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An important issue that arises in the automation of many security, surveillance, and 
reconnaissance tasks is that of monitoring (or observing) the movements of targets nav- 
igating in a bounded area of interest. A key research issue in these problems is that of 
sensor placement - determining where sensors should be located to maintain the tar- 
gets in view. In complex applications involving limited-range sensors. the use of multiple 
sensors dynamically moving over time is required. In this paper, we investigate the use 
of a cooperative team of autonomous sensor-based robots for the observation of multiple 
moving targets. We focus primarily on developing the distributed control strategies that 
allow the robot team to attempt to minimize the total time in which targets escape 
observation by some robot team member in the area of interest. Our initial efforts on 
this problem address the aspects of distributed control in homogeneous robot teams with 
equivalent sensing and movement capabilities working in an uncluttered. bounded area. 
This paper first formalizes the problem, discusses related work, and then shows that this 
problem is NP-hard. \\‘e then present a distributed approximate approach to solving 
this problem that combines low-level multi-robot control with higher-level control. The 
low-level control is described in terms of force fields emanating from the targets and the 
robots. The higher level control is presented in the ALLIANCE formalism, which pro- 
vides mechanisms for fault tolerant cooperative control, and allows robot team members 
to  adjust their low-level actions based upon the actions of their teammates. We then 
present the results of the ongoing implementation of our approach. both in simulation 
and on physical robots. To our knowledge, this is the first paper addressing this research 
problem that has been implemented on physical robot teams. 

1 Introduction 

An important issue that arises in the automation of many security, surveillance, and 
reconnaissance tasks is that of monitoring (or observing) the movements of targets 
navigating in a bounded area of interest. X key research issue in these problems 
is that of sensor placement - determining where sensors should be located to  
maintain the targets in view. In the simplest version of this problem, the number 
of sensors and sensor placement can be fixed in advance to ensure adequate sensory 
coverage of the area of interest. However, in more complex applications, a number 
of factors may prevent fixed sensory placement in advance. For example, there 
may be little prior information on the location of the area to be monitored, the area 
may be sufficiently large that economics prohibit the placement of a large number of 
sensors, the available sensor range may be limited, or the area may not be physically 
accessible in advance of the mission. In the general case, the combined coverage 
capabilities of the available robot sensors will be insufficient to  cover the entire 
terrain of interest. Thus, the above constraints force the use of multiple sensors 
dynamically moving over time. 

In this paper, we investigate the use of a cooperative team of autonomous 
sensor-based robots for applications in this domain. We focus primarily on devel- 
oping the distributed control strategies that allow the team to attempt to  minimize 
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the total time in which targets escape observation by some robot team member in 
the area of interest. Of course, many variations of this dynamic, distributed sensory 
coverage problem are possible. For example, the relative numbers and speeds of the 
robots and the targets to be tracked can vary, the availability of inter-robot commu- 
nication can vary, the robots can differ in their sensing and movement capabilities, 
the terrain may be either enclosed or have entrances that allow objects to  enter and 
exit the area of interest, the terrain may be either indoor (and thus largely planar 
or 2D) or outdoor (and thus 3D), and so forth. Many other subproblems must also 
be addressed, including the physical tracking of targets (e.g. using vision, sonar, In, 
or laser range), prediction of target movements, multi-sensor fusion, and so forth. 
Thus, while our ultimate goal is to develop distributed algorithms that address all of 
these problem variations, we first focus on the aspects of distributed control in ho- 
mogeneous robot teams with equivalent sensing and movement capabilities working 
in an uncluttered, bounded area. 

We also note that although the cooperative multi-robot target observation ap- 
plication is interesting in its own right, this application domain can also serve as a 
testbed for developing generalized approaches for the control of cooperative teams. 
The cooperative monitoring (or observation) problem is attractive for this purpose 
for a number of reasons. First, it requires a strongly cooperative solution' to achieve 
the goal, meaning intuitively that the robots must act in concert to  achieve the goal, 
and that  the task is not trivially serializable. This makes the cooperative control 
problem much more challenging than a weakly cooperative approach. Additionally, 
it offers an excellent domain for the comparison of different control strategies, such 
as centralized versus distributed conirol approaches. Finally, it allows us to  ex- 
plore the extension of the ALLIANCE cooperative control architecture * t 3  that we 
previously developed for the domain of loosely-coupled, independent tasks, to  the 
domain of strongly cooperative applications. 

In this paper, we describe a mechanism for achieving distributed cooperative 
control in the defined application domain. Section 2 defines the multitarget obser- 
vation problem of interest in this paper, and is followed by a discussion of related 
work in section 3. We then note the difficulty of the defined problem in section 4. 
Section 5 describes our approach, discussing each of the subcomponents of the sys- 
tem. Section 6 describes the implementation of our approach on both a simulated 
and a physical robot team. Finally, we offer concluding remarks in section 7, as 
well as directions of continuing and future research. 

2 Problem Description: CMOMMT 

The problem of interest in this paper - the cooperative multi-robot observation of 
multiple moving targets (or CMOMMT for short) - is defined as follows. Given: 

S : 
R : 

O(t)  : 

a two-dimensional, simple polyhedral spatial region, with entrances/exits 
a team of M robots with 360' field of view observation sensors, that 
are noisy and of limited range 
a set of S targets, 0 3 ( t )  such that In(o,(t).S) is true (where 
In(oj( t ) ,S)  means that target o j ( t )  is located within region S at time t )  
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Define an iM x N matrix A( t ) ,  where 

1 
0 otherwise 

if robot r;  is monitoring target oj( t )  in S at time t 
U i j ( t )  = 

We further define the logical OR operator over a vector H as: 

if there exists an i such that hi = 1 1 
i=l c h i = {  0 otherwise 

We say that a robot is monitoring a target when the target is wiL...i that fG"ot's 
observation sensory field of view. Then, the goal is to maximize: 

T N .I4 x x v a d 4  
t = O  i= l  j=1 

over time steps At under the assumptions listed below. In other words, the goal of 
the robots is to maximize the collective time during which objects in S are being 
monitored by at least one &bot during the mission from t = 0 to t = T (or, 
equivalently, to minimize the total collective time any target in # ( t )  is not under 
observation by at least one robot in R). Note that we do not assume that the 
membership of O ( t )  is known in advance. 

In addressing this problem, we assume the following: Define sensor-coverage (ri) 
as the area visible to robot T ~ ' S  observation sensors, for ri E R. Then we assume 
that, in general, 

U sensor-coverage ( T i )  << S.  
r;ER 

That is, the maximum area covered by the observation sensors of the robot team is 
much less than the total area to be monitored. This implies that fixed robot sensing 
locations or sensing paths will not be adequate in general. and that, instead, the 
robots must move dynamically as targets appear in order to maintain observational 
contact with them and to  maximize the coverage of the area S .  

We further assume the following: 

0 The robots have a broadcast communication mechanism that allows them to 
send (receive) messages to (from) each other within the area S. Further, this 
communication mechanism is assumed to have a bandwidth of order O(mn)  
for m robots and n targets. 

0 For all ri  E R and for all o j ( t )  E O(t) ,  maa-v(ri)  > maz-v(oj(t)), where 
muz-z~(a)  returns the maximum possible velocity of entity a. for u E R U  O(t) .  

0 Objects in 0 can enter and exit region S through distinct entranceslexits on 
the boundary of S.  

0 The robot team members share a known global coordinate system. 
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=field of view of robot 0 
0 =robot 
A = object to be monitored 
-1 = entrancekxit 

Figure 1: The problem depicted in terms of robot directional sensors. 

In the general case, as shown in figure 1, the observation sensor on each robot 
is of limited range and is directional (e.g., a camera), and can only be used to 
observe targets within that sensor's field of view. However, to  simplify the problem 
initially, we report here the results of the case of an omni-directional 2D sensory 
system (such as a ring of cameras or sonars), in which the robot sensory system is 
of limited range, but is available for the entire 360' around the robot, as depicted 
in figure 2. 

3 Related Work 

Research related to the multiple target Observation problem can be found in a 
number of domains, including art gallery and related problems, multitarget tracking, 
and multi-robot surveillance tasks. While a complete review of these fields is not 
possible in a short paper, we will briefly outline the previous work that is most 
closely related to  the topic of this paper. 

The work most closely related to the CMOMMT problem falls into the category 
of the art gallery and related problems 4, which deal with issues related to polygon 
visibility. The basic art gallery problem is to determine the minimum number of 
guards required to ensure the visibility of an interior polygonal area. Variations 
on the problem include fixed point guards or mobile guards that can patrol a line 
segment within the polygon. Most research in this area typically utilizes centralized 
approaches to  the placement of sensors, uses ideal sensors (noise-free and infinite 
range). and assumes the availability of sufficient numbers of sensors to cover the 
entire area of interest. Several authors have looked at the static placement of sensors 
for target tracking in known polygonal environments. For example, Briggs5 uses art 
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gallery theorems in the development of algorithms for planning the set of placements 
from which a sensor can monitor a region within a task environment. Her approach 
uses weak visibility as a model for detectability, in which all points in the area to  be 
monitored are visible from at least one point in the sensor placement region. These 
works differ from the CMOMMT problem, in that our robots must dynamically 
shift their positions over time to  ensure that as many targets as possible remain 
under surveillance, and their sensors are noisy w d  of limited range. 

address the searchlight schedudzng probkm, which involves 
searching for a mobile “robber” (which we call target) in a simple polygon by a num- 
ber of fixed searchlights, regardless of the movement of the target. Their objective 
is to  determine whether a search schedule exists, given a polygon and the locations 
of the searchlights. They develop certain necessary and sufficient conditions for the 
existence of a search schedule in certain situations. This work, however, assumes 
that there is only one target, that the target cannot enter or exit the polygon af- 
ter the start of the problem, and that the searchers maintain fixed positions. It 
also does not give a prescriptive algorithm for determining the appropriate search 
schedule for any given simple polygon, although algorithms for special cases are 
provided. 

Suzuki and Yamashita7 address the polygon search problem, which deals with 
searching for a mobile target in a simple polygon by a single mobile searcher. They 
examine two cases: one in which the searcher’s visibility is restricted to IC rays 
emanating from its position, and one in which the searcher can see in all directions 
simultaneously. Their work assumes that the searcher has an infinite sensory range, 
that the target cannot enter or exit the polygon after the start of the problem, and 
that only one searcher is available. It also does not give a prescriptive algorithm for 
determining the appropriate search schedule for the single searcher for any given 
simple polygon, although algorithms for special cases are provided. 

introduces the visibility-based motion planning problem of 
locating an unpredictable target in a workspace with one or more robots. regardless 
of the movements of the target. They define a visibility region for each robot, with 
the goal of guaranteeing that the target will eventually lie in at least one visibility 
region. In LaValle et  al. 9 ,  they address the related question of maintaining the 
visibility of a moving target in a cluttered workspace by a single robot. They are 
also able to  optimize the path along additional criteria, such as the total distance 
traveled. The problems they address in these papers are closely related to  the 
problem of interest here. The primary difference is that their work does not deal 
with multiple robots maintaining visibility of multiple targets, nor a domain in 
which targets may enter and exit the area of interest. 

Another large area of related research has addressed the problem of multitar- 
get tracking (e.g. Bar-Shalom 10*12, Blackman 11, Fox et al. 13) .  This problem is 
concerned with computing the trajectories of multiple targets by associating obser- 
vations of current target locations with previously detected target locations. In the 
general case, the sensory input can come from multiple sensory platforms. Our task 
in this paper differs from this work in that our goal is not to cdculate the trajecto- 
ries of the targets, but rather to find dynamic sensor placements that minimize the 
collective time that any target is not being monitored (or observed) by at least one 

Sugihara et al. 

LaValle et al. 
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0 = field of view of robot 

r j  = entrance/exit 
0 =robot 
A = object to be monitored 

Figure 2: The problem depicted in terms of omni-directional2D robot sensors. 

of the mobile sensors. 
In the area of multi-robot surveillance, Everett e t  al. l4 have developed a co- 

ordinated multiple security robot cohtrol system for warehouse surveillance and 
inventory assessment. The system is semi-autonomous, and utilizes autonomous 
navigation v i th  human supervisory control when needed. They propose a hybrid 
navigational scheme which encourages the use of known %rtual paths” when pos- 
sible. Wesson e t  al. l5 describe a distributed artificial intelligence approach to sit- 
uation assessment in an automated distributed sensor network, focusing on the 
issues of knowledge fusion. Durfee e t  al. describe a distributed sensor approach 
to  target tracking using fixed sensory locations. As before, this related research in 
multi-robot surveillance does not deal with the issue of interest in this paper - the 
dynamic placement of mobile sensors in areas in which targets may enter and exit. 

4 Problem Difficulty 

The CMOMMT problem outlined in section 2 is a difficult problem; we now show 
that it is NP-hard. Let us consider the simpler, static, problem of determining the 
optimal placement of robots a t  one instant in time, given that we know the location 
of all targets. The goal is to determine the optimal placement of the robots to  ensure 
that the maximum number of targets lie within the sensory range of some robot. ltTe 
assume that the robots have homogeneous sensing capabilities, and that the targets 
are stationary. We can then show NP-hardness by reduction to the well-known 
NP-complete problem VERTEX COVER 17. We sketch the proof below. 

The VERTEX COVER problem is as follows: given a graph G = (V, E )  and a 
positive integer K 51 V 1, determine whether there is a vertex c o t w  of size K or less 



for G; that is, a subset V' C V such that I V' I <  K and, for each edge { u , ' ~ ' }  E E ,  
at  least one of u and v belongs to V. We then have the following: 
Theorem 1 The CMOMMT (cooperative multi-robot observation of rnultiple mov- 
ing targets) problem i s  NP-hurd in the number o,f taryets and the number of robots. 

By reduction to  VERTEX COVER Let Pi and Pj be the Cartesian (2, y) point 
locations of targets o ; ( t )  and o j ( t ) ,  and d be the sensor range of the robots. Define: 

Proof: 

= {Pk I 4) E O ( t ) }  
E = {{Pi,Pj} I the distance between o; ( t )  and o j ( t )  at time t is . 

less t.han 2d for o i ( t )  E O ( t ) }  

Then it can be shown that the CMOMMTproblem is reducible to  the VERTEX 
COVER problem, where G = (V, E )  as defined above, and K = ill, where M is the 
number of robots. The solution to VERTEX COVE,R, V',  would give the optimal 

0 positions for the ill robots in CMOMMT. 

Thus, since finding the optimal solution is computationally prohibitive, we in- 
stead investigate an approximate solution. 

5 Approach 

Figure 3 shows the overall design of the control system within each robot team mem- 
ber. This design is based upon the ALLIANCE a.r~hitecture**~, which facilitates the 
fault tolerant cooperative control of multiple robot teams. We now provide a brief 
overview of ALLIANCE, and then describe how we use this approach to  develop 
the overall control system for robots performing the CMOMMT application. The 
following subsections describe the subsystems in more detail. 

The ALLIANCE software architecture is a behavior-based, fully distributed 
architecture that utilizes adaptive action selection to  achieve fault tolerant cooper- 
ative control. Robots under this architecture possess a varietv of high-level functions 
(modeled as behavzor sets) that they can perform during a mission, and must at all 
times select an appropriate action based on the requirements of the mission, the ac- 
tivities of other robots, the current environmental conditions. and their own internal 
states. Since cooperative robotic teams"often work in dynamic and unpredictable 
environments, this software architecture allows the team members to respond ro- 
bustly and reliably to  unexpected environmental changes and modifications in the 
robot team that may occur due to mechanical failure, the learning of new skills, 
or the addition or removal of robots from the team by human intervention. This 
is achieved through the interaction of mathematically modeled motivations of be- 
havior, such as impatience and acquiescence, within each individual robot. These 
motivations allow robots to take over tasks from other team members if those team 
members do not demonstrate their ability - through their effect on the world - to 
accomplish those tasks. Similarly, it allows a robot to give up its own current task 
if its sensory feedback indicates that adequate progress is not being made to ac- 
complish that task. The primary mechanism for achieving adaptive action selection 
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Figure 3: Control within an individual robot for the CMOMMT mission: in the  ALLIANCE 
formalism. 

in this architecture is the motivational behavior. The output of a motivational be- 
havior is typically the activation level or importance weighting of its corresponding 
behavior set, represented as a non-negative number. The current level of activation 
controls the output of its corresponding behavior set. 

In the CMOMMT problem shown in figure 3, each robot has two high-level 
behavior sets: Observe Known,  Nearby Targets and Seek Out Targets. The Observe 
Known, Nearby Targets behavior set controls the robot’s movement in relationship 
to  other nearby robots and nearby targets. It is responsible for ensuring that the 
current robot maintains a viewpoint on the proper targets, dependent upon other 
robots’ movements and the positions of the targets. The Seek Out Targets behavior 
set allows robots to intelligently search the area S when no objects are nearby. In 
figure 3, the motivational behaviors are indicated by the small rectangle attached 
at the top of the behavior sets. The following subsections describe these behaviors 
in more detail. 

5.1 Observe Known, Nearby Turgets 

The Observe Kzr-lown, Nearby Targets behavior set is responsible for controlling the 
current robot’s movements to  maintain observation of certain targets nearby. These 
movements within S are based upon the movements of nearby targets and the 
actions of other robot team members. This part of the control scheme is modeled 
by a collection of lower-level motil-ational behaviors (as shown in figure 3), each of 
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which is spawned automatically when a robot has become aware of a target nearby. 
The motivational behaviors in this subsvstem are responsible for determining the 
weight, or importance, of the current robot’s continued monitoring of target oi. If 
any target o j  leaves the current robot’s predictive trucking range (defined in the next 
subsection), the corresponding motivational behavior is terminated. The generated 
weights are then factored into the output of the ~ b s e r v e  Known, Neurby Targets 
behavior set (described below) to calculate the desired direction of motion of the 
current robot. This combination of information is modeled in figure 3 as the combine 
module. 

The following subsections describe how the local control information based upon 
robot and target locations is derived, how the motivational behaviors derive the 
weights corresponding to each target. and how the lower-level and higher-level in- 
formation is combined. 

Target and Robot Detection 

Ideally, the robots would be able to passively observe nearby robots and targets 
to  ascertain their current positions and velocities. Research fields such as machine 
vision have dealt extensively with this topic, and have developed algorithms for this 
type of passive position calculation. However, since the physical tracking and 2D 
positioning of visual targets is not the focus of this research, we instead assume 
that robots use a global positioning system (such as GPS for outdoors, or the laser- 
based MTI indoor positioning system ‘s that is in use at our CESAR laboratory) 
to  determine their own position, and communicate this information to  other robot 
team members. In our approach, robots do not store position information for robots 
that are not relatively close (made explicit below). 

In addition to robot position information, team members need to determine the 
positions and velocities of the targets within their own field of view. Since previous 
work 19.20, has shown that communication and awareness of robot team member 
actions can significantly improve the quality of a distributed solution for certain 
task domains. we supplement a robot’s knowledge of target movements gained from 
direct sensing (e.g. from its cameras or sonar) with position and derived velocity 
information on target sightings that is communicated by other robot team members 
within a given communication range. Thus. targets can be one of two types: directly 
sensed or “virtually” sensed through predictive tracking. In our approach, each 
robot communicates to its teammates the positions and velocities of all objects 
within its own view (Le. the virtual targets). However, a team member does not 
store position information for targets that are not within its own vicinity. Note that 
this approach requires the available communication bandwidth to be O(mrL), for m 
robots and n targets. 

To clarify this idea, figure 4 depicts three ranges that are defined with respect 
to each robot ri. The innermost range is the sensrng range of T , ,  within which the 
robot can use a sensor-based tracking algorithm to maintain passive contact with 
targets in its field of view. The middle range is the predzctzve truckmg range of the 
robot r l ,  which defines the range in which targets localized by other robots T k  # r ,  
can affect r,’s movements. The outermost range is the communzcatzon mnge of the 
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i (robot) 

sensing range 

predictive tracking range/ 

Figure 4: Definition of the sensing range, predictive tracking range, and communication range of 
a robot. Although the exact range values may change, we assume that the relative ordering of 

range distances remains the same. 

robot, which defines the extent of the robot’s communicated messages. Here, it is 
assumed that the communication range covers the entire area S. 

When a robot receives a communicated message regarding the location and 
velocity of a sighted target that is within its predictive tracking range, it begins a 
predictive tracking of that target’s location, assuming that the target will continue 
linearly from its current state. If the communicated information indicates that a 
target is within robot T ~ ’ S  predictive tracking range, that information is held in 
memory and used as described in the following subsections. 

We assume that if the targets are dense enough that their position estimations 
do not supply enough information to disambiguate distinct targets, then existing 
tracking approaches (e.g. Bar-Shalom 1 2 )  should be used to  uniquely identify each 
target based upon likely trajectories. 

Local Force Vector Calculation 

In performing their mission, the robots should be close enough to the targets to 
be able to  take advantage of their (Le. the robots’) more sophisticated tracking 
devices (such as cameras) while remaining dispersed from each other to cover more 
terrain. The local control of a robot team member is thus based upon a summation 
of force vectors which are attractive for nearby targets and repulsive for nearby 
robots. Figure 5 defines the magnitude of the attractive forces of a target within 
the predictive tracking range of a given robot. Note that the robot is repelled from 
a target if it is too close to that target (distance < dol) ,  and it is attracted to the 
target if the robot is nearby (distance < do*). Beyond a given distance do*, the 
attraction falls off linearly until the predicted tracking range is met, at which point 
the attraction goes to 0. 
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Figure 5: Function defining the magnitude of the force vector of nearby targets. 
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Figure 6: Function defining the magnitude of the force vector of nearby robots. 

Figure 6 defines the magnitude of the repulsive forces between robots. If the 
robots are too close together (distance < d ~ l ) ,  they repel strongly. If the robots are 
far enough apart (distance > dr2) ,  they have no effect upon each other in terms of 
the force vector calculations. The magnitude scales linearly between these values. 

One problem with using only force vectors, however, is that  of local minima. As 
defined so far, the force vector computation is equivalent for all objects, and for all 
robots. Thus, we need to  inject additional high-level control into the system to  take 
into account more global information. This is modeled as predictive weights that 
are factored into the force vector calculation, as described in the next subsection. 

High-Level Control via ALLIANCE 

As previously mentioned, one problem with using only force vectors is that  of local 
minima. To help resolve some of these problems, we use higher-level control via 
motivational behaviors to  differentially weight the contributions of each target's 
force field on the total computed field. This higher-level knowledge is expressed in 
the form of two types of probabilities: the probability that a given target actually 
exists, and the probability that no other robot is already monitoring a given target. 
Combining these two probabilities helps reduce the overlap of robot sensory areas 
toward the goal of minimizing the likelihood of a target escaping detection. 

The probability that a target exists is modeled as a decay function based upon 
when the target was most recently seen, and by whom. In general, the probability 
decreases inversely with distance from the current robot. Beyond the predictive 
tracking range of the robot, the probability becomes zero. 

The probability that no other robot is already monitoring a nearby target is 
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based upon the target’s position and the location of nearby robots. If the target is 
in range of another robot, then this probability is generally high. However, we also 
incorporate a feature of “impatience”, as modeled in the ALLIANCE framework. if 
a nearby robot does not appear to be satisfactorily observing its local targets, This 
impatience effectively reduces the probability that the other robot is already moni- 
toring nearby targets. In more complex versions of the CMOMMT problem, robots 
could also learn about the viewing capabilities of their teammates, arid discount 
their teammates’ observations if that teammate has been unreliable in the past. 

The output of the motivational behavior corresponding to a given target is the 
product of the probability that the target exists and the probability that no other 
robot is currently monitoring that target. These probabilities have the effect of 
causing a robot to  prefer the observation of targets over others. 

Combinat ion of Local and Higher-Level Information 

The local force vectors are combined with the higher-level information, resulting in 
the commanded direction of robot movement. This direction of movement is given 
by: 

N .w 
~ ( F V O ;  x Pr(ezistsi) x PT(XT;))  + FVR, 
i = O  j=O 

where F V O k  is the force vector attributed to object O k ,  Pr (ex i s t sk )  is the proba- 
bility that object Ok exists, f%(iyTk)  is the probability that object Ok is not already 
being tracked, and F V R l  is the force vector attributed to  robot TI. This movement 
command is then sent to the robot actuators to cause the appropriate robot move- 
ments. However, as shown in figure 3, this command can be overwritten by the 
Avozd Obstacles behavior. which will move the robot away from any obstacle that 
is too close. 

5.2 Seek Out Targets 

When a robot does not detect any target nearby, the weighted sum of the force vec- 
tors a s  described above will cause the robot to move away from its robot neighbors 
and then idle in one location. While this may be acceptable in some applications, in 
general, we would like to  have the robots actively and intelligently seek out poten- 
tial targets in the area. Suzuki and Yamashita7 address this problem through the 
development of search schedules for *‘x-searchers”. An “co-searcher” is a mobile 
searcher that has a 360’ infinite field of view. A search schedule for an m-searcher is 
a path through a simple polygonal area that allows the searcher (or robot) t o  detect 
a mobile “intruder” (or target), regardless of the movements of the target. While 
clearly related to the CMOMMT problem, this earlier work makes a number of 
assumptions that do not hold in the CMOMMT problem: infinite range of searcher 
visibility, only a single searcher, only a single target, and an enclosed polygonal area 
which does not allow any targets to enter or exit the area. 

In our future work, we intend to develop an automated process that allows 
the robots to generate the appropriate search schedule for a given area. perhaps 
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based upon this earlier work of Suzuki and Yamashita. Our current approach, 
however. simplifies the task by supplying the robot team members with a human- 
derived search path through the area S. In practice, the derivation of the oo-search 
schedule by hand through the polygonal areas that define the interiors of most 
buildings appears to be fairly straightforward under the assumptions of Suzuki and 
Yamashita ’. More challenging is dealing with multiple targets, multiple robots, 
and entrances/exits in the polygonal area. We leave this task to future work. 

Thus, when no targets are detected by a given robot, that robot moves along 
the search path looking for targets, paying special attention to entrances for the 
appearance of new targets. To prevent the robot’s path from being predictable to 
a knowledgeable target, the robot randomly selects a direction to traverse at each 
intersection in the search path. If two robots encounter each other moving in the 
opposite direction along the search path, they reverse directions. As soon as targets 
are detected along the search route, the highest level motivational behaviors will 
switch the robot from seek mode to observe mode. 

6 Experiments 

Our approach to the cooperative multi-robot monitoring problem has been partially 
implemented both in simulation and on a team of four Nomadic Technologies robots. 
These robots are wheeled vehicles with tactile, infrared, ultrasonic, 2D laser range, 
and indoor global positioning systems. In addition, the robots are equipped with 
a voice synthesizer and radio ethernet for inter-robot communication. Nomadic’s 
multi-robot simulator allows us to test and debug our algorithms (written in C) in 
simulation prior to executing them on the actual robots. The code generated during 
the simulation can then be ported directly to the robots for experimentation in the 
“real world” with relatively minor changes. 

In the initial phase of research in this problem, which concentrates on the coop- 
erative control issues of distributed tracking, we utilize an indoor global positioning 
system as a substitute for vision- or range-sensor-based tracking. Under this ap- 
proach, each target to be tracked is equipped with an indoor global position sensor, 
and broadcasts its current x, g position via radio to the robots within communica- 
tion range. Each robot team member is also equipped with a positioning sensor, 
and can use the targets’ broadcast information to determine the relative location of 
nearby targets. 

Figures 7 and 8 illustrate two examples of portions of our approach that have 
been implemented on the simulated robots - namely, the local force-field control. 
In these figures, the black points represent targets, and the gray points represent 
robots. 

Figure 7 shows a case where two targets are being tracked by two robots. The 
first frame begins with the two targets heading towards each other, and each of the 
robots *‘following” one of the targets. In the second frame, the targets have passed 
each other, and the robots meet in the middle. At this point the repulsive force 
between the two robots takes precedence and pushes them away from each other, 
causing them to swap targets. In the final two frames, the robots continue to follow 
the new targets. 

13 



Figure 7: Two targets tracked by two robots performing a swap. The black points represent targets 
while the gray points represent robots. 

Figure 8 shows a case where the targets stay relatively distributed throughout 
the simulation. The robots tend to hover around the center of the mass of targets; 
they keep their distance from one another throughout the simulation, due to the 
repulsive forces. 

The local control subsystems have also been ported to, and successfully demon- 
strated on, our team of 4 mobile robots. Figure 9 shows an example of the robot 
implementation. In these experiments, we typically designated certain robots to  be 
targets, and other robots as observers. Since we are not dealing with the issues of 
visual tracking of objects in our current work, using some robots as targets allowed 
us to take advantage of the global positioning system on the robots to perform “vir- 
tual” tracking. Thus, the robots acting as targets were programmed to broadcast 
their current location to the robot team; this information could then be used by 
the observers to calculate their desired movements. We programmed the robots 
acting as targets to  move in one of two ways: movements based on human joystick 
commands, or simple wandering through the area of interest. In figure 9, the robot 
targets are indicated by the triangular flags. 
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Figure 8: When targets stay relatively distributed, the robots hover around the centroid. (The 
black points represent targets while the gray points represent robots.) 
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Figure 9: Results of robot team performing task using summation of force vectors. The robots 
with the triangular flags are acting as targets, while the robots without the flags are performing 

the distributed observation. 

The first frame in figure 9 shows the arrangement of the observers and targets 
at the very beginning of.the experiment. The second frame shows how the two 
observers move away from each other once the experiment is begun, due to  the 
repulsive forces between the observers. In the third frame, a human joysticks one 
of the robot targets away from the other target and the observers. As the target 
is moved, the two observers also move in the same direction, due to the attractive 
forces of the target that is moving away. However, if the target exits the area 
of interest, S, as illustrated in the fourth frame, then the observers are no longer 
influenced by the moved target, and again draw nearer to the stationary target, due 
to its attractive forces. Note that throughout the example, the observers keep away 
from each other, due to the repulsive forces. 

In continuing t\7ork, we are implementing the entire control schematic for 
CMOMMT on both simulated and physical robot teams. 

7 Conclusions and Future Work 

Many real-world applications in security, surveillance. and reconnaissance tasks re- 
quire multiple targets to be monitored using mobile sensors. We have shown that 
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this problem is NP-complete, and thus intractable. We then presented a distributed 
approach that is based upon high-level control provided through the ALLIANCE 
formalism, combined with lower-level attractive and repulsive force fields, and a 
target seeking system. This approach enables the execution of tasks in strongly 
cooperative application domains. Empirical investigations of portions of our coop- 
erative control approach have been presented on both the simulated robots and the 
physical robot team. To our knowledge, no previous work related to the CMOMMT 
problem has been implemented on actual robots. 

Continuing and future work includes completing the implementation on both 
the simulated and physical robot teams and the development of an automatic gen- 
eration of search schedules for times when the observers do not perceive any targets. 
We also desire to prove the effectiveness of our approach, as compared to the opti- 
mal solution. Additional related research includes extending the work to apply to 
more complex environments, to  robots that differ in their sensing and movement 
capabilities, and to  address the subproblems of the physical tracking of targets (e.g. 
using vision, sonar, IR, or laserrange) and the prediction of target movements. 
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