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Chapter 2

Supervised Learning

Supervised learning is the machine learning task of inferring a function

that maps an input to an output based on example input–output pairs.

Depending on whether the output is a continuous variable or a categorical

variable, the supervised learning can be further divided into two types:

• Regression;

• Classification.

In Section 2.1, we first focus on regression problems. A general

framework of regression includes the model, loss function, optimization,

prediction and validation. Each component of the regression framework

is discussed in detail in the following sections. In Section 2.2, we explain

how to go from regression to classification. Lastly, we discuss how to use

an ensemble of multiple models to enhance the performance of supervised

learning.

2.1 Framework of Regression

Let us introduce the standard setup of the regression problem. For con-

creteness, we consider the case of a scalar output. Suppose that we have the

dataset D = {(xi, yi)}Ni=1, where (xi, yi) denotes the ith input–output pair

(also called the ith sample). Each sample input xi is a d-dimensional vector,

i.e., xi := (x
(1)
i , . . . , x

(d)
i ) ∈ R

d. Assume that there exists f : Rd → R, such

that

yi = f(xi) + εi, (2.1)

where yi ∈ R and εi are independent and identically distributed (iid) ran-

dom variables with E[εi|xi] = 0. For the regularity assumption of f , assume

15
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that f is a continuous function. For ease of notation, we also adopt the

matrix form for D = (X,Y ), where

X =

⎛
⎜⎜⎝

x
(1)
1 , x

(2)
1 , . . . , x

(d)
1

...
...

...

x
(1)
N , x

(2)
N , . . . , x

(d)
N

⎞
⎟⎟⎠ and Y =

⎛
⎜⎝

y1
...

yN

⎞
⎟⎠ , (2.2)

where X is an N × d matrix and Y is an N × 1 vector.

The first question we ask is how to estimate the corresponding output for

any given new input x∗. In the context of the regression problem, a rigorous

mathematical formulation of this question is to estimate E[y|x = x∗], i.e.,
f(x∗) for any given new input data x∗, which is equivalent to estimating f .

Thus f is also called the mean function of the regression problem.

The next important question is how to choose the best estimator for

f among different possible estimators, which boils down to what “best”

means and how to quantify the performance of each estimator.

In the following, we explain how to approach the above two questions

and summarize this as a general framework for regression. Recall that the

goal of the regression problem is to learn the fixed but unknown mean func-

tion f from the labeled dataset D such that Equation (2.1) holds. A natural

step is to postulate the model fθ to describe the unknown mean function

f , where θ are the model parameters that fully characterize the model fθ.

In this way, the problem of finding f is translated into finding the best

parameters θ to fit the data.

To find the best parameters θ, we need to quantify what we mean by

“the best parameters.” Motivated by this, we propose the loss function to

quantify the discrepancy between the model estimated output fθ(x) and

the actual output y. Once choosing the loss function L(θ|D), the optimal

parameter set θ∗ is defined to be the one that minimizes the loss function.

In most cases, there is no closed formula for the optimal parameter set θ∗,
and we need to use the numerical optimization method. No matter how we

obtain the estimator of the optimal parameters θ∗, either by closed formula

or numerical methods, once we have θ∗, we are ready to make prediction.

More specifically, for any new input x∗, the estimator of the conditional

expectation of the output E[y∗|x∗] is given by fθ∗(x∗). Lastly, we need to

quantify the goodness of the fit by specifying the metrics, e.g., mean squared

error (MSE), R-squared (R2). Those metrics may not be the same as the

one used in the loss function.
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Table 2.1. The framework of regression.

Dataset: D = {(xi, yi)}Ni=1
Model: fθ(x) ≈ E[y|x] = f(x), ∀x ∈ R

d

Empirical Loss: L(θ|D) = 1
N

∑N
i=1 d(fθ(xi), yi) →Minimize

Optimization: θ∗ = argminθ(L(θ|D))
Prediction: ŷ∗ = fθ∗ (x∗)
Validation: Compute the indicators for the goodness of fit

Table 2.1 summarizes the entire process that we described above.

Dataset, model, empirical loss, optimization, prediction and validation are

the key elements of supervised learning. We follow this general framework to

introduce several supervised learning algorithms in the following chapters

and summarize each algorithm in the framework box.

In the rest of the chapter, we discuss each component of the framework,

including model, loss function, optimization and prediction/prediction in

details.

2.1.1 Model

In this subsection, we introduce various types of models, ranging from linear

models to non-linear models and explain the main idea behind most non-

linear models—so-called basis expansion. In regression, the proposed model

is a family of parametric functions, say fθ, where θ denotes the parameter

set, which fully characterizes the model. For simplicity, we focus on the

one-dimensional output case.

Let us start with the simplest model—the linear model—where we

assume that fθ: R
d → R is a linear function, i.e., ∀x = (x(1), x(2), . . . , x(d)) ∈

R
d,

fθ(x) = θTx =

d∑
j=1

θ(j)x(j),

where θ = (θ(1), . . . , θ(d)) ∈ R
d is the parameter set. This is the model

adopted by linear regression methods (Chapter 3).

However, linear models might not be rich enough to describe the com-

plex functional relationship between the input and the output. Motivated

by this, there are various types of non-linear models. We list some popular

non-linear models as follows, but the list is not exhaustive.
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� Polynomial model, e.g.,

fθ(x) = xμ+ xΣxT ,

where θ = (μ,Σ), and μ ∈ R
d and Σ ∈ R

d × R
d.

� Spline model, e.g.,

fθ(x) =

M∑
i=1

Ci(x− li)
+,

where θ = (li, Ci)
M
i=1 are model parameters.

� Regression tree model (Chapter 4):

f(x) =

M∑
m=1

cmI(x ∈ Rm),

where {R1, R2, . . . , RM} is a partition of the input space with M disjoint

regions. The tree model allows the partition of the input space by splitting

variables and points, which agrees with the topology that a tree should

have (e.g., Figure 2.1).

� Neural network model (Chapter 5).

Neural network models are based on a collection of connected neurons

(nodes). There are various types, which are illustrated in Figure 2.2. We

elaborate the main types of neural network models in Chapter 5.

Figure 2.1. An example of a tree model.
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Figure 2.2. Examples of the main types of neural network architectures.

2.1.2 Loss function

In statistics, the loss function (also called cost function) is proposed to

quantify the difference between estimated and actual values for output data.

It serves as a utility function for parameter estimation. The loss function is

a measure for parameters. The smaller the value of the loss function, which

indicates that the estimated output is closer to its actual output, the better

the parameter is.

The concept of the loss function represents the price paid for inaccuracy

of predictions in learning problems. One of the most commonly used loss

functions in regression is the quadratic loss function, which is defined as the

squared error between the model estimated output and the actual output

(see Definition 2.1).

Definition 2.1 (Quadratic Loss Function). Let fθ denote the model

fully characterized by parameters θ. The quadratic loss function is defined

to be that ∀(x, y) ∈ E × R,

Qθ(x, y) = (y − fθ(x))
2.

We can evaluate the loss function for each sample. Averaging the loss

function of all samples leads to the empirical risk, which denotes the average

loss on the whole data set.
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Definition 2.2 (Empirical Risk). Let Qθ denote a loss function where

θ is a model parameter set. Then the empirical risk denoted by L is defined

as follows:

L(θ|D) = 1

N

N∑
i=1

Qθ(xi, yi),

where D = (xi, yi)
N
i=1.

In the following we often call the empirical risk the loss function.

2.1.3 Optimization

After specifying the loss function L(θ|D), the next step is to find the opti-

mal parameter set θ∗ to minimize the loss function. In general, unlike for

standard linear regression (Ordinary Least Squares, OLS for short), there

is no closed formula for the optimal parameters θ̂. It is important to design

an effective numerical algorithm to find the optimal parameters. There are

various numerical methods for optimization methods, including

• gradient descent based methods;

• gradient boosting method;

• expectation–maximization method.

In this section, we focus on the gradient descent based methods. The

gradient boosting method is left for discussion in Chapter 4 and the

expectation–maximization method (EM) is covered in Chapter 6.

Gradient descent is a first-order iterative optimization algorithm for

finding the minimum of a function, which can be applied to tackle numerical

optimization. We start with the gradient descent (GD) method and explain

the main idea and intuition behind it. Batch gradient descent (BGD) is an

algorithm for employing GD to estimate the optimal parameters to mini-

mize the loss function. Then we discuss the variants of GD to accommodate

the computational issues caused by large scale datasets by introducing ran-

domness to the GD, i.e., stochastic gradient descent (SGD) and mini-batch

gradient descent (mini-batch GD). Those methods are particularly widely

used for the neural network models discussed in Chapter 5.

2.1.3.1 Gradient descent method

Gradient descent (GD) is a general first-order iterative algorithm to solve

optimization problem numerically, which can find the local optimal θ̂ such
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that θ̂ achieves the local minimum of a given differentiable function f :

R
p → R. The main idea is to find a local minimum of a function using GD

by taking steps that are proportional to the negative of the gradient of the

function at the current point.

Intuitively, imagine that you are lost in the mountains in a dense fog,

and you only feel the slope of the ground below your feet. A reasonable

strategy to get to the bottom of the valley quickly is to go downhill in the

direction of the steepest slope. Mathematically what we aim to do is to

construct a convergent sequence of (θn)
∞
n=0 such that

θ∗ = lim
n→∞ θn, (2.3)

where θ∗ is a local minimum. A sufficient condition for such (θn)
∞
n=0 is that

(a) there exists an integer N0 large enough such that (f(θn))n≥N0 is a

non-increasing sequence w.r.t. n.

(b) when limn→∞ θn = θ∗,

lim
n→∞�f(θn) = 0, (2.4)

where �f(θ) is the derivative of f at θ, i.e., �L(θ) =

(∂θ1L(θ), · · · , ∂θpL(θ)).
(c) the derivative of f is continuous.

When �L(θ) is continuous, then condition (b) implies that

�f(θ∗) = �f( lim
n→∞ θn) = 0, (2.5)

i.e., f(θ∗) is the local minimum of f .

In the GD algorithm, at the (n+1)th iteration, for given θn, we update

the (n+ 1)th estimator θn+1 by

θn+1 = θn − η�L(θn),
where η > 0 is a constant, which is also called the learning rate and will be

discussed in detail below. Next, let us explain why the above update can

fulfill the sufficiency condition.

(a) When η is small enough, by Taylor’s expansion,

L(θn+1)− L(θn) ≈ �L(θn) (θn+1 − θn)︸ ︷︷ ︸
−η�L(θn)

= −η (�L(θn))2 ≤ 0.

It follows that for some integer N0 > 0, (L(θn))n≥N0 is a non-increasing

sequence as the above equation holds when the first order Taylor expan-

sion holds.
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(b) Suppose that {θn} is a convergent series, then

lim
n→∞ θn+1 = lim

n→∞ θn − η lim
n→∞�L(θn)

⇓ ⇓
θ∗ = θ∗ − η lim

n→∞�L(θn).

It follows that limn→∞ �L(θn) = 0.

The GD algorithm is often called the steepest gradient descent. Let us

explain to you the reason behind this name. By Taylor expansion, we have

that

L(θ) ≈ L(θ0) + �L(θ0)(θ − θ0).

In the above Taylor expansion approximation, L(θ) decreases fastest

on the optimal direction, which is equivalent to the minimization of

�L(θ0)(θ − θ0). We can show that the gradient direction ∇L(θ0) is the

optimal direction, given the constraint that the distance between θ0 and θ

is a positive constant η. Mathematically, it is equivalent to show that if θ∗

is the solution to the following constraint optimization problem,

L̂(θ) := �L(θ0)(θ − θ0)→ min, (2.6)

subject to ||θ − θ0||2 = η, (2.7)

then there exists λ∗ ∈ R such that

θ∗ = θ0 − λ∗�L(θ0),
where λ∗ = η

||�L(θ0)||2 .

Proof. This constraint optimization problem can be rewritten as an uncon-

strained problem using the Lagrange multiplier:

L̃(θ, λ) = �L(θ0)(θ − θ0)− λ(||θ − θ0||22 − η2)→ min, (2.8)

where λ ∈ R.

Then the optimal (θ∗, λ∗) satisfies that

�L̃(θ∗, λ∗) = 0.

Thus we have that

�L(θ0)− 2λ∗(θ∗ − θ0) = 0. (2.9)

By rearranging Equation 2.9, we have the formula for θ∗ as follows:

θ∗ = θ0 +
1

2λ∗�L(θ0).

It is noted that as λ∗ is a scalar, the optimal direction θ∗ from θ0 is along

the gradient of �L(θ0).
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Table 2.2. Summary of the gradient descent (GD) method.

Goal: Find the local optimum θ∗ to minimize a continuously differentiable
function L.

Algorithm: Initialize θ0.
For n = 1 : Ne,
θn+1 = θn − η�L(θn),
where Ne is the maximum number of iterations and η is the learning
rate.

Idea: We construct a sequence of {θn}n≥0 such that
• For some N , (L(θn))n≥N is a decreasing sequence, i.e.,

L(θN ) ≥ L(θN+1) ≥ · · · ;
• limn �L(θn) = 0.
This implies that {θn}n≥0 converges to the local minimum θ∗.

The only remaining part is to find the scalar λ∗. Equation 2.7 ensures

that

||θ∗ − θ0||2 =
1

2|λ∗| ||�L(θ0)||2 = η. (2.10)

Thus it implies that 2|λ|∗ = 1
η ||�L(θ0)||2. Then we have that λ∗ =

± 1
2η ||�L(θ0)||2. Thus there are only two possibilities for λ∗, which is either

η
2�L(θ0) or − η

2�L(θ0). It follows that

L̂(θ∗) =

{
η, if λ∗ = 1

2η�L(θ0);
−η, if λ∗ = − 1

2η�L(θ0).
(2.11)

Recall that the goal is to find θ∗ that minimizes L̂(θ). Thus it implies

that λ∗ = − 1
2η�L(θ0) and

λ∗ = − 1

2λ∗ =
η

||�L(θ0)||2 .

The summary of GD is given in Table 2.2.

2.1.3.2 Discussion on learning rate

The learning rate η is an important hyperparameter in the GD algorithm.

A hyperparameter is a model parameter whose value is set before the

learning process begins. By contrast, the parameters of the model can

be trained from data, like θ. Most machine learning algorithms require

hyperparameters.

Figures 2.3a and 2.3b show that there is a trade-off in the scale of the

learning rate: when the learning rate is too small, the convergence of the

parameters (θn)n might be relatively slow; however, if the learning rate is
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(a) Too small η (b) Too large η (c) Stuck in a local minimum

Figure 2.3. Effects of learning rate η.

too large, there may be the possibility that (θn)n is bouncing between two

valleys, which may also take a very long time to converge.

It is important to note that the GD algorithm cannot ensure a global

minimum in a general setting, which makes the initialization of the param-

eters and learning rate important. The GD algorithm may be stuck at some

local minimum, which is depicted in Figure 2.3c. In this case, a sufficiently

large learning rate can help with escaping the local minimum.

2.1.3.3 Batch gradient descent

Batch gradient descent (BGD) is an algorithm for applying GD to min-

imize the empirical loss function; the update rule of BGD requires the

computation of the gradient of the empirical loss function evaluated for all

the examples in the training set. Let us recall the empirical loss function

L(θ|D), which is usually in the additive form,

L(θ|D) = 1

N

N∑
i=1

Qθ(xi, yi).

Thus the gradient of L(θ|D) with respect to θ is simply

�θL(θ|D) = 1

N

N∑
i=1

�θQθ(xi, yi).

A summary of BGD is given in Table 2.3.

Note that the gradient term is computed across all the samples in the

dataset. One cycle through an entire training dataset is called an epoch.

Therefore, it is often said that BGD performs model updates at the end of
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Table 2.3. Summary of BGD.

Goal: Find optimal θ such as to minimize L(θ|D) in the form:

L(θ|D) = 1
N

∑N
i=1 Qθ(xi, yi).

Algorithm: Initialize θ0.
For n = 1 : Ne,
θn+1 = θn − η �L(θn|D)︸ ︷︷ ︸

Gradient term

= θn − η
1

N

N∑
i=1

�θQθn (xi, yi)

︸ ︷︷ ︸
Gradient term

.

Idea: Direct application of GD to empirical loss function.

Table 2.4. Pros and cons of BGD.

Pros

• Stable convergence: BGD may require reduced model update frequency because
it has a more stable error gradient at each iteration.

• The computation of the gradient term can be implemented in a parallel manner.

Cons

• A too stable error gradient may result in convergence of the model to a local
minimum, which is a less optimal set of parameters.

• At the end of the training epoch the updates require the additional complexity
of accumulating prediction errors across all training examples.

• BGD is usually implemented in such a way that the entire training dataset is
stored in memory and available to the algorithm. Thus BGD is memory-greedy
and has very slow model updates for large datasets.

each training epoch. The advantages and disadvantages of BGD are sum-

marized in Table 2.4.1

2.1.3.4 Stochastic gradient descent

Stochastic gradient descent, or SGD for short, is a GD-based algorithm that

calculates the error and updates the model for each example in the training

dataset. The main difference between BGD and SGD is the update rule for

1https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient
-descent-configure-batch-size/.

https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/
https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/
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each iteration: In SGD, for each iteration, the update of the model is based

on the derivative of L(θ|D) w.r.t. θ evaluated at a randomly chosen sample

in the training set—i.e., at each step n ≥ 1, given θn, we update θn+1 by

θn+1 = θn − ηn �θQθn(xin , yin)︸ ︷︷ ︸
Stochastic gradient term

,

where the index in is randomly selected from {1, . . . , N}. The update of the
model has the randomness of choosing the training example, which explains

‘stochastic’ in the name of SGD. SGD is also often called an online machine

learning algorithm. Next let us explain the intuition behind SGD without

worrying about the technical difficulty of proving its validity. Recall the

empirical loss L(θ|D), which satisfies that

L(θ|D) = 1

N

N∑
i=1

Qθ(xi, yi). (2.12)

SGD randomly chooses a sample from the dataset to calculate the

gradient. Suppose that in are iid with uniform distribution, where n ∈
{1, 2, . . . , N}. Then it follows that

Ex,y[�θQθ(xin , yin)] = �L(θ|D), (2.13)

where (xin , yin) is sampled from the empirical distribution of (xi, yi)
N
i=1. Or

alternatively we can sample (in) randomly from {1, . . . , N} without replace-
ment. Equation (2.13) still holds. It implies that although for each iteration

the stochastic gradient term is not �L(θ|D), its expectation coincides with

�L(θ|D). As the number of the maximum iteration Ne tends to infinity, it

is reasonable to expect that the limit of θn by SGD converges to the local

minimum as that of GBD, which shares the spirit of Monte Carlo methods.

However, to make the SGD algorithm work, we need to adjust the learn-

ing rate by choosing a suitable decreasing step-size sequence {ηn}n instead

of the constant learning rate η in BGD. The reason for this is that the

limit of the stochastic gradient term cannot converge to zero if there is a

gradient evaluated for at least one sample that is non-zero. However, to

ensure the convergence of θn, we have to make the sequence of ηn converge

to zero. This explains why in SGD, the learning rate ηn needs to be reduced

gradually. A summary of SGD is given in Table 2.5.
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Table 2.5. Summary of SGD.

Goal: Find optimal θ such as to minimize L(θ|D) in the form:

L(θ|D) = 1
N

∑N
i=1 Qθ(xi, yi).

Algorithm: Initialize θ0.
For n = 1 : Ne,

Randomly choose the index in from {1, · · ·, N},
θn+1 = θn − ηn �θQθn (xin , yin )︸ ︷︷ ︸

Stochastic gradient term

,

for a suitably chosen decreasing step-size sequence {ηn}n.
Idea: Ex,y [�θQθ(xin , yin)] = �L(θ|D),

where (xin , yin ) is sampled from the empirical distribution
of (xi, yi)Ni=1 or randomly sampled without replacement.

Table 2.6. Pros and cons of SGD.

Pros

• The increased model update frequency may result in faster learning on some
problems.

• Noisy gradient updates can avoid the premature convergence of the model to
local minima.

Cons

• Updating the model so frequently is more computationally expensive than other
configurations of gradient descent. SGD may take significantly longer to train
models on large datasets.

• The frequent updates can result in a noisy gradient signal, which may cause the
model parameter updates have a higher variance over training epochs and in
turn make the model error more oscillatory.

• The unstable estimate of the error gradient can also make it difficult for the
algorithm to settle on an error minimum for the model.

Let us summarize the benefits and downsides of SGD in Table 2.6.2

To sum up, SGD is very quick to evaluate each iteration. Randomness

helps to escape a local minimum, but it makes the settling of the minimum

difficult.

2https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient
-descent-configure-batch-size/.

https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/
https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/
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2.1.3.5 Mini-batch gradient descent

Mini-batch gradient descent (mini-batch GD) is another variant of the gra-

dient descent algorithm, which splits the training dataset into small batches

that are used to calculate model error and update model coefficients. Mini-

batch GD can be viewed as a combination of BGD and SGD.

At one iteration, instead of going over all examples, mini-batch GD

updates the gradients based on a subset of samples (called mini-batches)

for the given batch size b. When b = 1, mini-batch GD is SGD; when b = N ,

mini-batch GD is BGD. In mini-batch GD, the typical method of creating

mini-batches includes two steps:

(1) Shuffle the dataset to avoid the existing order of samples.

(2) Split the entire training data set into several non-overlapping mini-

batches of batch size b; if the sample size is not divisible by the batch

size, the remaining samples will be their own batch.

Then we apply batch gradient descent for each mini-batch until all

the samples have been processed (this is called one epoch); we repeat

this procedure until the number of epochs reaches the maximum epoch

number Ne.

Implementations may take average of the gradient, which further

reduces the variance of the gradient. Mini-batch gradient descent aims

to strike a balance between the robustness of stochastic gradient descent

and the efficiency of batch gradient descent. In the field of deep learning

(Chapter 5), mini-batch GD is the most common optimization method used

to estimate the optimal model parameters.

A summary of mini-batch GD is given in Table 2.7.

Table 2.7. Summary of mini-batch GD.

Goal: Find optimal θ such as to minimize L(θ|D) in the form:

L(θ|D) = 1
N

∑N
i=1 Qθ(xi, yi).

Algorithm: Initialize θ0.
For n = 1 : Ne,

Randomly partition the dataset D into Nb = N
b

mini-batches

of size b, denoted by (Bi)
Nb
i=1.

For j = 1 : Nb,

θn+1 = θn − ηn
1

b

∑

(x,y)∈Bj

�θQθn (x, y)

︸ ︷︷ ︸
Stochastic gradient term

,

where {ηn}n is a suitably chosen decreasing sequence.
Idea: Combining SGD and BGD.
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Table 2.8. Pros and cons of mini-batch GD.

Pros

• The model update frequency is higher than batch gradient descent, which allows
for a more robust convergence and avoids local minima.

• The mini-batch updates provide a computationally more efficient process than
SGD.

• The mini-batch algorithm allows a balance of both the efficiency of not having
all training data in memory and algorithm implementations.

Cons

• Mini-batch requires an additional “mini-batch size” hyperparameter for the
learning algorithm. It may increase the computation cost as this hyper-parameter
needs to be tuned in practice.

• Error information must be accumulated across mini-batches of training examples,
as for batch gradient descent.

The advantages and disadvantages of mini-batch GD are listed in

Table 2.8.3

2.1.3.6 Comparison of three types of gradient descent

In the previous subsections, we have discussed three gradient descent meth-

ods, i.e.,

• Batch GD;

• Stochastic GD;

• Mini-batch GD.

They vary in terms of the number of training samples used to calculate

empirical loss and to update the model. A summary of the comparison

between the above three methods is provided in Table 2.9. We can see that

there is a trade-off between the computational efficiency of gradient descent

configurations and the accuracy of gradient updates. Figure 2.4 depicts the

typical trajectory of parameter sequence for these three methods. More

optimization methods can be found at the following website.4

3https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient
-descent-configure-batch-size/.
4http://ruder.io/optimizing-gradient-descent/.

https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/
https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/
http://ruder.io/optimizing-gradient-descent/
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Table 2.9. Comparison of various GD based methods.

BGD SGD Mini-batch GD

Update frequency Low High Medium
Update complexity High Low Medium

Fidelity of error gradient High Low Medium
Stuck in local minimum Easy Difficult Difficult

Easy to converge Yes No No
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–3 –3 –3
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–2 –2 –2

–1 –1 –1

–1 –1 –1

0 0 0

0 0 0
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Stochastic Gradient DescentMini-Batch Gradient DescentBatch Gradient Descent

Figure 2.4. Convergence of parameters (θn)n for BGD, mini-batch GD and SGD.

2.1.4 Prediction and validation

There are various ways of judging goodness of fit, which can be mainly

divided into two types:

• statistics-based approach;

• machine learning-based approach.

2.1.4.1 Statistics-based approach

For statistics based validation, we usually need to make extra probabilistic

assumptions of the residuals. Hypothesis testing is a hypothesis that is

testable on the basis of observing a process that is modeled via a set of

random variables—e.g., p-value, R2, R2
adj.

• p-value: Under the null hypothesis, the probability that the statistical

summary is equal to or more extreme than the observed one. A smaller

p-value indicates rejecting the null hypothesis. However, it does not

measure the probability of making mistakes by rejecting a true null

hypothesis (a Type I error).
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• R2: The proportion of the variance in the output variable that is pre-

dictable from input variables, also called the coefficient of determina-

tion.

R2 = 1−
∑N

i=1(yi − xT
i β̂)

2∑N
i=1(yi − ȳ)2

, (2.14)

where β̂ is the optimal parameter in the linear model.

• Adjusted R2: A similar concept to R2 that takes the numbers of

model parameters (input dimension) into account. It is defined in the

following form, which penalizes larger input dimensions:

R2
adj = 1− (1 −R2)

N − 1

N − d− 1
, (2.15)

where β̂ is the optimal parameter in the linear model and d is the input

dimension.

2.1.4.2 Machine learning-based approach

Machine learning-based validation focuses mainly on predictive power on an

unseen new dataset, which is the generalization ability of the fitting model.

To achieve this, one usually divides the dataset into a training dataset and

a testing dataset. The model is calibrated using the training dataset, and

the goodness of fit is computed for both the training set and testing set.

Perfect fitting on the training set is usually not a good thing because

typically, the training set contains some random noise; this noise should be

filtered out to give good generalization. For example, if you choose an over-

complicated model which includes too many parameters, the model might

have a perfect performance on the training set, as it mistakenly regards the

noise as part of the signal of the model. This model may then not perform

well on the testing set as there will be new, different noise, leading to little

predictive power. This kind of problem is called the overfitting issue as

the model overfits the training data. This is a very common but important

problem in the training process.

On the other hand, if you choose a simple model, it may be not rich

enough to describe the complex relationship between inputs and outputs.

This is called the underfitting issue. An illustration of fitting issues in the

training process is shown in Figure 2.5.

Commonly used indicators for goodness of fit include the mean squared

error (MSE), R2 and R2
adj.
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Figure 2.5. Potential fitting issues in the training process.

2.1.4.3 Cross-validation and parameter tuning

As we discussed earlier, the ultimate goal of supervised learning is to train

a model using labeled data, which can be generalized to an unseen dataset.

Thus the evaluation of the predictive power of a model is crucial. This is

typically assessed by cross-validation in practice.

The main idea of model assessment is to further split the training data

into two parts, i.e., a subset of training data for training the model and a

validation set to assess the predictive power of the trained model (without

touching the test data). We choose the model that achieves the best perfor-

mance measure in the validation set as the final model and use this model

to predict in the testing set. However, this may drastically reduce the size

of the training set. A solution to this problem, called k-fold cross-validation

(Figure 2.6), is to split the training set into k subsets (“folds”) and conduct

the following procedures:

(1) Train a model using (k − 1) folds of the training data.

(2) Use the remaining fold for the validation to compute the performance

measurement (e.g., MSE) of this model.

For one model with a given set of hyperparameters, we conduct k-fold

cross-validation, and the average performance measure of the k folds can

be used as a scalar score to measure its performance. This can be combined

with grid search to select optimal hyperparameters. As its name suggests,

grid search is an exhaustive search method of choosing the best hyper-

parameters. It requires pre-specifying possible values of a hyperparameter

(grid) and choosing the best one based on the corresponding cross-validation

scores. Lastly, once the optimal hyperparameters are chosen, we refine
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Figure 2.6. 4-fold cross-validation and parameter tuning.

the model using the whole training set and make the prediction in the

testing set.5

Note that cross-validation and grid search are standard methods for the

performance measurement and parameter tuning of both regressors and

classifiers. Thus in the next section on validation of classification, we skip

the discussion on cross-validation and grid search.

2.2 From Regression to Classification

2.2.1 Categorical output

The setup for classification is very similar to that of regression problems.

Given a set of input–output pairs D = {(xi, yi)}Ni=1, we aim to infer the

functional relationship between an input x and an output y. But classi-

fication differs from regression mainly because the output variable of the

classification is categorical. In other words, there are only finite many possi-

ble values of yi, denoted by Y. W.l.o.g., Y = {1, · · ·, no}, where no denotes

the number of possible categories. According to the different numbers of

possible categories, classification can be divided into binary classification

(no = 2) and multi-class classification (no > 2).

Categorical variables represent a qualitative method of scoring data

(i.e., they represent categories or group membership). For example, the

5Interested readers may refer to https://scikit-learn.org/stable/modules/
cross validation.html for more details of cross-validation and its implementation in
the Scikit-Learn package.

https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html


March 15, 2021 14:50 An Introduction to Machine Learning. . . 9in x 6in b4055-ch02 FA22 page 34

34 An Introduction to Machine Learning in Quantitative Finance

Table 2.10. Different encoding methods for the blood type example.

Blood type A B AB O

Integer encoding 1 2 3 4
One-hot vector encoding 0001 0010 0100 1000

blood type of a person may be A, B, AB or O, which is a categorical vari-

able. There are several ways to represent categorical variables numerically,

including

• integer encoding (the ith class is represented using an integer i);

• one-hot vector encoding (the ith class is represented using a binary

vector of length no, which has the unique non-zero element at the ith

position).

Let us revisit the example of blood type. The numerical represen-

tation of blood types using two above encoding methods are given in

Table 2.10.

2.2.2 Model

The objective of classification is to predict the corresponding output for

any given new input x∗, just like the regression problem. However, due to

the categorical nature of the output, this question has a slightly different

mathematical formulation from that of regression problems. In the clas-

sification problem, instead of predicting the output y directly, we aim to

estimate the probability of the output being y conditional on an input x,

which is described by a model fθ : E → R
no . Intuitively, we have that

〈fθ(x), ȳ〉 ≈ P[y|x],
where ȳ is one-hot encoding of the class y, and 〈., .〉 is the inner product of

two vectors of length no.

Let us first understand why we do not aim to predict the conditional

expectation of the output as we do in regression. This is because the condi-

tional expectation of a categorical output does not make sense. For exam-

ple, if the conditional distribution of the output label is known as a discrete

random variable with probability (0.4, 0.2, 0.4), the conditional mean of the

output depends on the numeric representation of the output category. More

importantly, in classification, one can’t infer the best estimator for the out-

put category given the input based on only this conditional mean of output.

Therefore we usually estimate the conditional probability of each class label.
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2.2.3 Loss function and optimization

In contrast to the quadratic loss function in regression, the cross entropy loss

function is commonly used in classification as it provides a way to quantify

the difference between the empirical conditional distribution of output y

given the input x and the model estimated conditional distribution fθ(x).

For discrete probability distributions p and q with the same support Y, the
cross entropy is defined to be

H(p, q) := −
∑
j∈Y

p(j) log(q(j)).

For a given distribution p, H is a function of q, and it attains its smallest

value when q = p. Intuitively, smaller cross entropy H(p, q) means that two

distributions are similar. In other words, when minimizing the cross entropy

H , the optimal distribution of q is the same as that of p.

Definition 2.3 (Cross Entropy Loss Function). The cross entropy

loss function Qθ : E × Y → R is defined to be

Qθ(x, y) = −〈y, log fθ(x)〉,
where x ∈ E, y is one-hot encoding in Y, θ are model parameters of fθ,

and 〈., .〉 is the inner product.

The corresponding empirical cross entropy loss function is given as the

average of the above cross entropy loss function evaluated at all samples:

L(θ|D) = − 1

N

N∑
i=1

〈yi, log fθ(xi)〉.

Another way to interpret the cross entropy is through maximum likeli-

hood estimation (MLE). The cross entropy loss function can be regarded

as the negative log-likelihood function of θ, given the observation of the

input–output pairs. Assuming all the samples are mutually independent,

the likelihood function is given as the product of the conditional probabil-

ity of the output, i.e.,

N∏
i=1

〈fθ(xi), ȳi〉 → max,

which is equivalent to minimizing the negative log-likelihood ratio, i.e.,

−
N∑
i=1

(〈log fθ(xi), ȳi〉)→ min.
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That is exactly the cross entropy loss function, denoted by L(θ|D) (see
Definition 2.3). Thus it is noted that the optimal parameters from min-

imizing the cross entropy are the same as those obtained by maximizing

the likelihood. The cross entropy empirical loss has an additive form, which

allows parallel computation benefit for each sample.

In the next stage of the optimization to find the optimal parameter θ∗

to minimize L(θ|D), we usually make the further assumption that fθ is dif-

ferentiable w.r.t. θ. The numerical optimization methods we have discussed

in Section 2.1.3 can be exploited here as well.

2.2.4 Prediction and validation

Once we obtain the optimal parameters θ∗, the prediction is straightfor-

ward. For any new input data x∗, use the output label with the highest

estimated conditional probability as the estimator for the output,

ŷ∗ = argmax
i∈Y

f
(i)
θ∗ (x∗),

where f
(i)
θ∗ (x∗) is the ith coordinate of fθ∗(x∗).

At the final stage, we need to specify the metric of the goodness of fit.

There are various performance measures, e.g., the accuracy, the confusion

matrix, etc.

2.2.4.1 Accuracy

In classification, the dimension of the model output fθ∗(x) is no, which

represents the estimated conditional probability of each output. Let Ŷprob

denote the matrix of size (N,no),

Ŷprob = (fθ∗(xi))i∈{1,2,...,N}. (2.16)

For multi-class classification, the accuracy is one of the most popular

measures and is defined as follows:

N∑
i=1

1(ŷi = yi)

N
,

where i ∈ {1, 2, · · · , N}, and yi and ŷi denote the actual output and the

estimated output of the ith sample, respectively.
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2.2.4.2 Confusion matrix

Another way to measure the performance of a classifier is the confusion

matrix. The column represents the estimated label for the classification

problem and the row represents the true label. Let M := (Mi,j)i,j∈Y denote

the confusion matrix, where Mi,j denotes the number of samples with true

label i and estimated label j. The better the prediction, the more diagonally

dominant the confusion matrix M is.

The normalized confusion matrix is defined from the confusion matrix

and denoted by M̂ = (M̂i,j)i,j∈Y , where M̂i,j is defined as follows:

M̂i,j =
Mi,j∑
j∈Y Mi,j

.

M̂i,j represents the empirical conditional probability of the sample being

identified as j when it in fact belongs to class i. The better the prediction,

the closer M̂ is to the identity matrix.

2.2.4.3 Other metrics for binary classification

You may wonder why we need other metrics than accuracy to assess clas-

sification performance. When the data are extremely imbalanced, the triv-

ial classifier (estimating all samples as the majority class) gives very high

accuracy, which implies that accuracy is not an informative performance

measure in this case. Next, we introduce some other commonly used met-

rics for the binary classification case: precision, recall, PR curve and ROC

curve.

As shown in Figure 2.7, the confusion matrix of a binary classifier M =

(Mj1,j2)j1,j2∈{1,2} is a 2× 2 matrix, where

• True Positive (TP, M2,2): the number of samples that have actual label

class 2 and predicted label class 2.

• False Positive (FP, M1,2): the number of samples that have actual label

class 1 and predicted label class 2.

Figure 2.7. Confusion matrix of a binary classifier.
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• True Negative (TN, M1,1): the number of samples that have actual

label class 1 and predicted label class 1.

• False Negative (FN, M2,1): the number of samples that have actual

label class 2 and predicted label class 1.

The precision of a binary classifier is defined as the percentage of true

positive samples among all the samples with a predicted label of “positive”:

precision =
TP

TP + FP
.

The recall, also called the sensitivity or true positive ratio (TPR), is

defined as the percentage of true positive samples among all the samples

with an actual label of “positive”:

recall =
TP

TP + FN
.

From the above definition, we can see that one trivial way to get a high

recall is to predict all the samples being “positive,” which gives perfect recall

of 100%. Thus the recall is typically used accompanied by the precision. A

higher recall suggests a larger TP, which indicates a better performance of

the classifier. But increasing the recall reduces the precision and vice versa.

This is called the precision and recall trade-off.

Next, let us introduce the precision–recall curve (PR curve) based on the

above concepts of precision and recall. For a classifier, fθ∗ gives an estimated

probability (also called a score) to each possible output class. Instead of

choosing the class label that gives the maximum score, alternatively for

each given threshold value t, we assign the estimator for the output using

the following equation:

ŷ =

{
1, if fθ∗(x) > t;

2, if fθ∗(x) ≤ t.
(2.17)

Varying the threshold t, the corresponding precision and recall can be

computed, and thus the PR curve is obtained.

The receiver operating characteristic curve (ROC curve) is another

important metric of a binary classifier. Similar to the PR curve, varying

the threshold t, the ROC curve is the curve of TP against FP. AUC stands

for “area under the ROC curve.” It measures the entire two-dimensional

area enclosed by the ROC curve, a line from (0, 0) to (1, 0) and a line from

(1, 0) to (1, 1).
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2.2.4.4 Numerical example

In the following, we use the binary classification of identifying whether a

digit image is a number 8 as a concrete example to show how to compute

all the metrics we have discussed and implemented it using Scikit-Learn.

We use the MNIST dataset composed of digit images of the numbers

0–9.6 The input data is a gray-valued image, and the output is the digit

in the input image. Now we want to identify whether an input image is

a digit 8 and construct a binary classifier where class 1 represents “non-

8 digit” while class 2 represents “8 digit.” The training dataset contains

60,000 handwritten digit images, including 54,149 non-8 digit samples and

5851 8 digit samples. It is easy to see that there are many more negative

class cases than those of the positive class. Thus this is a class imbalance

problem. Figure 2.8(left) shows the estimated output (score) of the first 15

samples, and each row has the sum 1. The second column represents the

estimated probability of the class label being 2. The estimated class label

is the label with the maximum probability, and Figure 2.8(right) provides

the estimated output label.
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Figure 2.8. The estimated output of the first 15 samples.

6http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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Code:

1 from sklearn.metrics import confusion_matrix

2 # Y_test is a binary vector of the actual class label with dim (N, 1) where

N is the number of samples;↪→
3 # y_test_est is a binary vector of the estimated class label with dim (N,

1).↪→
4

5 cm = confusion_matrix(Y_test, y_test_est)

6 print('confusion matrix is {}'.format(cm))

Screen Output:

confusion matrix is (
8810, 216

319, 655

)
.

Figure 2.9. Python code for computing the confusion matrix and the corresponding
result.

We first compute the confusion matrix on the test set using

confusion matrix() in the Scikit-Learn package as shown in Figure 2.9.

Based on the confusion matrix, we can compute the corresponding accu-

racy via

accuracy =
TP + TN

TP + FN + TN+ FP
=

8810 + 655

10000
= 0.9465.

You may also use accuracy score() in sklearn.metrics to compute the

accuracy of Ŷ :

1 from sklearn.metrics import accuracy_score

2 acc = accuracy_score(Y_test, y_test_est)

The accuracy is about 94.65%, which seems very good. But if one com-

putes the precision and recall, the prediction is not that great.

precision =
TP

TP + FP
=

655

216 + 655
= 0.7520

recall =
TP

TP + FN
=

655

319 + 655
= 0.6725.

Similar to the accuracy case, you may use the following Python function

to compute the precision and recall:
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Code:

1 from sklearn.metrics import precision_recall_curve

2 precisions, recalls, thresholds = precision_recall_curve(Y_test,

y_test_prob_est[:,1])↪→
3 plt.plot(precisions, recalls, 'b')

4 plt.xlabel('precision', fontsize=14)

5 plt.ylabel('recall', fontsize=14)

6 plt.title('PR Curve')

7 plt.axis([0, 1, 0, 1])

Screen Output:

Figure 2.10. The code for the PR curve plot and the screen output.

1 from sklearn.metrics import precision_score, recall_score

2 precision = precision_score(Y_test, Y_test_est)

3 recall = recall_score(Y_test, y_test_est)

Figures 2.10 and 2.11 provide the code for computing the PR curve and

ROC curve obtained by a binary classification task using the Scikit-Learn

Python package. In this example, the AUC score is 0.9423, which is the

area of the blue shaded region enclosed under the ROC curve.

Remark 2.1. When the positive class has much fewer samples than the

negative class and the false positives are more important, one should choose

the PR curve. For example, looking at the previous ROC curve and the AUC

score, you may think that the classifier is really good. But this is mostly

because there are few positives compared to the negatives.
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Code:

1 from sklearn.metrics import roc_curve, roc_auc_score

2 fps, tps, thresholds = roc_curve(Y_test, y_test_prob_est[:,1])

3 roc_auc_score_train = roc_auc_score(Y_test, y_test_prob_est[:,1])

4 import matplotlib.pyplot as plt

5 plt.plot(fps, tps, 'b')

6 plt.xlabel('false positive rate', fontsize=14)

7 plt.ylabel('true positive rate', fontsize=14)

8 plt.title('ROC Curve')

9 plt.axis([0, 1, 0, 1])

10 plt.fill_between(fps, 0, tps, facecolor='lightblue', alpha=0.5)

11 plt.text( 0.5, 0.8, 'roc auc score = '+str(round(roc_auc_score_train, 4)),

fontsize=14)↪→
12 plt.annotate("",

13 xy=(0.3, 0.7), xycoords='data',

14 xytext=(0.5, 0.8), textcoords='data',

15 arrowprops=dict(arrowstyle="->",

16 connectionstyle="arc3"),)

Screen Output:

Figure 2.11. The ROC curve.

In conclusion, Table 2.11 provides a summary of the general framework

of classification.

2.3 Model Ensemble

As the saying goes, two heads are better than one. There exists a simi-

lar principle in machine learning. One may wonder whether aggregating
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Table 2.11. The framework of classification.

Dataset: D = {(xi, yi)}Ni=1.
Model: fθ(x, y) ≈ P (y|x), ∀x ∈ R

d, y ∈ Y .

Empirical Loss: L(θ|D) = − 1
N

N∑
i=1

log(fθ(xi, yi)) → min.

Optimization: θ∗ = argmin
θ

(L(θ|D)).

Prediction: ŷ∗ = argmax
y∈Y

fθ∗(x∗, y).

Validation: Accuracy, confusion matrix, etc.

different predictors can have better prediction performance than could

be obtained from any of the constituent learning algorithms alone. The

answer is yes for most cases. Ensemble learning is devoted to addressing this

question.

2.3.1 Intuition of ensemble

An ensemble is nothing other than a collection of predictors that are

combined together (e.g., the majority of all predictions) to give a final

prediction. The reason that we use the ensemble method is that one can

incorporate many predictors of the same output variable to improve the

prediction performance over that of any single predictor.

We use the following simple numerical example to illustrate the idea

behind ensemble methods. Assume that there is a binary classification prob-

lem with all sample labels being 2. Now say we only have a classifier with 55%

accuracy; thismeans that it predicts correct class labels with probability 0.55.

We simulate this classifier in Listing 2.1. Obviously, it is a weak learner as it

only performs a little bit better than random guessing. So what should we do

to improve the performance without the help of new learners? The ensemble

method can help us out. We can simply combine multiple (e.g., 1000) identi-

cal weak learners and usemajority voting to decide the estimated class for the

1000 learners. If most learners return 2, then the estimated class of the ensem-

blemodel is correct.We simulate 10,000 samples, and the accuracyof oneweak

learner is 55%, which is close to the setting of the problem. We assume that

the weak learners are mutually independent. You will find that an ensemble

model with 1000 weak learners should achieve nearly 100% accuracy, which is

an amazing result.The accuracy of ensemblemodelswith different numbers of

learners is depicted in Figure 2.12. The accuracy gradually increases with an

increasing number of learners.



March 15, 2021 14:50 An Introduction to Machine Learning. . . 9in x 6in b4055-ch02 FA22 page 44

44 An Introduction to Machine Learning in Quantitative Finance

1 # importing mean()

2 from statistics import mean

3 def weak_learner():

4 n = np.random.randint(0, 100)

5 return 1 if n >= 45 else 0

6

7 # Majority voting method

8 def majority_voting(results:list):

9 return 1 if results.count(1) > results.count(0) else 0

10

11 # Define ensemble model with 1000 weak learners

12 def ensemble_model(learner, num_learners = 1000):

13 all_results = [learner() for i in range(num_learners)]

14 return majority_voting(all_results)

15

16 # Simulate 10,000 samples to approximate the accuracy

17 num_samples = 10000

18 all_weak_learner_results = []

19 all_ensemble_model_results = []

20 for i in range(num_samples):

21 weak_learner_result = weak_learner()

22 ensemble_model_result = ensemble_model(weak_learner)

23 all_weak_learner_results.append(weak_learner_result)

24 all_ensemble_model_results.append(ensemble_model_result)

25

26 print('The weak learner only achieves accuracy

of',mean(all_weak_learner_results))↪→
27 print('The ensemble model achieves accuracy as high as',

mean(all_ensemble_model_results))↪→

Listing 2.1. Python code for a numerical example of ensemble methods.

As we can see from the above example, the ensemble method turns

the weak learner into a strong learner, and the accuracy improves sharply.

In practice, we have to face more complicated problems, e.g., multi-

classification and regression problems. Though the ensemble method may

not perform as amazingly as in the above example, it is the most popular

method for model selection.

2.3.2 Homogeneous weak learners ensemble

In the following, we divide model ensemble methods into two types based

on types of weak learners:

• Homogeneous weak learners (the base models have the same type):

– Bagging/Pasting

– Boosting
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Figure 2.12. The accuracy of ensemble models with different numbers of learners.

Figure 2.13. Homogeneous weak learners ensemble methods.

• Heterogeneous weak learners (the base models may have different types):

– Stacking

As we can see in Figure 2.13, ensemble techniques of homogeneous weak

learners are further classified into the following main types:

(1) To use the same training algorithm for predictors, but each time a

subset of samples are randomly selected for training. In this case, we

typically combine predictors using some model averaging techniques,

e.g., weighted average, majority vote or normal average.
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(2) To combine the predictors into the final predictor in a sequential man-

ner, which is called boosting.

The first type of ensemble method usually involves aggregating many

uncorrelated learners, which reduces error by reducing variance. Under this

category, Bagging (short for bootstrap aggregating) [Breiman (1996)] and

Pasting [Breiman (1999)] are the two major sub-classes. For Bagging, each

observation is chosen with replacement to be used as input for each of the

model. In contrast, for Pasting, each time a subset of data is randomly

selected without replacement.

In the following, we focus on out-of-folds (OOF), which is another model

ensemble method that falls into this category. OOF refers to a step in the

learning process when using k-fold cross-validation in which the predictions

from each set of folds are grouped into predictions of the training set. These

predictions are now “out-of-folds,” and thus the error can be calculated

on these to get a good measure of how good your model is. As shown

in Figure 2.14, the procedure is composed of the following steps, and the

algorithm is outlined in Algorithm 1.

(1) Split the dataset into the training and testing set.

(2) Use stratified k-fold cross-validation in the training set and thus obtain

k estimated models.

(3) Evaluate each estimated model on the testing set and therefore have k

estimators of the testing data.

Figure 2.14. Illustration of OOF prediction procedure.
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Algorithm 1: OOF Prediction Algorithm

1: Input: D = (Xtrain, Ytrain), Xtest, K

2: Split the training set into K folds, denoted as D1,D, . . . ,DK ;

3: Set Ŷtest = 0;

4: for i = 1 : K do

5: Train the model in D/Di and obtain a model Ti;

6: Calculate the predictor of the testing data using model Ti, denoted

by Ŷ (i);

7:

Ŷtest = Ŷtest + Ŷ (i).

8: end for

9: The final estimator of Ŷtest is given as follows:

Ŷtest =
Ŷtest

K
.

10: Output: Ŷtest.

(4) Average the k estimators of the testing data to get the final estimator

of the testing data.

For the second type of ensemble method, the core idea of boosting is to

update subsequent predictors based on the error of the previous predictors.

Because new predictors are updated from learning mistakes by previous

predictors, it takes fewer iterations to get close to ground-truth predictions.

But the stopping criterion is essential in this case. If it is not appropriately

chosen, it could easily lead to overfitting on training data.

Gradient boosting is an example of a boosting algorithm.7 We devote

the rest of this subsection to explain the gradient boosting method. It is a

variant of the gradient descent algorithm that provides a way to combine

weaker learners to get better estimation for the gradients and construct a

final learner in order to provide better prediction.

Recall that the objective is to minimize the loss function L(θ|(X,Y )).

In gradient boosting, the weak learner (hm) is used as a base model, and

then a sequence of predictors (fm)Mm=1 is constructed, where the updating

7https://medium.com/mlreview/gradient-boosting-from-scratch-1e317ae4587d.

https://medium.com/mlreview/gradient-boosting-from-scratch-1e317ae4587d
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rule of fm is given as follows:

fm = fm−1 + γmhm, (2.18)

where hm ∈ H, which is the set of base models, and γm ∈ R is a constant. In

this case, fm is an additive model: when m is increased by 1, the parameter

of the model hm is added to the parameters of fm.

Compare the weight update rule of the gradient descent algorithm and

Equation (2.18): hm should serves as the gradient term ∇L(θ|(X,Y )) :=

∇L(Y, fM (X)), where θ is the set of all parameters of fM . However, at the

mth iteration, we cannot evaluate∇L(θ|(X,Y )) as (hj)
M
j=m are unknown. It

is natural to use ∇L(Y, fm−1(X)) to approximate the actual gradient. But

∇L(Y, fm−1(X)) may be noisy and it may not belong to any base model.

Therefore this suggests using the base model hm to fit the derivative terms

∇L(Y, fm−1(X)). Thus the update rule of the gradient boosting algorithm

is proposed: at each mth iteration we update fm using

fm(x) = fm−1(x) − γm∇fm−1L(y, fm−1(x)). (2.19)

γm can be chosen by solving the following one dimensional optimization

problem:

γm = argmin
γ

L(y − fm−1(x)− γ∇fm−1L(y, fm−1(x)).

Then the gradient boosting algorithm is given in Algorithm 2.

Let us consider the regression problem, which aims to minimize the

quadratic loss function L(θ|(X,Y )). Then the derivative term can be sim-

plified to residuals as follows:

∇fL(y, f(x)) = 2(y − f(x)).

In this case, hm can be viewed as correcting the error terms by learning

the residuals of the previous estimator fm−1.

2.3.3 Heterogeneous weak learners ensemble

Stacking is a heterogeneous ensemble method to build a meta-model using

predictors from various models. The main idea is to use the predictors of

each model as new inputs and learn the relationship between the model

predictors and the output.

As shown in Figure 2.15, the procedure of this type of model stack is

outlined as follows:

(1) Split the dataset into the training and testing set.
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Algorithm 2: Gradient Boosting Algorithm

1: Input: (xi, yi)
N
i=1.

2: Initialize f0 by a constant γ0 via the following equation:

γ0 = argmin
γ

L(y, γ);

3: for m = 1 : M do

4: for i = 1 : N do

5: Compute the residuals

rim =

[
∂L(yi, f(xi))

∂f(xi)

]
f=fm−1

.

6: end for

7: Fit a base model learner hm to the target rim, using the data

(xi, rim)ni=1.

8: Solve the one dimensional optimization problem

γm = argmin
γ

n∑
i=1

L(yi, fm−1(xi) + γhm(xi)).

9: Update fm using the following formula:

fm(x) = fm−1(x) + rmhm(x).

10: end for

11: Output: fM .
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Figure 2.15. Illustration of stacking.
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Table 2.12. Summary of three model ensemble methods.

• Bagging, often built on top of homogeneous weak learners by randomly select-
ing the subset for the training set with replacement and combining them by a
deterministic averaging/voting process.

• Boosting, often built on top of homogeneous weak learners, which is constructed
in a sequential and adaptive way (a base model depends on the previous ones)
and combining them by a deterministic averaging/voting process.

• Stacking, often built on top of heterogeneous weak learners, which is constructed
in parallel and combines them by training a meta-model to output a prediction
based on the different weak learners.

(2) Use stratified k-fold cross-validation on the training set. Each sample

in the training set appears only once in the validation set of the k-fold

cross-validation. We add the predicted output as a new feature.

(3) Repeat above step for n models.

(4) Learn a new meta-model using the new features (and optionally the

original input) as the input and output on the training set.

(5) Make a prediction using the meta-model on the testing data.

In conclusion, Table 2.12 gives a summary of the three main types of

model ensemble method we have discussed.

2.4 Exercises

(1) What is the supervised learning problem?

(2) Is the forecasting of the future price of some stock a regression problem?

(3) What is the commonly used loss function in the regression problem?

(4) What is the cross entropy?

(5) What is a categorical variable?

(6) What is the difference between the regression problem and the classifi-

cation problem?




