for Logic, Methodology and Philosophy of Science, pages 538-571,

North-Holland, 1979.

[Mos90] P. Mosses. Denotational semantics. In J. van Leeuwen, editor, Handbook of Theo-

retical Computer Science, pages 577-632, North Holland, 1990.

[MT91] R. Milner and M. Tofte. Commentary on Standard ML. MIT Press, 1991.

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press,

1990.

P. Naur. Revised report on the algorithmic language ALGOL 60. Communications
of the ACM, 6:l-7, 1963.

H. R. Nielson and F. Nielson. Semantics with Applications: A Formal Introduction
for Computer Science. To be published by the Wiley Press, 1991.

G. D. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theoretical
Computer Science, 1: 125-159, 1975.

G. D. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5:223-255, 1977.

G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Re-

port FN- 19, Computer Science Department, Aarhus University, Ny Munkegade-

DK 8000 Aarhus C-Denmark, 198 1.

D. S. Scott and C. Strachey. Towards a mathematical semantics for computer lan-

guages. In J. Fox, editor, Computers and Automata, pages 19-46, Polytechnic
Institute of Brooklyn Press, 1971.

J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Semantics. MIT Press, 1977.

R. D. Tennent. Semantics of Programming Languages. Prentice-Hall, 1991.

P. Wegner. The Vienna Definition Language. ACM Computing Surveys, 15-63,

1972.

A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Technical

Report COMP TR9 1- 160, Department of Computer, Rice University, 199 1.

