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Jiyuan Yang, Lubomir Bic, Alexandru Nicolau 

Department of Information and Computer Science 
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Abstract 

In this paper, a heuristic mapping approach which maps parallel programs, described by precedence 
graphs, to MIMD architectures, described by system graphs, is presented. The complete execution time 
of a parallel program is used as a measure, and the concept of critical edges is utilized as the heuristic to 
guide the search for a better initial assignment and subsequent refinement. An important feature is the 
use of a termination condition of the refinement process. This is based on deriving a lower bound on the 
total execution time of the mapped program. When this has been reached, no further refinement steps 
are necessary. The algorithms have been implemented and applied to the mapping of random problem 
graphs to various system topologies, including hypercubes, meshes, and random graphs. The results show 
reductions in execution times of the mapped programs of up to 77 percent over random mapping. 

°Index Terms- Critical edge, heuristic algorithm, mapping problem, parallel processing. 

1 Introduction 

In order to effectively utilize large-scale parallel computers, the scheduling problem is one of 

crucial importance. It is possible to divide the general scheduling problem into two parts -

independent job scheduling and task scheduling. For independent job scheduling, there are 

optimal scfueduling dlgorithms f4J for di,tributed tomputihg systems and multiprocessors. Task 

scheduling, on the other hand, is much harder than independent job scheduling, since it needs 

to schedule multiple interrelated tasks in a single program for a parallel computer system. 

Many researchers have addressed task scheduling in various approaches [5], [6), [7), [12), [13], 
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[15]. The scheduling problems are usually classified into static and dynamic methods. This 

paper addresses static task scheduling. 

A parallel program is represented by a problem graph, an example of which is shown in Fig. 

2. The parallel computer system on which the parallel program is to be executed is referred to 

as a system graph. An example is shown in Fig. 5-a. The purpose of the static task scheduling 

presented in this paper is to minimize the complete execution time of the parallel program. 

Usually, the number of nodes in the problem graph, np, is much larger than the number of 

nodes in the system graph ns, (np :::}> ns ). In order to simplify the scheduling problem, it can 

be divided into two steps. The first step, called clustering, combines np problem nodes into 

na groups, where na = ns. The edges connecting problem nodes within the same group are 

removed. The resulting graph is called a clustered problem graph. The second step, refered to 

as mapping, then maps the na clusters to thens system nodes. Here, each cluster is treated as 

a single abstract node and edges connecting two abstract nodes are combined into one abstract 

edge. Under this abstraction, the second step only deals with graphs having the same number 

of nodes. 

In this paper, we present an approach for performing the mapping of a clustered problem 

graph onto a system graph. In other words, we assume that an existing technique is first 

applied to produce a clustering from a given problem graph. The resulting clustered problem 

graph is then used as input to our algorithms. Note that the problem graph has the same 

number of nodes as the system graph, as has been done with other approaches. However, 

in our case, we still use the information about individual tasks within each cluster and their 

communication. 

Since the mapping problem is NP-Complete, various heuristic algorithms have been <level-

2 



A Mapping Strategy For MIMD Computers 

Jiyuan Yang, Lubomir Bic, Alexandru Nicolau 

Department of Information and Computer Science 

University of California, Irvine 

Irvine, CA 92717 

Abstract 

In this paper, a heuristic mapping approach which maps parallel programs, described by precedence 
graphs, to MIMD architectures, described by system graphs, is presented. The complete execution time 
of a parallel program is used as a measure, and the concept of critical edges is utilized as the heuristic to 
guide the search for a better initial assignment and subsequent refinement. An important feature is the 
use of a termination condition of the refinement process. This is based on deriving a lower bound on the 
total execution time of the mapped program. When this has been reached, no further refinement steps 
are necessary. The algorithms have been implemented and applied to the mapping of random problem 
graphs to various system topologies, including hypercubes, meshes, and random graphs. The results show 
reductions in execution times of the mapped programs of up to 77 percent over random mapping. 

Index Terms- Critical edge, heuristic algorithm, mapping problem, parallel processing. 

1 Introduction 

In order to effectively utilize large-scale parallel computers, the scheduling problem is one of 

crucial importance. It is possible to divide the general scheduling problem into two parts -

independent job scheduling and task scheduling. For independent job scheduling, there are 

optimal sdheduling J1gorithms f4J for di,tributed tomputihg ~ystems and multiprocessors. Task 

scheduling, on the other hand, is much harder than independent job scheduling, since it needs 

to schedule multiple interrelated tasks in a single program for a parallel computer system. 

Many researchers have addressed task scheduling in various approaches (5], (6], (7], (12], (13], 

1 



[15]. The scheduling problems are usually classified into static and dynamic methods. This 

paper addresses static task scheduling. 

A parallel program is represented by a problem graph, an example of which is shown in Fig. 

2. The parallel computer system on which the parallel program is to be executed is referred to 

as a system graph. An example is shown in Fig. 5-a. The purpose of the static task scheduling 

presented in this paper is to minimize the complete execution time of the parallel program. 
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nodes in the system graph ns, (np ~ ns ). In order to simplify the scheduling problem, it can 

be divided into two steps. The first step, called clustering, combines np problem nodes into 

na groups, where na = ns. The edges connecting problem nodes within the same group are 

removed. The resulting graph is called a clustered problem graph. The second step, refered to 

as mapping, then maps the na clusters to the ns system nodes. Here, each cluster is treated as 

a single abstract node and edges connecting two abstract nodes are combined into one abstract 

edge. Under this abstraction, the second step only deals with graphs having the same number 

of nodes. 

In this paper, we present an approach for performing the mapping of a clustered problem 

graph onto a system graph. In other words, we assume that an existing technique is first 

applied to produce a clustering from a given problem graph. The resulting clustered problem 

graph is then used as input to our algorithms. Note that the problem graph has the same 

number of nodes as the system graph, as has been done with other approaches. However, 

in our case, we still use the information about individual tasks within each cluster and their 

communication. 

Since the mapping problem is NP-Complete, various heuristic algorithms have been <level-
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oped in the past [1], [2]. They focus primarily on minimizing the communication overhead. 

Bokhari [l] describes a mapping strategy, where the cardinality, defined as the number of the 

problem edges that fall on system edges, is used as the measure for evaluating a mapping. 

Unfortunately, the edges that don't fall on system edges can have a significant effect on the 

system's performance. Another limitation of this strategy is that all problem edges are as­

sumed to have the same weight. However, in a general problem graph, the communication 

load carried by the different problem edges may vary significantly. Furthermore, the algorithm 

assumes np ::=:; ns, which imposes a serious limitation on the number of problems this method 

can be applied to. 

Lee describes another mapping strategy which takes the phase for each problem edge into ac­

count, and uses actual distances between the system nodes rather than their nominal distances 

[2]. However, the assumption that all problem edges have to be activated simultaneously, i.e., 

all communications in one phase must start at the same time, is too restrictive for most ap­

plications. Similar to Bokhari, he also assumes that the number of nodes in the system graph 

must be equal to or greater than the number of nodes in the problem graph, i.e., np ::=:; ns. In 

most actual cases, the number of nodes in the problem graph is much larger than the number 

of nodes in the system graph. 

The main drawback of both of the above mapping strategies is that they only consider com­

munication cost but ignore execution time. We will show later that an optimal communication 

cost may still result with a non-optimal complete execution time. 

Another limitation is inherent to the process of deriving a solution using these approaches, 

which is based on iterative improvement, i.e., repeatingly modifying assignments and com­

paring their results. Unfortunately, this process can't be terminated until a predetermined 
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number of moves have been performed. Hence the search may continue long after the optimal 

solution has already been found. 

Finally, neither approach considers any data dependencies among nodes. The assumed 

problem graphs are not directed, which means that they only consider the communications 

among the tasks but not their precedences. 

The above limitations indicate the need for a better mapping strategy, which would consider 

data dependency, had a more realistic measure of how good a mapping is, and a better termi­

nation method. In this paper, we present such a mapping strategy. The complete execution 

time is used as the measure and the data dependencies are taken into account in the mapping 

process. The most important merit of this strategy is that, in some cases, it can detect when 

the optimal solution has been reached and thus no further refinement attempts are necessary. 

This reduces the total search space and time. 

The paper is organized as follow. The terminology and the quality measure are introduced 

in section 2. The internal problem representation and mapping algorithms are described in sec­

tions 3 and 4, respectively. Experimental results are discussed in section 5. Finally, conclusions 

are given in section 6. 

2 Terminology and Measure of Quality 

In this section, we shall introduce some terms and discuss the measure for evaluating the 

goodness of a mapping. 

2.1 Terms 

The algorithms will use the following five graphs: 
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A problem graph Gp= {Vp, Ep}, 

A clustered problem graph Ge = {Vc, Ee}, 

An abstract graph Ga = {Va, Ea}, 

An ideal graph Gi = {Vi, Ei}, 

A system graph Gs = {Va, Es}, 

where Vp, Vc, Va, Vi, Va are sets of nodes and Ep, Ee, Ea, Ei, Es are sets of edges in the 

respective graphs. The numbers of nodes in each graph are given by np =I Vp I, nc =I Vc I, 

na =I Va I, ni =I Vi I and ns =I Va I, where np = nc = ni and na = ns. 

System graph 

t 
System graph 

closure 

l 
Ideal Graph 

/ "" 

Problem graph 

! Clustering 

Clustered Problem Graph i Abstraction 

Abstract Graph 

Lower Bound Critical problem 
edges ana critical 
abstract edg~ 

( Assignment 

Refinement t 
\ Total Time 

Fig. 1 Relationships among the graphs 
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The relationships among the graphs are shown in Fig. 1. The problem graph describes the 

tasks and their interactions. Fig. 2 is an example of a problem graph, where each node has 

an ID and a weight to indicate the number of time units for executing the task. Each edge 

also has a weight which represents the communication time. The clustered problem graph is 

derived from the problem graph by combining the problem nodes into groups. An example of 

a clustered problem graph derived from the problem graph in Fig. 2 is shown in Fig. 3. As 

mentioned earlier, we assume that an existing technique for clustering a given problem graph 

is used. Examples of such techniques may be found in [8], [9], [10], [11]. 

The abstract graph is the result of treating each cluster as one abstract node and collapsing 

edges between the same abstract nodes into one. Fig. 4 is the abstraction of the clustered 

problem graph in Fig. 3. The main purpose of the abstract graph is to be able to talk about 

all edges between two clusters as one. In particular, we need to know if a given abstract edge 

is critical. This information is used to guide the mapping. 

-E-- ID of the problem node 
-E-- Weight of the problem node 

2 Weight of the 
problem edge 

Fig.2 Problem Graph 

6 



The system graph describes the topology interconnecting homogeneous processing elements 

of a parallel computer system. A system graph closure is the fully connected superset of the 

system graph. Fig. 5-b shows the closure for the system graph of Fig. 5-a. The concept of 

the system graph closure is used to derive the ideal graph, which is a mapping of the clustered 

problem graph onto a fully connected system graph. This mapping is unique and is easily 

derivable, since the graphs have the same numbers of nodes and the communication cost 

between any two system nodes is identical (due to its full connectivity). 

Fig. 3 Clustered problem graph 

The purpose of deriving the ideal graph is to obtain a lower bound on the complete execution 

time of the parallel program. It is also used to derive the critical problem edges and critical 

abstract edges (see below) which are used to guide the mapping of the clustered problem graph 

to the actual system graph. 
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3 to the closure of Fig. 5-b is shown in Fig. 6. Note that the ideal graph carries the same 

information as the clustered problem graph, but is depicted in a different format to visually 

capture the time line of execution. In particular, the node weights are unchanged, each shown 

inside the corresponding node. The edge weights, on the other hand, are not shown explicitly 

as numbers attached to edges but as the time units that separate the nodes on the vertical axis. 

For example, the weight on the edge (1,3) is 2 (Fig. 3), which corresponds to a 2-time-unit 

delay between the end of node 1 and the beginning of node 3 (Fig. 6). 

Fig. 4 Abstract graph 

D 
Fig. 5-a System graph Fig. 5-b System graph closure 

. 
The main difference between the clustered problem graph and the ideal graph, however, is 

that some edge weights become longer due to data dependencies. For example, the edge (6,11) 

carries the weight 1 in Fig. 3, but it results in 7 time units (weight 7) in Fig. 6. This is due to 

its dependency on node 7, which, in turn, depends on node 3, and so on. In other words, the 

ideal graph may be viewed as the topologically sorted form of the clustered problem graph .. 

When the abstract graph is mapped to the system graph, rather than its closure, an 

assignment is produced. Based on the assignment and the information in the clustered prob-

lem graph, the complete execution time of the parallel program can be derived. If the result 

is not equal to the lower bound, a refinement of the assignment is attempted, as illustrated in 

Fig. 1. 
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processors 
time unit 0 1 2 3 

0 1 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Fig. 6 Ideal graph 

We assume that the execution time of each task (problem node) and the communication 

times are measured in time units. For any two problem nodes connected by an edge, we assume 

the worst case where each communication takes place between the end of the sending task and 

the beginning of the receiving task. 

We will define several terms based on the graphs mentioned before, which will be used by 

the algorithms of section 4. 

1. Latest task - This is the task (problem node) which terminates last. For example, in 

Fig. 6, tasks 9 and 11 are the latest tasks. 

2. Critical problem edge - An edge in the ideal graph is critical if increasing the weight of 

the corresponding edge in the clustered problem graph by any amount will lengthen the 

complete execution time of the ideal graph. For example, the problem edge ei79 in Fig. 
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6 is critical, since any increase in the weight of the clustered problem edge ec79 (Fig. 3) 

must increase the weight of the ideal edge ei79 and thus delay the start time of the latest 

task 9. On the other hand, edge ei59 is not critical, since increasing the weight of the 

clustered problem edge ec59 will not necessarily increase the weight of the ideal edge ei79 

(Only when the increase is by more than 2, will the ideal graph edge be affected). 

3. Critical abstract edge - An abstract edge eakl is critical if there is at least one critical 

problem edge eiij, where ideal node Vii is mapped onto abstract node Vak and ideal node 

Vij is mapped onto abstract node Va/· The abstract edges eaoi, eao2 in Fig. 4, for example, 

are critical. 

4. Critical degree of an abstract node - This is the sum of the weights of all critical abstract 

edges directly connected to that abstract node. For example, there are two critical abstract 

edges eaoi, eao2 that connect to abstract node Vao· Hence, the critical degree of Vao is the 

sum of the weights of the two critical abstract edges. 

5. Critical abstract node - An abstract node is critical if it is connected to a critical abstract 

edge which has been mapped to a single system edge. This is used in the algorithms for 

initial assignment and refinement (see 4.3.2 and 4.3.3). 

6. Total time - This is the complete execution time of the parallel program. 

2.2 Measure of Quality 

The goodness of a mapping may be measured in different ways for different applications but 

in most cases, total time is the most important criterion. Other measures are based on the 

assumption that the total time would be minimized indirectly, as a result of minimizing (or 
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maximizing) other characteristics, such as communication time. Unfortunately, this is not 

always the case. We demonstrate this by considering two other measures used by existing 

mapping strategies and showing that optimal mappings measured by other characteristics 

may be far from optimal in terms of the total time. 

4 

1 

EB 
Fig. 7 Problem graph 

For the convenience of comparison with Bokhari's approach [1], a problem graph, consisting 

of 8 nodes, is given in Fig. 7. Since np = na = ns, the clustered problem graph is the same as 

the problem graph. The system graph, which also has 8 nodes, is given in Fig. 8. 

Every node in the system graph has degree 3. However, in the problem graph, node 3 

has degree 4. Therefore, at least one problem edge which connects problem node 3 has to be 

mapped to two non-adjacent system nodes. Following Bokhari's cardinality measure, assign­

ment Al in Fig. 9 maps eight out of nine problem edges to a single system edge each while 

one problem edge, in this case ep35 , must be mapped on two system edges. It is easy to prove 

that Al with cardinality 8 is the optimal solution according to the cardinality measure. 

11 



J--0 
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Fig. 8 System graph 
(1,2,3,4,5,6,7,8) 

Fig. 9 Assignment Al 
(1,3,5,2,6,4,8,7) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
g 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

1 2 3 4 5 6 7 8 

1 

.... ·7··· .. 

................................................ 8 ........ . 

Fig. 10 

Consider now the total time of the assignment Al, which is 23 time units, as shown in Fig. 

10. On the other hand, in assignment A2, shown in Fig. 11, only seven problem edges are 
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mapped to a single system edge each. Nevertheless, the total time under this assignment is 

21 time units, as shown in Fig. 12, which is less than the total time under assignment Al (23 

units). In other words, assignment Al with optimal cardinality does not have the minimum 

total time. 

Time unit 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

Fig. 11 Assignment A2 

Processors 
1 2 3 4 5 6 7 8 

.. ·7 ............. .. 

- ............... 4 .................... . 
~ ....................... .. 

··:::::::::::::::::::rn:::::: ...... s ....... . 

Fig.12 Execution time of Assignment A2 
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Another measure which has been used frequently to evaluate the goodness of a mapping is 

communication cost. We present a case where this measure also does not yield the optimal 

total time. Fig. 13 shows a problem graph that is to be mapped on the same system graph 

of Fig. 8. Based on the objective function and the phase to evaluate the communication 

cost developed by Lee [2], an optimal assignment A3 is given in Fig. 14. Four phases are 

identified. According to Lee's algorithm, all communications in the same phase are assumed 

to start at the same time. The communication cost in each phase is represented by the largest 

one among all the communication costs in that phase, and overall communication cost is the 

sum of the communication costs of all phases. The total communication cost for assignment 

A3 is 11 units, as shown in Fig. 15. It is easy to prove that assignment A3 has the minimum 

communication cost, but its total time is 23 units (Fig. 15). On the other hand, assignment 

A4 with 15 units of communication cost has 21 units of total time (Fig. 17), which is less than 

the total time of assignment A3 with optimal communication cost. 

Fig. 13 Problem graph 
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Fig. 15 
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Fig. 16 Assignment A4 
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These examples illustrate that indirect measures do not always properly reflect the total 

execution time of a parallel program. Hence to achieve an optimal mapping, the total time 

will be used by our approach directly as the only measure. 

3 Internal Representation 

So far we have talked about all graphs of Fig. 1 at only a conceptual level. In this section 

we introduce the internal representation of each graph, and other auxiliary data structures, 

needed by the mapping algorithms presented in subsequent sections. 

1. Problem graph 

(a) A problem edge matrix, prob_edge[np][np], describes the edges in the problem graph. 

Each element is denoted by prob_edge[i][j] where the value of prob_edge[i][j] is the 

weight of the problem edge. A problem edge matrix for the problem graph in Fig. 2 

is given in Fig. 18. 

(b) task_size[np] is a one-dimension matrix which describes the execution time for each 

task, i.e., the weight of each node. 

2. Clustered problem graph 

(a) A clustered edge matrix, clus_edge[ np][np], contains the weights of the edges in the 

clustered problem graph. It is derived from the problem edge matrix by omitting the 

problem edges whose nodes are in the same abstract node. For example, the problem 

edge prob_edge[l] [4] is eliminated in the clustered edge matrix in Fig. 19-a, since task 

1 and task 4 are in the same abstract node Vao· 
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(b) A cluster matrix clus_pnode[na][np] describes which problem nodes are in which clus­

ter. For example, in Fig. 19-b, the value of clus_pnode[2][3], 9, is the ID of the third 

problem node in cluster 2. Note that the horizontal dimension is 11, which is the 

maximum size of any cluster, i.e., the total number of nodes in the graph. 

3. Abstract graph 

(a) An abstract edge matrix, abs_edge[na][na], represents the edges of the abstract graph. 

An element abs_edge[i][j] contains 0 if there is no edge between node i and node j; 

otherwise, it contains a 1. Fig. 20-a is an example of the matrix representation of 

the abstract graph shown in Fig. 4. 

(b) A critical abstract edge matrix, c_abs_edge[na][na+ 1], represents the critical abstract 

edges. The value of each element, except the elements in the last column, is the weight 

of the critical abstract edge. The last element of each row is the critical degree, defined 

as the sum of all the numbers in that row (see section 2.1). Fig. 20-b shows the critical 

abstract edge matrix corresponding to Fig. 20-a and Fig. 6. 

( c) The matrix, mca[na], represents the communication intensity of the abstract nodes. 

Each element mca[i] is the sum of the weights of all clustered problem edges which 

directly connect to abstract node i. For example, mca[2) = 13, as shown in Fig. 20-c, 

says that the sum of the weights of all edges that connect to abstract node 2 is 13: 

4. System graph 

(a) The system graph is represented by a matrix sys_edge[ns][ns]. An example of a sys­

tem graph and its matrix representation are given in Fig. 5-a and 21-a, respectively. 
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(b) A shortest path matrix, shortest[ns][ns], represents the shortest path between any 

pair of system nodes. The shortest path matrix corresponding to the system graph 

of Fig. 5-a is shown in Fig. 21-b. 

( c) A node degree matrix, deg [ ns J, gives the degree of each system node. The node degree 

matrix corresponding to the system graph matrix in Fig. 21-a is shown in Fig. 21-c. 

5. System graph closure 

The system graph closure is fully connected. Its matrix contains all ones except the 

diagonal elements. Thus, it is not necessary to explicitly represent this closure by a 

matrix. 

6. Ideal graph 

(a) A matrix i_edge[np][np] is used to represent the ideal graph edges. The value of 

element i_edge[i][j] is the weight of an ideal edge. Each i_edge[i][j] is always equal 

to or greater than clus_edge[i][j]. The reason is data dependencies (as explained in 

section 2). An example of the ideal graph edge matrix is shown in Fig. 22-a. 

(b) Matrices i_start[np] and i_end[np] are used to represent the start time and end time of 

each task, respectively. Fig. 22-b shows two examples of the matrices. i_start[4] = 1 

means that start time of task 4 is at unit 1. i_end[4] = 4 means that end time of task 

4 is at unit 4. 

( c) A matrix criLedge[np] [np] is used to describe the critical problem edges. criLedge[i] [j] 

is the weight of a critical problem edge between task i and task j. In Fig. 6, the edge 

i_edge[7][9] is critical, since task 9 terminates last and i_edge[7][9] = clus_edge[7][9]. 

The critical problem edge matrix corresponding to the ideal graph of Fig. 6 is shown 
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in Fig. 22-c. 

7. Assignment 

Four matrices are used for representing the assignment of abstract nodes to system nodes: 

the assignment itself, the communication time between each pair of tasks, the start time, 

and the end time of each task. 

(a) Assignment matrix, assi [ ns], expresses the assignment from abstract nodes to system 

nodes. The value of assi[i] is the ID number of the abstract node that is mapped to 

system node i. Fig. 23-a is an example of an assignment. The numbers in brackets 

are the IDs of the system nodes, and the numbers without brackets are the IDs of 

the abstract nodes. For example, the abstract node 3 is mapped to system node 2. 

Fig. 23-b is an example of the assignment matrix corresponding to Fig. 23-a. 

(b) A communication matrix comm[np][np] describes the communication between any 

pair of problem nodes under a given assignment. When a clustered problem graph 

is mapped to a system graph, instead of the fully connected closure, a clustered 

problem edge may be mapped to more than one system edge. comm[i][j] equals 

to clus_edge[i][j] * ne, where ne is the number of system edges of the shortest path 

between two system nodes on which task i and task j are allocated. Fig. 23-c 

represents a communication matrix under the assignment Ai shown in Fig. 23-b. For 

. 
example, the expression in the third row and the eighth column is 1*2, which means 

that the communication with weight 1 between the two tasks 3 and 8 will pass two 

system edges. 
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( c) Two matrices start[np] and end[np] represent the start time and end time of each 

task, respectively. Examples of start time and end time matrices corresponding to 

the communication matrix comm[np] [np] are shown in Fig. 23-d. 
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3 
~ 
6 
7 

~ 
12 

1 2 3 4 5 6 7 8 9 1011 
1 2 2 
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1 2 2 1 
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2 2 3 

2 

Fig.18 Problem edge matrix 
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3 
~ 
6 

~ 
12 
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Fig.19-a 
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2 3 

Clustered problem edge matrix 

( 
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~ ~~i7110 l 
~ ~ 6 9 

Fig.19-b Cluster matrix 

o[ ~ .~ i ~ ~ J 1 3 0 0 0 3 
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4 Mapping Algorithms 

In this section, we will introduce the algorithms which perform the transitions of Fig. 1. 

4.1 Deriving the Ideal Graph 

If we know the start/end time of each task, deriving the ideal graph, represented by the ideal 

edge matrix i_edge[i][j], is easy, since each ideal edge i_edge[i][j] is the difference between the 

start time of task j and the end time of task i. If we want to obtain the start time of a task, 

we have to know the c, nunication times between the task and its predecessors. However, 

the ideal graph is the result of mapping a clustered problem graph to a fully connected closure, 

and thus the communication time between each pair of tasks is the same as the weight of the 

corresponding clustered problem edge; there is no need to derive the communication time for 

each pair of tasks. Instead, we can derive the start time, represented by matrix i_start[i], and 

end time, represented by matrix i_end[i], of all tasks directly from the clustered problem edge 

matrix clus_edge[np][np]. Hence, deriving the ideal graph consists of two steps: first, derive 

start time and end time of each task; then, derive ideal edges. 

The start time of a task is derived by adding together the end time of each predecessor 

and the corresponding communication time, and taking the maximum over all sums. This is 

because a task can only be executed after all its predecessors have finished. The end time of 

a task is the sum of its start time and its weight. Note that we can't find a task's predecessor 

only from matrix clus_edge[np][np], because two tasks may be in the same abstract node and 

the problem edge connecting the task and its predecessor is removed in the clustered problem 

graph. For example, we can't find the predecessor of task 4 from the matrix clus_edge[np][np] 

in Fig. 19-a. Instead, we have to check the problem edge matrix prob_edge[np][np] in Fig. 18, 
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which tells us that task 1 is the predecessor of task 4. This yields the algorithm below. 

I Algorithm for deriving the start and end time of each task in ideal graph 

Do the following until all tasks have been visited: 

1. For an unvisited task i, find its predecessors from matrix prob_edge[np][np]. 

2. If it has a predecessor, go to 3. Otherwise, do the following: 

(a) i_start[i] = 0 

(b) i_end[i] = i_start[i] + task_size[i] 

( c) Mark task i as visited. 

3. If any one of the end times of all the predecessors of task i is unknown, go to 1. Otherwise, 

do the following: 

(a) For each predecessor j, derive i_start[i] = maxj(i_end[j] + clus_edge[j][i]) 

(b) i_end[i] = i_start[i] + task_size[i] 

(c) Mark task i as visited. 

The following explains how some elements of the start and end time matrices are obtained. 

In the matrix prob_edge[np][np] (Fig. 18), all the elements in column 1 are Os, which means 

that no predecessor of task 1 exists. Therefore, task 1 can be executed first. Its start time, 

i_start[l], is 0 and its end time, i_end[l], is the sum of its start time and its weight, which is 

1. In column 4 of Fig. 18, only the first row has a non-zero element, 2, Which means that 

only task 1 is the predecessor of task 4. Since the end time of task 1 is known, i_startf4] = 

i_end[l] + clus_edge[1][4]. Then, i_end[l] = 1 and clus_edge[1][4] = 0, since task 1 and task 4 

are in a same abstract node. The end time of task 4, i_end[4], consequently, is 4. In the same 
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way, task 9 has three predecessors, 5, 6, and 7. So, the start time of task 9 is the maximum sum 

of the end times of its predecessors and the weights of the clustered problem edges between 

the predecessors and the task 9, i.e., 12. Its end time is 14. The complete start time and end 

time matrices derived from the problem edge matrix in Fig. 18 and the clustered problem edge 

matrix in Fig. 19-a using the above algorithm are shown in Fig. 22-b. 

II Algorithm for deriving the lower bound 

The lower bound is derived simply from the end time matrix: 

lower _bound= i_end[l] 

where l is the latest task. 

After we obtain the start time and end time of each task, it is easy to derive the ideal edge 

matrix i_edge[np][np] which will be used to derive critical edges. 

III Algorithm for finding ideal edge matrix i_edge[np][np] 

Do the following for each pair of tasks i and j: 

1. If there is an edge between i and j in the clustered problem graph, and j is the predecessor 

of i, i.e., clus_edge[j][i] > 0, then i_edge[j][i] = i__start[i] - i_end[j]. 

2. All other elements remain 0. 

An example of the ideal edge matrix derived from the start and the end time matrices in 

Fig. 22-b is shown in Fig. 22-a. 

4.2 Finding Critical Abstract Edges 

To find the critical abstract edges we first need to find all critical problem edges. Following is 

the basic idea needed for finding the latter. 
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Theorem 1 An edge e;;j in the ideal graph is critical if its weight, i_edge[i][j], is equal 

to the weight of the corresponding edge, clus_edge[i][j], in the clustered problem graph and it 

directly connects to the latest task. 

Proof : Since i_edge[i][j] = clus_edge[i][j], any increase in the weight of the corresponding 

edge in the clustered problem graph, clus_edge[i][j], must increase the weight of the ideal edge 

i_edge[i][j]. Increasing the weight of any ideal edge, i_edge[i][j], will delay the start time of the 

task j. Since the edge i_edge[i][j] directly connects to the latest task, increasing the weight of 

the clustered problem edge will lengthen the start time of the latest task, and consequently, 

the total time of the program. Hence, by definition, the edge e;;j is critical. D 

The following lemmas are needed to prove Theorem 2 below. 

Lemma 1 If an ideal edge, i_edge[i][j], is critical, any delay of the start time of the task i 

will delay the start time of the task j by the same amount. 

Proof : Since i_edge[i][j] is critical, clus_edge[i][j] = i_edge[i][j]. From the definition of the 

start time we know that i_start[j] = i_start[i] + task..size[i] + i....edge[i][j]. If i_start[i] increases 

by~' from the above equation, i_start[j] must also increase by the same~. D 

Lemma 2 If an ideal edge, i_edge[i][j], is critical, there exists a path from task i to the 

latest task l in which all the edges are critical. 

Proof : We can distinguish the following three cases: the path from task i to the latest 

task consists of (1) one edge, (2) two edges, and (3) more than two edges. For first case, task 

j is the latest task. Therefore, the critical edge i_edge[i][j] is the path from task i to the latest 

task. 

For the second case, we assume that the edge i_edge[j][l] is not critical and show that, under 

this assumption, i_edge[i] [j] is also not critical, which contradicts the condition of the lemma. 
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First, from the assumption it follows that we can find an amount 6. such that increasing the 

weight clus_edge[j][l] by that amount will not increase the weight of the ideal edge, i_edge[j][l], 

i.e., i_edge[j][l] ~ clus_edge[j][l] + 6. will still hold. Next, if i_edge[i][j] is critical then, by 

definition, increasing the corresponding clustered problem edge by 6. will increase the total 

time. The total time before the increase is totaUime = i_end[j] + i_edge[j][l] + task__size[l]. 

After the increase, i_end[j]' = i_end[j] + 6., and the total time is totaUime' = i__start[l]' + 

task_size[l], where i_start[l]' is derived from the definition of the start time: 

Therefore, 

i__start[l]' - i_end[j]' + clus_edge[j][l] 

i_end[j] + 6. + clus_edge[j] [l] 

totaLtime' i__start[l]' + task__size[l] 

i_end[j] + 6. + clus_edge[j][l] + task__size[l] 

From the inequality 

i_edge[j] [/] ;:::: clus_edge[j] [/] + 6. 

derived above and the equation for total time, we obtain the following inequality 

totaUime' - i_end[j] + 6. + clus_edge[j][l] + task__size[l] 

< i_end[j] + i_edge[j][l] + task__size[l] 

totaLtime 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Hence, increasing the weight of the clustered problem edge, clus_edge[i][j], doesn't lengthen 

the total time, and thus the ideal edge, i_edge[i][j] is not critical. This contradicts the given 
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condition and, therefore, the edge i_edge[j][l] is critical. 

For the third case we assume that there is no path ( i, ... , l) such that all edges on this path 

are critical and derive a contradiction from this assumption. Suppose that there is exactly one 

ideal edge, i_edge[k1][k2], on the path (i,j, ... , k1 , k2 , ... , l), which is not critical. Similar to the 

second case, we derive the inequality i_edge[ki)[k2] ~ clus_edge[k1][k2] + .6.. The total time 

before the increase is totaUime = i_end[k1] + i_edge[k1][k2] + (i_end[l] - i__start[k2]). Note 

that all edges from node k2 to the latest task l are critical. From lemma 1, the difference, 

(i_end[l] - i_start[k2]), is a constant if the weights of the corresponding clustered problem 

edges are not changed. Thus, we have 

totaLtime = i_end[k1] + i_edge[k1][k2] + C 

Similar to the second case, we increase the weight of the clustered problem edge, clus_edge[i] [j] 

by some amount .6.. The weight of the corresponding ideal edge, i_edge[i][j]', will increase by 

the same amount, since it is critical. This will delay the start time of task j by .6.. Since all 

the edges from task i to task k1 on the path are critical, by lemma 1, the delay, .6., will be 

transferred to the task ki, i.e., i_end[k1]' = i_end[k1] + .6.. From the definition of the start time 

of a task, we obtain i_start[k2]' = i_end[k1 ]' + clus_edge[k1J[k2]. Thus, we have 

totaUime' - i_start[k2]' + C 

- i_end[k1] + .6. + clus_[k1][k2] + C 

< i_end[k1] + i_[k1][k2] + C 

- totaUime 

(8) 

(9) 

(10) 

(11) 

As in case two, increasing the weight of the clustered problem edge, clus_edge[i][j] doesn't 

29 



lengthen the total time, and thus the ideal edge, i_edge[ i][j] is not critical. This is contrary 

to the given condition. Therefore, the edge i_edge[k1][k2] and all other edges on the path are 

critical. D 

Lemma 3 If an ideal edge, i_edge[i][j], is critical, any delay of the start time of the task i 

will postpone the total time. 

Proof : From lemma 2, there exists a path from i to the latest task l in which all the edges 

are critical. Then by applying lemma 1 repeatedly, the delay of the start time of the task i 

will postpone the total time. 0 

Theorem 2 An edge in the ideal graph, i_edge[i][j], is critical if its weight is equal to the 

weight of the corresponding edge in the clustered problem graph, clus_edge[i][j], and it is the 

predecessor of a critical problem edge i_edge[j][k]. 

Proof: Increasing the weight of the edge clus_edge[i][j] will delay the start time of task j, 

because i_edge[i][j] = clus_edge[i][j]. Since the task j is connected by a critical problem edge, 

the delay of the start time of the task j will lead to lengthening of the end time of the latest 

task (total time), based on lemma 3. Consequently, this edge is critical. D 

Based on the above theorems, we can find all critical problem edges in an ideal graph 

recursively. This is the main idea of the following algorithm. 

I Algorithm for finding critical problem edges 

1. Find the set, LS, of latest tasks Vi in the ideal graph from the end time matrix i_end[np]. 

LS can have one or more elements. 

2. Repeat until LS is empty. 

For each v; in LS do the following: 
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(a) Find the predecessors of Vi in the matrix clus_edge[np][np]. 

(b) For each predecessor Vj, compare the weight of the corresponding edge in the clus­

tered problem graph, clus_edge[j][i], with the weight of the edge in the ideal graph, 

i_edge[j][i]. If they are equal, then the edge i_edge[j][i] is critical, and criLedge[j][i] = 

clus_edge[j][i]. 

( c) Include all predecessors of Vi that are connected to Vi by a critical problem edge( s) 

in LS. 

3. All other elements of criLedge[np][np] remain 0. 

An example of a critical problem edge matrix, resulting from the clustered problem matrix 

(Fig. 19-a) and the ideal edge matrix (Fig. 22-a), is shown in Fig. 22-c. 

Since an abstract edge is derived by collapsing clustered problem edges between the same 

abstract nodes into one, by definition, if there is at least one critical problem edge among those 

clustered problem edges, this abstract edge is critical. Therefore, the algorithm for finding the 

critical abstract edge is to detect whether there is a critical problem edge in an abstract edge. 

We have the following algorithm. 

II Algorithm for finding the critical abstract edges 

1. Find all critical problem edges criLedge[i][j] (above algorithm). 

2. For abstract nodes Vaz,Vam, where (0 :=::; l,m :=::; na - l), find all critical problem edges 

criLedge[i][j] where, problem nodes i, j are included in abstract nodes Vaz, Varn, respec­

tively. Assign the sum of the weights of the critical problem edges as the weight of this 

critical abstract edge. 

c_abs_edge[Vat][Vam] = L( criLedge[i][j] + criLedge[j][i]) 
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Based on the fact that the critical degree of each abstract node is the sum of the weights 

of all critical abstract edges directly connected to the abstract node, we have the following 

algorithm. 

III Algorithm for finding the critical degree of each abstract node 

For all i (0::; i ::; na - 1), do 

na-1 

c_abs_edge[i][na] = L c_abs_edge[i][j] 
j=O 

An example of the critical abstract edge matrix is shown in Fig. 20-b. 

4.3 The Mapping Algorithm 

The mapping is performed in two stages: initial assignment and refinement. How to refine the 

initial solution and when to stop the refinement are the two most important aspects. 

4.3.l The Termination Condition 

The system graph closure provides a means to derive a lower bound on the total time of the 

problem program. This is based on the following theorem. 

Theorem 3 If the total time of any assignment is equal to the total time of the ideal 

graph, this assignment is an optimal mapping. 

Proof: The communication time between any pair of system nodes can't be lower than 

that of the corresponding pair of the nodes in the closure, since the latter is fully connected. 

Therefore, the total time of any assignment can't be lower than the total time of the ideal 

graph, which is the result of mapping the abstract graph to the system graph closure. If the 

total time of an assignment is equal to the total time of the ideal graph, then the optimal 

mapping is reached. D 
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(a) Find the predecessors of Vi in the matrix clus_edge[np][np]. 

(b) For each predecessor Vj, compare the weight of the corresponding edge in the clus­

tered problem graph, clus_edge[j][i], with the weight of the edge in the ideal graph, 

i_edge[j][i]. If they are equal, then the edge i_edge[j][i] is critical, and criLedge[j][i] = 

clus_edge[j] [i]. 

( c) Include all predecessors of Vi that are connected to Vi by a critical problem edge( s) 

in LS. 

3. All other elements of criLedge[np][np] remain 0. 

An example of a critical problem edge matrix, resulting from the clustered problem matrix 

(Fig. 19-a) and the ideal edge matrix (Fig. 22-a), is shown in Fig. 22-c. 

Since an abstract edge is derived by collapsing clustered problem edges between the same 

abstract nodes into one, by definition, if there is at least one critical problem edge among those 

clustered problem edges, this abstract edge is critical. Therefore, the algorithm for finding the 

critical abstract edge is to detect whether there is a critical problem edge in an abstract edge. 

We have the following algorithm. 

II Algorithm for finding the critical abstract edges 

1. Find all critical problem edges criLedge[i][j] (above algorithm). 

2. For abstract nodes Vat, Varn, where (0 ::; l, m ::; na - 1), find all critical problem edges 

criLedge[i](j] where, problem nodes i, j are included in abstract nodes Vat, Varn, respec­

tively. Assign the sum of the weights of the critical problem edges as the weight of this 

critical abstract edge. 

c_abs_edge[va1][Vam] = 2::( criLedge[i][j] + criLedge[j][i]) 
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Based on the fact that the critical degree of each abstract node is the sum of the weights 

of all critical abstract edges directly connected to the abstract node, we have the following 

algorithm. 

III Algorithm for finding the critical degree of each abstract node 

For all i ( 0 ::; i ::; na - 1), do 

na-1 

c_abs_edge[i][na] = :L: c_abs_edge[i][j] 
j=O 

An example of the critical abstract edge matrix is shown in Fig. 20-b. 

4.3 The Mapping Algorithm 

The mapping is performed in two stages: initial assignment and refinement. How to refine the 

initial solution and when to stop the refinement are the two most important aspects. 

4.3.1 The Termination Condition 

The system graph closure provides a means to derive a lower bound on the total time of the 

problem program. This is based on the following theorem. 

Theorem 3 If the total time of any assignment is equal to the total time of the ideal 

graph, this assignment is an optimal mapping. 

Proof: The communication time between any pair of system nodes can't be lower than 

that of the corresponding pair of the nodes in the closure, since the latter is fully connected. 

Therefore, the total time of any assignment can't be lower than the total time of the ideal 

graph, which is the result of mapping the abstract graph to the system graph closure. If the 

total time of an assignment is equal to the total time of the ideal graph, then the optimal 

mapping is reached. D 
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From theorem 3 we derive the following termination condition: 

Termination Condition If the total time of an assignment is equal to the total time of 

the ideal graph, terminate the refinement process. 

4.3.2 Initial Assignment 

Initial assignment tries to achieve the smallest possible total time of a given clustered problem 

graph and a system graph. As mentioned before, the critical edges influence the goodness of 

the mapping most significantly. Hence the basic idea of the initial assignment algorithm is 

to map the critical edges to neighboring system nodes or at least as close as possible. This 

usually yields a very good initial assignment, as has been verified by our experiments. 

The initial assignment algorithm consists of the following three steps: 

1. (a) Using the matrix deg[i], select node Vs from Vs such that deg[vs] has the maximum 

degree. In the event of a tie, select any qualifying node arbitrarily. Mark Vs as visited. 

(b) Select node Va from Va such that c_abs_edge[va][na] has the maximum critical degree 

(see section 3.3.(b )). In the event of a tie, select any qualifying node arbitrarily. Mark 

Va as visited. 

( c) assi[vs] = Va. Mark Va as a critical abstract node. 

2. Repeat until all the abstract nodes that have critical abstract edges have been visited. 

(a) Using the matrix c_abs_edge[i][j], select node Va from Va such that Va is unvisited, 

c_abs_edge[va][na] has the maximum critical degree, Va is a neighbor of some marked 

node v~ in Va and the abstract edge abs_edge[va][v~] is critical, i.e., c_abs_edge[va][v~] > 

0. Mark Va as visited. 
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(b) If a node Vs from V. can be selected such that Vs is unvisited, deg[vs] has the maximum 

degree and V8 is a neighbor of some marked node v~ in V. (sys_edge[vs][v~] > 0), such 

that assi[v~] = v~, then assi[vs] =Va, mark Vs as visited, mark Va as critical abstract 

node and go to (a). Otherwise, go to (c). 

( c) Select node Vs from V. such that Vs is unvisited, Vs is the closest node from some 

marked node v~ in V., i.e., shortest[vs][v~] is smallest, and assi[v~] = v:, then 

assi[vs] = Va and mark Vs as visited. 

3. Repeat until all nodes in Va have been visited. 

(a) Select node Va from Va such that Va is unvisited, mca[va] has the largest communica­

tion intensity and Va is a neighbor of some marked node v~ in Va (abs_edge[va][v:J > 0). 

Mark Va as visited. 

(b) If a node Vs from V. can be selected such that Vs is unvisited, deg[vs] has the largest 

degree and Vs is a neighbor of some marked node v~ in V., (sys_edge[vs][v~] > 0), such 

that assi[v~J = v:, then assi[vs] =Va, mark Vs as visited and go to (a). Otherwise go 

to ( c). 

( c) Select node Vs from V. such that Vs is unvisited, Vs is the closest node of some marked 

node v~ in V., i.e., shortest[v8][v~] is smallest, and assi[v~J = v~, then assi[vs] = va, 

and mark V 8 as visited. 

4.3.3 Refinement 

The initial assignment which uses the critical abstract edges to guide the mapping process is 

usually quite good, but subsequent refinement is likely to improve the mapping further. 

An iterative improvement technique has been chosen to refine the mapping. 

34 



We wish to preserve the mappings of the critical abstract nodes to the system nodes, as 

performed by the initial assignment, since they map critical abstract edges to a single system 

edge each. Hence, we don't touch the critical abstract nodes, but only change the mapping 

of the non-critical abstract nodes. This is achieved by performing random changes to the 

assignment and keeping the new mapping if it is better than the current one. A total of ns 

changes are allowed. We make use of the termination condition at each iteration. It has been 

verified by our experiment that this method works better than pairwise exchanges [2]. The 

refinement procedure is described below. 

1. Derive an initial assignment Al (algorithm in section 4.3.2). 

2. Evaluate the total time (see section 4.3.4). 

3. If the total time of Al is equal to the total time of the ideal graph, stop. Otherwise, go 

to 4. 

4. Repeat the following ns times 

(a) Randomly assign the non-critical abstract nodes to the system nodes which are not 

occupied by critical abstract nodes. 

(b) Evaluate the total time of the changed assignment, A2. 

( c) If the total time of the changed assignment A2 is equal to the total time of the ideal 

graph, stop; the optimal solution has been reached. 

( d) If the total time of A2 is less than that of Al, assign A2 to be the current assignment; 

else keep Al. 

It is very easy to obtain the time complexity of the former algorithms. The highest order is 

O(np2 ). In the refinement algorithm, procedure 4-(b) determines the time complexity. Because 
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the time complexity of the algorithm for evaluating total time is also O(np2 ) and ns changes 

are allowed, the worst case of the complete procedure is 0( ns * np2 ) time. 

4.3.4 Evaluating Total Time 

Mapping of the clustered problem graph to the system graph closure is similar to mapping it 

to the system graph. Hence, evaluating the total time is similar to deriving the lower bound, 

as described in section 4.1. The main difference is that the system graph usually is not fully 

connected. To derive the start and end time matrices, we first generate the communication 

matrix comm[np][np], which describes the communication between any pair of problem nodes 

under a given assignment. 

When an assignment is obtained, the relationship between each abstract node and each 

system node has been set up. Hence, the communication time for each pair of problem nodes 

can be derived by multiplying the weight of the clustered problem edge between the two nodes 

by nij, the length of the shortest path between the two system nodes on which the two problem 

nodes are allocated. Thus, comm[i][j] = clus_edge[i][j] * nij· Based on this, we obtain the 

following algorithm for deriving the communication matrix. 

I Algorithm for finding the communication matrix 

1. Find the shortest path between any pair of system nodes shortest[ns][ns] (use some 

existing algorithm [16]). 

2. Do the following for each pair of the clustered problem nodes i and j: 

If i and j are in different abstract nodes Var, Varn, and assi[vsi] = Va/, assi[vsrn] = Varn, then 

comm[i][j] ~ clus_edge[i][j] x shortest[vsz][vsrn] 
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Using the matrix comm[i][j], we can derive the start time and end time of each task by 

using the following algorithm, which is similar to that used for the ideal graph. 

II Algorithm for deriving the start time and end time of each task under a given 

assignment 

Do the following until all tasks have been visited: 

1. For an unvisited task i, find its predecessors from matrix prob_edge[np][np]. 

2. If it has predecessors, go to 3. Otherwise, do the following: 

(a) start[i] = 0 

(b) end[i] = start[i] + task_size[i] 

( c) Mark task i as visited. 

3. If the end time of any of the predecessors of task i is unknown, go to 1. Otherwise, do 

the following: 

(a) For each predecessor j, derive start[i] = maxi(end[j] + comm[j][i]) 

(b) end[i] = start[i] + task_size[i] 

( c) Mark task i as visited. 

III Algorithm for deriving the total time of the program under an assignment 

Assign the maximum end time to the total time of the program. The node with the 

maximum end time is the latest task. 

totaLtime =maxi( end[j]) 

Fig. 24 shows the result of mapping the clustered problem graph from Fig. 3 onto the system 
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graph in Fig. 5-a using the preceding algorithms. Since the total time of this initial assignment 

is equal to that of the ideal graph, it is an optimal mapping and no further refinement is needed. 

5 Experiments 

It is hard to compare one heuristic approach with other heuristic approaches. To avoid criticism 

for having used only several special examples particularly suited to our approach, random 

mapping was chosen to be compared with our mapping strategy. For this purpose, a random 

problem graph generator was created and a random clustering program was developed. The 

weights of the problem nodes and the weights of the problem edges are also produced randomly. 

The numbers of nodes in a problem graph range from 30 to 300, while the numbers of nodes 

in a system graph range from 4 to 40. The system topologies are hypercubes, meshes, and 

random graphs. All algorithms were implemented in C++ and run on a SUN-4 workstation. 

Since the problem graphs and the clusterings are produced randomly, the numbers of the 

problem nodes and system nodes as well as the total time of each experiment fluctuate sig­

nificantly, thus making it difficult to compare the total times by actual units. To compensate 

for the variance, we performed several random mappings of the same problem graph to the 

same system graph and take the average of the total times. The percentages of the total times 

derived by using our approach and the average total times derived by using random mappings 

over the lower bound are used to show the improvement. 
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5.1 Mapping to Hypercube 

Table 1 

exp ts our approach random 

1 104 148 
2 115 178 
3 110 158 
4 118 147 
5 105 140 
6 106 147 
7 100 158 
8 100 160 
8 107 155 
10 105 159 

Percentage~ 
over lower bound 

180 

160 

140 

120 

100/100 

I 
I 
I 
I 
I 
I 
I 

I I I I I I I I I 
I I I I I I I I I I 
-~------!_L_L_L~_J ____ _ 

1 2 3 4 5 6 7 8 9 10 

Fig. 25 Mapping to Hypercubes 

improvement 

44 
63 
48 
29 
35 
41 
58 
60 
48 
54 

Examples 

The comparison between mapping randomly produced abstract graphs to a hypercube topol-

ogy using our mapping strategy versus random mapping is shown Table 1. The first column is 

the experiment number. In each experiment, the lower bound is used as the basis for compar-

isons and is set to 100 percent. The results of using our approach and random mapping are 

represented by the percentages over the lower bound, as shown in columns 2 and 3, respec-

tively. The fourth column describes the improvement of using our approach over the random 

mapping. Fig. 25 presents the same results in a graphical form. Each point on the horizontal 
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axis corresponds to one problem graph, i.e., the figure is a histogram. The lower end of each 

vertical dashed line shows the result of a mapping using our mapping strategy; the higher end 

shows the random mapping result. For example, a lower end value of 110 and an upper end 

value of 160 mean that a program mapped by using our approach requires only 10% more time 

than the lower bound, while a random mapping would result in a 60% increase in total time. 

The results demonstrate that the improvement between the results of our approach and those 

of the random mapping range from 29 percent to 63 percent. In 2 out of 10 cases, our results 

reached the lower bound. 

Table 2 

exp ts our approach random 

1 100 134 
2 100 148 
3 105 142 
4 100 147 
5 100 133 
6 112 153 
7 100 132 
8 100 135 
9 100 133 
10 103 136 
11 107 144 

Perc~ntage~ 
over lower bound 

160 

150 

140 

130 

120 

110 
100/10 

I 
I I 
I I 
I I 
I I 
I I 
I I I 
I I 

I I I I I I I I I 
-L~---~-~---L-L_L ____ _ 

1 2 3 4 5 6 7 8 9 1011 
Fig. 26 Mapping to Meshes 
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34 
48 
37 
47 
33 
41 
32 
35 
33 
33 
37 

Examples 



Table 3 

exp ts our approach random improvement 
1 102 163 61 
2 107 178 71 
3 105 152 47 
4 105 158 53 
5 112 180 68 
6 104 161 57 
7 100 153 53 
8 114 182 66 
9 108 173 65 

12 188 u~ t~ 
12 105 153 48 
13 102 158 56 
14 100 177 77 
15 100 168 68 
16 102 148 46 
17 103 147 44 

Percenta.e:~ 
over lower bound 

190 
180 
170 
160 
150 
140 
130 
120 
110 
100 

I 
I I 
I 
I 

I I 
I 
I 
I 
I 
I 

I I I I I I I I I I I I I I 
I I I I I I I I I I I I t I I 
~----------J ____ ~_J ___ 1_~~-1_1_ 

1 2 3 4 5 6 7 8 9 1011 13 15 17Examples 
Fig. 27 Mapping to Randomly Produced Topologies 

5.2 Mapping to Mesh and Random Topologies 

Table 2 and Table 3 are analogous to Table 1, and Fig. 26 and 27 are analogous to Fig. 

25. They show the results of mapping random problem graphs to mesh architectures and 

to randomly produced system architectures, respectively. They show improvements between 

the results of our approach and those of the random mapping ranging from 33 percent to 77 

percent for the total time. The experiments also demonstrate that the termination condition 
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works well. In Fig. 27 there are 4 out of 15 cases where our mapping stops the refinement by 

the termination condition. In Fig. 26, there are 7 out of 11 such cases. 

6 Conclusion 

In this paper, we presented a mapping strategy which maps a clustered problem graph to a 

system graph. This strategy uses the complete execution time of a parallel program, repre-

sented by a clustered problem graph, as the measure to evaluate the goodness of the mapping. 

Through the analysis of the critical edges based on the mapping of the abstract graph to the 

system graph closure, we obtain two important concepts: critical abstract edges and a lower 

bound. The former is used to guide the mapping by attempting to assign critical edges to a 

single system edge each. The latter allows us to derive a termination condition which stops 

unnecessary refinement and reduce both searching space and mapping time. The algorithms 

presented in this paper make it possible to map np problem nodes tons system nodes where 

np > ns. The effectiveness of this approach has been verified empirically, by deriving the 

mappings of different, randomly generated problem graphs onto hypercube, mesh-connected, 

and random system graphs. The results have shown improvements ranging from 29 to 77% in 

total execution time over random mappings. 
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