
January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

Chapter 1

Type Checking of Tree Walking Transducers

Sebastian Maneth

NICTA and University of New South Wales, Sydney, Australia

Sylvia Pott & Helmut Seidl

Technische Universität München, Garching, Germany

Tree walking transducers are an expressive formalism for reasoning about XSLT-like doc-
ument transformations. One of the useful properties of tree transducers is decidability of
type checking: given a transducer and input and output types, it can be checked statically
whether the transducer is type correct, i.e., whether each document adhering to the input
type is necessarily transformed into documents adhering to the output type. Here, a “type”
means a regular set of trees specified by a finite-state tree automaton. Usually, type check-
ing of tree transducers is extremely expensive; already for simple top-down tree transduc-
ers it is known to be EXPTIME-complete. Are there expressive classes of tree transducers
for which type checking can be performed in polynomial time? Most of the previous ap-
proaches are based on inverse type inference. The approach presented here goes the other
direction: it uses forward type inference. This means to infer, given a transducer and an
input type, the corresponding set of output trees. In general, this set is not a type, i.e., is
not regular. However, its intersection emptiness with a given type can be decided. Using
this approach it is shown that type checking can be performed in polynomial time, if (1)
the output type is specified by a deterministic tree automaton and (2) the transducer visits
every input node only a bounded number of times. If the tree walking transducer is addi-
tionally equipped with accumulating call-by-value parameters, then the complexity of type
checking also depends (exponentially) on the number of such parameters. For this case a
fast approximative type checking algorithm is presented, based on context-free tree gram-
mars. Finally, the approach is generalized from trees to forest walking transducers which
additionally support concatenation as a built-in output operation.

1

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

Contents

1. Type Checking of Tree Walking Transducers 1

Sebastian Maneth

Sylvia Pott & Helmut Seidl

1.1 Introduction . 3
1.2 Preliminaries . 4
1.3 Tree Walking Transducers . 7

1.3.1 Notes and References . 12
1.4 Type Checking . 13

1.4.1 Type Checking by Forward Type Inference . 13
1.4.2 Tree Automata . 13
1.4.3 Basic Properties of BTAs . 15
1.4.4 Notes and References . 16

1.5 Type Checking of Tree Walking Transducers . 16
1.5.1 Intersecting Tree Walking Transducers with Output Types 16
1.5.2 Deciding Emptiness of 2TTs . 18
1.5.3 Efficient Subcases . 23
1.5.4 Conclusion . 24
1.5.5 Notes and References . 25

1.6 Macro Tree Walking Transducers . 26
1.6.1 Type Checking Macro Tree Walking Transducers . 29
1.6.2 Deciding Emptiness of 2MTTs . 32
1.6.3 Input-Linear 2MTTs . 32
1.6.4 Notes and References . 35

1.7 Macro Forest Walking Transducers . 36
1.7.1 Intersecting Forest Walking Transducers with Output Types 38
1.7.2 Deciding Emptiness of 2MFTs . 41
1.7.3 Notes and References . 43

1.8 Conclusion . 43
References . 44

2

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

1.1. Introduction

The extensible markup language XML is the current standard format for exchanging struc-
tured data. Its widespread use has initiated lots of work to support processing of XML
on many different levels: customized query languages for XML, such as XQuery, trans-
formation languages like XSLT, and programming language support either in the form of
special purpose languages like XDuce, or of binding facilities for mainstream programming
languages like JAXB. A central problem in XML processing is the (static) type checking
problem: given an input and output type and a transformation f , can we statically check
whether all outputs generated by f on valid inputs conform to the output type? Since XML
types are intrinsically more complex than the types found in conventional programming
languages, the type checking problem for XML poses new challenges on the design of
type checking algorithms. The excellent survey [MS05] gives an overview of the different
approaches to XML type checking.

In its most general setting, the type checking problem for XML transformations is
undecidable. Hence, general solutions are bound to be approximative, but seem to work
well for practical XSLT transformations [MOS05]. Another approach is to restrict the types
and transformations in such a way that type checking becomes decidable; we then refer to
the problem as exact XML type checking. For the exact setting, types can be considered as
regular or recognizable tree languages — thus, capturing the expressive strength of virtually
all known type formalisms for XML [MLM00].

Even though the class of transformations for which exact type checking is possible is
surprisingly large [EM03a; MSV03; MBPS05], the price to be paid for exactness is also
extremely high. The design space for exact type checking comes as a huge “exponential
wasteland”: even for simple top-down transformations, exact type checking is exponential-
time complete [MN05], and for more complex transformations such as the k-pebble trans-
ducers of [MSV03] the problem is non-elementary. For practical considerations, however,
one is interested in useful subclasses of transformations for which exact type checking is
provably tractable.

In general, we are interested in type checking of transformations formulated through
tree walking transducers (2tts) and macro tree walking transducers (2mtts). A 2tt is similar
to an attribute grammar which operates on derivation trees, and has trees as semantic do-
main (with tree top-concatenation as only semantic operation). The 2mtt generalizes the 2tt
by adding formal context-parameters to the attributes, i.e., each attribute is seen as a func-
tion which can take parameters of type output tree. Such transducers are very expressive
and can simulate most features of transformation languages such as XSLT. Given suitable
descriptions (types) of admissible inputs and outputs for a 2tt M , type checking M means
to test whether all outputs produced by M on admissible inputs are again admissible. Our
main result is: if admissible outputs are described by deterministic tree automata, then ex-
act type checking can be done in polynomial time for a large class of practically interesting
transformations obtained by putting only mild restrictions on the transducers.
Related Work Approximative type checking for XML transformations is typically based

3

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

on (subclasses of) recognizable tree languages. Using XPath as pattern language, XQuery
[BC03] is a functional language for querying XML documents. It is strongly-typed and
type checking is performed via type inference rules computing approximative types for
each expression. Approximative type inference is also used in XDuce [HP03] and its
follow-up version CDuce [Fri04]; navigation and deconstruction are based on an exten-
sion of the pattern matching mechanism of functional languages with regular expression
constructs. Recently, Hosoya et al. proposed a type checking system based on the approx-
imative type inference of [HP02] for parametric polymorphism for XML [HFC05]. Type
variables are interpreted as markings indicating the parameterized subparts. In [MOS05]
a sound type checking algorithm is proposed (originally developed for the Java-based lan-
guage XACT [KMS04]) based on an XSLT flow analysis that determines the possible out-
comes of pattern matching operations; for the benefit of better performance the algorithm
deals with regular approximations of possible outputs.

Milo et al. [MSV03] propose the k-pebble tree transducer (k-ptt) as a formal model
for XML transformations, and show that exact type checking can be done for k-ptts using
inverse type inference. The latter means to start with an output type O of a transforma-
tion f and then to construct the type of the inputs by backwards translating O through f .
Each k-pebble tree transducer can be simulated by compositions of k + 1 stay macro tree
transducers (smtts) [EM03a], thus, type checking can be solved in time (iterated) expo-
nential in the number of used pebbles. Intuitively, k-pebble tree transducers for k = 0
correspond to our 2tts. In [Eng08] it was shown that inverse type inference for 2tts can
be done in exponential time, and can be done for k-fold compositions of 2tts in k-fold ex-
ponential time. In [MBPS05] it was shown that inverse type inference can be done for a
transformation language providing all standard features of most XML transformation lan-
guages using a simulation by at most three smtts. Inverse type inference is used in [MN04;
MN05] to identify subclasses of top-down XML transformation which have tractable ex-
act type checking. We note that the classes considered there are incomparable to the ones
considered in this paper.

1.2. Preliminaries

An XML document can be seen as a sequential representation of an unranked tree. Here is
a small example document:

<department>
<employee>

<data><name>Charles Montgomery Burns</name>...</data>
<subordinates>

<employee>
<data><name>Waylon Smithers</name>...</data>

</employee>
<employee> ... </employee> ...

</subordinates>
</employee>
<employee> ... </employee> ...

</department>

This example represents a company structure, where each employee element has a data

4

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

element, with the personal data of the employee (e.g. the name). Additionally, it may
have a subordinates element, which is a collection of further employee elements. The
represented tree has a root node labeled department, which has an arbitrary number of
children nodes which are labeled employee. An employee-node has as first child a data-
node and has possibly a second child labeled subordinates. In the following we refer to
this tree as tB .

Formally, an unranked tree over an alphabet Σ consists of a root node labeled by a
symbol a from Σ and a forest f , written a 〈f〉. A forest is a sequence of an arbitrary
number of unranked trees, written t1t2 . . . tm. The number m is called the length of the
forest. The empty forest, i.e., a forest with length m = 0, is denoted by ε.

Definition 1.1 (Forests). Let Σ be a an alphabet (i.e., a finite set). The set FΣ of forests f
over Σ is defined by the grammar rules f ::= ε | tf , t ::= a〈f〉 , where a ∈ Σ.

Rather than on forests, tree walking transducers work on ranked trees. There, we assume
that a fixed rank is given for every element of Σ, i.e. Σ =

⊎
m∈NΣ(m) where Σ(m) is

the set of all symbols with rank m. We define rank(a) = m for all symbols a ∈ Σ(m)

for m ≥ 0. The maximal rank mr(Σ) is the smallest number m such that Σ(m) 6= ∅ and
Σ(m+i) = ∅ for all i ≥ 1.

Definition 1.2 (Ranked Trees). Let Σ be a ranked alphabet. The set TΣ of ranked trees
over Σ is defined by the grammar rules t ::= a(t, . . . , t︸ ︷︷ ︸

m times

) | b, where a ∈ Σ(m) and b ∈ Σ(0).

In the following we use the term ‘tree’ as a synonym for ranked tree. We fix the set
Y = {y1, y2, . . . } of formal parameters. These parameters are of rank 0. For a ranked
alphabet Σ, where Σ and Y are disjoint, TΣ(Y) denotes the set of trees over Σ and Y .

In order to define tree walking transducers on XML documents, we rely on ranked tree
representations of forests, e.g., through binary trees. The empty forest then is represented
by a leaf with label e (where e is a new symbol that does not appear in the document). The
content of an element node a is coded as the left child of a, while the forest of right sib-
lings of a is represented as the right child (this is the well-known “first-child next-sibling”
encoding). Accordingly, the ranks of symbols are either zero or two. Figure 1.1 illustrates
this relationship between unranked trees and their representation as binary trees. It shows
the tree tB in the left part and its binary encoding t′B on the right.

The set N (t) ⊆ N∗ of all nodes v in a ranked tree t is defined as N (b) = {ε} and
N (a(t1, . . . , tm)) = {ε} ∪ {iv | 1 ≤ i ≤ m, v ∈ N (ti)}. where N∗ is the set of strings
(including the empty string) over the alphabet of positive natural numbers and ε denotes
the empty string. The direction η(v) of a node v indicates whether v is the root of the tree
or a particular child, i.e., we define η(ε) = 0 and η(v′j) = j. The set N (f) of nodes of a
forest f is defined as N (ε) = {0} and N (a〈f1〉f2) = {0v′ | v′ ∈ N (f1)} ∪ {(i + 1)v′ |
iv′ ∈ N (f2)}. For a node v in a forest we define the direction η(v) which now indicates
whether v is at the top-level, has a left sibling or both. Thus, η(0) = 0, η(i) = 1 for i > 0,
η(v′0) = 2 for v′ 6= ε and η(v) = 3 otherwise.

5

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

Fig. 1.1. The unranked tree tB and its binary encoding t′B .

Note that the definition of nodes of a ranked tree differs from the definition of nodes in
a forest consisting of one tree only. Accordingly, also the definitions of direction differ. For
a ranked tree t and a given node v ∈ N (t), t[v] is called the subtree of t located at v and is
defined as t[ε] = t and a(t1, . . . , tm)[iv] = ti[v] for i = 1, . . . ,m. For example in the left
tree tB in Figure 1.1 the subordinates element is the node 1.2. Here we write 1.2 instead
of 12 for the second child of the first child of the root, to distinguish between this node and
the twelfth son of the root. With labt(v) we refer to the label of the node v in a tree t, or
lab(v), if t is given by the context. In the left example labtB (1.2) = subordinates and
in the right tree labt′B (1.2) = employee.

The height of a tree is recursively defined as height(b) = 1 for b of rank 0 and
height(a(t1, . . . , tm)) = 1 + max(height(t1), . . . , height(tm)) for a of rank m. The height
of a tree is the maximal length of a path from the root to a leaf. If we consider trees on
right-hand sides of rules, we have to deal with state calls. In this exposition, we will first
consider tree walking transducers (cf. Section 1.3) which do not support accumulating
parameters. For tree walking transducers, state calls are of the form q(op) (op stands for
up, stay or downi). For these, we define height(q(op)) = 1 for all states q and all oper-
ations op. In Section 1.6 we then will add parameters to state calls to obtain macro tree
walking transducers. Then a state call has the form q(op, t1, . . . , tn) where ti (1 ≤ i ≤ n)
are ranked trees over Σ ∪ Y and further state calls (Y = {y1, . . . , yk} is a set of pa-
rameters). In this case, we define the height recursively by: height(q(op, t1, . . . , tn)) =
1 + max(height(t1), . . . , height(tk)). The size of a tree t is defined as the number of nodes,
i.e., |t| = |N (t)|. Similar notions also apply to forests. In particular, the subforest f [v] at a
node v in a forest is defined as f if i = 0 and as f ′[i− 1] if i > 0 and f = tf ′. For v = iv′

with v′ 6= ε f [v] = f1[v′] if i = 0 and f = a〈f1〉f2, and f [v] = f ′[(i − 1)v′] if i > 0
and f = tf ′. The label labf (v) of v in the forest f is defined by labf (0) = ε if f = ε,
and labf (iv′) = a if i = 1 and v′ = ε, labf (iv′) = labf1(v′) if i = 1 and v′ 6= ε, and
labf (iv′) = labf2((i − 1)v′) if i > 0 and f = a〈f1〉f2. Note that the label at a node in a
forest thus either is from Σ or equals the empty forest ε.

6

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

1.3. Tree Walking Transducers

Tree transducers describe transformations τ from trees to sets of trees over a ranked al-
phabet Σ, i.e., τ : TΣ → 2TΣ . Consider for example a transformation which translates
documents as in the example before into a collection of all employees which are listed
under a new root node labeled staff. Besides a name element, these new employee el-
ements now contain an element boss if the employee is the subordinate of someone. For
our example document, the transformation produces:
<staff>
<employee>

<data> <name> Charles Montgomery Burns </name> ... </data>
</employee>
<employee>

<data> <name> Waylon Smithers </name> ... </data>
<boss> <name> Charles Montgomery Burns </name> ... </boss>

</employee>
<employee> ... </employee> ...

</staff>

The corresponding tree is referred as sB and its binary encoding as s′B . A tree walking
transducer starts at the root of the input tree. Depending on the label of the current node,
the direction and the state, it produces a tree with leaves which again may contain state calls
for nodes of the input tree. These recursively accessed nodes are determined according to
the directives specified in the right-hand side of the applied rule: on directive up, the father
of the current node is processed, on directive downi, the i-th child and on directive stay
the current node itself. Tree walking transducers can be considered as generalizations of
top-down tree transducers. While top-down tree transducers are only allowed to move
downward in the input tree, tree walking transducers may also stay at the current node or
move upward in the tree.

Example 1.1. Using our representation of forests by binary trees (Fig. 1.1), the transfor-
mation of our example is realized by a tree walking transducer Mstaff with the following
rules.

1 qI (department) → staff(q(down1), e),

2 q(employee) → employee(data(qdata(down1), qboss(stay)), qsub(down1)),

3 q(e) → qup(up),

together with a state qdata for copying the personal data

4 qdata(data) → copy(down1),

as well as a state qboss to find the boss

5 qboss(employee) → qboss(up),

6 qboss(department) → e,

7 qboss(subordinates)→ boss(qdata(up), e),

and a state qsub , which processes the subordinates

8 qsub(data) → qsub(down2),

9 qsub(subordinates) → q(down1),

10 qsub(e) → qnext (up).

7

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

Fig. 1.2. The tree t′B and its output tree s′B of the transformation of the 2tt Mstaff.

The state qnext searches (in dfs-manner) the next employee

11 qnext (data) → qnext (up),

12 qnext (employee) → q(down2),

together with a state qup for going to the boss, if there is no further subordinate

13 qup(employee) → qup(up),

14 qup(subordinates) → qnext (up),

15 qup(department) → e,

where state copy in line 4 is meant to copy the content of data (i.e., the left child in the
binary representation). The initial state is qI , which means that we start with state qI

at the root of the tree. The output trees of this transformation are binary representations
of the lists of all members of staff. The root, which is labeled staff, has a right child
with label e. The left child of staff has label employee whose left child is a data-node
(with the personal data and the boss) and whose right child is a chain of employee-nodes.
Figure 1.2 illustrates this transformation for the binary example tree t′B resulting in the
tree s′B . /

The example illustrates that the “first-child next-sibling” encoding of forests implies that
the up-operation of the tree walking transducer may not necessarily access directly the
father in the forest representation but may instead reach the left sibling – depending whether
or not the current node is a left or right child (i.e., has direction 1 or 2). In the example this
was no problem: the state qboss simply proceeds upwards in the tree representation until a
node with the right label is reached. A direct construction of forest walking transducers,
which provides the operations up, down , left and right will be presented in Section 1.7.
For the moment, we restrict ourselves to tree walking transducers on ranked trees (which
perhaps are encodings of unranked forests).

Formally, the rules of a tree walking transducers are slightly more general than the ones
shown in Example 1.1: additional to the label of the current node, the left-hand side of
a rule also checks the direction of the current node, i.e., whether the current node is the
root node (direction is zero), or whether it is the i-th child of its parent node. It is well-
known that in the case of tree walking automata (viz. tree walking transducers with output

8

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

symbols {0, 1} of rank zero), such direction tests (or “child number” test) are crucial:
without them, the automaton cannot even realize a depth-first left-to-right traversal over
the input tree, i.e., it cannot systematically search through every node of the input. For
some translations, however, direction tests are not needed (such as our Example 1.1). In
that example, we must think of every rule as existing in (at most) three incarnations, for
direction zero (root node), direction one (left child), and direction two (right child). For
instance, the q-rule for employee-nodes (rule number 2 of the example) is needed in the
following two incarnations:

2a q(employee, 1) → employee(data(qdata(down1), qboss(stay)), qsub(down1))
2b q(employee, 2) → employee(data(qdata(down1), qboss(stay)), qsub(down1))

Recall from the Preliminaries that the maximal rank of symbols in a ranked alphabet Σ is
denoted by mr(Σ).

Definition 1.3 (2tt). A tree walking transducer M (2tt for short) is a tuple (Q,Σ, R,Q0)
where Q is a set of states, Σ is a ranked alphabet, Q0 ⊆ Q is a set of initial states, and
R is a finite set of rules. A rule is of the form q(a, η) → ζ where q ∈ Q, a ∈ Σ(m),
m ≥ 0, η ≥ 0 and ζ is a tree generated by the grammar ζ ::= b(ζ, . . . , ζ︸ ︷︷ ︸

m′ times

) | q′(op), with

b ∈ Σ(m′), m′ ≥ 0, q′ ∈ Q, and op ∈ {stay , up} ∪ {downi | 1 ≤ i ≤ m}.

Tree walking transducers are also called 2-way tree transducers, because they generalize to
trees the well known concept of 2-way finite state transducer on words (see, e.g., [Gre78]).

Conventionally, tree transducers are defined over two ranked alphabets of input and
output symbols. In Definition 1.3 of a 2tt M we only use one alphabet Σ which contains
input and output symbols. If we want to distinguish the two, we say that a ∈ Σ is an input
symbol if a appears on the left-hand side of a rule of M ; we say that it is an output symbol
if it appears in the right-hand side of a rule of M . In Example 1.1, data is an input and
output symbol and boss is an output symbol of Mstaff.

In practice, transducers also have to cope with unknown labels in the input such as, e.g.,
portions of text which then either are ignored or copied into the output. In order to deal
with this, we could simply extend our formalism by an extra symbol • of any given rank
which serves as a placeholder for unknown labels of this rank. This idea can be extended
to placeholders for unknown elements of different atomic types, for instance String,
Number or Date. Thus, we can describe the so called “Simple Types” of XML Schema
(cf. [FW04]).

For a right-hand side ζ, we also write ζ = s[q1(op1), . . . , qc(opc)] to refer to all occur-
rences of state calls in the right-hand side; there s ∈ TΣ(X) is a tree which contains exactly
one occurrence of the variable xi for i = 1, . . . , c. Note that s does not contain state calls.
For example the right-hand side of the rule in line 2 in the Example 1.1 can be written as
s[qdata(down1), qboss(stay), qsub(down1)] where s = employee(data(x1, x2), x3).

A 2tt is called deterministic iff there is at most one state in the set Q0 and for every
triple (q, a, η) of a state, a symbol and a direction there is at most one rule with q(a, η) as
left-hand side. The example 2tt Mstaff is deterministic.

9

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

Intuitively, the meaning of the expressions of a right-hand side is as follows: the output
can either be an element b whose content is recursively determined, or a recursive call to
some state q′ on the current input node, on its father or on its i-th subtree. The match pat-
terns in the left-hand side of the rules are restricted to the form “a, η”, i.e., it is only allowed
to check the label of the current input node and its direction. Thus, the transformation of
a 2tt M starts at the root node of the input t with one of the initial states. A state q can be
applied to an input node v with label lab(v) = a and direction η = η(v) if there is a rule
with left-hand side q(a, η). The evaluation continues on a child vi of v for each occurrence
of a state call q′(downi), at v itself for each occurrence of a state call q′(stay), and at the
parent of v, for each occurrence of a state call q′(up).

Hence, the meaning [[q]]t of a state q of M with respect to an input tree t can be defined
as a function from the nodes (of the input tree) to sets of trees, i.e., [[q]]t : N (t)→ 2TΣ . The
values [[q]]t for all q are jointly defined as the least functions satisfying: [[q]]t(v) ⊇ ([[ζ]]t(v))
for rule q(a, η)→ ζ where v is a node of t with lab(v) = a and η = η(v) with

[[b(ζ1, . . . , ζm)]]t(v) = {b(t′1, . . . , t
′
m) | t′i ∈ [[ζi]]t(v)}

[[q′(op)]]t(v) = [[q′]]t([[op]]t(v)),

where op stands for stay , up or downi for 1 ≤ i ≤ rank(a), and [[op]]t is defined by:
[[stay]]t(v) = v, [[downi]]t(v) = vi, and [[up]]t(vi) = v. The transformation τM realized by
the 2tt M on an input tree t and sets T of input trees, respectively, is defined by τM (t) =⋃
{[[q0]]t(ε) | q0 ∈ Q0} and τM (T) =

⋃
{τM (t) | t ∈ T}. For a deterministic 2tt M the

transformation τM is a partial function τM : TΣ → TΣ. The domain of the transducer is
the domain of the transformation, i.e., dom(M) = dom(τM) = {t | τM (t) 6= ∅}. As
usual, the size |M | of a 2tt M is the sum of the sizes of all its rules where the size of a rule
q(a, i)→ ζ is defined as 3 + |ζ|. Recall that |ζ| equals the number of nodes of ζ.

Applying the 2ttMstaff from before to t′B we obtain the tree s′B . The right-hand sides of
rules in a 2tt may be arbitrarily large and contain arbitrarily many state calls. Dealing with
such rules increases the complexity of some algorithms on 2tts. Thus, we give a normal
form for 2tts where the number of state calls in right-hand sides is bounded by the maximal
rank of output symbols. In the particular case where we consider binary representations of
forests, the number of state calls in right-hand sides can be restricted to 2.

Lemma 1.1. For every 2tt M a 2tt M ′ can be constructed in time O(|M |) such that
(i) τM ′ = τM and (ii) the right-hand side of each rule ofM ′ contains at most k occurrences
of states where k is the maximal rank of the output symbols of M .

Proof. Let M = (Q,Σ, R,Q0). Intuitively, the idea of the construction is to introduce
auxiliary states for all proper subtrees which contain more than 1 state call. For a symbol
a ∈ Σ and direction η, let Za,η denote the set of all subterms with more than one state call
in right-hand sides of rules for a, η. For each ζ ∈ Za,η , we introduce a fresh state qa,η,ζ .
Assume that ζ = b(ζ1, . . . , ζm). Then we introduce the new rule qa,η,ζ(a, η)→ b(ζ′1, . . . , ζ

′
m)

where ζ ′j = ζj if ζj contains at most one occurrence of a state, and ζ′j = qa,η,ζj (stay)

otherwise. We construct M ′ = (Q′,Σ, R′, Q0) as follows. The set of rules R′ of the new
transducer consists of all these newly constructed rules. Additionally, we add for every rule

10

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

(a) The behavior of 2ttMstaff on tree te. (b) A run of Mstaff on the tree te.

Fig. 1.3. The 2tt Mstaff on the tree te.

q(a, η)→ b(ζ1, . . . , ζm) of M a new rule q(a, η)→ b(ζ′1, . . . , ζ
′
m) where for every j, ζ ′j = ζj

if ζj contains at most one occurrence of a state, and ζ′j = qa,η,ζj (stay) otherwise. The set
of states Q′ contains all states of Q and additionally the new states qa,η,ζ for every symbol
a ∈ Σ, direction η and every term ζ ∈ Za,η .

The resulting transducer M ′ has a new state at most for every non-leaf node of a right-
hand side of a rule in M . Thus, in the worst case, we have at most |M | new states. In the
new rules the right-hand side of the original rule of M is split in its subtrees. Thereby, we
have |M ′| ∈ O(|M |). �

In order to describe the behavior of the 2tt M = (Q,Σ, R,Q0) on a fixed input tree t, we
are also going to define runs of M . A run can itself be described by a ranked tree over the
set of rules. Here, the rank of a rule q(a, η)→ ζ is given by the number of occurrences of
calls q′(op) in ζ to states q′ in Q.

Definition 1.4 (Run). Let q denote a state of M and v a node in the input tree t of di-
rection η which is labeled with a. Assume that r : q(a, η) → ζ is a rule in R with
ζ = s[q1(op1), . . . , qm(opm)]. Then the tree ρ = r(ρ1, . . . , ρm) ∈ TR is a (q, v)-run of
the 2tt M on the tree t, if for every 1 ≤ i ≤ m, ρi is a (qi, vi)-run of M on t where vi
is obtained from v by operation opi. The output τ(ρ) produced by a run ρ is defined by
τ(ρ) = s[τ(ρ1), . . . , τ(ρm)]. A (q0, ε)-run for an initial state q0 is also called accepting run
of M on t.

If M is deterministic, then there exists at most one accepting run on every tree.

Example 1.2. Figure 1.3(a) shows the behavior of the (deterministic) example 2ttMstaff on
the tree te = department(employee(data(. . . , e), e), e) which describes a department with
one employee. All states in an oval around a node are applied to this node. The picture
includes the dependences of the states. For example, consider the employee node v = 1

11

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

(with label lab(v) = employee). There, we have the state q. In the 2tt, there is just one
rule with left-hand side q(employee, 1):

2a q(employee, 1) → employee(data(qdata(down1), qboss(stay)), qsub(down1))

Thus, we have a (q, 1)-run ρ = r2a(ρ1, ρ2, ρ3) where ρ1, ρ3 are (qdata , 1.1)- and (qsub , 1.1)-
runs, respectively, and ρ2 is a (qboss , 1)-run. This is illustrated by the three arrows starting
at q at 1. The Figure 1.3(b) shows a (qI , ε)-run ρ′ = r1(ρ). The state copy was not detailed
in Example 1.1. Accordingly, the (copy, 1.1.1)-run here is not complete. The output τ(ρ)
of this run is the tree staff(employee(data(. . . , e), e), e) . /

Accepting runs are another approach to define the semantics of a 2tt. Indeed, this opera-
tional semantics of a 2tt coincides with the denotational semantics provided first.

Theorem 1.1. For a tree t and a 2tt M the following two statements are equivalent.
(1) There is an accepting run ρ of M for t with τ(ρ) = s and (2) s ∈ τM (t).

Theorem 1.1 can be proved by fixpoint induction. The denotational view on the semantics
of a 2tt allows us to use fixpoint arguments for proving the correctness of constructions,
whereas the operational view is better suited for combinatorial arguments.

1.3.1. Notes and References

Top-down tree transducers were invented by Rounds and Thatcher [Rou70; Tha69]. Top-
down tree transducers terminate for every input tree, because they process the input
tree strictly top-down. While the height increase of a top-down tree transducer is at
most linear, the size increase is at most exponential (viz. the translation of a monadic
tree with n nodes into a full binary tree of height n). A nondeterministic top-down
tree transducer can associate at most double exponentially many output trees to a given
input tree; e.g. the transducer with the three rules q(a, η) → b(q(down1), q(down1)),
q(a, η)→ c(q(down1), q(down1)), and q(e, 1)→ e for η ∈ {0, 1}. Tree walking transducers
with output strings were invented in [AU71]; by adding the ability to generate output trees
rather than strings, we obtain the tree walking transducer of this paper. It can be seen as the
k-pebble tree transducer of [MSV03], for the case that k = 0. In [KS81] it was shown that
tree walking transducers without child number test are not useful: they cannot even check
whether all leaves of input trees are labeled by some symbol a. As mentioned in [EM03a],
in the total deterministic case the tree walking transducer is essentially the same as the
attribute grammar [Knu68]. Similar to the fact that circularity of attribute grammars is de-
cidable, it is possible to change any deterministic tree walking transducer in such a way
that all runs are terminating [EM03a]. This is not possible for nondeterministic tree walk-
ing transducers, because they can associate infinitely many output trees to a given input
tree (viz. the transducer with the two rules q(a, 0) → b(q(stay)), and q(a, 0) → e). The
normal form of Lemma 1.1 is similar to the one for pebble macro tree transducers given in
Theorem 16 of [EM03a]. Attribute grammars with tree output are also called “attributed
tree transducers” [Fül81]; for total deterministic such transducers (which coincide with our

12

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

tree walking transducers when they are total deterministic) it is known that the size-to-
height relationship of input tree to output tree is linear, and that the number of different
output subtrees in an output tree is linear in the size of the corresponding input tree (see,
e.g., [FV98]).

1.4. Type Checking

In this section, we present general techniques for certifying that all outputs produced by a
transducer M for trees of a given input type are well-formed, i.e., comply with some given
output type O. This problem is called type checking of the transducer M . Here, a type is
just a set of trees, i.e., a tree language. Clearly, the tractability of type checking heavily
depends on the class of languages used as types, and the class of transformations.

The tree sB is an example for the output language of the 2tt Mstaff. Such output trees
are binary trees with a root labeled with staff and a right-comb of employee nodes as
left subtree. It is the first-child next-sibling representation of a tree which has a root labeled
with staff and arbitrary many employee nodes as children. A DTD describing this type
(not the binary representation) is the following (where content stands for further personal
data which are not specified here):

<!ELEMENT staff (employee)*>
<!ELEMENT employee (data, boss)>
<!ELEMENT data (name, content)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT boss (name, content)>
<!ELEMENT content ... >

1.4.1. Type Checking by Forward Type Inference

Type checking a transducer M means to verify that all trees produced by M for input trees
in the given input type I are necessarily contained in the given output type O. If τ is the
transformation induced by the transducer M , we want to check whether or not τ(I) ⊆ O,
where τ(I) = {τ(t) | t ∈ I}. If this check succeeds, then we say that M type checks
w.r.t. I and O. We solve this problem by forward inference, i.e., we determine whether
τ(I) ∩ O = ∅, where O is the complement of the type O. In order to decide emptiness of
this intersection, we proceed in two steps. First, we construct from M a transducer MO

which produces only those outputs of M which are from O. This construction is presented
in Section 1.5.1. Then we present methods for deciding emptiness of transducers (w.r.t. I).

1.4.2. Tree Automata

There are several specification formalisms for XML types, such as DTD, XML Schema, or
RELAX NG. For our purpose, the particular type formalisms is not essential, as all of these
formalisms can be abstracted by recognizable (or: regular) tree languages. Thus, each type
definition can be translated into a finite tree automaton. XML Schema specifications, e.g.,

13

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

can be considered as simple classes of deterministic top-down automata. We briefly recall
crucial definitions of finite tree automata.

Definition 1.5 (bta). Let Σ be a ranked alphabet. A bottom-up finite state tree automaton
A (over Σ), bta for short, is a tuple (P,Σ, δ, F) where P is a finite set of states, F ⊆ P is a
set of accepting states, and δ is a finite set of transitions (p, a, p1 . . . pm) where a ∈ Σ(m)

and p, p1, . . . , pm ∈ P .

A transition (p, a, p1 . . . pm) denotes that if, for all 1 ≤ i ≤ m, A arrives in state pi after
processing some tree ti, then it can assign state p to the tree a(t1, . . . , tm). Technically,
a p-run ρ of A on a tree t = a(t1, . . . , tm) ∈ TΣ is a tree ρ = r(ρ1, . . . , ρm) ∈ Tδ where
r is a transition (p, a, p1 . . . pm) ∈ δ and ρi is a pi-run of A for ti. The tree language
L(A) accepted by A consists of the trees t ∈ TΣ by which A can reach an accepting state,
i.e. it exists a p-run ρ of A for t with p ∈ F ; the latter run is called accepting run of
A on t. A bottom-up tree automaton A = (P,Σ, δ, F) is deterministic (dbta) if for each
symbol a ∈ Σ(m) and every tuple p1 . . . pm of states, there is at most one state p with
(p, a, p1 . . . pm) ∈ δ, i.e., δ induces a partial function of type Σ × P ∗ → P . A bta is
called total if there is at least one rule (p, a, p1 . . . pm) ∈ δ for all m ≥ 0, a ∈ Σ(m), and
p1, . . . , pm ∈ P .

We may also interpret the transitions of a bta in a top-down fashion. Then we obtain the
known top-down tree automaton (tta) which starts at the input root node and assigns states
to the children of a node, depending on the label of the node and the current state.

Definition 1.6 (dtta). A bta is called deterministic top-down (dtta for short), if the set
of final states is a singleton set, and the transition relation δ induces a partial function
P × Σ → P ∗, i.e., for each state p ∈ P and each symbol a ∈ Σ(m), there is at most one
sequence of states p1 . . . pm ∈ Pm with (p, a, p1 . . . pm) ∈ δ.

As usual, the size |A| of a finite state tree automaton A is the sum of sizes of all its tran-
sitions. A transition (p, a, p1 . . . pm) has size m + 2. Let BTA, DBTA, and DTTA denote
the classes of all languages definable by btas, dbtas, and dttas, respectively. It is known
that BTA = DBTA equals the class of regular tree languages, and that DTTA is properly
contained in this class.

Example 1.3. Coming back to the transformation from Example 1.1, the set of valid
output documents should be lists of staff members, more precisely: staff should contain
a possibly empty sequence of employee elements; Each employee element should contain
a data element and optionally, a boss element.

A bta describing (the binary representations of) this set is given by Astaff = (P,Σ, δ, F)
where P = {rstaff, rempl, rdata, rname, rboss, re, . . .} and δ = {(rstaff, staff, rempl re),
(rempl, employee, rdata rempl), (rempl, e), (rdata, data, rname rboss), (rboss, boss, rname re), (rboss, e),
(rname, name, rcontent re), (rboss, boss, rcontentre), (re, e)}, where rcontent is the state characterizing
valid personal data of employees. The set of accepting states is, thus, given by F = {rstaff}.
Note that this bta is in fact deterministic top-down. /

14

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

In the previous example, the bta ran on the first-child next-sibling encoding of forests as
binary ranked trees. For convenience, we call such a finite tree automaton also finite forest
automaton (short: bfa). Again, if it is deterministic or deterministic top-down, then we
abbreviate it with dbfa and dtfa, respectively.

1.4.3. Basic Properties of BTAs

The approach which we advocate here is called forward type checking (cf. Section 1.4.1).
Assume that O is the type of all valid output trees. In order to check that the transducer M
produces only outputs in O, we construct a transducer which for every input t, only pro-
duces those output trees of M which are not valid, i.e., which are in O (the complement of
O). Thus, type correctness for M is reduced to emptiness of the auxiliary transducer MO.
For this idea to work, it is useful to have effective constructions which take the specification
of a type and return a specification for its complement. For a total dbta A = (P,Σ, δ, F)
this construction is simple: we need to exchange accepting and non-accepting states, i.e.,
replace F with P\F . Since every regular tree language can be accepted by a total dbta,
this construction implies that the complement of a regular tree language is a regular tree
language, too. The complement of a type described by a deterministic top-down tree au-
tomaton is a regular language as well, but not necessarily in DTTA. The obvious technique
for constructing an automaton for the complement therefore is to transform the determin-
istic top-down automaton into a total deterministic bottom-up automaton and then apply
the complement construction for total dbtas. This first construction, however, possibly
incurs an exponential blow-up in the number of states. Therefore, we approve a differ-
ent approach: instead of constructing a deterministic automaton for the complement, we
construct a non-deterministic automaton. The latter can be achieved by only moderately
increasing the size.

Lemma 1.2. For a dttaA over the ranked alphabet Σ there is a btaA′ over Σ withL(A′) =
TΣ\L(A) and |A′| ∈ O((|A|+ |Σ|) · mr(Σ)).

Proof. Intuitively, the automaton A′ guesses a path in the input tree to some node
where the original automaton A fails. Formally, let A = (P,Σ, δ, {p0}) and define
A′ = (P ′,Σ, δ′, {p′0}) with P ′ = {p′ | p ∈ P} ∪ {•} for a new state • /∈ P . A state
p′ is meant to generate only trees for which there is no p-run of A. The state • describes
arbitrary trees, i.e., the language TΣ. The set δ′ of transitions of the new bta is defined as
follows:

• for every state p ∈ P and a ∈ Σ(0), (p′, a, ε) ∈ δ′ whenever (p, a, ε) 6∈ δ
• for every transition (p, a, p1 . . . pm) ∈ δ with rank(a) ≥ 1, and for every i ∈
{1, . . . ,m} let (p′, a, •i−1p′i•m−i) ∈ δ′

• for every state p ∈ P and a ∈ Σ(m), (p′, a, •m) ∈ δ′ whenever ∀p1, . . . , pm ∈ P :

(p, a, p1 . . . pm) 6∈ δ
• for every a ∈ Σ(m), (•, a, •m) ∈ δ′.

15

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

For the correctness of the construction, we claim that for every state p ofA, and every input
tree t, A′ has a p′-run on t iff A has no p-run on t. This claim can be proven by induction
on the height of input trees.

Now, let k = mr(Σ) be the maximal rank of symbols in Σ. For each transition in δ we
get at most k new transitions in δ′ (one for each successor state). Additionally, we require
a new rule of length at most k + 2 for each symbol in Σ. Thus, the size of the automaton
A′ is in O((|A|+ |Σ|) · mr(Σ)). �

Example 1.4. For the dtta Astaff = (P,Σ, δ, {rstaff}) in Example 1.3, the bta A′staff =
(P ′,Σ, δ′, {r′staff}) for the complement has the following transitions for the label staff:
(r′staff, staff, r

′
empl•), (r′staff, staff, •r′e), and (r′, staff, ••) for all r′ ∈ P ′ \ {r′staff} /

1.4.4. Notes and References

XML type definition languages such as DTDs [W3C00], XML Schema [Fal01], or RELAX
NG [CM] are closely related to the regular tree languages [MLM00; Nev02], that is, to the
class of tree languages recognized by finite tree automata.

Tree automata are a well studied formalism in computer science, dating back to the late
1960s. For surveys on tree automata, please see [GS84; GS97; CDG+07]. Tree automata
inherit most of the good properties of finite automata on strings, such as effective closure
under Boolean operations and decidability of emptiness. An important property which will
be used later for type checking, is that emptiness of btas can be decided in linear time (see,
e.g., Theorem 1.7.4 in [CDG+07]).

Theorem 1.2. Given a bta A it can be decided in linear time whether or not L(A) = ∅.

Just as in the string case, nondeterministic bottom-up tree automata can be deter-
minized (with a potential and sometimes unavoidable exponential blow up in automaton
size). This is not the case for top-down tree automata: the class DTTA of languages ac-
cepted by deterministic top-down tree automata is a strict subclass of BTA which does not
even contain all finite languages; a famous example of a language not in DTTA is the set
U = {f(a, b), f(b, a)}. Note that for a given bta, it is decidable if its language is in DTTA;
this is due to the fact that DTTA languages can be characterized by the “path-closed” prop-
erty [Cou78; Vir81]; the latter means that the trees in the languages are exactly obtained
by combining all paths of the corresponding path language. The language U for instance is
not path-closed. Using a similar example, it is easily shown that DTTA is not closed under
complementation (and neither under union).

1.5. Type Checking of Tree Walking Transducers

1.5.1. Intersecting Tree Walking Transducers with Output Types

In this section we present techniques to type check 2tts against regular tree languages.
For a given 2tt we build a second 2tt which produces only output trees in the complement

16

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

of the output type, and otherwise realizes the same transformation as the original 2tt. If
the output type is described by a total dbta A = (P,Σ, δ, F), the complement will be
recognized by the total dbta Ā = (P,Σ, δ, P \ F). For a given dtta there exists a bta
describing the complement (cf. Lemma 1.2). Thus, it is sufficient to construct a 2tt MA for
a 2tt M and a bta A (which may be the complement automaton of a total dbta or dtta) with
τMA

(t) = τM (t) ∩ L(A) for every tree t.

Theorem 1.3. For every 2tt M and every bta A there is a 2tt MA with

τMA
(t) = τM (t) ∩ L(A)

for all t ∈ TΣ. The size |MA| of MA is inO(|M | · |A|d+1), where d is the maximal number
of occurrences of states in right-hand sides of M .

Proof. LetM = (Q,Σ, R,Q0) andA = (P,Σ, δ, F). For each state q inQ and all states
p ∈ P we generate new states for MA of the form 〈q, p〉. Such a state is meant to generate
only trees t ∈ TΣ for which there is a run of A starting at the leaves and reaching the root
of t in state p. The rules of the new 2tt MA are 〈q, p〉(a, η)→ ζ ′ for every rule q(a, η)→ ζ

of M and ζ ′ ∈ τp [ζ]. The sets τp [.] are inductively defined by:

τp [b(ζ1, . . . , ζm)] = {b(ζ′1, . . . , ζ
′
m) | (p, b, p′1 . . . p′m) ∈ δ ∧ ∀i : ζ′i ∈ τp

′
i [ζi]}

τp [q′(op)] = {〈q′, p〉(op)}.

The set of initial states of MA is Q′0 = Q0 × F . By fixpoint induction, we verify for
every state q, every input tree t ∈ TΣ, every node v ∈ N (t) and every state p that:

[[〈q, p〉]]t(v) = [[q]]t(v) ∩ {s ∈ TΣ | ∃ run ρ on s with ρ(ε) = p}

For each state inM we have at most |A| new states inMA. If we have c occurrences of state
calls in the right-hand side of a rule r of M , with the state on the left-hand side, we obtain
at most |A|c+1 new rules for r in MA. Therefore, the new 2tt is of size O(|M | · |A|d+1)
where d is the maximal number of occurrences of state calls in right-hand sides in M . �

Considering only binary trees, we obtain size O(|M | · |A|3) for the intersection 2tt (with
Lemma 1.1). The last step is to decide whether τMA

6= ∅. Thereto, we build a bta describing
the domain of MA. This will be done after completing the example.

Example 1.5. Let us try to type check the 2tt Mstaff = (Q,Σ, R,Q0) via for-
ward type inference. According to Lemma 1.1, we restrict the maximal number of
state calls in right-hand sides to 2. In our example 2tt, the rule q(employee, η) →
employee(data(qdata(down1), qboss(stay)), qsub(down2)) has three state calls. We obtain
the new rules: q(employee, η) → employee(q′(stay), qsub(stay)) and q′(employee, η) →
data(qdata(down1), qboss(stay)). According to the proof of Lemma 1.1, the new state q′

is qemployee,data(qdata(down1),qboss(stay)). Consider again the dtta Astaff = (P,Σ, δ, {rstaff})
as output type. The complement bta A′staff = (P ′,Σ, δ′, {r′staff}) is given in Example 1.4.
The intersection 2tt (Mstaff)A′

staff
is given by (Q × P ′,Σ, R′, Q0 × {r′staff}). In what fol-

lows we show how the first few rules in R′ are constructed from R and δ′ as follows. For
qI (department, 0)→ staff(q(down1), e) and r′staff we obtain the rule 〈qI , r

′
staff〉(department,

17

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

0) → staff(〈q, r′empl〉(down1), e). For q(employee, η) → employee(q′(stay), qsub(down2))

and r′empl we obtain 〈q, r′empl〉(employee, η) → employee(〈q′, r′data〉(stay), 〈qsub , •〉(down2))

and 〈q, r′empl〉(employee, η) → employee(〈q′, •〉(stay), 〈qsub , r
′
empl〉(down2)). For q(e, η) →

qup(up) and all r ∈ P ′ we obtain 〈q, r〉(e, η)→ 〈qup , r〉(up). /

1.5.2. Deciding Emptiness of 2TTs

In order to check the emptiness of a tree walking transducer w.r.t. a given input type, we
construct a nondeterministic finite state automaton (cf. Section 1.4.2) which then is checked
for emptiness. First, for a 2tt M and an input type I we define an alternating tree walking
automaton M ′ which ignores the output of the 2tt, but apart from that imitates the behavior
of M on trees in I . For M ′, we then construct a nondeterministic bta AM ′ accepting all
trees t such that τM (t) 6= ∅. The right-hand sides of transitions of an alternating tree
walking automaton are conjunctions. Whereas the empty conjunction, i.e.,

∧
∅, equals

true.

Definition 1.7 (atwa). An alternating tree walking automaton (atwa for short) is a tuple
M = (Q,Σ, δM , Q0) whereQ is a finite set of states, Σ a ranked input alphabet,Q0 ⊆ Q a
set of initial states, and δM a finite set of rules of the form q(a, η)→ q1(op1)∧. . .∧qc(opc)
with c ≥ 0, q, q1, . . . , qc ∈ Q, a ∈ Σ(m), m ≥ 0, η ≥ 0, and for 1 ≤ i ≤ c, opi ∈
{stay , up} ∪ {downj | j = 1, . . . ,m}.

A transition q(a, η) → H is also called q-rule. An atwa traverses a tree like a 2tt, but
produces no output. The language L(M) of an atwa M is defined as the set of all trees for
which there exists an accepting run of M .

Definition 1.8 (Run). For an atwa M = (Q,Σ, δM , Q0), assume that r : q(a, η) → H is
a rule in δM with H = q1(op1) ∧ . . . ∧ qc(opc). Then the tree ρ = r(ρ1, . . . , ρc) ∈ TδM
is a (q, v)-run of the atwa M on the tree t, if v is a node of t with direction η and label a
and for all i, ρi is a (qi, vi)-run of M on t where vi is obtained from v by operation opi. A
(q0, ε)-run ρ with q0 ∈ Q0 is also called accepting.

A subtree ρ[w] of a run ρ on a node w which is a (q, v)-run for some state q and some
node v of t is called (q, v)-subrun. The set of rules which are applied to one node v during
a run ρ on t is the set rulesρ(v) = {r | ∃ρ1, . . . , ρc : r(ρ1, . . . , ρc) is a (q, v)-subrun of ρ}.

Lemma 1.3. Assume that M is a 2tt. Then an atwa M ′ can be constructed in linear time
such that for every input tree t, M ′ has an accepting run for t iff M has an accepting run
for t.

Proof. The atwa M ′ has the same set of states as M . The rules of M ′ are obtained
from those of M by replacing every right-hand side ζ of M with the conjunction of all
q(op) occurring in ζ. Formally, let M = (QM ,Σ, R,Q0) be a 2tt. Then, the atwa M ′ is
defined by M ′ = (QM ,Σ, δ′, Q0) for a set δ′ of transitions δ′ = {[r] | r ∈ R} where
[q(a, η) → ζ] = q(a, η) → [ζ] and [ζ] = q1(op1) ∧ . . . ∧ qc(opc) for a right-hand side

18

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

ζ = s[q1(op1), . . . , qc(opc)]. In order to prove the correctness of this construction, we first
extend the translation [.] from rules to trees of rules. For ρ = r(ρ1, . . . , ρc) ∈ TR, [ρ] is
inductively defined as the tree [ρ] = [r]([ρ1], . . . , [ρc]). Then we claim that ρ is a (q, v)-run
of M iff [ρ] is a (q, v)-run of M ′. The proof is by structural induction on ρ. Since for every
(q, v)-run ρ′ of M ′, some ρ ∈ TR exists with [ρ] = ρ′, we conclude that τM (t) 6= ∅ iff
t ∈ L(M ′). �

As an example for this translation of 2tts into atwas, consider the 2tt Mstaff (Example 1.1).
For the second rule, we get: r′2 : q(employee, η)→ qdata(down1)∧qboss(stay)∧qsub(down1) .
In order to accept only trees of an input type I , we enlarge an atwa M . Let I be given
by a finite state tree automaton (P,Σ, δA, F) and M = (Q,Σ, δM , Q0). For every rule
q0(a, η)→ H with q0 ∈ Q0 and every pf ∈ F we enhance the atwa with the rule q0(a, η)→
pf (stay) ∧ H. Additionally for every (p, a, p1 . . . pm) ∈ δA, we add the rule p(a, η) →V
i≤m pi(downi).

In an accepting run of an atwa, subruns for the same state and node are interchangeable.
Thus, we define uniform runs as runs where for each state q and each node v, the (q, v)-
subruns are the same.

Definition 1.9 (Uniform Run). A (q, v)-run ρ of an atwa M on a tree t is called uniform
if, for every state q, every node v in t, and every two (q, v)-subruns ρ1, ρ2 of ρ, ρ1 = ρ2.

If an atwa is deterministic, i.e., for each state q, direction η and label a, there is at most one
rule of the form q(a, η) → H , then every (q′, v)-run is uniform. In general, this may not
be the case. However, we have:

Lemma 1.4. For an atwa M and an input tree t the following two statements are equiva-
lent. (1) M has an accepting run for t and (2) M has a uniform accepting run for t.

Proof. Every uniform accepting run is an accepting run. For the reverse direction, it
suffices to prove that for every (q, v)-run ρ of M on t, there is also a uniform (q, v)-run of
M on t. For that, we consider the set B(ρ) of all pairs (q′, v′) for which ρ contains more
than one (q′, v′)-run as a subtree. We proceed by induction on the cardinality of the set
B(ρ). If the set B(ρ) is empty, ρ is already uniform. Now assume B(ρ) is non-empty.
Then ρ contains a subtree ρ1 with the following two properties:

(1) ρ1 is a (q1, v1)-run with (q1, v1) ∈ B;
(2) all subtrees ρ′1 of ρ1 are (q′, v′)-runs with (q′, v′) 6∈ B.

Then we construct from ρ a tree ρ′ by replacing every occurrence of a subtree in ρ which
is a (q1, v1)-run with ρ1. Then ρ′ is again a (q, v)-run on t, but now the set B(ρ′) ⊆
B(ρ)\{(q1, v1)} contains at least one element less. Thus, by induction hypothesis applied
to ρ′, there is a (q, v)-run on t which is uniform. �

Figure 1.3(a) shows the behavior of the 2tt Mstaff on the tree te. The corresponding atwa
M ′staff yields the same behavior. The Figure 1.3(b) shows an accepting run ρ of Mstaff on
te. The corresponding run [ρ] of M ′staff is illustrated in Figure 1.4(a). This run is uniform.

19

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

(a) A uniform run of the atwa M ′staff on the tree te. (b) The mappings µ for that run.

Fig. 1.4. Behavior of M ′staff on te.

In order to decide emptiness of an atwa M and accordingly of a 2tt, we construct a nonde-
terministic bottom-up finite state tree automaton AM . In order to accept the domain of M ,
the bta AM guesses uniform accepting runs. Since AM visits each node in the input tree at
most once, it guesses at every node all transitions which are applied at this node during a
uniform run of M .

Technically, the states of the bta AM consist of guessed directions together with partial
mappings µ : Q → 2Q of states to sets of states: µ(q) = B at a given node v means that
the (q, v)-run on the input tree will cause calls q′(up) at v only for states q′ from B. For
a mapping µ we refer to the domain as dom(µ) = {q | µ(q) is defined}. Furthermore, to
each node v in the input tree we implicitly attach the set Tv = rulesρ(v) collecting the atwa
rules which are applied to the node v in an accepting run ρ of the atwa on the input tree t.
Since ρ is uniform, the set rulesρ(v) contains at most one q-rule for every q.
A pair 〈µ, η〉 is accepting if η = 0 and for the partial mapping µ, q0 ∈ dom(µ) for some
accepting state q0 ∈ Q0 of the atwa M and µ(q) = ∅ for all q ∈ dom(µ).

Now assume that a is a label of arity m, η is a direction and µ, µi : Q→ 2Q are partial
mappings (i = 1, . . . ,m). Then (〈µ, η〉, a, 〈µ1, 1〉, . . . , 〈µm,m〉) is a transition of AM iff
there is a set T of rules of the atwa M with the following properties. Let Qs, Qu and Qd,i
(i = 1, . . . ,m) denote the set of states q for which there is a q-rule in T , the set of states
q′ with a recursive call q′(up), and the sets of states q′ with a recursive call q′(downi) in
some right-hand side of rules in T , respectively. Then the set T of rules should have the
following properties:

(1) All rules in T have a left-hand side of the form q(a, η), where q ∈ Q.
(2) Assume q(a, η)→ q1(op1) ∧ . . . ∧ qc(opc) ∈ T . Then we have for every j ≤ c:

• If opj = stay , then T also contains a qj-rule, i.e., qj ∈ Qs;
• If opj = downi, then qj ∈ dom(µi).

(3) Whenever q′ ∈ dom(µi) for i, then µi(q′) ⊆ Qs.
(4) Consider the following graph G with set of vertices V = {q(stay) | q ∈ Qs} ∪
{q(downi) | i = 1, . . . ,m, q ∈ Qd,i} ∪ {q(up) | q ∈ Qu} and the following set E of

20

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

edges:

• If a q-rule in T contains a call q′(op), then (q(stay), q′(op)) ∈ E;
• If µi(q) = Bi is defined, then (q(downi), q′(stay)) ∈ E for all q′ ∈ Bi.

The resulting directed graph G = (V,E) should be acyclic, and the mapping µ is
obtained from G as follows:

• q ∈ dom(µ) iff q ∈ Qs and
• µ(q) = B iff the set B equals the set of all vertices q′(up) which are reachable

in G from q(stay).

The size of AM is exponential in the size of M . We give a detailed example for this
construction in Example 1.6. Now, we state the correlation of runs of AM and of M .

Lemma 1.5. For a tree t the following statements are equivalent. (1) There is a uniform
accepting run of M on t and (2) there is an accepting run of AM on t.

Proof. (1) ⇒ (2) : Let ρ be a uniform accepting run of M on a tree t. For a
node v of t with label a and direction η, let Tv denote the set of all atwa rules ap-
plied at the root in subruns of ρ starting at v, i.e., Tv = rulesρ(v). We then construct
for every node v of t with label a ∈ Σ(m) and direction η, a state µv and a transition
rv = (〈µv, η〉, a, 〈µv1, 1〉, . . . , 〈µvm,m〉) of the bta AM .

The sets Tv allow us to construct a directed graph Gt. The set Vt of vertices of Gt are
given by the set of all pairs (q, v) for nodes v of t and states q for which there is a q-rule in
Tv . The set Et of edges consists of:

• all pairs ((q, v), (q′, v)) where the q-rule in Tv contains a call q′(stay);
• all pairs ((q, v), (q′, vi)) where the q-rule in Tv contains a call q′(downi);
• all pairs ((q, v), (q′, v′)) where the q-rule in Tv contains a call q′(up) and v = v′i for

some i.

The graph Gt is acyclic. Moreover since the uniform run ρ is accepting, every vertex in Vt
is reachable from some vertex (q0, ε) with q0 ∈ Q0.

The graph Gt allows to construct partial mappings µv for every node v. q ∈ dom(µv)
iff (q, v) is a vertex ofGt. Assume (q, v) is a vertex inGt. We consider two cases. If v = ε,
then Tε cannot contain any q-rule which has an up-call. In this case, η(v) = 0, and we set
µε(q) = ∅. Otherwise, assume that v = v′i. Then η(v) = i and q′ ∈ µv(q) iff there is an
edge ((q1, v), (q′, v′)) inGt where (q1, v) is reachable from (q, v) by a path which contains
only vertices (q2, v2) referring to nodes v2 from the subtree at v, i.e., to nodes which have
v as a prefix. If no such state q′ exists, then µv(q) = ∅.

It now can be verified for every node v with label a ∈ Σ(m) and direction η that
(〈µv, η〉, a, 〈µv1, 1〉, . . . , 〈µvm,m〉) constitutes a transition of AM (with Tv as set of rules
of the atwa). Since by construction, 〈µε, 0〉 is an accepting state of AM , we have, thus,
constructed an accepting run of AM for t.

(2) ⇒ (1) : Let ρ′ be an accepting run of AM on the tree t, and let 〈µv, η〉 and rv
denote the state and transition of AM attained for the node v in t. We can find sets Tv

21

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

conforming to the properties of the transition relation of M . These allow to construct a
graph G′t analogously to the graph Gt above. By the definition of the transition relation of
AM ,G′t is acyclic. This allows us to define for every vertex (q, v) inG′t, the number h(q, v)
as the maximal length of a path in G′t to a leaf, i.e., a vertex with out-degree 0. Using the
sets Tv of atwa rules, we now construct for every node v and atwa rule r : q(a, η)→ H from
Tv with H = q1(op1) ∧ . . . ∧ qc(opc), a tree ρ[q, v] by ρ[q, v] = H(ρ[q1, v1], . . . , ρ[qc, vc]),
where vj = [[opj]](v). Note that all these trees are well-defined, since the height of ρ[q, v]
precisely equals h(q, v). Moreover, the tree ρ[q, v] is a (q, v)-run of the atwaM on t. Since
every (q′, v′)-subrun of this tree equals the (q′, v′)-run ρ[q′, v′], this run is also uniform. In
particular, the tree ρ[q0, ε] constitutes a uniform accepting run of the atwa M . �

By Lemmas 1.3, 1.4, and 1.5, the bta AM recognizes the domain of the given 2tt M , which
gives us Theorem 1.4. Note that this implies, by Theorem 1.2, that also emptiness of M ’s
domain (and hence of M ’s translation τM) can be decided in exponential time.

Theorem 1.4. Assume M is a 2tt. Then a bta A can be constructed in exponential time
such that L(A) = dom(M). Thus, emptiness for a 2tt can be decided in deterministic
exponential time.

Example 1.6. In this example we consider again the 2tt Mstaff and its corresponding
atwa M ′staff. The size of the bta AM ′

staff
is exponential in the size of the atwa or 2tt.

Therefore, we only construct states occurring in a run of AM ′
staff

on the tree te in Fig-
ure 1.3(a). In Figure 1.4(a), a uniform accepting run ρ of the atwa is illustrated. The
run yields the sets Tv . For instance, for the node labeled with employee we get
T1 = {q(employee, 1) → qboss(stay) ∧ qsub(down1) ∧ qdata(down1), qboss(employee, 1) →
qboss(up), qup(employee, 1) → qup(up), qnext(employee, 1) → q(down2)}. The
graph Gte in the proof of Lemma 1.5 is similar to the graph in Figure 1.3(a). There, it
spans the tree te. To obtain the graph Gte we have to replace a vertex q, which is located at
a node v of te, by (q, v). The mappings µv are illustrated in Figure 1.4(b). For each state q
fixed at a node v, µv(q) is defined. If q has no outgoing edges then µv(q) = ∅. Otherwise,
it is the set of all direct successors of q in this figure. For example

µε = {qI 7→ ∅, qup 7→ ∅, qboss 7→ ∅}
µ1 = {q 7→ {qup , qboss}, qnext 7→ {qup}, qboss 7→ {qboss}, qup 7→ {qup}}
µ1.1 = {qdata 7→ ∅, qsub 7→ {qnext}, qnext 7→ {qnext}}
µ1.2 = {q 7→ {qup}}

Note that qup /∈ µ1.2(qnext) although (qup , 1) is reachable from (qnext , 1.1) in Gt.

Fig. 1.5. Graph G for transition
(〈µ1, 1〉, employee, 〈µ1.1, 1〉, 〈µ1.2, 2〉).

But the path contains (q, 1.2) and 1.1 is not
a prefix of 1.2. In order to illustrate a tran-
sition of bta AM ′

staff
, consider, e.g., the tran-

sition (〈µ1, 1〉, employee, 〈µ1.1, 1〉, 〈µ1.2, 2〉) ∈
δA with the set T1. All rules in T1 agree in
the input label employee and the direction 1
(condition 1). Also it contains a qboss -rule for
the call qboss(stay). For all states qsub , qdata

22

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

of occurring down1-calls, the mapping µ1.1

is defined. Likewise, for q with a down2-call,
q ∈ dom(µ1.2). Thus, T1 also conforms with

condition 2. For condition 3, we verify that T1 has rules both for qnext and qup . For the
last property, we construct the graph G. The set of vertices is

V = {q(stay), qboss(stay), qnext(stay), qup(stay),

qdata(down1), qsub(down1), q(down2),

qboss(stay), qup(stay)}

The edges are illustrated in Figure 1.5. As the last condition requires, the graph G is
acyclic, and we can read off the mapping µ1.

Also we verify, that 〈µε, 0〉 is an accepting state. According to Lemma 1.5, the resulting
run ρ′ is an accepting run of AM ′

staff
on t. /

1.5.3. Efficient Subcases

In the previous section, we have provided an algorithm for deciding emptiness of atwas
and, thus, also of 2tts which runs in exponential time. This algorithm is indeed worst-
case optimal. Not withstanding that, this algorithm allows us to identify subclasses of
transducers where emptiness can be decided in polynomial time.

We call a transducerM b-bounded, if every accepting run ρ ofM has at most b subruns
starting at node v. We call M strictly b-bounded if every accepting run ρ of M visits each
node v in the input tree at most b times, i.e., has at most b subrun occurrences starting at
node v. The same definitions are also employed for atwas.

Note that the definition of b-boundedness does not exclude that the same node v is
traversed arbitrarily often: if so, however, these traversals will be copies of at most b distinct
traversals.

Note further that for a given transducer M it is decidable whether or not there exists
a b such that M is b-bounded; the same holds for strict b-boundedness. To see this, add
for each input symbol a new marked symbol of the same rank. We then consider input
trees in which exactly one node is labeled by a marked symbol (this is a regular input tree
language). Finally, we change the transducer M in such a way that it produces a specific
output tree, for each subrun that starts at the marked input node (resp. for each time the
marked node is visited), and other than that does not produce any output. The output of the
new transducer, when applied to input trees with exactly one node marked, is finite if and
only if the transducer is b-bounded for some b (resp. strictly b-bounded for some b). The
finiteness is decidable for a very large class of tree transformations [DE98], which contains
the pebble tree transducers (and hence also the 2tts) by [EM03a].
Consider the construction from the last subsection of a bta AM which accepts the same
language as an atwa M . If the atwa M is b-bounded, then it suffices to consider sets T of
atwa rules of size b. Also, this means that partial mappings µ need to be taken into account
which are of the form: B → 2B

′
for subsets B,B′ of states of cardinalities at most b.

23

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

Note that the number of subsets of size at most b of a set with n elements is bounded by
1
b! (n+1)b. Thus, the number of the partial mappings µ can be bounded by: (n+1)2b 2b

2

b!

if n is the number of states of M . We will not provide an explicit estimation of the number
of transitions of the bta since it crucially also depends on other parameters such as the
number of rules ofM which agree in input symbol and direction (which is typically small).
We just note that for b-bounded M , the size of the bta AM is polynomial in the size of
M . The occurring exponent, though, is bounded by O(kb2) where k is the maximal arity
of an input symbol. Summarizing, we find that emptiness for b-bounded 2tts can be done
in polynomial time. Note, however, that neither b-boundedness or strict b-boundedness is
preserved by our construction to reduce the number of state calls in right-hand sides. For
an efficient method for type-checking, we also require that the bound on the number of
visits to every node in the input tree is preserved under the intersection construction. In this
respect, we observe:

Lemma 1.6. If M is strictly b-bounded and A is a bta, then MA is also strictly b-bounded.
If M is just b-bounded, this need not be the case.

We thus obtain a polynomial-time algorithm for the class of strictly b-bounded 2tts where
the number of occurrences of state calls in right-hand sides is also bounded.

1.5.4. Conclusion

In this section we presented techniques to type check 2tts against regular tree languages.
Our approach is forward type inference. For that purpose, for a given 2tt M we build a
second 2tt which produces only output trees in the complement of the output type, and
otherwise realizes the same transformation as the original 2tt. For a bta A describing the
complement of the output type, the size of the new 2tt MA is in O(|M | · |A|d+1) where d
is the maximal number of occurrences of states in right-hand sides in M ; for binary trees
and with Lemma 1.1 it is in O(|M | · |A|3).

For this intersection 2tt MA we build an alternating tree walking automaton M ′, which
imitates the behavior of MA, but does not produce any output. This construction can be
done in linear time. And then, in order to decide emptiness of the atwaM ′ and accordingly
of MA, we construct a nondeterministic bottom-up finite state tree automaton AM ′ . In
general, this construction is exponential in the size of M ′. Hence emptiness of a 2tt can
be decided in exponential time — a result which has already been known for a long time,
see the notes at the end of Section 1.5.5. The general approach, however, allowed us to
identify more efficient subclasses. These, we have discussed in Section 1.5.3. If M ′ is
b-bounded, then emptiness can be decided in polynomial time where the exponent of the
polynomial only depends on b2 if the transducer is two-way, i.e., uses up-operations. A
closer inspection of the construction of a bta from an atwa, though, reveals that the exponent
can be reduced to b if the transducer is stay top-down, i.e., uses no up-operations (but
possibly stays). The construction for the intersection, on the other hand, is polynomial in
the sizes both of the 2tt and the bta — but may be exponential in the number of occurrences

24

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

of state calls in right-hand sides. Also, if we start with a b-bounded 2tt M , the construction
may not preserve b-boundedness. Instead, the bound on the number of visits to an input
node may be increased as much as by a factor of the number of states of the bta. If the
2tt M is strictly b-bounded, this property will be retained and also the atwa M ′ is strictly
b-bounded.

As a last step of verifying whether a 2tt type checks w.r.t. input and output types L(AI)
and L(A) (for a bta AI), we construct a bta C with L(C) = L(AM ′) ∩ L(AI) using
the obvious product construction (see, e.g., Section 1.3 in [CDG+07]) such that |C| ∈
O(|AM ′ | · |AI |). According to Theorem 1.2, we can test whether L(C) = ∅ (which means
that M type checks w.r.t. L(AI) and L(A)) in time linear in |C|.

Theorem 1.5. Deciding whether a strictly b-bounded 2tt M type checks w.r.t. regular tree
languages I and O, given by btas AI and AO, is polynomial in the size of M , AI , and AO,
but exponential in b2 · (d+ 1) where d is the maximal number of occurrences of state calls
in right-hand sides. IfM has no up-operations, the exponent can be improved to b ·(d+1).

1.5.5. Notes and References

Our definition of atwas is equivalent to the alternating two-way finite tree automaton of
[Slu85]. Note that alternating tree automata have recently been used in the context of a
practical implementation of type checking for tree transducers [FH07].

The intersection of a 2tt with a given output type (Theorem 1.3) can be seen as a se-
quential composition of the 2tt with a translation in FTA; the latter is the class of partial
identity mappings for regular tree languages. With this in mind, we can, for instance, ob-
tain that top-down tree transducers allow a similar result as the one in Theorem 1.3: by
Corollary 2(1) of [Bak79], top-down tree transducers are closed under composition with
linear and nondeleting top-down tree transducers; since FTA is included in the latter class,
we obtain the desired result for top-down tree transducers. It is an interesting open prob-
lem whether a similar composition result holds for 2tts, i.e., whether 2tts are closed under
composition with linear and nondeleting 2tts.

The notion of b-boundedness is similar to the notion of finite-copying in tree transduc-
ers, see, e.g., [ERS80; EM99]. Similar to the results of [EM03b], it probably holds that b-
bounded transformations are of linear size increase. A more static version of b-boundedness
is the single-use restriction known for attribute grammars [Gie88]. According to [EM99],
it can probably be shown that total, deterministic, strictly b-bounded 2tts are equivalent
to single-use restricted attribute grammars. In Section 5 of [MPS07] a similar result as
Theorem 1.5 has been shown for stay-macro tree transducers (cf. also the discussion in
Section 1.6.4)

Engelfriet et al. show in [EHS07] (Theorem 5), that for every 2tt M (TT in [EHS07])
a regular tree grammar G can be constructed in exponential time such that G generates the
domain of τM . They refer to the relationship between 2tt and attributed tree transducers
explained in [EM03a] and a result of [Bar82] — giving the Theorem 1.4 above. The result
of Theorem 1.4 has also been stated in Theorem A.2 of [CGKV88] with a proof sketch that

25

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

uses a game theoretic interpretation of acceptance due to Muller and Schupp. The result
also appears as Theorem 1 in [Eng08], where a finite state automaton for the domain of a
tree-walking transducer (twt) is constructed in exponential time; Theorem 2 of that paper
states that inverse type inference is in k-fold exponential time, for k-fold compositions of
twts.

1.6. Macro Tree Walking Transducers

In our running example we have considered the 2ttMstaff which lists the members of staff of
a department. Although in general, several employees may have the same boss, the trans-
ducer spawns for every employee a separate computation to determine the corresponding
boss. Conceptually as well as technically, it would be more convenient to determine the
boss first, store it in some accumulating parameter and then propagate it to each of his
employees. For this reason, we enhance tree transducers with accumulating parameters. A
tree transducer with accumulating parameters is also called macro tree transducer.

Example 1.7. We omit the state qboss and store the data of the boss in the first parameter yb.
The transformation of the next employee which is not a subordinate of the current, is then
stored in the second parameter (yn). By this construction, we completely omit the states
qsub , qnext , and qup . The transducer consists of the following rules, for all η ∈ {1, 2}:

1 qI (department, 0) → staff(q(down1, e, e), e)

2 q(employee, η, yb, yn) → employee(data(qdata(down1), yb),

3 q(down1, boss(qdata(down1), e), q(down2, yb, yn)))

4 q(e, η, yb, yn) → yn

5 q(data, 1, yb, yn) → q(down2, yb, yn),

6 q(subordinates, 2, yb, yn)→ q(down1, yb, yn),

7 qdata(data, 1) → copy(down1).

where state copy is meant to copy the content of data (i.e., the left child in the binary
representation). /

For the formal definition of macro tree walking transducer we assume that every state q ∈ Q
has a fixed rank, i.e., Q =

⊎
n∈NQ

(n) where Q(n) is the set of all states with rank n.

Definition 1.10 (2mtt). A macro tree walking transducer M (2mtt for short) is a tuple
(Q,Σ, R,Q0) where Q is a set of ranked states, Σ is a ranked alphabet, Q0 ⊆ Q(1) is a
set of initial states, and R is a finite set of rules of the form q(a, η, y1, . . . yn) → ζ, where
q ∈ Q(n+1), a ∈ Σ(m), n,m ≥ 0, η ≥ 0 is a direction and y1, . . . , yn are the accumulating
parameters of q. Possible right-hand sides are described by the grammar

ζ ::= b(

m′ times︷ ︸︸ ︷
ζ, . . . , ζ) | yj | q′(op,

n′ times︷ ︸︸ ︷
ζ, . . . , ζ),

with m′, n′ ≥ 0, b ∈ Σ(m′), j ∈ {1, . . . , n}, q′ ∈ Q(n′+1), and op ∈ {stay , up} ∪
{downν | 1 ≤ ν ≤ m}.

26

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

In practice, states q may differ in their rank, i.e., the numbers of their accumulating pa-
rameters. Let X = {x1, x2, . . .} denote a countable set of variables of rank (not nec-
essarily 0), and assume that Σ, X and Y are disjoint. For a right-hand side ζ, we write
also ζ = s[q1(op1), . . . , qc(opc)] to refer to all occurrences of (maybe nested) state calls
in the right-hand side. Here, s ∈ TΣ∪X(Y) is a tree which contains each variable
x1, . . . , xc exactly once with ζ = s[q1(op1)/x1, . . . , qc(opc)/xc] where s[qi(op)/xi] de-
notes the substitution of the state call qi(op, s1, . . . , sn) for the subtree xi(s1, . . . , sn) in
s where n is the rank of xi and n + 1 is the rank of qi. Note that in s no state call
occurs anymore. For example the right-hand side of the rule in Lines 2 and 3 in the
Example 1.7 can be written as s[qdata(down1), q(down1), qdata(down1), q(down2)] where
s = employee(data(x1, yb), x2(boss(x3, e), x4(yb, yn))).

Intuitively, the meaning of the expressions of a right-hand side is as follows: The pro-
duced output is defined analogously to the output of a 2tt up to the accumulating parame-
ters. Here, we consider call-by-value parameter passing only. Thus, the expression ζj in
parameter position j is evaluated first; then the result (which is a tree without state calls)
may be copied to the various uses of the formal parameter yj . This evaluation strategy
is also called inside-out (IO for short). Note that we slightly abuse Definition 1.10 and
use accumulating parameters with names other than y1, y2, . . . (e.g. in Example 1.7 where
we use yb and yn). Clearly this is without loss of generality, as parameters can easily be
renamed according to the definition.

Example 1.8. The rules in the beginning of this section with the initial state qI form
a 2mtt My,staff. To transform the tree t′B (the binary representation of our common

Fig. 1.6. Analyzing qI (ε) and q(1, e, e).

example tree, see the left tree in Figure 1.2),
the 2mtt starts at the root and applies the ini-
tial state. Thus, for the first step we get
staff(q(down1, e, e), e) where down1 refers to
the node 1. Applying the state q to this
employee-node, we get several state calls. These
state calls are partially nested. Figure 1.6 il-
lustrates the two steps. In the upper pic-
ture is the first output with one state call.
The lower figure shows the tree after process-
ing q(1, e, e). There, we get the state call
q(down1, boss(qdata(down1), e), q(down2, yb, yn))

with nested calls. The first parameter accumulates
a tree with root boss, whereas the second param-
eter is a further state call. /

The order in which nested state calls are evaluated indeed matters. Consider, e.g., a trans-
ducer with rules qI (a, 0) → p(stay , q′(stay)), p(a, 0, y) → a, and q′(b, 0) → b. If we
evaluate the outermost calls first, the tree t = a(t1, . . . , tk) will be transformed into a. In
this case, the accumulating parameter of p need not to be evaluated. If we start with the

27

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

innermost calls, there is no rule to evaluate the state call q′(stay) in the right-hand side of
the first line. Thus, the output is empty.

We specify the translation induced by a 2mtt using a denotational formulation. Later,
we will also consider an operational semantics based on runs. In the denotational semantics,
the meaning [[q]]t of state q of M with n accumulating parameters (with respect to an input
tree t) is defined as a mapping from nodes in the input tree to sets of trees with parameters
in Yn = {y1, . . . , yn}, i.e., [[q]]t : N (t) → 2TΣ(Y). When we evaluate an innermost call
q(v, s1, . . . , sn) during a computation, it suffices to substitute actual parameters sj for the
formal parameters yj of all terms from [[q]]t(v) to obtain the set of produced outputs. The
values [[q]]t for all q are jointly defined as the least mappings satisfying: [[q]]t(v) ⊇ [[ζ]]t
for rule q(a, η, ȳ) → ζ where ȳ denotes the sequence y1, . . . , yn and v is a node of t with
lab[v] = a, η(v) = η and [[ζ]]t is defined by:

[[yj]]t = {yj}
[[b(ζ1, . . . , ζm)]]t = {b(s1, . . . , sm) | sν ∈ [[ζν]]t}

[[q′(op, ζ1, . . . , ζn′)]]t = {s[s1/y1, . . . , sn′/yn′] | s ∈ [[q′]]t([[op]]t(v)), sν ∈ [[ζν]]t}

Again, op stands for downν , stay or up. Recall that the meaning [[op]] is defined by
[[stay]]t(v) = v, [[downν]]t(v) = vν, and [[up]]t(vν) = v. Also, s[s1/y1, . . . , sn/yn] denotes
the simultaneous substitution of the trees sj for all occurrences of the variables yj in the
tree s. Note that the call-by-value semantics is reflected in the last equation: the same trees
sj are used for all occurrences of a variable yj in the tree s corresponding to a potential
evaluation of the state q′. The transformation τM realized by the 2mtt M on an input tree t
and sets T of input trees, respectively, is, thus, defined by τM (t) =

⋃
{[[q0]]t(ε) | q0 ∈ Q0}

and τM (T) =
⋃
{τM (t) | t ∈ T}.

Fig. 1.7. A run of the 2mtt My,staff on the tree te.

For the operational semantics
runs of a 2mtt M on a tree t may
be similarly defined as for a 2tt.
It is a ranked tree over the set of
rules. Here, the rank of a rule
q(a, η, y1, . . . , yn) → ζ is given by
the number of occurrences of recur-
sive calls q′(op) in ζ to states q′

in Q. These calls may be nested.
Figure 1.7 shows an accepting run
ρ of the (deterministic) example

2mtt My,staff on the tree te, which describes a department with one employee.
The denotational view on the semantics of a 2mtt allows us to use fixpoint arguments for

proving the correctness of constructions, whereas the operational view is better suited for
more combinatorial arguments. In particular, we can show that the number of occurrences
of states in right-hand sides can be restricted to the maximum of the ranks of output symbols
and states. We have:

Lemma 1.7. For every 2mtt M there exists a 2mtt M ′ with (i) τM ′ = τM , (ii) the number
of states occurring in each right-hand side is bounded by k, and (iii) |M ′| ∈ O(|M | · k2),

28

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

where k is the maximum of the ranks of output symbols and states of M .

Proof. The construction proceeds in two phases. In the first phase, we re-
place every complicated call q′(op, ζ1, . . . , ζn) in the right-hand side of a rule
q(a, η, y1, . . . , yn′) → ζ by the simple call 〈q, op, ζ1, . . . , ζn〉(stay , y1, . . . , yn′) for
a new state 〈q, op, ζ1, . . . , ζn〉. Let [ζ] denote the resulting tree. For the new
state 〈q, op, ζ1, . . . , ζn〉, we introduce the rule 〈q, op, ζ1, . . . , ζn〉(a, η, y1, . . . , yn′) →
q(op, 〈ζ1, n′〉(stay , y1, . . . , yn′), . . . , 〈ζn, n′〉(stay , y1, . . . , yn′)) for again fresh states 〈ζj , n′〉
which are meant to produce the output of ζj using n′ parameters. For these states, we
introduce the rules: 〈ζj , n′〉(a, η, y1, . . . , yn′)→ [ζj].

As a result of this first transformation phase, we achieve that all right-hand sides either
are of the form q(op, q1(stay , y1, . . . , yn′), . . . , qn(stay , y1, . . . , yn′)) or contain only non-
nested calls, i.e., calls of the form q(op, y1, . . . , yn′). In order to restrict the number of calls
in right-hand sides of the second type, we essentially proceed as in the proof of Lemma 1.1,
i.e., we introduce extra auxiliary states for every proper subtree of right-hand sides of the
second kind which contain more than one call.

The resulting transducer has at most one fresh state for every node of a right-hand side
while the total sum of sizes of right-hand sides may increase by a factor of k2 in order to
spell out all the auxiliary lists of parameters for the new states. �

1.6.1. Type Checking Macro Tree Walking Transducers

As for 2tts we now consider type checking for 2mtts. For a 2mtt M and a regular language
L, we again construct a transducer M ′ with τM ′(t) = τM (t) ∩ L. As in Section 1.5.1, the
language L consists of all erroneous outputs. In our application scenario of type checking,
the language L is the complement of the output type which is either specified by a total dbta
or by a dtta. Beyond the case of 2tts, we now additionally must deal with accumulating
parameters. The transducer M ′ must keep track of the states of an automaton for L on
the current values of the respective parameters. We start with a general construction for
deterministic bottom-up automata.

Theorem 1.6. For every 2mtt M and every dbta A, a 2mtt MA can be constructed with

τMA
(t) = τM (t) ∩ L(A)

for all t ∈ TΣ. The 2mtt MA is of size O(|M | · |A|l·(d+1)) where l is the maximal rank of a
state in M and d is the maximal number of occurrences of states in right-hand sides of M .

Proof. Let M = (Q,Σ, R,Q0) and A = (P,Σ, δ, F). For each state q in Q(n) and all
states p0, . . . , pn ∈ P , the 2mtt MA has a state 〈q, p0p1 . . . pn〉 which is meant to generate
all trees s (possibly with variables from {y1, . . . , yn}) which could be produced by M and
for which additionally there is a run ofA starting at the leaves yj with state pj and reaching
the root of s in state p0. The rules of MA are: 〈q, p0p1 . . . pn〉(a, η, y1, . . . , yn) → ζ′ for
every rule q(a, η, y1, . . . , yn)→ ζ of M and ζ′ ∈ τp0,p1,...,pn [ζ] where the sets τp0,p1,...,pn [.]

are inductively defined by:

29

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

τpj ,p1,...,pn [yj] = {yj}
τp0,p1,...,pn [b(ζ1, . . . , ζm)] = {b(ζ′1, . . . , ζ

′
m) | ∃p′1, . . . , p′m ∈ P : (p0, b, p

′
1 . . . p

′
m) ∈ δ ∧

∀j : ζ′j ∈ τp
′
jp1...pn [ζj]}

τp0,p1,...,pn [q′(op, ζ1, . . . , ζn′)] = {〈q′, p0p
′
1 . . . p

′
n′〉(op, ζ′1, . . . , ζ′n′) | ∃ζ′1, . . . , ζ′m ∈ Z :

∀j : ζ′j ∈ τp
′
jp1...pn [ζj]}

where Z denotes the set of all subterms of possible right-hand sides of rules of MA. The
set of initial states of MA is given by Q′0 = Q0 × F . By fixpoint induction, we verify
for every state q of rank n + 1, every input tree t ∈ TΣ, every node v ∈ N (t) and states
p0, . . . , pn of A that:

[[〈q, p0, . . . , pn〉]]t(v) = [[q]]t(v) ∩ {s ∈ TΣ(Y) | δ∗(s, p1 . . . pn) = p0} (∗)

where Y = {y1, . . . , yn} and δ∗ is the extension of the transition function of A to
trees containing variables from Y , namely, for p = p1 . . . pn, δ∗(yj , p) = pj , and
δ∗(a(t1, . . . , tm), p) = δ(a, δ∗(t1, p) . . . δ

∗(tm, p)) . The correctness of the construction fol-
lows from (∗). For each state in M we have at most |A|l+1 new states in MA where l is the
maximal rank of states inM . Assume that d is the maximal number of occurrences of states
in right-hand sides of rules of M . Then each rule of M gives rise to at most |A|(l+1)·(d+1)

new rules in MA. Therefore, the new 2mtt is of size O(|M | · |A|(l+1)·(d+1)). �

Lemma 1.2 provides a bta describing the complement of a dtta — which, however, is not
necessarily deterministic. Theorem 1.6, on the other hand, only holds for deterministic
btas. A similar construction is also possible if the bta A is nondeterministic — but then
only for transducers which are output-linear. Here, we call a 2mtt output-linear if every
accumulating parameter occurs at most once in a right-hand side. Nonetheless, we are able
to handle complements of output types described by dttas directly. For that, however, we
introduce a dedicated construction of an 2mtt MA.

Theorem 1.7. For every 2mtt M and every dtta A, a 2mtt MĀ can be constructed with

τMĀ
(t) = τM (t) ∩ L(A)

for all t ∈ TΣ. The 2mtt MĀ is of size O(|M | · (h · |A|)d+2) where h+ 1 is the maximum
of the maximal rank of a state in M and the maximal rank of an output symbol, and d is
the maximal number of occurrences of state calls in right-hand sides of M .

Proof. Let M = (Q,Σ, R,Q0) and A = (P,Σ, δ, p0). Our goal is to construct a 2mtt
MĀ which simulates the behavior of M while at the same time guessing a path in the
output tree which proves non-containment in the set L(A). For that, the set Q′ is defined
as: Q′ = Q∪{〈q, p〉 | q ∈ Q, p ∈ P}∪{〈q, p, j, p′〉 | q ∈ Q(n), p, p′ ∈ P, j ∈ {1, . . . , n}}. Here,
a state q ∈ Q of MĀ behaves like the state q of M . States 〈q, p〉 or 〈q, p, j, p′〉 behave like
q in M but additionally make sure that there is a path in the generated output starting from
a state p of A at the root which verifies that there is no p-run of A on the output. Thereby, a
state 〈q, p〉 will directly generate the end point of such a path whereas state 〈q, p, j, p′〉 will
only generate a path with p at the root reaching a parameter yj with state p′. Accordingly,
the 2mtt MĀ has the following rules:

30

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

q(a, η, y1, . . . , yn)→ ζ

〈q, p〉(a, η, y1, . . . , yn)→ ζ′ with ζ′ ∈ [ζ]p

〈q, p, j, p′〉(a, η, y1, . . . , yn)→ ζ′ with ζ′ ∈ [ζ]p,j,p
′

for every rule q(a, η, y1, . . . , yn)→ ζ of M . The sets [.]x are inductively defined by:

[yi]
p = ∅

[b(ζ1, . . . , ζm)]p = {b(ζ1, . . . , ζm) | ∀p̄ ∈ Pm : (p, b, p̄) /∈ δ}
∪ {b(ζ1, . . . , ζν−1, ζ

′
ν , ζν+1, . . . , ζm) | ν ≥ 1, (p, b, p1 . . . pm) ∈ δ, ζ′ν ∈ [ζν]pν}

[q(op, ζ1, . . . , ζn)]p = {〈q, p, ν, pν〉(op, ζ1, . . . , ζν−1, ζ
′
ν , ζν+1, . . . , ζn) | ζ′ν ∈ [ζν]pν}

∪ {〈q, p〉(op, ζ1, . . . , ζn)}

[yj]
p,j,p′ = {yj | p = p′}

[b(ζ1, . . . , ζm)]p,j,p
′

= {b(ζ1, . . . , ζν−1, ζ
′
ν , ζν+1, . . . , ζm) | ν ≥ 1, (p, b, p1 . . . pm) ∈ δ,

ζ′ν ∈ [ζν]pν ,j,p
′
}

[q(op, ζ1, . . . , ζn)]p,j,p
′
= {〈q, p, ν, pν〉(op, ζ1, . . . , ζν−1, ζ

′
ν , ζν+1, . . . , ζn) | ζ′ν ∈ [ζν]pν ,j,p

′
}

First, we verify that for every tree s ∈ TΣ(Y) the sets [s]p and [s]p,j
′,p′

either are empty or
equal {s} where following holds:

(1) [s]p = {s} iff s contains a node v = i1 . . . ir such that there are transitions
(p

(j)
0 , aj , p

(j)
1 , . . . , p

(j)
mj) ∈ δ for j = 1, . . . , r − 1, such that

(a) The label of the node i1 . . . ij equals aj ;
(b) p

(1)
0 = p and for j = 1, . . . , r − 2, p(j+1)

0 = p
(j)
ij

;
(c) there is no p(r−1)

ir
-transition of A for ar.

(2) s ∈ [s]p,j
′,p′

iff s contains a node v = i1 . . . ir+1 which is labeled with yj′ and there
are transitions (p

(j)
0 , aj , p

(j)
1 , . . . , p

(j)
mj) ∈ δ for j = 1, . . . , r, such that:

(a) For j = 1, . . . , r, the label of the node i1 . . . ij equals aj ;
(b) p

(1)
0 = p and p(r)

ir+1
= p′; and for j = 1, . . . , r − 1, p(j+1)

0 = p
(j)
ij

.

Note in particular that by this definition, s 6∈ L(A) iff [s]p0 = {s} for the initial state p0 of
A. Let us extend the operators [.]p and [.]p,j

′,p′
by:

[S]p =
[
{[s]p | s ∈ S} [S]p,j

′,p′ =
[
{[s]p,j

′,p′ | s ∈ S}

for S ⊆ TΣ(Y) with Y = {y1, . . . , yn}. By fixpoint induction, we verify for every state q
of rank n+ 1, every j ∈ {1, . . . , n}, every input tree t ∈ TΣ and states p, p′ ∈ P that:

[[〈q, p, j, p′〉]](t) = [[[q]](t)]p,j,p
′

[[〈q, p〉]](t) = [[[q]](t)]p

For each state p and right-hand side ζ of a rule, we assign states of the dtta to the nodes of
the tree. Either we immediately hit a node certifying the non-existence of a p-run of the dtta
on the output generated from ζ, or we hit an occurrence of a state call q(op, . . .). If n ≥ 1
is the rank of q, we have n choices here: either we expect a certificate for the failure of the
dttaA inside the evaluation of q or in one of the parameters of q. Overall, we find that every

31

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

rule of M , thus, gives rise to (h · |A|)d+2 rules. Thus, we have |MĀ| ∈ O(|M | · (h · |A|)d+2).
�

Assume that we have a binary ranked alphabet and that at least one state has an accumu-
lating parameter, i.e., the maximal rank l of states is at least 2. By Lemma 1.7 it is then
possible to restrict the number of occurrences of state calls in right-hand sides of the 2mtt
to l. This implies that the size of the intersection 2mtt MA in Theorem 1.6 for a dbta de-
scribing the output language is inO(|M | · |A|l·(l+1)). Furthermore, the size of the 2mttMA

in Theorem 1.7 for a deterministic top-down tree automaton describing the output language
is in O(|M | · (l · |A|)l+1).

1.6.2. Deciding Emptiness of 2MTTs

To decide emptiness of a 2mtt M , we follow the approach taken for 2tts: we construct an
alternating tree walking automaton AM which is then tested for emptiness. The atwa AM
has the same set of states as M (but they are not ranked anymore now), where the initial
states of M and AM coincide. For every rule q(a, η, y1, . . . , yn) → ζ of M , the atwa AM
has a rule q(a, η)→ q1(op1)∧ . . .∧ qc(opc) if q1(op1, . . .), . . . , qc(opc, . . .) is the sequence of
calls to states of M (possibly nested inside each other), in any order. Since we use 2mtts
with call-by-value semantics, M has an accepting run on some input tree t iff AM has an
accepting run on t. Note that this construction is wrong for call-by-need semantics, because
M could have an accepting run on a tree t /∈ L(AM); for instance the 2mtt with the rules
qI (a, 0)→ q(stay , q′(stay)), q(a, 0, y)→ a on the tree a.

Theorem 1.8. For every 2mtt M an atwa AM can be constructed in polynomial time such
that L(AM) = dom(M). Thus, it can be decided in deterministic exponential time whether
the translation of a 2mtt is empty or not.

1.6.3. Input-Linear 2MTTs

The notions of b-boundedness and strict b-boundedness which we have defined for 2tts
stay meaningful also in presence of accumulating parameters. Analogously, we find that
emptiness for b-bounded transducers is decidable in polynomial time — independent on
the number of accumulating parameters of states.

In order to identify classes of 2mtts where full type-checking is tractable, we therefore
take a closer look at the construction for the intersection of 2mtts with (complements of)
output types. For simplicity, we first consider 2mtts which are strictly 1-bounded. This
notion is only meaningful for top-down mtts, i.e., 2mtts without operations up or stay . A
top-down transducer M is guaranteed to visit each node of the input tree at most once,
if for the same i, the operation downi does not occur twice in the same right-hand side
of M . This property can easily be checked syntactically. Tree transducers satisfying this
restriction are called input-linear.

Note that input-linearity for a tree transducer implies that the number of state calls in
right-hand sides is bounded by the maximal rank of input symbols. Moreover, the output

32

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

language can be described by rules that are obtained by simply deleting all directives from
the transducer’s rules. The resulting rules no longer specify a transformation but constitute
a context-free tree grammar (short: cftg) for generating output trees. As an example of an
input-linear mtt consider the following mtt which produces the same output as the common
example My,staff without the boss-subtrees. The transducer only needs one parameter (for
the next employee) and has a new state qempl . For η ∈ {1, 2}, it has the rules:

1 qI (department, 0) → staff(q(down1, e), e)

2 q(employee, η, yn) → qempl (down1, q(down2, yn))

3 qempl (data, 1, yn) → employee(data(qdata(down1), e), q(down2, yn))

4 q(subordinates, 2, yn)→ q(down1, yn)

5 q(e, η, yn) → yn

6 qdata(data, 1) → copy(down1).

The grammar characterizing its output language looks as follows:

1 qI → staff(q(e), e)

2 q(yn) → qempl (q(yn)) | q(yn) | yn
3 qempl (yn)→ employee(data(qdata , e), q(yn))

4 qdata → copy

where qI , q, qempl , qdata , copy are nonterminals. Selection of rules depending on input sym-
bols and directions now has been replaced with nondeterministic choice.

Context-free tree grammars generalize context-free grammars to trees. Formally, a cftg
G can be represented by a tuple (E,Σ, P, E0) where E is a finite ranked set of function
symbols or nonterminals, E0 ⊆ E is a set of initial symbols of rank 0, Σ is the ranked
alphabet of terminal nodes and P is a set of rules of the form q(y1, . . . , yn) → ζ where
q ∈ E is a nonterminal of rank n ≥ 0. The right-hand side ζ is a tree built up from
variables y1, . . . , yn by means of application of nonterminal and terminal symbols. As for
2mtts, inside-out (IO) and outside-in evaluation order for nonterminal symbols must be
distinguished. Here, we use the IO or call-by-value evaluation order. The least fixpoint
semantics for the cftg G is obtained straightforwardly along the lines for 2mtts — simply
by removing the corresponding directive components, i.e., by removing in the last line of
the definition of [[ζ]] for 2mtts the op and [[op]]t(v). In particular, this semantics assigns to
every nonterminal q of rank n ≥ 0, a set [[q]] ⊆ TΣ(Y) for Y = {y1, . . . , yn}. The language
generated by G is L(G) =

S
{[[q0]] | q0 ∈ E0}.

It is easy to see that the output language of an input-linear mtt M can be characterized
by a cftg GM which can be constructed from M in linear time. During this construction
every rule q(a, η, y1, . . . , yn) → ζ is rewritten as a production q(y1, . . . , yn) → ζ′, where ζ ′

is obtained from ζ by deleting all occurrences of navigation operators.
The characterization of output languages for input-linear mtts by cftgs is useful because

emptiness for (IO-)cftgs is decidable using a similar algorithm as the one for ordinary
context-free (word) grammars, and hence can be done in linear time.

Theorem 1.9. It can be decided in linear time for a cftg G whether or not L(G) = ∅.

33

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

Here, we are interested in testing whether a given input-linear mtt M type checks w.r.t.
input and output types I and O. Assume that I is given by a (possibly non-deterministic)
bta B with only productive states, i.e., for every state p of B there exists a p-run of B on
a tree. As a first step, we construct a new input-linear mtt MB such that MB’s range, i.e.,
the set τMB

(TΣ) is equal to τM (I). This is done by a straightforward product construction
of the bta B and the input-linear mtt M . Note that it may happen that M does not visit
a certain subtree t of the input tree. In such a case the checking of t w.r.t. B cannot be
done by the new transducer MB . This does not affect the corresponding output language
though. We now construct the intersection 2mtt for MB and the complement of the output
type O. In case, O is given by a dbta, this can be done along the lines of the proof of
Theorem 1.6. If O is given by a dtta, we rely on the construction from Theorem 1.7. Since
M is input-linear, the intersection 2mtt is again input-linear — meaning that its range can
be described by a cftg (thus generating all “illegal outputs” ofM w.r.t. I andO). Therefore,
Theorem 1.9 gives us:

Theorem 1.10. Assume M is an input-linear mtt where the ranks of input symbols are
bounded, and let I and O denote input and output types for M where I is given by a bta.

(1) Assume that the output type O is specified with a dbta and the maximal rank of states
of M is bounded. Then M can be type checked relative to I and O in polynomial time.

(2) Assume that the output type O is specified with a dtta. Then M can be type checked
relative to I and O in polynomial time — even in presence of unbounded ranks of
states.

The worst-case complexity bounds for the construction of Theorem 1.10 are exponential in
l·(k+1) (for output types given through dbtas) or k+2 (for output types given through dttas)
where l is the maximal rank of states and k is the maximal rank of an input symbol ofM . In
practical applications, both k and lmay be moderately small. Still, we want to point out that
in case of input-linear mtts, the intersection construction can be organized in such a way
that only “useful” states are constructed. In order to see this, consider again an input-linear
mtt M and a dbta A (representing the incorrect output trees). The idea is to introduce for
every q of M of rank n+ 1, a Datalog predicate q/n+ 1. Every rule q(a, η, y1, . . . , yn)→ ζ

of M then gives rise to the Datalog implication: q(Y0, . . . , Yn) ⇐ D[ζ]Y0 whereD[ζ]X (X
is a variable) is defined by

D[yj]X = X = Yj
D[b(ζ1, . . . , ζm)]X = δ(X, b, X1 . . . Xm) ∧ D[ζ1]X1 ∧ . . . ∧ D[ζm]Xm
D[q′(ζ1, . . . , ζm)]X = q′(X,X1, . . . , Xm) ∧ D[ζ1]X1 ∧ . . . ∧ D[ζm]Xm

and the variables X1, . . . , Xm in the last two rows are fresh. For subsets X,X1, . . . , Xm′

of the set of states of A, δ(X, a, X1 . . . Xm′) denotes the fact that (x, a, x1 . . . xm′) ∈ δA for
all x ∈ X and xj ∈ Xj , j = 1, . . . ,m′. A bottom-up evaluation of the resulting Datalog
program computes for every q/(n + 1), the set of all tuples (p0, . . . , pn) such that the
translation of 〈q, p0 . . . pn〉 is non-empty. If we additionally want to restrict these predicates
only to tuples which may contribute to a terminal derivation of initial nonterminals 〈q0, pf 〉,

34

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

we may top-down query the program with queries⇐ q0(pf). Practically, top-down solving
organizes the construction such that only useful nonterminals of the intersection grammar
are considered. Using this approach, the number of newly constructed nonterminals often
will be much smaller than the bounds stated in the theorem. A similar construction is also
possible for the intersection of mtts with the complements of dtta languages.

The algorithm for input-linear mtts can also be applied to non-input-linear 2mtts. Then,
the constructed Datalog program does no longer precisely characterize the non-empty func-
tions of the intersection 2mtt because dependencies on input subtrees (viz. several trans-
formations of the same input node) have been lost. Accordingly, a superset is returned. By
means of cftgs, we can express this observation as follows:

Theorem 1.11. Let GM be the cftg constructed for a 2mtt M . Then τM (TΣ) ⊆ L(GM).

Since the cftg still provides a safe superset of produced outputs, type checking based on
cftgs is sound in the sense that if it does not flag an error, the transformation also will not
go wrong. On the other hand, a flagged error may be possibly spurious, i.e., due to the
over-approximation of the output language through the cftg.

Consider a top-down transducer M with rule q0(a, 0)→ c(p(down1), p(down1)), where
p realizes the identity using the rules p(a, η) → a(p(down1)), p(b, η) → b(p(down1)),
p(e, η) → e. In this case, the corresponding approximating cftg GM is rather coarse:
it generates c(u, v) with u, v ∈ {a, b}∗e (seen as monadic trees). Exact tree copy-
ing, however, can be realized through the use of parameters: the transducer with rules
q0(a, 0) → q(down1, p(down1)) and q(σ, η, y1) → c(y1, y1) (for all σ ∈ Σ) and the same p-
rules asM will realize the same translation asM . The cftg for the resulting transducer now
does not provide an over-approximation but precisely captures the output language of M .

When approximating the output languages of general 2mtts with cftgs, we no longer
can assume that the maximal number d of occurrences of nonterminals in a right-hand side
of this grammar is bounded by a small constant. If d turns out to be unacceptably large, we
still can apply Lemma 1.7 to limit the maximal number of occurrences of nonterminals in
each right-hand side to a number k which is the maximal rank of output symbols and states.
This construction, however, introduces stay-moves and thus destroys input-linearity.

1.6.4. Notes and References

Macro tree transducers [EV85] are a combination of top-down tree transducers and macro
grammars [Fis68]. Macro grammars are just like context-free tree grammars (cftgs), but
produce strings (a cftg can be seen as a special macro grammar, because terms are particular
strings). Fischer already distinguishes IO and OI for macro grammars, and proves that the
corresponding classes of languages are incomparable (which also holds in the tree case).
Our normal form of Lemma 1.7 can be seen as a variant of Fischer’s IO standard form,
which in fact is very similar to Chomsky normal form of context-free grammars: there are
exactly 2 or 0 nonterminals in every right-hand side of a grammar in IO standard form. A
similar normal form might be possible for 2mtts too, but will cause a larger size increase
of the transducer (note that Fischer does not report on grammar sizes, in his constructions).

35

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

Fischer remarks, just after Corollary 3.1.6, that emptiness of IO macro languages can be re-
duced to emptiness of context-free languages, by simply dropping all parentheses, commas,
argument, and terminal symbols. The resulting context-free (word) grammar generates the
empty word if and only if the original language is empty. Since emptiness for a context-free
grammar can be decided in linear time (see, e.g., [HMU01]), we obtain a linear time pro-
cedure for checking emptiness of IO context-free tree languages, as stated in Theorem 1.9.
Context-free tree grammars were considered in [Rou70] and extensively studied in [ES77].

The fact that output languages of input-linear mtts are IO context-free tree languages is
mentioned in Corollary 5.7 of [EV85] (the class of input-linear mtts is called LMTIO there).
A 2mtt without up-moves is called “stay-mtt”. Results similar as the ones obtained in this
section for 2mtts, have been obtained already in [MPS07] for the restricted case of stay-
mtts. For instance, Proposition 3 of that paper is similar to our Theorem 1.7, Theorem 2
of [MPS07] corresponds to our Theorem 1.6, and Theorem 5 of that paper corresponds to
our Theorem 1.10. Just before Theorem 1.10, we describe how to incorporate an input type
into an input-linear transducer, so that the corresponding output language is preserved. The
technical details are exactly as in the proof of Theorem 3.2.1 of [ERS80], where this results
was proved for top-down tree transducers. 2mtts are essentially the same as the k-pebble
macro tree transducers (k-pmtt) of [EM03a] for the case k = 0. For k-pmtts, a normal
form similar to our Lemma 1.7 was shown in Theorem 16 of [EM03a].

1.7. Macro Forest Walking Transducers

Conceptually, XML documents are not trees, but forests. Therefore, we extend the concept
of tree walking transducers (without or with parameters) to a transformation formalisms of
forests. Forests are introduced in Definition 1.1.

Example 1.9. We consider again a transformation from company structures (cf. Sec-
tion 1.2) to collections of employees which are listed under a new root node labeled staff

(cf. Section 1.3). In contrast to tree walking transducers, forest transducers do not depend
on a ranked alphabet. They can deal with arbitrary many subtrees of nodes. Here, we define
a transformation which returns trees of the form staff〈f〉 where f is a forest composed of
trees of the form employee(data(. . .), boss(. . .)). The input trees are described by the DTD
in Section 1.4. Additionally to the operations up, stay as in tree walking transducers, forest
transducers may use a directive down for proceeding to the first child as well as directives
left and right for proceeding to the left or right sibling, respectively.

1 qI (department, 0) → staff〈q(down, ε)〉
2 q(employee, η, yb) → employee〈data〈qdata(down)〉 yb〉
3 q(down, boss〈qdata(down)〉)
4 q(right, yb)

5 q(data, 2, yb) → q(right, yb)

6 q(subordinates, 3, yb)→ q(down, yb)

7 q(ε, η, yb) → ε

8 qdata(data, 2) → copy(down)

36

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

where state copy in line 8 is meant to copy the forest f of a subtree data〈f〉. The right-
hand side of the second rule is a composition of three forests (line 2-4). The initial state
is qI , which means that we start with state qI at the root of the first tree of a forest. Here,
the transducer walks only the first tree of an input forest. Note also that now rules may
be selected depending on the current label of a node in the forest together with its forest
direction. Thus, it can check whether the current node is the leftmost node on the top-level
(value 0), is on the top-level, but not leftmost (value 1), is leftmost but not on the top-level
(value 2) or is neither leftmost nor on the top-level (value 3). /

Definition 1.11 (2mft). A macro forest walking transducer (2mft for short) is a tuple
M = (Q,Σ, Q0, R), where Q is a finite ranked set of states, Σ is a finite alphabet with
Q ∩ Σ = ∅, Q0 ⊆ Q(1) is the set of initial states and R is a finite set of rules of the
form: q(ε, η, y1, . . . , yn) → ζ or q(a, η, y1, . . . , yn) → ζ with a ∈ Σ, direction
η ∈ {0, . . . , 3} and q ∈ Q(n+1) where the right-hand sides are forests ζ of the following
form: ζ ::= ε | yj | q(op, ζ1, . . . , ζn′) | b〈ζ1〉 | ζ1 ζ2 where q ∈ Q(n′+1), b ∈ Σ,
op ∈ {up, stay , down, left , right} and j = 1, . . . , n. Moreover, the right-hand sides for empty
input forests ε must not contain occurrences of the operations down, right or left .

In case of several rules for the same q, the same direction η and the same symbol a (or
ε), we also write: ζ1 | . . . | ζk to list all occurring right-hand sides. In case, that no
operation up is used, the 2mft is also called top-down (short: 1mft or mft). Likewise, if all
states are of rank 1, i.e., have no accumulating parameters, the 2mft is an (ordinary) forest
walking transducer (short: 2ft). Finally, a 1mft without parameters is also called forest
transducer (short: 1ft or ft). As for macro tree walking transducers, in practice, states q
may differ in their ranks, i.e., the numbers of their accumulating parameters plus 1. The
set R of rules in Example 1.9 constitute the transducer My,staff,f = (Q,Σ, Q0, R) with
Q = {qI , q, qdata , copy} and Q0 = {qI }, which happens to be a 1mft.

A forest transducer behaves similar to a corresponding tree transducer: while walking
over the input forest, the transducer chooses rules corresponding to the current states, input
symbols and directions at the respective current nodes in the input, and then evaluates
the right-hand sides of the rules. Again, we just consider the inside-out (IO or call-by-
value) strategy for evaluating parameters. There are two significant differences between
forest walking and tree walking transducers: First, a forest walking transducer produces
output forests and therefore, as an extra operation, also supports concatenation of output
forests. Secondly, the forest transducer has a different set of directions as well as a different
set of navigational directives: up now means that the transducer moves to its ancestor in
the input forest. left and right now means that the transducer moves to its left or right
sibling, whereas down means that the transducer moves to its first child. Formally, the
semantics of these operations is defined by [[up]](vi) = v, [[left]](vi) = v(i − 1) if i > 0,
[[right]](vi) = v(i + 1), and [[down]](v) = v0. Note that only the operations down and right
have immediate equivalents in commands of a transducer on the first-child next-sibling
encoding of forests as binary trees where they correspond to the commands down1 and
down2, respectively. The up-command on the tree, on the other hand, may correspond to

37

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

the forest commands left or up — depending on whether the current node is a right or left
child. The class of all (forest-walking) macro forest transformations is denoted by (2FMAC)
FMAC. Analogously to Lemma 1.7, we find:

Lemma 1.8. For every 2mft M there exists a 2mft M ′ with (i) τM′ = τM (ii) there are at
most l occurrences of states on a right-hand side of rules inM ′ and (iii) |M ′| ∈ O(|M | · l2),
where l is the maximum of 2 and the maximal rank of states of M .

Note that it is unfortunately not possible to simulate 2mfts by 2mtts which work on (pos-
sibly enriched) first-child next-sibling encodings of input and output trees. To see this,
consider first the 1mft case. As shown in [PS04], one can easily construct a 1mft which
takes as input a binary tree with m nodes, and outputs a forest consisting of 2m leaves,
i.e., a string of length 2m. Consider the height increase of the corresponding translation on
encoded trees: it is double-exponential. However, the height-increase of mtts is at most ex-
ponential (see [EV85]). Now consider the 2mft case. Clearly, a 2mtt can translate a binary
tree with m nodes into a monadic tree with 2m nodes, by doing a depth-first left-to-right
traversal, and at each step generating a duplicated state call in a parameter position. As
intermediate sentential form the transducer generates q(ε, q(ε, . . . , q(ε, e)) . . .) which has
2m-many occurrences of q; it then replaces q(ε, t) by g(t), where g is an output symbol of
rank 1. A 2mft can generate the same sentential form, but can replace q(ε, t) by tt, i.e., the
forest of concatenating two copies of t. In this way, a forest consisting of 22m -many e’s is
generated. On first-child next-sibling encodings, this corresponds to a tree of height 22m .
Thus, the translation on encodings has double-exponential size-to-height increase. How-
ever, it is not difficult to see that the size-to-height increase of 2mtts is at most exponential.

1.7.1. Intersecting Forest Walking Transducers with Output Types

In this section, we consider general techniques for intersecting forest walking transducers
with output types. Assume that we are given a regular forest language L. Our goal is to
construct for a given 2mft M , another 2mft M ′ which behaves similar to M but produces
only outputs in L. If L describes the set of all invalid outputs, type-checking for M , thus,
reduces to checking emptiness of the transformation M ′.

In order to provide a general construction for regular L, let us first assume that L
is given as the language defined by a finite forest monoid A, i.e., L = L(A). A finite
forest monoid (short: ffm) can be considered as a deterministic bottom-up automaton which
combines the individual states for the trees ti in a forest f = t1 . . . tm by means of a
monoid operation ◦ (compare, e.g., the discussion in [BW05]). Formally, a finite forest
monoid consists of a finite monoid G with a neutral element e, a finite subset F ⊆ G of
accepting elements, together with a function up : Σ × G → G mapping a symbol of Σ
together with a monoid element for its content to a monoid element representing a forest
of length 1. A finite forest monoid accepts a forest f if up∗(f) ∈ F where up∗(f1f2) =

up∗(f1) ◦ up∗(f2), up∗(a〈f ′〉) = up(a, up∗(f ′)), and up∗(ε) = e. Given a total deterministic
bottom-up forest automaton A = (P,Σ, δ, FA), i.e., a dbta operating on the first-child
next-sibling representation of forests, we construct a finite forest monoid as follows. Let G

38

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

be the monoid of functions P → P where the monoid operation is function composition.
In particular, the neutral element of this monoid is the identity function. Moreover, the
function up is defined by up(a, g) = p 7→ δ(a, g(δ(e)) p). Finally, the set of accepting
elements is given by F = {g ∈ G | g(δ(e)) ∈ FA}.

On the other hand every forest monoid G gives rise to a finite tree automaton AG
(running on first-child next-sibling representations) whose set of states is given by the el-
ements of M . The transition function δ of AG is defined by: δ(e) = e and δ(a, g1 g2) =

up(a, g1) ◦ g2. Then the set of accepting states simply is given by the accepting elements
of G. These constructions show that every recognizable forest language can be recognized
by a finite forest monoid and vice versa. Although the ffm for a bottom-up tree automaton
generally can be exponentially larger, this need not always be the case.

Example 1.10. For our running example the bta in Example 1.3 is not a total determin-
istic bottom-up forest automaton. We get a total dbfa by adding an extra error state •.
The new transition function δ′ then is defined by: δ′(staff, rempl re) = δ′(staff, re re) =

rstaff, δ′(employee, rdata rempl) = δ′(employee, rdata re) = rempl, δ′(data, rname rboss) =

δ′(data, rname re) = rdata, δ′(boss, rname re) = rboss, δ′(name, rcontent re) = rname, δ′(e, ε) = re,
and δ′(a, r1 r2) = • otherwise. In the corresponding finite forest monoid A = (G,Σ, up, F)
the monoid G contains the following functions: gempl = {re 7→ rempl, rempl 7→ rempl}, gdata =

{re 7→ rdata, rboss 7→ rdata}, rstaff = {re 7→ rstaff}, gboss = {re 7→ rboss}, gname = {re 7→ rname},
gdataBoss = {re 7→ rdata}, gcontent = {re 7→ rcontent}, g• = ∅, Id = {r 7→ r | r ∈ P}, where we
have omitted all entries r 7→ •. Note that in this example, the forest monoid has only one
element more than the underlying finite automaton. Also, the composition table of these
functions is given by Id ◦ g = g ◦ Id = g for all g and furthermore: gdata ◦ gboss = gdataBoss,
gempl ◦ gempl = gempl, and otherwise g ◦ g′ = g•. For the function up, we find: up(staff, Id) =

gstaff, up(staff, gempl) = gstaff, up(employee, gdata) = gempl, up(employee, gdataBoss) = gempl,
up(data, gname) = gdata, up(boss, gname) = gboss, up(name, gcontent) = gname, and up(a, g) = g•

otherwise. where the set of accepting functions is given by F = {gstaff}. /

Theorem 1.12. For every 2mft M and every finite forest monoid A, a 2mft MA can be
constructed such that for all f ∈ FΣ,

τMA
(f) = τM (f) ∩ L(A)

The size of MA is in O(|M | · |A|l·(d+1)) where l is the maximal rank of a state q of M and
d is the maximal number of occurrences of states in right-hand sides in M .

Proof. Let M = (Q,Σ, R,Q0) and A = (G,Σ, up, F). For each state q in Q with
rank n + 1 and all monoid elements g0, . . . , gn ∈ G, we generate new states for the in-
tersection 2mtt MA of the form 〈q, g0g1 . . . gn〉. Such a state is meant to generate all
forests f ∈ FΣ({y1, . . . , yn}) for which there is a run of A starting at the leaves yi with
monoid element gi and reaching the root of f in g0. The rules of the new 2mft MA

are: 〈q, g0g1 . . . gn〉(a, η, y1, . . . , yn) → ζ′ for every rule q(a, η, y1, . . . , yn) → ζ of M and

39

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

ζ′ ∈ τg0g1...gn [ζ], where the sets τg0g1...gn [.] are inductively defined by:

τg0g1...gn [yj] = {yj | g0 = gj}
τg0g1...gn [b〈ζ〉] = {b〈ζ′〉 | up(b, g′) = g0 ∧ ζ′ ∈ τg

′g1...gn [ζ]}
τg0g1...gn [ε] = {ε | g0 = e}
τg0g1...gn [ζ1ζ2] = {ζ′1ζ′2 | g0 = g′1 ◦ g′2 ∧ ∀ν : ζ′ν ∈ τg

′
νg1...gn [ζν]}

τg0g1...gn [q′(op, ζ1, . . . , ζn′)] = {〈q′, g0g
′
1 . . . g

′
n′〉(op, ζ′1, . . . , ζ′n′) | ∀ν : ζ′ν ∈ τg

′
νg1...gn [ζν]}

The set of initial states of MA is Q′0 = Q0 × F . By fixpoint induction, we verify for every
state q of rank n ≥ 1, every input forest f ∈ FΣ, every node v ∈ N (f) and monoid
elements g0, . . . , gn that:

[[〈q, g0, . . . , gn〉]]f (v) = [[q]]f (v) ∩ {f ′ ∈ FΣ(Y) | up∗(f ′, g1 . . . gn) = g0} (∗)

where Y = {y1, . . . , yn} and up∗ is the extension of up to forests containing variables
from Y , namely, for g = g1 . . . gn we have up∗(yi, g) = gi, up∗(ε, g) = e, up∗(a〈f ′〉, g) =

up(a, up∗(f ′, g)), up∗(f1f2, g) = up∗(f1, g) ◦ up∗(f2, g). The correctness of the construction
follows from (∗).

For each state in M we have at most |A|l new states in MA, if l is the maximal rank
of states in M . If we have d occurrences of states in the right-hand side of a rule r
of M , we obtain |A|l·(d+1) new rules for r in MA. Therefore, the new 2mft is of size
O(|M | · |A|l·(d+1) where l is the maximal rank of a state in M and d bounds the number
of occurrences of states in right-hand sides in M . �

Note that this construction differs from the corresponding construction for 2mtts in that we
now additionally have to take concatenations of forests into account. It is precisely for this
operation, that we rely on the monoid structure of the set G.

Example 1.11. Consider the 2mft M of Example 1.9 and the ffm A in Example 1.10. We
get an intersection 2mft with the following rules, for η ∈ {2, 3}.

1 〈qI , gstaff〉(department, 0) → staff〈〈q, Id Id〉(down, ε)〉 | staff〈〈q, gemplId〉(down, ε)〉
2 〈q, gemplId〉(employee, η, yb) → employee〈data〈〈qdata , gname〉(down)〉 yb〉
3 〈q, g2gboss〉(down, boss〈〈qdata , gname〉(down)〉) 〈q, g3Id〉(right, yb)
4 〈q, gemplgboss〉(employee, η, yb) → employee〈data〈〈qdata , gname〉(down)〉 yb〉
5 〈q, g2gboss〉(down, boss〈〈qdata , gname〉(down)〉) 〈q, g3gboss〉(right, yb)
6 〈q, g0gb〉(data, 2, yb) → 〈q, g0gb〉(right, yb)
7 〈q, g0gb〉(subordinates, 3, yb)→ 〈q, g0gb〉(down, yb)

8 〈q, Id gb〉(ε, η, yb) → ε

9 〈qdata , gname〉(data, 2) → 〈copy, gname〉(down)

where for the monoid elements g2 and g3 in the third and the forth rules gempl = gempl ◦g2 ◦g3

holds. Thus, g2 and g3 are in {gempl, Id}. The element g0 in lines 6 and 7 is either gempl or
Id , whereas gb in lines 6-9 is in {gboss, Id}. Additionally there are rules resulting in a state
〈q, g•gb〉 or 〈q, g•〉 for a state q ∈ Q. /

The draw-back of this general construction, though, is that the (complement of the) output
type with which we aim to intersect, first must be represented as a finite forest monoid.

40

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

In general, this alone may incur an exponential blow-up. If, however, the 2mft is output-
linear, i.e., uses each parameter at most once, then a much cheaper direct construction is
possible. In particular, this cheaper construction applies to 2fts since these transducers have
no parameters at all.

Theorem 1.13. Assume that M is an output-linear 2mft. Then for every (possibly nonde-
terministic) bfa A, a 2mft MA can be constructed with

τMA
(f) = τM (f) ∩ L(A)

for all f ∈ FΣ. The size of the 2mft |MA| is inO(|M | · |A|2l·(d+1)) where l is the maximal
rank of a state q of M and d is the maximal number of occurrences of states in right-hand
sides in M .

Proof. Let M = (Q,Σ, R,Q0) and A = (P,Σ, δ, {p0}). The idea for the new 2mft
MA for the intersection is to maintain for every possibly produced output forest f a
pair of states 〈p, p′〉 so that the automaton A, when starting in p′ to the right of f , pos-
sibly may arrive in state p to the left. Accordingly, the set Q′ of MA consists of all
states 〈q, p0p

′
0 . . . pnp

′
n〉 where q ∈ Q is of rank n + 1, i.e., has n accumulating pa-

rameters and pi, p
′
i ∈ P for all i. Accordingly, the rules of the new 2mft are of the

form: 〈q, p0p
′
0 . . . pnp

′
n〉(a, η, y1, . . . , yn) → f ′ with f ′ ∈ τp0p

′
0...pnp

′
n [f] for every rule

q(a, η, y1, . . . , yn)→ f of M . The sets τp0p
′
0...pnp

′
n [.] are defined by:

τpjp
′
j p1p

′
1...pnp

′
n [yj] = {yj}

τp0p
′
0 p1p

′
1...pnp

′
n [b〈ζ〉] = {b〈ζ′〉 | (p0, b, p

′′
1 p
′
0) ∈ δ ∧ (p′′2 , e) ∈ δ ∧ ζ′ ∈ τp

′′
1 p

′′
2 p1p

′
1...pnp

′
n [ζ]}

τp0p
′
0 p1p

′
1...pnp

′
n [ε] = {ε | p0 = p′0}

τp0p
′
0 p1p

′
1...pnp

′
n [ζ1ζ2] = {ζ′1ζ′2 | ∃ p : ζ′1 ∈ τp0p p1p

′
1...pnp

′
n [ζ1] ∧ ζ′2 ∈ τpp

′
0 p1p

′
1...pnp

′
n [ζ2]}

τp0p
′
0 p1p

′
1...pnp

′
n [q′(op, ζ1, . . . , ζm)]

= {〈q′, p0p
′
0 p
′′
1p
′′′
1 . . . p′′mp

′′′
m〉(op, ζ′1, . . . , ζ′m) | ∀ν : ζ′ν ∈ τp

′′
ν p

′′′
ν p1p

′
1...pnp

′
n [ζν]}.

The set of initial states of MA then consists of all states 〈q, p0p
′〉 where q ∈ Q0 and p0 ∈ P

are accepting states of M and A, respectively, and (p′, e) ∈ δ. The estimation of the size
of the resulting transducer is similar to the case of forest monoids — only that we have to
replace the number of monoid elements with the number of pairs of states. Thus, the new
intersection transducer is of size O(|M | · |A|2l·(d+1)). �

1.7.2. Deciding Emptiness of 2MFTs

For deciding emptiness of a forest transducer M , we conceptually follow the approach
taken for tree transducers. There, we first constructed an alternating tree walking automaton
accepting the domain ofM for which in the second step, a nondeterministic tree automaton
is constructed. In our case, this would mean that we first formally introduce the concept of
alternating forest walking automata for which in a separate construction, a nondeterministic
forest automaton is constructed. In order to simplify this, we will not intermediately rely
on forest walking automata. Instead, we consider for each forest f , an enriched first-
child next-sibling encoding through binary trees. This means that inside each node of the

41

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

encoding we additionally record whether or not the current tree node represents a node on
the top-level of the forest. Let Σ̄ = {ā | a ∈ Σ} denote a set of new symbols of rank 2.
Then the ranked alphabet used by the encoding will be Σ2 = Σ ∪ Σ̄ ∪ {e, ē} where the
barred symbols will only occur on the rightmost spine in the tree. A dtta with two states
{t, n} can check whether a tree in TΣ2 is the enriched encoding of a forest or not.

Since the encoding is injective, it suffices for a forest transducer M to construct an
atwa M ′ which defines the set of encodings of the domain of M . Then the set of states
of the atwa M ′ is given by Q′ = {q′0, t, n} ∪ Q ∪ Qup where Qup = {qup | q ∈ Q} is a
set of fresh copies of the states in Q and q′0 serves as fresh initial state of M ′. Assume
that q(a, η, y1, . . . , yn) → ζ is a rule of M and q1(op1, . . .), . . . , qc(opc, . . .) is the sequence
of recursive calls in ζ. If η ∈ {2, 3}, i.e., if the rule is not applicable to nodes at the top-
level of the input forest, then atwa M ′ has the rules: q(a, η − 1) → q′1(op′1) ∧ . . . ∧ q′c(op′c)
where q′j(op′j) = qj(stay) if opj = stay , q′j(op

′
j) = qj(down1) if opj = down , q′j(op

′
j) =

qj(down2) if opj = right , q′j(op
′
j) = qj(up) if opj = left and η = 3, q′j(op′j) = qupj (stay) if

opj = up. For states qup , atwaM ′ has the rules: qup(a, 2)→ q(up) and qup(a, 3)→ qup(up).
If on the other hand η ∈ {0, 1}, i.e., the rule of the 2mft refers to nodes at the top-level

of the input forest, then the atwa M ′ has the rules: q(ā, 2 · η) → q′1(op′1) ∧ . . . ∧ q′c(op′c)
where q′j(op′j) = qj(stay) if opj = stay , q′j(op

′
j) = qj(down1) if opj = down , q′j(op

′
j) =

qj(down2) if opj = right , q′j(op
′
j) = qj(up) if opj = left . For every rule q(a, 0) → ζ

of M with q ∈ Q0, we add the rule q′0(ā, 0) → t(stay) ∧ q(stay) where the rules for t

and n simulate the computation of a top-down automaton to verify that the input tree is
the enriched encoding of a forest. Thus, the rules of the atwa for q′0 are meant to spawn
a subrun which verifies the encoding and to spawn another subrun which simulates an
accepting run of the forest transducer on the binary encoding. In particular, the states qup

are auxiliary states to implement the operation up on the binary representation of the forest.
More precisely, the rules for the state qup performs the operation up as long as the current
node is a right child. If the current node is a left child, a final up-operation is executed to
arrive at the tree representation of the father node in state q. Overall, we find:

Theorem 1.14. For every 2mft M , an atwa M ′ can be constructed in polynomial time
such that L(M ′) is the set of enriched binary encodings of the set {f | τM (f) 6= ∅}. In
particular, L(M ′) 6= ∅ iff τM 6= ∅.

We thus obtain an exponential algorithm for deciding emptiness of 2mfts which is optimal.
Together with our intersection constructions, this algorithm then can be applied also for
type-checking 2mft transducers w.r.t. regular input and output types.

In order to arrive at more tractable algorithms or sub-classes, we can apply the same
ideas as for 2mtts: in the first place, we can again approximate the set of output forests by
means of a context-free forest grammar. A context-free forest grammar for the intersection
with a regular forest language specified through a finite forest monoid is polynomial in
the size of the grammar and the number of elements in the monoid and exponential only in
l ·(d+1) where l is the maximal rank of nonterminals and d is the number of occurrences of
nonterminals in right-hand sides. Emptiness for this forest grammar again can be checked

42

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

in time linear in the size of the grammar. A practical implementation again may construct a
Datalog program for the sets of useful nonterminals of the grammar. We can also generalize
the notions of b-boundedness and strict b-boundedness for 2mfts. While emptiness for b-
bounded 2mfts is decidable in polynomial time (where the exponent again depends on b2), it
is only strict b-boundedness which is preserved by our intersection constructions. Here we
only state the corresponding result for output types specified through finite forest monoids.

Theorem 1.15. Assume M is a strictly b-bounded 2mft and I and O are regular forest
languages where I and O are given by a finite forest automaton and a finite forest monoid,
respectively. Assume further that l is the maximal rank of a state ofM and d is the maximal
number of occurrences of state calls in right-hand sides. ThenM can be type-checked w.r.t.
I and O in time polynomial in the sizes of M , the automaton for I and the automaton for
O where the exponent linearly depends on (b+ 1)2 · l · (d+ 1).

1.7.3. Notes and References

Top-down macro forest transducers have been introduced by Perst and Seidl in [PS04].
They are closely related to the top-down transducers of Maneth and Neven [MN99] (but
slightly more general). It was shown in [PS04] that, even though mfts are more powerful
than mtts, they can be type checked with the same complexity bounds, as macro tree trans-
ducers. This idea was extended to two-fold compositions of deterministic mtts, in [MN08].
In [MBPS05], a general forest transformation language TL is introduced which captures
most features of XML transformation languages such as XSLT. The language TL supports
full MSO pattern matching both for the selection of rules applicable at a node in the input
tree and for navigation inside the input tree. Thus, 2mfts can be considered as a sub-
language of TL where rules are selected depending on the current state and input label only
and where navigation is restricted to immediate neighbors in the input forest. The main
contribution of that paper is to show how such transformations can be decomposed into
three stay macro tree transducers running on the first-child next-sibling encoding of the
XML documents in question. The semantics considered there was OI evaluation of nested
calls, but similar results can also be proven for IO evaluation, i.e., call-by-value parameter
passing as considered here [Per07].

1.8. Conclusion

In this chapter, we have reviewed basic constructions for tree walking transducers which
allow to obtain algorithms for type-checking the transducers w.r.t. regular input and output
types. There are three orthogonal variations in which the basic concept of a finite state
machine can be made more expressive:

• top-down versus walking
• without parameters versus with parameters;
• on ranked trees versus on unranked forests.

43

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

At the very heart of our algorithms for type-checking is to check whether or not a transducer
realizes an empty translation. Already for the weakest, i.e., one-way top-down transducers
emptiness turns out to be complete for deterministic exponential time. Still, however, we
were able to pin-point one major source for the complexity, namely, the number of visits
to the same input node. If the transducer visits the same node only constantly often, i.e., is
b-bounded for some constant b, then emptiness becomes decidable in polynomial time.

The second ingredient of our algorithm are constructions for computing intersection
transducers, i.e., transducers which only produce outputs outside a specified regular set.
Here, we considered regular sets as specified by bottom-up deterministic automata (or
monoids, in case of forests) or by deterministic top-down automata. The latter construction
for forest transducers was at least applicable to output-linear transducers, i.e., transducers
which use each of their accumulating parameters at most once. Two separate constructions
are crucial, since translating top-down deterministic automata into bottom-up automata
may incur an extra exponentiation in the number of states. Since these constructions pre-
serve strict b-boundedness we thus overall arrive at a general class of transducers for which
type-checking is polynomial.

References

AU71. A. V. Aho and J. D. Ullman. Translations on a Context-Free Grammar. Inform. and Con-
trol, 19:439–475, 1971.

Bak79. B. S. Baker. Composition of top-down and bottom-up tree transductions. Inform. and
Control, 41(2):186–213, 1979.

Bar82. M. Bartha. An algebraic definition of attributed transformations. Acta Cybern., 5:409–
421, 1982.

BC03. S. Boag and D. Chamberlin et.al., editors. XQuery 1.0: An XML Query Language. W3C
Working Draft. Available at http://www.w3.org/TR/xquery/, 2003.

BW05. M. Bojańczyk and I. Walukiewicz. Unranked Tree Algebra. Technical report, University
of Warsaw, 2005.

CDG+07. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, C. Löding, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available at
http://www.grappa.univ-lille3.fr/tata, 2007.

CGKV88. S. S. Cosmadakis, H. Gaifman, P. C. Kanellakis, and M. Y. Vardi. Decidable optimization
problems for database logic programs (preliminary report). In STOC, pages 477–490.
ACM Press, New York, 1988.

CM. J. Clark and M. Murata et al. RelaxNG Specification. OASIS. Available at
http://www.oasis-open.org/committees/relax-ng.

Cou78. B. Courcelle. A representation of trees by languages II. Theoret. Comput. Sci., 7:25–55,
1978.

DE98. F. Drewes and J. Engelfriet. Decidability of finiteness of ranges of tree transductions.
Inform. and Comput., 145:1–50, 1998.

EHS07. J. Engelfriet, H. J. Hoogeboom, and B. Samwel. XML transformation by tree-walking
transducers with invisible pebbles. In PODS, pages 63–72. ACM Press, New York, 2007.

EM99. J. Engelfriet and S. Maneth. Macro tree transducers, attribute grammars, and MSO defin-
able tree translations. Inform. and Comput., 154:34–91, 1999.

EM03a. J. Engelfriet and S. Maneth. A Comparison of Pebble Tree Transducers with Macro Tree
Transducers. Acta Inf., 39:613–698, 2003.

44

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

EM03b. J. Engelfriet and S. Maneth. Macro tree translations of linear size increase are MSO
definable. SIAM J. Comput., 32:950–1006, 2003.

Eng08. J. Engelfriet. The time complexity of typechecking tree-walking tree transducers. Tech-
nical report, Leiden Institute of Advanced Computer Science, Leiden University, 2008.

ERS80. J. Engelfriet, G. Rozenberg, and G. Slutzki. Tree transducers, L systems, and two-way
machines. J. Comp. Syst. Sci., 20:150–202, 1980.

ES77. J. Engelfriet and E.M. Schmidt. IO and OI. (I&II). J. Comp. Syst. Sci., 15:328–353, 1977.
and 16:67–99, 1978.

EV85. J. Engelfriet and H. Vogler. Macro Tree Transducers. J. Comp. Syst. Sci., 31:71–146,
1985.

Fal01. D.C. Fallside, editor. XML Schema. W3C Recommendation, W3C, 2 May 2001. Avail-
able at http://www.w3.org/TR/xmlschema-0/.

FH07. A. Frisch and H. Hosoya. Towards practical typechecking for macro tree transducers. In
DBPL, pages 246–260. Springer, Heidelberg, 2007.

Fis68. M. J. Fischer. Grammars with Macro-like Productions. PhD thesis, Harvard University,
Massachusetts, 1968.

Fri04. A. Frisch. Regular Tree Language Recognition with Static Information. In PLAN-X, 2004.
Fül81. Z. Fülöp. On attributed tree transducers. Acta Cybern., 5:261–279, 1981.
FV98. Z. Fülöp and H. Vogler. Syntax-Directed Semantics; Formal Models Based on Tree Trans-

ducers. Springer, Heidelberg, 1998.
FW04. D. C. Fallside and P. Walmsley. XML Schema part 0: Primer second edition. W3C rec-

ommendation, W3C, October 2004. http://www.w3.org/TR/xmlschema-0/.
Gie88. R. Giegerich. Composition and evaluation of attribute coupled grammars. Acta Inf.,

25:355–423, 1988.
Gre78. Sheila A. Greibach. Hierarchy theorems for two-way finite state transducers. Acta Inf.,

11:80–101, 1978.
GS84. F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiadó, Budapest, 1984.
GS97. F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, editors,

Handbook of Formal Languages, Volume 3, chapter 1. Springer, Heidelberg, 1997.
HFC05. H. Hosoya, A. Frisch, and G. Castagna. Parametric Polymorphism for XML. In POPL,

pages 50–62. ACM Press, New York, 2005.
HMU01. J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Lan-

guages, and Computation. Addison-Wesley, New York, second edition, 2001.
HP02. H. Hosoya and B.C. Pierce. Regular expression pattern matching for XML. Journal of

Functional Programming, 13(6):961–1004, 2002.
HP03. H. Hosoya and B.C. Pierce. XDuce: A Statically Typed XML Processing Language. ACM

Trans. Inter. Tech., 3(2):117–148, 2003.
KMS04. C. Kirkegaard, A. Möller, and M.I. Schwartzbach. Static Analysis of XML Transforma-

tions in Java. IEEE Trans. Soft. Eng., 30:181–192, 2004.
Knu68. D. E. Knuth. Semantics of context-free languages. Math. Systems Theory, 2(2):127–145,

June 1968.
KS81. T. Kamimura and G. Slutzki. Parallel and two-way automata on directed ordered acyclic

graphs. Inform. and Control, 49:10–51, 1981.
MBPS05. S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML Type Checking with Macro Tree

Transducers. In PODS, pages 283–294. ACM Press, New York, 2005.
MLM00. M. Murata, D. Lee, and M. Mani. Taxonomy of XML Schema Languages using Formal

Language Theory. In Extreme Markup Languages, 2000.
MN99. S. Maneth and F. Neven. Structured Document Transformations Based on XSL. In DBPL,

pages 80–98. Springer, Heidelberg, 1999.
MN04. W. Martens and F. Neven. Frontiers of Tractability for Typechecking Simple XML Trans-

45

January 26, 2010 18:12 World Scientific Review Volume - 9.75in x 6.5in maneth

formations. In PODS, pages 23–34. ACM Press, New York, 2004.
MN05. W. Martens and F. Neven. On the complexity of typechecking top-down xml transforma-

tions. Theoret. Comput. Sci., 336:153–180, 2005.
MN08. S. Maneth and K. Nakano. XML type checking for macro tree transducers with holes. In

PLAN-X, 2008.
MOS05. A. Möller, M. Olesen, and M. Schwartzbach. Static Validation of XSL Transformations.

Technical Report RS-05-32, BRICS, October 2005.
MPS07. S. Maneth, T. Perst, and H. Seidl. Exact XML type checking in polynomial time. In ICDT,

pages 254–268. Springer, Heidelberg, 2007.
MS05. A. Möller and M. I. Schwartzbach. The Design Space of Type Checkers for XML Trans-

formation Languages. In ICDT, pages 17–36. Springer, Heidelberg, 2005.
MSV03. T. Milo, D. Suciu, and V. Vianu. Typechecking for XML Transformers. J. Comp. Syst.

Sci., 66:66–97, 2003.
Nev02. F. Neven. Automata Theory for XML Researchers. SIGMOD Record, 31(3):39–46, 2002.
Per07. T. Perst. Type Checking XML Transformations. Dissertation, Technische Universität

München, München, 2007.
PS04. T. Perst and H. Seidl. Macro Forest Transducers. Inf. Proc. Letters, 89:141–149, 2004.
Rou70. W.C. Rounds. Mappings and Grammars on Trees. Math. Systems Theory, 4:257–287,

1970.
Slu85. G. Slutzki. Alternating tree automata. Theor. Comput. Sci., 41(2-3):305–318, 1985.
Tha69. J. W. Thatcher. Transformations and translations from the point of view of generalized

finite automata theory. In STOC, pages 129–142. ACM Press, New York, 1969.
Vir81. J. Virágh. Deterministic ascending tree automata I. Acta Cybern., 5:33–42, 1981.
W3C00. W3C. Extensible Markup Language (XML) 1.0, second edition, 6 October 2000. Avail-

able at http://www.w3.org/TR/2000/REC-xml-20001006.

46

