
.

KANERVA’S SPARSE DISTRIBUTED MEMORY:

TO THE COKNECTION hlACHTNE
-4N ASSOCIATIVE MEhlORY ALGORITHM WELL-SUITED

David Rogers

November, I988

Research Institux for Advanced Computer Science
N.4SA Aries Research Center

RIACS Technical Report 88.32

NASA Cooperative Agreement &umber NCC 2-397

(N A S A-CE-18 54 1 7)
DISTRIBUTED HEHOBY: A N ASSOCIATIVE NEHCHP
ALGORITHH WELL-SUITED TO THE CONNECTXCP
H A C H I N E [Research I n s t . for Advanced U n c l a s
Computer S c i e n c e) 21 p C S C L 0 9 8 6 3 / 6 0 0217890

R A N E t i V A * S S PARS E N 8 9-264 02

Research Institute for Advanced Computer Science

KANERVA’S SPARSE DISTRIBUTED MEMORY:

TO THE CONNECTION MACHINE
AN ASSOCIATIVE MEMORY ALGORITHM WELL-SUITED

David Rogers

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 88.32
26November 1988 .

The advent of the Connection Mnchinc p f d y dunged the world of supcrcomputerx. Its highly
nontraditional amhitecture makes possible the urplontion d algorithms that were impndicol for
.tandud Van Neumnnn architecauer Knnerva’s sparse distriiuted memory (SDh4) is an uvnple
of such an algorithm.

Sparse distriiuted memory is a puticulaxiy simple and elegant formulation fop an psdociative me-
ry. In this paper I descnic the foundations for sparse dislnbutsd memory. and give lome simple
examples of using the memory. I continue by rhowing the relationship of sparse distriiutcd memo-
ry to three hpo- computational systems: rimdamscwr memory, neural nuworks, and the
cerebellum of the bnin. Finally. I discuss the implcmentaticm of the algorithm for s p dis&iiuted
memory an the Connedion Machine.

Keywordx Connection Machine, neurPl networks, cerebellum, assaciative memory

Work reported herein was supported in part by Cooperative Agreements NCC 2408 and NCC 2-387 from the
National Aeronautics and Space Administration (NASA) to the Universities Space Research Association
(USRA). Funding related to the Connection Machine was jointly provided by NASA and the Defense
Advanced Research Projects Agency (DARPA).

KANERVA’S SPARSE DISTRIBUTED MEMORY AN

CONNECTION MACHINE
ASSOCIATIVE MEMORY ALGORITHM WELL-SUITED TO THE

DAVID ROGERS
Research Institute for Advanced Computer Science

NASA Ames Research Center, Mail Stop 230-5
Moffett Field. California 94035, USA

ABSTRACT

Ihe advent of the Connection Machine profoundly changes the world of supercompters. Its highly
nontraditional architecture makes possible the exploration of algorithms that were impractical for
standard Von Neumann architectures. Kanewa’s sparse distributed memory (SDM) is an example
of such an algorithm.

Sparse distributed memory is a palticularly simple and elegant formulation for an associative memo-
ry. In this paper I describe the foundations for sparse distributed memory, and give some simple
examples of using the memory. I continue by showing the relationship of sparse distributed memo-
ry to three important compltational systems: random-access memory, neural networks, and the
cerebellum of the brain. Finally, I discuss the implementation of the algorithm for sparse distributed
memory on the Connection Machine.

Keywordx Connection Machine, neural networks, cerebellum, associative memory

1. Introduction

History suggests that the first conceived use for new technologies is nearly
always an improvement on existing processes. It takes the passage of time before
new, and often more valuable, applications are conceived. For example, the first
movies were usually of people acting on a stage; it took later insight to see that the
true power of the motion-picture camera lay in its ability to free the viewer from
the theater seat. Another example is the first general-purpose computer, which was
built to calculate ballistic information for artillery gunners. It took years before

the confining image of the computer as ‘number cruncher’ gave way to the more pow-
erful image of information processor.

A similar situation exists for the community doing research with supercomput-
ers. A typical viewpoint is that supercomputers are simply faster versions of stan-
dard ‘mainframe’ computers. This led to a culture where speed was the primary mea-
sure of success, and most effort was concentrated on porting ‘dusty decks’ containing
classical algorithms on the new supercomputers. In many ways, this viewpoint was
justified, as the first generation of supercomputers often were just faster versions of
their mainframe counterparts.

The introduction of the Connection Machine, a massively parallel supercomput-
er, no longer allows this viewpoint. Its highly nontraditional architecture makes
conversion of existing algorithms challenging or impossible. But more important-
ly, the architecture makes possible the development of algorithms that were imprac-
tical for standard Von Neumann architectures. Supercomputers with nontraditional
architectures, such as the Connection Machine, will not be used primarily to run
standard algorithms faster. They will be used to run new algorithms that would be
essentially impossible to run or to develop on standard machines.

This change of focus towards new algorithms is not just driven by the new
supercomputers; it is also driven by the needs of application developers. For exam-
ple, the slow pace of research in computer-related disciplines such as artificial intel-
ligence suggests that what is required are indeed new algorithms, not just computers
that run the old algorithms better. The emergence of neural networks is a reflec-
tion of this search for new algorithms. Many of these new algorithms are poorly
suited to standard architectures; the advent of nontraditional architectures will
prove vital for continued research in such areas.

One such new algorithm is Kanerva’s sparse distributed memory. lg2 Sparse dis-
tributed memory (SDM) is a particularly simple and elegant formulation for an
associative memory. The massive amount of computation and memory needed by the
SDM algorithm made it impractical for full-scale implementation on standard
sequential machines. However, the massive parallelism inherent in this algorithm is
well-suited to the architecture of the Connection Machine-2 (CM-2).3 For the first
time, nearly full-scale versions of SDM can be built; this will likely drive the
development of both novel applications and a generation of hardware for implement-
ing the memory model.

The importance of developing new algorithms lies not only in their intrinsic val-
ue, but in the insights they can give us relative to other, known, algorithms. SDM
occupies a particularly valuable position, as it is related to three important computa-
tional systems: random-access memory (RAM), neural networks, and the cerebel-
lum of the brain. Studies on the behavior of SDM have implications for our under-
standing of these systems.

In this paper I begin by giving two simple examples of using a sparse distribut-
ed memory. I then describe the algorithm for SDM in detail as a variant of random-
access memory. Next, I show the relationship of SDM to neural networks and the
cerebellum of the brain. Finally, I show how this algorithm can be implemented on
the Connection Machine efficiently and elegantly.

2. Using a Sparse Distributed Memory

Before detailing the algorithm for a sparse distributed memory, it is useful to
show some simple examples of the processing done by the memory. The f m t exam-
ple is of SDM acting as an associative memory, that is, a memory that can recall
data when addressed ‘close to’ the address where the data are initially stored. The
second example shows the natural noise-correcting behavior of SDM, where random
noise in the data patterns is reduced.

2.1 Sparse Distributed Memory as an Associative Memory

For retrieval of a stored data pattern, a standard random-access memory requires
the exact address at which the data were previously stored. An associative memory,
however, only requires an address that is suflciently close to the address at which
the data were stored. This property makes an associative memory a powerful tool if
the addresses may have random noise, outright errors, or may be only partially speci-
fied.

Figure 1 shows an example of writing to a sparse distributed memory with a
256-bit address and data size. Each 256-bit pattern is shown as a 16x16 grid of
points, which can be seen as a series of bit maps for Roman numerals. The arrow is
the direction of the sequence; “A --> B” means pattern B was written at address A.
Reading at address A will now recall pattern B.

Such a sequence could also be stored in a standard random-access memory, if one
could be built to accommodate the large address and data sizes. However, random-
access memory cannot be used if for some reason the exact 256 bits of the reference
address are not available. This is one way in which associative memories have an
advantage over RAM.

Figure 2 is an example of reading from a sequence when starting at an address
containing noise. In this case, reading is begun with an instance of the Roman numer-
al three containing 35% noise. If an address is sufficiently close to an address where
data are stored, an associative memory should return data with less noise than the
noise in the original address. This is confirmed, as the memory returns the data pat-
tern for the Roman numeral four containing about 16% noise. Subsequently, reading
with this data pattern successfully recalls the Roman numeral five with no noise.
The remainder of the sequence can be recalled without any problem.

This example demonstrates that associative memories in general, and sparse dis-
tributed memories in particular, are tolerant of errors in the address. The following
section shows that sparse distributed memories have another property that is not
shared by all associative memories: they are not only tolerant of noise in the
address but they are tolerant of noise in the data as well. Associative memories that
use a nearest-neighbor rule, such as the memory of Baum, Moody, and Wilczek? are
not tolerant of noise in this way.

16

16

J
Fig. 1. A wries of seven 256-bit patterns that were written into a sparse distributed memory.

“A --> B” means the pattern B was written at address A, and that reading at address A will now
give pattern B.

Fig. 2. Reading out a sequence stalting with a noisy instance of the Roman numend three.

2.2 Sparse Distributed Memory as a Data-Correcting Memory

Figure 3 shows an example of sparse distributed memory's ability to correct ran-
dom noise in the data patterns.

Fig. 3. Example of sparse distributed memory correcting 20% random noise in data patterns

In this example, each of the top nine patterns is stored in the memory, using its
own 256-bit value as both the address and the data pattern. These nine patterns were
generated by adding 20% random noise to a bitmap of the letter "0. Reading from
the memory at an address nearby the nine written addresses retrieves a bitgraph of
the letter "0 which has much less noise than any of the stored data patterns.

Processes such as these are increasingly important as computers are used in real-
world applications, where some deviation from perfection must be expected in the
input sensors of a system. Algorithms that implement these processes could play an
important role in the next generation of computers.

3. Sparse Distributed Memory as a Variant of Random-Access Memory

I have shown some simple examples of the processing performed by a sparse dis-
tributed memory and will now explain how a sparse dismbuted memory works. It
is perhaps easiest to explain the sparse-distributed-memory algorithm as a variant of
an algorithm commonly used to implement random-access memory, The structure of
such a random-access memory is shown in Figure 4. (The example given is for a
RAM with 10-bit addresses and data.)

Reference Address Input Data

0 1 0

21°
Location
Addresses

1 0 1 0 1 0 1

0 1 0 1 1 0 1 0 1 0 1

0000000000
0000000001
0000000010

0000000011
0000000100
0000000101

...

...
1111111100
1111111101
1111111110
1 1 1 1 1 1 1 1 1 1

1-bit
Registers

Output Data
Fig. 4. Structure of a simple random-access memory.

3.1 Structure of Random Access Memory

The address at which reading or writing will be requested is called the refer-
ence address. The memory compares that address against the address of each of the
memory locations. The location that matches the reference address is selected,
which is denoted by a 1 in the select vector.

If writing to the memory, the input datu is supplied. The input data is stored in
the ten 1-bit data storage registers of the selected location.

If reading from the memory, the contents of the selected data registers are
broadcast on the data bus and made available as the output datu.

3.2 Structure of Sparse Distributed Memory

Sparse distributed memory can be considered an extension of random-access mem-
ory. The structure of a sparse distributed memory is shown in Figure 5. (The reader
should note that a typical SDM often has 256-bits of address and data, and can have
more than a thousand bits; the example is shown with only 10 bits.)

In each of the three computations done by RAM (addressing, reading, and writ-
ing) there exists a major alteration to the RAM algorithm:

Reference Address Radius Input Data

J.

0 0 0 0 0 1 1 1 1 0 ~ +

n-bit
Counters

1 0 1 1 1 0 1 1 0 0 *

, 1 1 1 1 1 1 0 0 1 1 +

S J . J . # $ $. $. $. $. . G
Sum: 1-1

$. $. $. $. $. $. $. $. $. $. Thresholding

Output Data

Location
Addresses 0 0 1 0 1 0 1 1 1 1

Fig 5. Structure of a sparse, distributed memory upon initialization. The location addresses have
been assigned, and the data counters zeroed, but no reading or writing has been performed yet.

Instead of looking for an exact match between the reference address and the
location addresses, the memory calculates the Hamming distance between the
reference address and each location address. Each distance is compared to a
given radius; if it is less than or equal to that radius, then that location is
selected. More than one location is usually selected in this process.
The data registers are now counters instead of single-bit storage elements.
These data counters are n-bits wide, including a sign bit. When writing to
the selected locations, instead of overwriting, the memory increments a
counter if the corresponding input data bit is a 1, and decrements a counter if
the corresponding input data bit is a 0.

0 When reading, the memory usually selects more than one location. The mem-
ory sums the contents of the selected locations columnwise, then thresholds
each sum. If the threshold is zero, sums that are greater than or equal to
zero correspond to output bits of 1, and sums that are less than zero corre-
spond to output bits of 0.

These rules define the structure of a sparse distributed memory, but they do not
offer an intuitive understanding of why this memory functions as it does. I do not
present the mathematical foundations of SDM in this paper but instead offer a geo-
metrical argument to explain the functioning of the model.

3.3 Geometric Argument for Sparse Distributed Memory

A property of associative memories in general, and sparse distributed memory in
particular, is that the number of physical storage locations is much smaller than the
size of the address space. (This is in contrast to random-access memory, which has
one physical location for every address.) Indeed, for 1,000-bit addresses, the size of
the address space is larger than the estimated number of atoms in the universe; it is
inconceivable that one could build a memory having a physical location for each
point in this address space. Thus, at best one could assign physical locations only to
some very small subset of the address space.

Different associative memories handle the assignment of physical location
addresses in different ways: for SDM, the physical locations are assigned to random-
ly selected points in the address space. This provides a relatively even distribution
of physical locations over the space. (This is where the adjective sparse comes from;
the physical locations are sparse relative to the size of the address space.) If we pre-
tend that the address space is a blank sheet, then the physical locations would be
seen scattered across the page, as shown in Figure 6. The physical locations are repre-
sented by small white or grey squares on the page.

Once the location addresses have been set, a process is needed to decide which
locations are selected for a given reference address. Again, different associative
memories use different schemes; for sparse, distributed memory, all locations with-
in a given radius of the address point are selected. For example, with the reference
address A in Figure 6, the six locations shown within the selection radius are select-
ed.

To read from this memory, the information from the selected locations is
summed and thresholded. To write, the increment/decrement procedure described
above is used. (This is where the adjective distributed comes from; the data pattern
is not stored in any one physical location but is distributed over a large number of
locations.)

Using this figure, it is possible to see why the memory is associative. If a refer-
ence address A' sufficiently close to A is used, it will cause the selection of most of
the same physical locations selected by A. Thus, the sums retrieved by reading at
A' will be nearly the same sums remeved by reading at A, and so thresholding will
likely give nearly or exactly the same output data.

If a random reference address is chosen, say B, there is a risk of selecting some
of the locations that were previously selected by A. (In the figure, L is an example
of such a location.) L will contain a mixture of both data patterns. The output data
from reading at A or B will remain uncorrupted as long as the overlap between the
selected sets stays small; this is because the reading process averages the values
from all the selected locations.

I .

Reference Address

1

Selected Location

t Limit of Selection Radius

Physical Location \
Fig 6. Distributed storage in a sparse memory.

Figure 7 shows the results of a read operation at 0101010110 after writing the
data 1011101010 at 1011001010 and writing the data O001110101 at 0101010110.
The patient reader is invited to c o n f m the results shown.

4. Sparse Distributed Memory and the Cerebellum

For certain kinds of tasks, such as pattern recognition, the human brain is by far
the most powerful ‘supercomputer’ that exists. However, the complexity of its
structure and the deficiencies of our technology have led us away from that structure
in most of our forty-year history of building general-purpose computers. The cur-
rent interest in computational ‘neural networks’ is just the beginning of research
that must be done to understand the mechanisms of the brain. Close collaboration
between computer scientists and neuroscientists, with each side proposing theories
that the others can test, will be important in the work that lies ahead

The cerebellum of the brain seems a possible topic around which this collabora-
tion can begin. The cerebellar cortex is highly regular in structure, with only seven
primary kinds of cells. It is a major part of the brain, occupying ten percent of he

Reference Address Radius InputData

UInnnn

Fig 7. Reading from a sparse distributed memory after two write operations.

brain by volume and possibly half of all the neurons in the brain. Like the cerebral
cortex, and unlike most other parts of the brain, the cerebellar cortex has undergone
spectacular increases in size in the higher primates. Finally, its involvement in
motor control, acuity, and learning would make information concerning its mecha-
nisms valuable for current research work in robotics.

The structure of the cerebellar cortex is shown in Figure 8. The system has two
inputs, the mossy fibers and the climbing fibers. It has one output, the Purkinje
cells. The granule, basket, stellate, and Golgi cells act internally to the system.

The major part of the input to the cerebellar cortex comes through the mossy
fibers. Synapsing onto the mossy fibers are granule cells; each cell touches between
3 and 6 mossy fibers. The granule cells send their axons upwards, where they split
in two and travel down a straight line in opposite directions. These axons are called
parallel fibers. The Purkinje cells send their dendritic trees into these bundles of
parallel fibers, synapsing on tens of thousands of different fibers. The output of the
Purkinje cell is the only information to leave this system.

Of special interest is the climbing fiber, which connects to the system in a very
specific way. Each Purkinje cell receives input from exactly one climbing fiber.

5

Fig 8. The structure of the cerebellar cortcx of the brain. PU = Purkinje cell (black); Go = Golgi cell
(dotted); GI = granule cell; Pa = parallel fiber: St = stellate cell; Ba = basket cell;

C1= climbing fiber; Mo = mossy fiber (black)
(From "The Cortex of the Cerebellum", by R. Llinas, Copyright 0 1975 by Scientific American, Inc.

All rights reserved.)

Even more provocative is the manner in which the climbing fiber branches to follow
the dendritic tree of a Purkinje cell to its synapses with the parallel fibers.

In 1970, David M m proposed that the function of the cerebellum is pattern
leaming.6 Marr postulated that the firing of the climbing fiber, coincident with the
activation of parallel fibers, caused changes in the Purkinje-cell-parallel-fiber
synapse which facilitated future firings across those synapses. James Albus, and, lat-
er, Pentti Kanerva, independently proposed similar models for the cerebellum. 2*7*8

These models are now recognized as essentially equivalent. I will refer to this
model as the Marr-Albus-Kanerva (or MAK) model of the cerebellum. Of interest
in this paper is the relationship of the MAK model of the cerebellum to the sparse
distributed memory algorithm. This is best described using the simplified model of
the cerebellum shown in Figure 9. (For simplicity, the Golgi, basket, and stellate
cells have been left out of the figure.) In this proposed relationship, the mossy
fibers are transmitting the reference address for the memory. Each granule cell is

POTENTIAL
SYNAPSE

(A BIT LOCATION)

Fig 9. Simplified structure for the ccrebcllarcortcx of the brain.

acting as a memory location; it only fires when the address transmitted along the
mossy fibers is close enough to the address it represents. Thefiring of u granule cell
can be considered equivalent to the selection of (I location in the SDM model. (The
Golgi cells, which are not shown in our simplified drawing, may be involved in set-
ting the radius for the memory.)

A major question is the site in the cerebellum corresponding to the data coun-
ters in SDM. Kanerva postulates that the data counters are the synapse points wheFe
parallel fibers, climbing fibers, and Purlunje cell dendrites meet. This is the same
location where Marr postulated learning to take place in the system. If this hypoth-
esis about these synapses is correct, then the c h b i n g fibers could be carrying the
input data for the memory. This would explain the careful construction of the cere-
bellum, where each Purkinje cells receives input from exactly one climbing fiber.

The Purkinje cells provide the output data from the system. As the natural func-
tion of a neuron is to sum its inputs and fire if over threshold, they would serve
admirably in this capacity and mirror the functioning of a column in a SDM (see
Fig. 5).

While this correspondence is suggestive, there is little direct evidence to sup-
port it. Even 18 years after Marr suggested a site for plasticity in the cerebellum.
there is still a Lively debate among neuroscientists as to whether this plasticity

exists?*9 This interplay between two branches of science is bound to increase as
computer designers begin to depend on the reverse-engineering discoveries of the
neuroscientists. The current interest in neural-network models of processing is
only the beginning of such a process

5. Sparse Distributed Memory as a Neural Network

Previous sections showed how SDM is related to both random-access memo-
ry and the cerebellum of the brain. Given the resurgence of neural-network
models of processing, it is of interest that the SDM model can be described as a
fully-connected three-layer feed-forward neural network, which is the same net-
work architecture used for backpropagation algorithms.” A neural-network
equivalent to sparse distributed memory is shown in Figure 10.

Strengths -

-
Strengths

.....

W.Y
Fig 10. Neural-network representation of a sparse distributed memory. For a reasonable size memory, there

might be 1,OOO nodes in each the top and bottom layers and l,OOO,OOO nodes in the “hidden” layer.

The bottom layer is where the reference address is given; that is, there is
one node in this layer for each bit of the reference address. These nodes are
locked at either 1 or -1 depending on whether the corresponding bit of the refer-
ence address is 1 or 0.

The connections between the bottom layer and the nodes of the so-called
hidden layer are either 1 or -1 in strength. These strengths are never changed, as
they determine the address of the physical memory locations.

Each of the hidden-layer nodes corresponds to a memory location in the
SDM model. A memory location is selected if the sum of its inputs (Le., the

dot product of the reference address and the location’s weight vector) is greater than
or equal to its threshold. This threshold corresponds to the radius in the SDM mod-
el, and the sum of the inputs is effectively taking the Hamming distance between
the memory location’s address and the reference address.

The top layer is where the output data appear. Each hidden-layer node is fully
connected to the top-layer nodes. The data counters of a memory location are repre-
sented in the strengths of the connections between a hidden unit and the output
nodes. This is the only part of the network that is plastic.

Reading the memory involves setting the values of the reference address and
reading the output from the output nodes. Writing to the memory involves setting
both the reference address and the data input nodes to the desired values; internal
nodes that are active then add the value of each data input node (one or minus one)
to its connection.

In this form, SDM appears quite similar to other neural architectures. Howev-
er, there are two major differences that may prove important:

0 The number of hidden-layer nodes is much larger than is commonly used for
neural networks. A reasonable size memory may have an address and data
size of 1,0oO bits, which would correspond to 1,000 nodes in each of the top
and bottom layers. This is large, but not beyond the capabilities of current
neural-network algorithms. However, if the memory has 1,000,OOO memory
locations, this would correspond to a network with 1,0oO,OOO nodes in the
hidden layer. It is unclear how standard algorithms, such as backpropaga-
tion, would perform with such a large number of units in the hidden layer.
With backpropagation algorithms, the strengths of the connections in both
layers are changed. In the SDM model, only the strengths in the second
layer of connections are changed This preserves the relationship between the
input representation and the nodes in the hidden layer. Without this, learn-
ing that o c c m in the second layer can become obsolete as the first layer
changes. With the large number of hidden units, such obsolescence would be
very costly to the system.

The relationship of sparse distributed memory to neural-network models sug-
gests a possible direction for research: neural networks with massive numbers of
nodes in the hidden layer. Like SDM, this work has been difficult in the past due to
the computational resources available. The Connection Machine seems suited to
advance research in this area.

0

6. Implementational Issues for Sparse Distributed Memory

However attractive an algorithm appears, it is difficult to conduct research on
its properties if it is not a good fit to current computational technology. For exam-
ple, consider a sparse distributed memory with the following parameters:

1,000-bit address and data size
1,000,000 physical memory locations
8-bit data counters
Radius chosen so that addressing results in approximately 1000 selected loca-

Approximate computational and storage requirements for this memory are:
1OOM byte-XORs needed to calculate the select vector
1M byte-ADDS to calculate the sum of the selected locations

0 Up to 1,000M tests when adding only selected data counters
1,000M bytes of storage for data counters

Current computers have too little memory and are too slow for a reasonable
implementation of this memory. The storage requirement is unavoidable; any com-
puter would be required to furnish this much storage. The computational require-
ments could be met either by building specialized hardware or by using a computer
that took advantage of the natural parallelism available in the SDM algorithm.

tions

6.1 Parallelism in the Sparse-Distributed-Memory Algorithm

The algorithm for sparse distributed memory contains many opportunities for
parallel computation. However, the parallelism may not be accessible for some par-
allel architectures. Implicit in figure 7 are three major opportunities for paral-
lelism:

Each memory location, in parallel with all other locations, calculates the
hamming distance between its address and the reference address and tests the
result against the radius to see if that location is selected. In other words,
the address decoders for the location addresses in figure 7 operate in paral-
lel. This requires up to l,OOO,OOO processors.
Each selected memory location, in parallel with all other locations, signals
its row of counters that they will participate in the upcoming summation.
Each column of data counters, in parallel with all other columns, computes
the sum of the signalled counters. This requires up to 1,OOO processors in
parallel.

Note that the first and second opportunities for parallelism are rowwise, with a
large number of processors and small numbers of operations per processor; the third
is columnwise, with a small number of processors and large number of operations
per processor. The same machine must behave with two different ‘grain sizes’ to uti-
lize fully the parallelism in the SDM algorithm.

(It is also possible to further parallelize parts of these processes; for example,
the data counters could be summed using a binary fan-in tree. While recognizing the
role that such optimizations can play, these are minor opportunities compared with
those of items 1-3 above.)

6.2 Utilizing the Parallelism in the Sparse-Distributed-Memory Algorithm

At first, it would appear that many vector machines would be able to take
advantage of the three opportunities presented in the previous section. However,
this is unlikely: not only would some of the vectors have to be very large
(l,O00,0oO) but the machine would have to be able to mix vectors of different
lengths and communicate efficiently among these different representations. No vec-
tor machine currently has this ability.

The Connection Machine has the ability to emulate a variety of parallel
machines. That is, it can simulate machines with different numbers of processors at
different times during one computation. It is this crucial ability that allows it to
exploit the inherent parallelism in the SDM algorithm.

In my implementation of SDM, the most time-consuming step in the algorithm
is the aansfer of data from the rowwise format to the columnwise format. The
actual operations of computing, calculating Hamming distance and summing, are rel-
atively fast compared to this communication step.

6.3 Hardware versus Sofiware Issues

The SDM project at RIACS, in collaboration with Stanford University, has
developed a hardware prototype of sparse distributed memory. l 1 We have also devel-
oped a software prototype on the Connection Machine. l2 There are advantages to
each.

The advantages of the Connection Machine software are:
The Connection Machine has more memory (-SOOMbytes) than the current
generation of hardware under consideration.
The software can be changed and new designs for the memory tested.
A software version of sparse distributed memory could be used to help proto-
type a new generation of hardware.

The advantages of the Stanford hardware implementation are:
0 Faster (-50 memory cycles per second versus -3 memory cycles per second

with 256-bit addresses and 8,000 physical memory locations).
Hardware significantly cheaper than a Connection Machine.

0 Hardware can be distributed as an add-on to conventional minicomputers.

Rather than conflicting, the considerations show that the hardware and software
complement each other. The flexibility and size of the Connection-Machine-based
simulation is offset by the high cost of general-purpose supercomputers. Specialized
hardware such as the Stanford SDM prototype is much cheaper than a general-pur-
pose supercomputer. In the future, such hardware will be important in distributing
access to these algorithms.

6.4 Results of Implementation of SDM on the Connection Machine

The algorithm for sparse distributed memory was implemented on the Connec-
tion Machine. The entire program took -5,000 lines of source code, written in
*LISP (pronounced "star-lisp"). The core algorithm is about a hundred lines long,
but as the plans for the software call for public distribution, the software includes
a large amount of user-interface and optimization code.

For comparison with the hardware prototype, I created a memory with a 256-bit
address and data size and 8,192 physical locations. These parameters correspond to
the dimensions of the current-generation hardware prototype. (These parameters,
however, are easily changed to model larger memories of various specifications.)
The Connection Machine simulator of sparse distributed memory runs at -3 cycles
per second while the hardware prototype runs at -50 cycles per second. While this
is slower than the hardware prototype, it is still acceptable for many applications.

However, it is also possible to build much larger memories on the Connection
Machine than are currently available in hardware. On a 64K-processor CM-2, the
parameters can be set to create a memory with 1,0oO,OOO physical locations. This
memory would be the largest version of a sparse distributed memory ever built, and
among the largest neural-network-type programs currently implemented. l3 It would
be over 100 times larger than the current hardware prototype. This enormous size
allows the development and testing of applications that require significantly more
memory than the hardware can provide, such as continuous-speech recognition or
shape recognition. The planned future release of the SDM simulator should encour-
age the development of these and other applications.

7. Conclusions

The advent of the Connection Machine changes profoundly the world of super-
computers. Its highly nontraditional architecture makes possible the exploration of
algorithms, such as that for SDM, that were impractical for standard Von Neumann
architectures.

The Connection Machine and the algorithm for sparse distributed memory have
proven to be an excellent match. The capabilities of the machine are fully utilized
by the algorithm, and the opportunities for parallelism in the algorithm are well-
exploited by the machine.

The importance of sparse distributed memory lies not only in its intrinsic value,
but in its relationship to other, known, algorithms. SDM occupies a particularly
valuable position, as it is related to three important computational systems: ran-
dom-access memory (RAM), neural networks, and the cerebellum of the brain.
Studies of the behavior of SDM has implications for these systems as well.

The discovery and development of algorithms that have little counterpart on
sequential computers is still a young process, and I expect that the current practice
of measuring algorithmic success on supercomputers in MFLOPs will be with us for
sonie time to come. However, this work suggests that the combination of a new

generation of nonstandard supercomputers such as the Connection Machine, and a
new generation of algorithms, such as that of sparse distributed memory, may some-
day change our viewpoint of what success with these giant ‘number crunchem’ real-
ly means.

Acknowledgements

This work was supported in part by Cooperative Agreements NCC 2-408 and
NCC 2-387 from the National Aeronautics and Space Administration (NASA) to
the Universities Space Research Association (USRA). Funding related to the Con-
nection Machine was jointly provided by NASA and the Defense Advanced Research
Projects Agency (DARPA). All agencies involved were very helpful in promoting
this work, for which I am grateful.

I would also like to acknowledge Thinking Machines, Inc., for their original
grant to me when I was working as a postdoctoral fellow at MIT. It was either
great foresight or extraordinarily good luck on their part that they chose someone
who would end up working on the machine they were busy creating.

The entire RIACS staff and the SDM group has been supportive of my work.
I also thank the Mike Raugh was an especially strong backer of this project,

researchers at the NAS project for making me feel at home in a strange building.

Finally, I’ll get mushy and thank those who supported my spirits during this
project, especially Pentti Kanerva, Rick Claeys, Bruno Olshausen, John Bogan, and
last but of course not le&, my p a n t s , Philip and Cecilia. Love you all.

References

1. Kanerva, P., Sparse Distributed Memory (MIT Press, Cambridge, MA,

2. Kanerva, P., “Self-Propagating Search: A Unified Theory of Memory”, Technical
1988).

Report, Center for the Study of Language and Information, Stanford, CA, CSLI-
84-7, March, 1984.

3. Hillis, D., The Connection Machine (MIT Press, Cambridge, MA, 1985).
4. Baum, E., Moody, J., Wilczek, F., “Internal Representations for Associative

5. Ito, M., The Cerebellum and Neural Control (Raven Press, New York, 1984)
6. Marr, D., “The cortex of the cerebellum,” J . Physiology (1969) 437-470.
7. Albus, J.S., “A theory of cerebellar functions,” Math. Bioscience. (1971)

8. Albus, J.S., Brains, Behavior, and Robotics (BYTE BookslMcGraw-Hill,

Memory,” Biological Cybernetics, (1987).

25-61.

Peterborough, NH, 1981).

9. Lisberger, S.G., “The Role of the Cerebellum during Motor Learning in the
Vestibulo-Ocular Reflex. Different Mechanisms in Different Species?” Trends
in Neurosci. 5 (1982) 437-441.

tions by Error Propagation,” in Parallel Distributed Processing: Explorations in
the Microstructure of Cognition: Volume I : Foundations, eds D.E. Rumelhart and
J.L. McClelland (MIT Press, Cambridge, MA, 1985) pp. 318-362.

11. Flynn, MJ., Kanerva, P., Ahanin, B., Flaherty, P. Hickey, P., Bhadkamkar, N.,
Lochner, E., aidman, B., “Sparse Distributed Memory Prototype: Principles of
Operation,’’ Technical Report, Research Institute for Advanced Computer Sci-
ence, NASA Ames Research Center, Moffett Field, CA, 88.12,1988.

A Sparse Distributed Memory Simulator for the Con-
nection Machine,” Technical Report, Research Institute for Advanced Computer
Science, NASA Ames Research Center, Moffett Field, CA, in press, 1989.

13. Brown, N.H., Jr., “Neural Network Implementation Approaches for the Con-
nection Machine,” in Neural Information Processing Systems, ed D. Anderson
(American Institute of Physics, New York, 1988) pp. 127-136.

10. Rumelhart, D.E., Hinton, G.E., Williams, RJ., “Learning Internal Representa-

12. Rogers, D., “AARON:

