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Abstract

It has been shown that the class of languages with interactive proofs, IP,
is exactly the class PSPACE. This surprising result elegantly places IP in
the standard classification of feasible computations. Furthermore, the IP =
PSPACE result reveals some very interesting and unsuspected properties of
mathematical proofs.

In this column we define the width of a proof in a formal system F and
show that it is an intuitively satisfying and robust definition. Then, using
the IP = PSPACE result, it is seen that the width of a proof (as opposed to
the length) determines how quickly one can give overwhelming evidence that a
theorem is provable without showing the full proof.

1 On Proofs and Interactive Proofs

A mathematician has the most confidence in the truth of a theorem when he/she is
given a complete proof of the theorem in a trusted formal system. Let F be such a
formal system in which the correctness of a proof can be checked by a verifier in poly-
nomial time. The class NP clearly captures all the theorems which have polynomially
long proofs. The NP =7 P question is the question about the quantitative compu-
tational difference between finding a proof of a theorem and checking the correctness
of a given proof.

Some years ago, theoretical computer scientists asked whether it is possible to
give convincing evidence that a theorem is provable in F without showing a complete
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proof. Clearly, if we do not give a complete proof to a verifier (that does not have the
power or time to generate and check the proof), then we cannot expect the verifier to
be completely convinced that the theorem is provable. This led to a very fascinating
problem: how can a verifier be convinced with high probability that a given theorem
is provable without seeing the whole proof? and how rapidly can this be done?

This problem has been formulated and extensively studied in terms of interactive
protocols [Gol89]. Informally, an interactive protocol consists of a Prover and a
Verifier. The Prover is an all powerful Turing Machine (TM) and the Verifier is
a TM which operates in time polynomial in the length of the input. In addition,
the Verifier has a random source (e.g., a fair coin) not visible to the Prover. In the
beginning of the interactive protocol the Prover and the Verifier receive the same
input string. Then, the Prover tries to convince the Verifier, through a series of
queries and answers, that the input string belongs to a given language. The Prover
succeeds if the Verifier accepts with probability greater than 2/3. The probability is
computed over all possible coin tosses made by the Verifier. However, the Verifier
must guard against imposters masquerading as the real Prover. That is, the Verifier
must not be convinced to accept a string not in the language with probability greater
than 1/3—even if the Prover lies.

Definition Let V' be a probabilistic polynomial time TM and let P be an arbitrary
TM. P and V share the same input tape and communicate via a communication tape.
P and V form an interactive protocol for a language L if

1. x € L = Prob| P-V accepts z | > 2/3.
2. © ¢ L = VP*, Prob[ P*-V accepts z | < 1/3.

A language L is in IP if there exist P and V' which form an interactive protocol for
L.

Clearly, IP contains all NP languages, because in polynomial time the Prover can
give the Verifier the entire proof. In such a protocol, the Verifier cannot be fooled
and never accepts a string not in the language. To illustrate how randomness can
generalize the concept of a proof, we look at an interactive protocol for a language not
known to be in NP. Consider GNI, the set of pairs of graphs that are not isomorphic.
GNI is known to be in co-NP and believed not to be in NP. However, GNI does have
an interactive protocol [GMWS86|. For small graphs, the Verifier can easily determine
if the two graphs are not isomorphic. For sufficiently large graphs, the Verifier solicits
help from the Prover to show that GG; and G; are not isomorphic, as follows:

1. The Verifier randomly selects G; or G; and a random permutation of the selected
graph. This process is independently repeated n times, where n is the number
of vertices in G;. If the graphs do not have the same number of vertices, they
are clearly not isomorphic. This sequence of n randomly chosen, randomly
permuted graphs is sent to the Prover. Recall that the Prover has not seen



the Verifier’s random bits. This assumption is not necessary, but simplifies the
exposition.

2. The Verifier asks the Prover to determine, for each graph in the sequence, which
graph, G; or G;, was the one selected. If the Prover answers all the queries
correctly, then the Verifier accepts.

Suppose the two original graphs are not isomorphic. Then, only one of the original
graphs is isomorphic to the permuted graph. The Prover simply answers by picking
that graph. If the graphs are isomorphic, then the Prover has at best a 27" chance
of answering all n questions correctly. Thus, the Verifier cannot be fooled with high
probability. Therefore, GNI & IP.

Note that GNI is believed to be incomplete for co-NP. So, the preceding discussion
does not show that co-NP C IP. For a while, it was believed that co-NP is not
contained in IP, because there are oracle worlds where co-NP ¢ IP [FS88]. In fact, the
computational power of interactive protocols was not fully appreciated until Lund,
Fortnow, Karloff and Nisan [LFKN90] showed that IP actually contains the entire
Polynomial Hierarchy. This result then led Shamir [Sha90] to completely characterize
IP by showing that

IP = PSPACE.

Babai, Fortnow and Lund [BFL90] characterized the computational power of multi-

prover interactive protocols
MIP = NEXP.

In both cases, it is interesting to see that interactive proof systems provide alternative
definitions of classic complexity classes. Thus, they fit very nicely in the overall
classification of feasible computations. Furthermore, both of these problems have
contradictory relativizations [F'S88]. That is, there exist oracles A and B such that

[PA = PSPACE# and IPB # PSPACE?,

and similarly for the multi-prover case. Thus, these results provide the first natural
counterexamples to the belief that problems with contradictory relativizations are
beyond our proof techniques. The IP = PSPACE result also provides a very dramatic
counterexample to the already battered Random Oracle Hypothesis. In [HCRR90],
we showed that

Prob,[ IPA # PSPACE® | = 1.

2 On Theorems with Polynomially Wide Proofs
In this section, we define the notion of the width of a proof of a theorem in a formal

system. The notion of “formal system” goes back to Hilbert who wanted to develop
a complete system to formalize all of mathematics. There are several equivalent ways
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Figure 1: A DFA proof checker reading adjacent lines of the proof.

of defining what one means by “formal system.” The most common one says that a
formal system is a set of axioms and a set of recursive rules for obtaining new state-
ments from the axioms. All the axioms and the statements obtained by the repeated
application of these rules are the theorems of the formal system. The proof of a
theorem is the documentation of how the theorem was derive using the systematic
application of rules to the axioms and other theorems. The notion of theorems and
proofs is central to the concept of a formal system. The idea behind restricting the
rules to be recursive is that one wants the proof-checking to be recursive. Although
the rules are only restricted to be recursive, they are expected to be fairly simple so
the proofs of the theorems can be checked and understood with ease. In what follows
we give an equivalent definition of “formal system” which renders proof-checking very
simple. This formal system is better suited for defining measures of computational
complexity on proofs in a formal system. (This is analogous to the fact that Tur-
ing machines are better suited for the study of computational complexity than the
Lambda Calculus, even though both are models of computable functions.)

We define a formal system to be a set of proofs and a corresponding set of theorems.
The key concept in the definition of “formal system” is how a proof is presented and
verified. In our first definition of “formal system” we insist that the proof must be
presented as a sequence of horizontal lines written on a two dimensional page. Each
line is a string over a fixed alphabet and is written in a left-justified form directly
below the preceding line. Moreover, we insist that the proof can be checked by a
deterministic finite automaton (DFA) in the following way. The DFA proof checker
starts at the top-left corner of the page and reads two adjacent symbols at a time from
the first two lines of the proof. The DFA scans the input in an oblivious manner—it
reads the first two lines, scanning from left to right, and returns to the left margin to



read the second and third lines, left to right, and so forth. (See Figure 1.) When the
DFA reaches the bottom right corner, it accepts or rejects. The proofs of the formal
system are exactly those sequences of lines accepted by the DFA proof checker, and
the theorems of the formal system are the first lines of the proofs. That is, we assume
that all proofs start with the statement of a theorem and end with “Q.E.D.”

Let F be a formal system and Dz be the corresponding proof checker, as described
above.

Definition The width of a proof in F is the width of the longest line. The width of
a theorem T in F, written width(Dg,T), is the width of the narrowest proof of 7" in
F.

Definition We say that a language L is in PWT, that is, L is a set of polynomially-
wide theorems, if there exist a k > 1 and a formal system JF, such that

T € L <= T is a theorem in F and width(Dz,T) < |T|* + k.

At first glance, our definition of “formal system” may seem too restrictive. After
all, the DFA proof checker cannot even verify if the statement of the theorem has
balanced parentheses. However, the DFA proof checker can verify a proof that the
theorem has balanced parentheses. We claim that our definition of “formal system” is
robust by showing that replacing the DFA proof checker with more powerful devices
does not change the class PWT.

In our definition of a formal system with a DFA proof checker, we tried to capture
the idea that it should be “easy” to check if one line of the proof follows another. This
notion of “easy” can be extended to recognition in polynomial time. For example,
let the verifier be a Turing machine with a separate work tape. The size of the work
tape is bounded by a polynomial in the size of the theorem. The verifier still scans
the proof obliviously, but now it can copy the lines of the proof onto its work tape
and spend an additional amount of time (polynomial in the length of the line it is
reading) to check the proof. After this allotted time, the verifier continues to read the
proof obliviously. Let PWT,,, be defined as above, replacing the DFA proof checker
by a polynomial time proof checker. We show that the more powerful proof checker
does not change the class of polynomially wide theorems.

Theorem 1 PWT = PWT,,;,.

Proof: Clearly, PWT C PWT,,,. To see that PWT,,, C PWT, let L € PWT,,,.
Then, there is a formal system F and a Turing machine Mz such that

T € L < T is a theorem in F and width(Mz,T) < |T|* + k.

We can construct a new formal system F' where the proofs can be verified by an
oblivious finite automaton. To do this, simply annotate the proofs in F by inserting,



between the lines, the instantaneous descriptions (ID) of the computation of M.
Since the ID’s change only near the tape heads, a finite automaton that has Mz’s
transition table can verify that Mr accepted the proof. Thus, L € PWT. O

Even the concept of explicit lines are not essential in these definitions. Consider
a formal system whose proofs are presented as a single line and the proof checker is
a two-headed finite automaton, scanning the proof from left to right. Here the width
of the proof is the maximum separation of the heads. Define PWT;_j,. to be the
class of languages containing polynomially wide theorems under this new definition
of width. Again, this model yields the same class PWT.

Theorem 2 PWT = PWT _j,..

Proof: Let L € PWT. Let F and Dz be the formal system and the proof checker
for the language L. To give a one-dimensional proof that T' € L, simply take the
two-dimensional proof and concatenate the lines to form one long line. A DFA D’
with two heads can simulate Dr reading two adjacent symbols of the two dimensional
proof by keeping the two heads in the correct positions along the single-line proof.
Since D reads symbols only from adjacent lines, D’ can simulate D without moving
its heads further apart than the width of the original proof. So, L € PWT;_j,..

On the other hand, if L € PWT;_y,., then for any T" € L, let w be the width of
the proof of T'. To give a two-dimensional proof that 1" € L, simply divide the single-
line proof into segments of length w and arrange the segments into a two-dimensional
proof by listing the segments one below the other. A polynomial time proof checker
M can simulate the two-headed DFA, D, reading a single-line proof, because M can
record the last two lines of the proof in its work tape. Since D never moves its heads
greater than w tape cells apart, M only needs the last two lines of the two-dimensional
proof to simulate D. Thus, PWT,_;,. € PWT,,, € PWT. O

Finally, in both models with finite automata verifiers, we can allow the verifier to
have freer movements. In the two dimensional case, we can remove the restriction
that the verifier must read the proof in an oblivious manner and allow it to move up,
down, left or right at any time. Define PWTy, to be the class of languages containing
polynomially wide theorems under this non-oblivious DFA verifier model.

Theorem 3 PWT = PWT{*

Proof: Clearly, PWT C PWTg. To see that PWT4 € PWT, note that the non-
oblivious DFA proof checker is deterministic, so it cannot be in the same state when
it revisits a location in the two dimensional page. If it does, it will loop and never
accept the proof. Since the number of states is constant, the DFA can only visit each
location a constant number of times. Thus, to convert a proof for a non-oblivious
DFA verifier into one that an oblivious DFA proof verifier can check, one simply has



to include, at each location on the page, a list describing state and direction of head
movement of the non-oblivious DFA during each visit to that location. The oblivious
DFA proof checker can verify that the list at each location is consistent with the lists
at neighboring locations, because there is only a constant number of possible lists. It
can also verify that the non-oblivious DFA entered the proof at the top left corner,
and accepted in the bottom right corner. Hence, PWT4 C PWT. a

Similarly, for the formal system where the proof is presented in one line and
the verifier is a two-headed finite automaton, we can allow both heads to move left
and right. Define PWT., to be the class of languages containing polynomially wide
theorems under this new definition of width.

Theorem 4 PWT = PWT._..

Proof: By Theorem 2, PWT C PWT,_;,. € PWT.. For any language L in
PWT._, let F and Dr be the formal system and the two-headed DFA proof checker
for F. Suppose Dx is checking if a string x is a proof in F. Let w be the greatest
distance separating the two tape heads of Dz while verifying x. A deterministic
Turing machine M with one input head and a separate work tape can simulate Dz
using no more than logw tape cells on its work tape. M will simply use the work
tape to keep track of the distance between the two tape heads of Dr. Since M has
only polynomially many work tape configurations, it can only visit each symbol of
x polynomially many times without looping. Then, as in the proofs of Theorems 2
and 3, we can convert the one line proof into a two dimensional proof and annotate
the proof with M’s crossing sequence. This will change the width of the proof by at
most a polynomial. Also, since the depth of each crossing sequence is polynomial,
an oblivious polynomial time proof checker can verify that the crossing sequence
at each location is consistent with the crossing sequences of its neighbors. Hence,
PWT_ € PWT,,, € PWT. O

As the reader may have suspected, there is a good reason why all these classes
turn out to be PWT. The reason is that the verifiers in these formal systems have
enough power to check valid computations. Hence, restricting the width of the proof
to be polynomial in the size of the theorem is equivalent to restricting the size of the
instantaneous descriptions of a Turing machine computation to be polynomial in the
size of the input string. But, this is just PSPACE. (See [Fis69] for related results.)

Theorem 5 PWT = PSPACE.

Proof: Let L € PWT. Then, using our first definition of “formal system”, there
exist a constant k£ and a formal system with a DFA proof checker, Dz, such that

T € L < T is a theorem in F and width(Dr,T) < |T|* + k.



On input 7', a nondeterministic Turing machine M can guess a width m, guess suc-
cessive lines of length m, and use Dz to check if the lines form a proof of 7" in F. If
such a proof is found, M accepts. Clearly,

T eL < M(T) accepts.

Since NPSPACE C PSPACE, L € PSPACE.

Conversely, suppose that L € PSPACE. Then, there is a Turing machine M
which recognizes L. We can define a formal proof system that uses the instantaneous
descriptions (ID) of M as the lines of a proof. Since the ID’s only change near the
tape head, a DFA can check if one ID follows another according to the transition table
of M. Moreover, the length of the ID’s are polynomial in the size of the input string
T, so the width of the proof is polynomial in |T'|. Thus, there is a formal system
which proves exactly the strings in L using polynomially-wide proofs. So,

PWT = PSPACE.

O

Note that the role of polynomial width was not essential in proving these results.
We can easily define Exponentially Wide Theorems and show similar robustness prop-
erties. These observations show that the definition of the width of a proof is robust,
and we believe it properly captures the intuitive idea of width. In essence, the width
of a proof quantifies how much information a verifier needs check a proof and how far
this information can be separated in the proof.

3 Conclusion

From the previous consideration, we see that
IP = PSPACE = PWT.

Recall that NP is the class of languages with polynomially long proofs. PWT is
the class of languages with polynomially wide proofs whose length may not be poly-
nomially bounded. By comparing IP and PWT we can see how interaction and
probabilistic acceptance can shorten the amount of time required to check a proof.

For example, if NP # PSPACE, then there are formal systems where all of the
theorems have polynomial width, but some of the proofs have lengths that are not
bounded by any polynomial (in the size of the theorem). Thus, in these formal systems
the proof cannot always be presented in polynomial time. However, one can present
a probabilistic proof in polynomial time, because IP = PSPACE. If NP # PSPACE,
then the whole range of languages in PSPACE — NP are of this type.

Note that the languages in PSPACE may require exponentially long proofs. So
if PSPACE # NEXP, then there are languages which have exponentially long proofs
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Figure 2: The shapes of proofs for languages in NEXP, PSPACE and NP.

that do not have (proof systems) with polynomially wide proofs. Figure 2 illustrates
the various shapes of these proofs.

We believe that these results, in particular the IP = PSPACE result in the IP =
PWT interpretation, reveal new and interesting insights about the quantitative nature
of mathematical proofs and thus about the fundamental nature of mathematics. The
two dimensional shape of the proof determines how rapidly one can give overwhelming
evidence that there is a proof without showing the whole proof. Intuitively, this is
because the width of the proof reflects the maximum distance that separates the
critical pieces of the proof which are used to verify the correctness of the proof.

We are impressed by the rapid development of the theory of interactive proofs and
delighted by the research culminating in the IP = PSPACE result. IP = PSPACE
is indeed a beautiful result contributing to the elegance and relevance of complexity
theory and leading to new insights in the quantitative nature of mathematics.
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