
UC Irvine
ICS Technical Reports

Title
A mapping strategy for MIMD computers

Permalink
https://escholarship.org/uc/item/1hv2s90k

Authors
Yang, Jiyuan
Bic, Lubomir
Nicolau, Alexandru

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1hv2s90k
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

A Mapping Strategy for MIMD Computers
~~

Jiyuan Yang, Lubomir Bic, Alexandru Nicolau
Departm;nt o«finformation and Computer Science

University of California, Irvine
Irvine, CA 92717

Technical Report No. 91-35

z
(o ?

T

A Mapping Strategy For MIMD Computers

Jiyuan Yang, Lubomir Bic, Alexandru Nicolau

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92717

Abstract

In this paper, a heuristic mapping approach which maps parallel programs, described by precedence
graphs, to MIMD architectures, described by system graphs, is presented. The complete execution time
of a parallel program is used as a measure, and the concept of critical edges is utilized as the heuristic to
guide the search for a better initial assignment and subsequent refinement. An important feature is the
use of a termination condition of the refinement process. This is based on deriving a lower bound on the
total execution time of the mapped program. When this has been reached, no further refinement steps
are necessary. The algorithms have been implemented and applied to the mapping of random problem
graphs to various system topologies, including hypercubes, meshes, and random graphs. The results show
reductions in execution times of the mapped programs of up to 77 percent over random mapping.

°Index Terms- Critical edge, heuristic algorithm, mapping problem, parallel processing.

1 Introduction

In order to effectively utilize large-scale parallel computers, the scheduling problem is one of

crucial importance. It is possible to divide the general scheduling problem into two parts -

independent job scheduling and task scheduling. For independent job scheduling, there are

optimal scfueduling dlgorithms f4J for di,tributed tomputihg systems and multiprocessors. Task

scheduling, on the other hand, is much harder than independent job scheduling, since it needs

to schedule multiple interrelated tasks in a single program for a parallel computer system.

Many researchers have addressed task scheduling in various approaches [5], [6), [7), [12), [13],

1

[15]. The scheduling problems are usually classified into static and dynamic methods. This

paper addresses static task scheduling.

A parallel program is represented by a problem graph, an example of which is shown in Fig.

2. The parallel computer system on which the parallel program is to be executed is referred to

as a system graph. An example is shown in Fig. 5-a. The purpose of the static task scheduling

presented in this paper is to minimize the complete execution time of the parallel program.

Usually, the number of nodes in the problem graph, np, is much larger than the number of

nodes in the system graph ns, (np :::}> ns). In order to simplify the scheduling problem, it can

be divided into two steps. The first step, called clustering, combines np problem nodes into

na groups, where na = ns. The edges connecting problem nodes within the same group are

removed. The resulting graph is called a clustered problem graph. The second step, refered to

as mapping, then maps the na clusters to thens system nodes. Here, each cluster is treated as

a single abstract node and edges connecting two abstract nodes are combined into one abstract

edge. Under this abstraction, the second step only deals with graphs having the same number

of nodes.

In this paper, we present an approach for performing the mapping of a clustered problem

graph onto a system graph. In other words, we assume that an existing technique is first

applied to produce a clustering from a given problem graph. The resulting clustered problem

graph is then used as input to our algorithms. Note that the problem graph has the same

number of nodes as the system graph, as has been done with other approaches. However,

in our case, we still use the information about individual tasks within each cluster and their

communication.

Since the mapping problem is NP-Complete, various heuristic algorithms have been <level-

2

A Mapping Strategy For MIMD Computers

Jiyuan Yang, Lubomir Bic, Alexandru Nicolau

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92717

Abstract

In this paper, a heuristic mapping approach which maps parallel programs, described by precedence
graphs, to MIMD architectures, described by system graphs, is presented. The complete execution time
of a parallel program is used as a measure, and the concept of critical edges is utilized as the heuristic to
guide the search for a better initial assignment and subsequent refinement. An important feature is the
use of a termination condition of the refinement process. This is based on deriving a lower bound on the
total execution time of the mapped program. When this has been reached, no further refinement steps
are necessary. The algorithms have been implemented and applied to the mapping of random problem
graphs to various system topologies, including hypercubes, meshes, and random graphs. The results show
reductions in execution times of the mapped programs of up to 77 percent over random mapping.

Index Terms- Critical edge, heuristic algorithm, mapping problem, parallel processing.

1 Introduction

In order to effectively utilize large-scale parallel computers, the scheduling problem is one of

crucial importance. It is possible to divide the general scheduling problem into two parts -

independent job scheduling and task scheduling. For independent job scheduling, there are

optimal sdheduling J1gorithms f4J for di,tributed tomputihg ~ystems and multiprocessors. Task

scheduling, on the other hand, is much harder than independent job scheduling, since it needs

to schedule multiple interrelated tasks in a single program for a parallel computer system.

Many researchers have addressed task scheduling in various approaches (5], (6], (7], (12], (13],

1

[15]. The scheduling problems are usually classified into static and dynamic methods. This

paper addresses static task scheduling.

A parallel program is represented by a problem graph, an example of which is shown in Fig.

2. The parallel computer system on which the parallel program is to be executed is referred to

as a system graph. An example is shown in Fig. 5-a. The purpose of the static task scheduling

presented in this paper is to minimize the complete execution time of the parallel program.

Usually, the number of nodes in the problem graph, np, is much larger than the number of

nodes in the system graph ns, (np ~ ns). In order to simplify the scheduling problem, it can

be divided into two steps. The first step, called clustering, combines np problem nodes into

na groups, where na = ns. The edges connecting problem nodes within the same group are

removed. The resulting graph is called a clustered problem graph. The second step, refered to

as mapping, then maps the na clusters to the ns system nodes. Here, each cluster is treated as

a single abstract node and edges connecting two abstract nodes are combined into one abstract

edge. Under this abstraction, the second step only deals with graphs having the same number

of nodes.

In this paper, we present an approach for performing the mapping of a clustered problem

graph onto a system graph. In other words, we assume that an existing technique is first

applied to produce a clustering from a given problem graph. The resulting clustered problem

graph is then used as input to our algorithms. Note that the problem graph has the same

number of nodes as the system graph, as has been done with other approaches. However,

in our case, we still use the information about individual tasks within each cluster and their

communication.

Since the mapping problem is NP-Complete, various heuristic algorithms have been <level-

2

oped in the past [1], [2]. They focus primarily on minimizing the communication overhead.

Bokhari [l] describes a mapping strategy, where the cardinality, defined as the number of the

problem edges that fall on system edges, is used as the measure for evaluating a mapping.

Unfortunately, the edges that don't fall on system edges can have a significant effect on the

system's performance. Another limitation of this strategy is that all problem edges are as­

sumed to have the same weight. However, in a general problem graph, the communication

load carried by the different problem edges may vary significantly. Furthermore, the algorithm

assumes np ::=:; ns, which imposes a serious limitation on the number of problems this method

can be applied to.

Lee describes another mapping strategy which takes the phase for each problem edge into ac­

count, and uses actual distances between the system nodes rather than their nominal distances

[2]. However, the assumption that all problem edges have to be activated simultaneously, i.e.,

all communications in one phase must start at the same time, is too restrictive for most ap­

plications. Similar to Bokhari, he also assumes that the number of nodes in the system graph

must be equal to or greater than the number of nodes in the problem graph, i.e., np ::=:; ns. In

most actual cases, the number of nodes in the problem graph is much larger than the number

of nodes in the system graph.

The main drawback of both of the above mapping strategies is that they only consider com­

munication cost but ignore execution time. We will show later that an optimal communication

cost may still result with a non-optimal complete execution time.

Another limitation is inherent to the process of deriving a solution using these approaches,

which is based on iterative improvement, i.e., repeatingly modifying assignments and com­

paring their results. Unfortunately, this process can't be terminated until a predetermined

3

number of moves have been performed. Hence the search may continue long after the optimal

solution has already been found.

Finally, neither approach considers any data dependencies among nodes. The assumed

problem graphs are not directed, which means that they only consider the communications

among the tasks but not their precedences.

The above limitations indicate the need for a better mapping strategy, which would consider

data dependency, had a more realistic measure of how good a mapping is, and a better termi­

nation method. In this paper, we present such a mapping strategy. The complete execution

time is used as the measure and the data dependencies are taken into account in the mapping

process. The most important merit of this strategy is that, in some cases, it can detect when

the optimal solution has been reached and thus no further refinement attempts are necessary.

This reduces the total search space and time.

The paper is organized as follow. The terminology and the quality measure are introduced

in section 2. The internal problem representation and mapping algorithms are described in sec­

tions 3 and 4, respectively. Experimental results are discussed in section 5. Finally, conclusions

are given in section 6.

2 Terminology and Measure of Quality

In this section, we shall introduce some terms and discuss the measure for evaluating the

goodness of a mapping.

2.1 Terms

The algorithms will use the following five graphs:

4

A problem graph Gp= {Vp, Ep},

A clustered problem graph Ge = {Vc, Ee},

An abstract graph Ga = {Va, Ea},

An ideal graph Gi = {Vi, Ei},

A system graph Gs = {Va, Es},

where Vp, Vc, Va, Vi, Va are sets of nodes and Ep, Ee, Ea, Ei, Es are sets of edges in the

respective graphs. The numbers of nodes in each graph are given by np =I Vp I, nc =I Vc I,

na =I Va I, ni =I Vi I and ns =I Va I, where np = nc = ni and na = ns.

System graph

t
System graph

closure

l
Ideal Graph

/ ""

Problem graph

! Clustering

Clustered Problem Graph i Abstraction

Abstract Graph

Lower Bound Critical problem
edges ana critical
abstract edg~

(Assignment

Refinement t
\ Total Time

Fig. 1 Relationships among the graphs

5

The relationships among the graphs are shown in Fig. 1. The problem graph describes the

tasks and their interactions. Fig. 2 is an example of a problem graph, where each node has

an ID and a weight to indicate the number of time units for executing the task. Each edge

also has a weight which represents the communication time. The clustered problem graph is

derived from the problem graph by combining the problem nodes into groups. An example of

a clustered problem graph derived from the problem graph in Fig. 2 is shown in Fig. 3. As

mentioned earlier, we assume that an existing technique for clustering a given problem graph

is used. Examples of such techniques may be found in [8], [9], [10], [11].

The abstract graph is the result of treating each cluster as one abstract node and collapsing

edges between the same abstract nodes into one. Fig. 4 is the abstraction of the clustered

problem graph in Fig. 3. The main purpose of the abstract graph is to be able to talk about

all edges between two clusters as one. In particular, we need to know if a given abstract edge

is critical. This information is used to guide the mapping.

-E-- ID of the problem node
-E-- Weight of the problem node

2 Weight of the
problem edge

Fig.2 Problem Graph

6

The system graph describes the topology interconnecting homogeneous processing elements

of a parallel computer system. A system graph closure is the fully connected superset of the

system graph. Fig. 5-b shows the closure for the system graph of Fig. 5-a. The concept of

the system graph closure is used to derive the ideal graph, which is a mapping of the clustered

problem graph onto a fully connected system graph. This mapping is unique and is easily

derivable, since the graphs have the same numbers of nodes and the communication cost

between any two system nodes is identical (due to its full connectivity).

Fig. 3 Clustered problem graph

The purpose of deriving the ideal graph is to obtain a lower bound on the complete execution

time of the parallel program. It is also used to derive the critical problem edges and critical

abstract edges (see below) which are used to guide the mapping of the clustered problem graph

to the actual system graph.

7

3 to the closure of Fig. 5-b is shown in Fig. 6. Note that the ideal graph carries the same

information as the clustered problem graph, but is depicted in a different format to visually

capture the time line of execution. In particular, the node weights are unchanged, each shown

inside the corresponding node. The edge weights, on the other hand, are not shown explicitly

as numbers attached to edges but as the time units that separate the nodes on the vertical axis.

For example, the weight on the edge (1,3) is 2 (Fig. 3), which corresponds to a 2-time-unit

delay between the end of node 1 and the beginning of node 3 (Fig. 6).

Fig. 4 Abstract graph

D
Fig. 5-a System graph Fig. 5-b System graph closure

.
The main difference between the clustered problem graph and the ideal graph, however, is

that some edge weights become longer due to data dependencies. For example, the edge (6,11)

carries the weight 1 in Fig. 3, but it results in 7 time units (weight 7) in Fig. 6. This is due to

its dependency on node 7, which, in turn, depends on node 3, and so on. In other words, the

ideal graph may be viewed as the topologically sorted form of the clustered problem graph ..

When the abstract graph is mapped to the system graph, rather than its closure, an

assignment is produced. Based on the assignment and the information in the clustered prob-

lem graph, the complete execution time of the parallel program can be derived. If the result

is not equal to the lower bound, a refinement of the assignment is attempted, as illustrated in

Fig. 1.

8

processors
time unit 0 1 2 3

0 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Fig. 6 Ideal graph

We assume that the execution time of each task (problem node) and the communication

times are measured in time units. For any two problem nodes connected by an edge, we assume

the worst case where each communication takes place between the end of the sending task and

the beginning of the receiving task.

We will define several terms based on the graphs mentioned before, which will be used by

the algorithms of section 4.

1. Latest task - This is the task (problem node) which terminates last. For example, in

Fig. 6, tasks 9 and 11 are the latest tasks.

2. Critical problem edge - An edge in the ideal graph is critical if increasing the weight of

the corresponding edge in the clustered problem graph by any amount will lengthen the

complete execution time of the ideal graph. For example, the problem edge ei79 in Fig.

9

6 is critical, since any increase in the weight of the clustered problem edge ec79 (Fig. 3)

must increase the weight of the ideal edge ei79 and thus delay the start time of the latest

task 9. On the other hand, edge ei59 is not critical, since increasing the weight of the

clustered problem edge ec59 will not necessarily increase the weight of the ideal edge ei79

(Only when the increase is by more than 2, will the ideal graph edge be affected).

3. Critical abstract edge - An abstract edge eakl is critical if there is at least one critical

problem edge eiij, where ideal node Vii is mapped onto abstract node Vak and ideal node

Vij is mapped onto abstract node Va/· The abstract edges eaoi, eao2 in Fig. 4, for example,

are critical.

4. Critical degree of an abstract node - This is the sum of the weights of all critical abstract

edges directly connected to that abstract node. For example, there are two critical abstract

edges eaoi, eao2 that connect to abstract node Vao· Hence, the critical degree of Vao is the

sum of the weights of the two critical abstract edges.

5. Critical abstract node - An abstract node is critical if it is connected to a critical abstract

edge which has been mapped to a single system edge. This is used in the algorithms for

initial assignment and refinement (see 4.3.2 and 4.3.3).

6. Total time - This is the complete execution time of the parallel program.

2.2 Measure of Quality

The goodness of a mapping may be measured in different ways for different applications but

in most cases, total time is the most important criterion. Other measures are based on the

assumption that the total time would be minimized indirectly, as a result of minimizing (or

10

maximizing) other characteristics, such as communication time. Unfortunately, this is not

always the case. We demonstrate this by considering two other measures used by existing

mapping strategies and showing that optimal mappings measured by other characteristics

may be far from optimal in terms of the total time.

4

1

EB
Fig. 7 Problem graph

For the convenience of comparison with Bokhari's approach [1], a problem graph, consisting

of 8 nodes, is given in Fig. 7. Since np = na = ns, the clustered problem graph is the same as

the problem graph. The system graph, which also has 8 nodes, is given in Fig. 8.

Every node in the system graph has degree 3. However, in the problem graph, node 3

has degree 4. Therefore, at least one problem edge which connects problem node 3 has to be

mapped to two non-adjacent system nodes. Following Bokhari's cardinality measure, assign­

ment Al in Fig. 9 maps eight out of nine problem edges to a single system edge each while

one problem edge, in this case ep35 , must be mapped on two system edges. It is easy to prove

that Al with cardinality 8 is the optimal solution according to the cardinality measure.

11

J--0
I

Fig. 8 System graph
(1,2,3,4,5,6,7,8)

Fig. 9 Assignment Al
(1,3,5,2,6,4,8,7)

0
1
2
3
4
5
6
7
8
g
10
11
12
13
14
15
16
17
18
19
20
21
22
23

1 2 3 4 5 6 7 8

1

.... ·7··· ..

.. 8

Fig. 10

Consider now the total time of the assignment Al, which is 23 time units, as shown in Fig.

10. On the other hand, in assignment A2, shown in Fig. 11, only seven problem edges are

12

mapped to a single system edge each. Nevertheless, the total time under this assignment is

21 time units, as shown in Fig. 12, which is less than the total time under assignment Al (23

units). In other words, assignment Al with optimal cardinality does not have the minimum

total time.

Time unit
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Fig. 11 Assignment A2

Processors
1 2 3 4 5 6 7 8

.. ·7

- 4
~

··:::::::::::::::::::rn:::::: s

Fig.12 Execution time of Assignment A2

13

Another measure which has been used frequently to evaluate the goodness of a mapping is

communication cost. We present a case where this measure also does not yield the optimal

total time. Fig. 13 shows a problem graph that is to be mapped on the same system graph

of Fig. 8. Based on the objective function and the phase to evaluate the communication

cost developed by Lee [2], an optimal assignment A3 is given in Fig. 14. Four phases are

identified. According to Lee's algorithm, all communications in the same phase are assumed

to start at the same time. The communication cost in each phase is represented by the largest

one among all the communication costs in that phase, and overall communication cost is the

sum of the communication costs of all phases. The total communication cost for assignment

A3 is 11 units, as shown in Fig. 15. It is easy to prove that assignment A3 has the minimum

communication cost, but its total time is 23 units (Fig. 15). On the other hand, assignment

A4 with 15 units of communication cost has 21 units of total time (Fig. 17), which is less than

the total time of assignment A3 with optimal communication cost.

Fig. 13 Problem graph

14

0
1
2

3
4

5
6
7
8
9

10
11
12
13
14
15
16
17

18
19

20
21
22
23

phase 1

phase 2

phase 3
phase 4

1

1

2 3 4 5 6

Fig. 14 Assignment A3

7 8

.phase 1

3 ··············· . ··7·

.. phase 2

.... phase 3

..... phase 4

8

edges and communication costs max-comm-cost

(1,3)=3, (2,3)=3, (2,7)=2

(3,4)=4, (3,5)=4

(4,6)=1
(5,8)=3

3

4
1

3 +
sum of commu. cost = 11 units

Fig. 15

15

0
1
2
3
4

1 2 3 4 5

Fig. 16 Assignment A4

6 7 8

5
6

3 .. 7-

7
8
9

······················ ··~--

10
11 ····························· ············5·

12
13
14
15
16
17
18
19
20
21

phase 1
phase 2
phase 3
phase 4

........................ Phase 4

............. S

edges and communication costs max-comm-cost

(1,3)=3, (2,3)=3, (2, 7)=2
(3,4)=8, (3,5)=2
(5,8)=3
(4,6)=1 +

3
8
3
1

sum of commu. cost ~5 units

Fig. 17

16

These examples illustrate that indirect measures do not always properly reflect the total

execution time of a parallel program. Hence to achieve an optimal mapping, the total time

will be used by our approach directly as the only measure.

3 Internal Representation

So far we have talked about all graphs of Fig. 1 at only a conceptual level. In this section

we introduce the internal representation of each graph, and other auxiliary data structures,

needed by the mapping algorithms presented in subsequent sections.

1. Problem graph

(a) A problem edge matrix, prob_edge[np][np], describes the edges in the problem graph.

Each element is denoted by prob_edge[i][j] where the value of prob_edge[i][j] is the

weight of the problem edge. A problem edge matrix for the problem graph in Fig. 2

is given in Fig. 18.

(b) task_size[np] is a one-dimension matrix which describes the execution time for each

task, i.e., the weight of each node.

2. Clustered problem graph

(a) A clustered edge matrix, clus_edge[np][np], contains the weights of the edges in the

clustered problem graph. It is derived from the problem edge matrix by omitting the

problem edges whose nodes are in the same abstract node. For example, the problem

edge prob_edge[l] [4] is eliminated in the clustered edge matrix in Fig. 19-a, since task

1 and task 4 are in the same abstract node Vao·

17

(b) A cluster matrix clus_pnode[na][np] describes which problem nodes are in which clus­

ter. For example, in Fig. 19-b, the value of clus_pnode[2][3], 9, is the ID of the third

problem node in cluster 2. Note that the horizontal dimension is 11, which is the

maximum size of any cluster, i.e., the total number of nodes in the graph.

3. Abstract graph

(a) An abstract edge matrix, abs_edge[na][na], represents the edges of the abstract graph.

An element abs_edge[i][j] contains 0 if there is no edge between node i and node j;

otherwise, it contains a 1. Fig. 20-a is an example of the matrix representation of

the abstract graph shown in Fig. 4.

(b) A critical abstract edge matrix, c_abs_edge[na][na+ 1], represents the critical abstract

edges. The value of each element, except the elements in the last column, is the weight

of the critical abstract edge. The last element of each row is the critical degree, defined

as the sum of all the numbers in that row (see section 2.1). Fig. 20-b shows the critical

abstract edge matrix corresponding to Fig. 20-a and Fig. 6.

(c) The matrix, mca[na], represents the communication intensity of the abstract nodes.

Each element mca[i] is the sum of the weights of all clustered problem edges which

directly connect to abstract node i. For example, mca[2) = 13, as shown in Fig. 20-c,

says that the sum of the weights of all edges that connect to abstract node 2 is 13:

4. System graph

(a) The system graph is represented by a matrix sys_edge[ns][ns]. An example of a sys­

tem graph and its matrix representation are given in Fig. 5-a and 21-a, respectively.

18

(b) A shortest path matrix, shortest[ns][ns], represents the shortest path between any

pair of system nodes. The shortest path matrix corresponding to the system graph

of Fig. 5-a is shown in Fig. 21-b.

(c) A node degree matrix, deg [ns J, gives the degree of each system node. The node degree

matrix corresponding to the system graph matrix in Fig. 21-a is shown in Fig. 21-c.

5. System graph closure

The system graph closure is fully connected. Its matrix contains all ones except the

diagonal elements. Thus, it is not necessary to explicitly represent this closure by a

matrix.

6. Ideal graph

(a) A matrix i_edge[np][np] is used to represent the ideal graph edges. The value of

element i_edge[i][j] is the weight of an ideal edge. Each i_edge[i][j] is always equal

to or greater than clus_edge[i][j]. The reason is data dependencies (as explained in

section 2). An example of the ideal graph edge matrix is shown in Fig. 22-a.

(b) Matrices i_start[np] and i_end[np] are used to represent the start time and end time of

each task, respectively. Fig. 22-b shows two examples of the matrices. i_start[4] = 1

means that start time of task 4 is at unit 1. i_end[4] = 4 means that end time of task

4 is at unit 4.

(c) A matrix criLedge[np] [np] is used to describe the critical problem edges. criLedge[i] [j]

is the weight of a critical problem edge between task i and task j. In Fig. 6, the edge

i_edge[7][9] is critical, since task 9 terminates last and i_edge[7][9] = clus_edge[7][9].

The critical problem edge matrix corresponding to the ideal graph of Fig. 6 is shown

19

in Fig. 22-c.

7. Assignment

Four matrices are used for representing the assignment of abstract nodes to system nodes:

the assignment itself, the communication time between each pair of tasks, the start time,

and the end time of each task.

(a) Assignment matrix, assi [ns], expresses the assignment from abstract nodes to system

nodes. The value of assi[i] is the ID number of the abstract node that is mapped to

system node i. Fig. 23-a is an example of an assignment. The numbers in brackets

are the IDs of the system nodes, and the numbers without brackets are the IDs of

the abstract nodes. For example, the abstract node 3 is mapped to system node 2.

Fig. 23-b is an example of the assignment matrix corresponding to Fig. 23-a.

(b) A communication matrix comm[np][np] describes the communication between any

pair of problem nodes under a given assignment. When a clustered problem graph

is mapped to a system graph, instead of the fully connected closure, a clustered

problem edge may be mapped to more than one system edge. comm[i][j] equals

to clus_edge[i][j] * ne, where ne is the number of system edges of the shortest path

between two system nodes on which task i and task j are allocated. Fig. 23-c

represents a communication matrix under the assignment Ai shown in Fig. 23-b. For

.
example, the expression in the third row and the eighth column is 1*2, which means

that the communication with weight 1 between the two tasks 3 and 8 will pass two

system edges.

20

(c) Two matrices start[np] and end[np] represent the start time and end time of each

task, respectively. Examples of start time and end time matrices corresponding to

the communication matrix comm[np] [np] are shown in Fig. 23-d.

1
2
3
~
6
7

~
12

1 2 3 4 5 6 7 8 9 1011
1 2 2

1 2
1 2 2 1

2 2 1
2 1 1
2 2 3

2

Fig.18 Problem edge matrix

0 1 2 3

0[0110] 1 1 0 1 1
2 1 1 0 1
3 0 1 1 0

1
2
3
~
6

~
12

1 2 3 4 5 6 7 8 9 101
1 2

1 2
1 2 1

Fig.19-a

2 1
1 1

2 3

Clustered problem edge matrix

(

1 2 3 4 5 6 7 8 9 1011

~ ~~i7110 l
~ ~ 6 9

Fig.19-b Cluster matrix

o[~ .~ i ~ ~ J 1 3 0 0 0 3
2 6 0 0 0 6
3 0 0 0 0 0

Fig. 20-a Abstract edge matrix Fig. 20-b Critical
abstract edge matrix

c_abs_edge[na][na + 1]

0 1 2 3
(1311 13 3)

Fig. 20-c Matrix mca[4)

21

o[~i6r] 1 1 0 1 0
2 0 1 0 1
3 1 0 1 0

Fig. 21-a Matrix of
system graph

o[~i~f] 1 1 0 1 2
2 2 1 0 1
3 1 2 1 0

Fig. 21-b Shortest path
matrix of system graph

(0123'1
l2222j

Fig. 21-c Node degree matrix

1 2 3 4 5. 6 7 8 9 1011
1 1 2
2 32
3 1 2 1
4 2
5 3
6 4 7
7 2 3
8
9
10
11

Fig. 22-a Ideal edge matrix

1 2 3 4 5 6 7 8 91011
(0 2 3 1 6 7 7 7 121013)
Start time i_start[ll]

1 2 3 4 5 6 7 8 9 1011
1 2
2
3 2

~
6
7 2 3
8
9
10
11

Fig. 22-c Critical problem edge matrix

1234567891011
(1 3 5 4 9 8 109141314)

End time i_end[ll]

Fig. 22-b Start time and end time
of each task in the ideal graph

22

0 1 1 (00(1) 1
2

(3 (2) 3
4

2 3 5
Fig.23-a Assignment 6

7
0 1 2 3 8

[0132) 9
10

Fig.23-b Assignment matrix 11

1 2 3 4 5 6 7 8 9 10 11
(0 2 3 1 6 7 7 7 12 1013]

start[ll]

2 3 4 5 6 7 8 9 10 11

(1 *1)(2*1)
(1 *1)(2*2)
(1*1) (2*1)(1*2)

(2*1)
(1 *1)

(1*1)(1*2)
(2*1) (3*1)

Fig.23-c Communication matrix
comm[ll][11]

1 2 3 4 5 6 7 8 9 10 11
(1 3 5 4 9 8 10 9 14 13 1~

end[ll]

Fig.23-d Start time and end time matrices
of each task under a given assignment

time unit 0
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

1

processors
1 2 3

Fig. 24

23

4 Mapping Algorithms

In this section, we will introduce the algorithms which perform the transitions of Fig. 1.

4.1 Deriving the Ideal Graph

If we know the start/end time of each task, deriving the ideal graph, represented by the ideal

edge matrix i_edge[i][j], is easy, since each ideal edge i_edge[i][j] is the difference between the

start time of task j and the end time of task i. If we want to obtain the start time of a task,

we have to know the c, nunication times between the task and its predecessors. However,

the ideal graph is the result of mapping a clustered problem graph to a fully connected closure,

and thus the communication time between each pair of tasks is the same as the weight of the

corresponding clustered problem edge; there is no need to derive the communication time for

each pair of tasks. Instead, we can derive the start time, represented by matrix i_start[i], and

end time, represented by matrix i_end[i], of all tasks directly from the clustered problem edge

matrix clus_edge[np][np]. Hence, deriving the ideal graph consists of two steps: first, derive

start time and end time of each task; then, derive ideal edges.

The start time of a task is derived by adding together the end time of each predecessor

and the corresponding communication time, and taking the maximum over all sums. This is

because a task can only be executed after all its predecessors have finished. The end time of

a task is the sum of its start time and its weight. Note that we can't find a task's predecessor

only from matrix clus_edge[np][np], because two tasks may be in the same abstract node and

the problem edge connecting the task and its predecessor is removed in the clustered problem

graph. For example, we can't find the predecessor of task 4 from the matrix clus_edge[np][np]

in Fig. 19-a. Instead, we have to check the problem edge matrix prob_edge[np][np] in Fig. 18,

24

which tells us that task 1 is the predecessor of task 4. This yields the algorithm below.

I Algorithm for deriving the start and end time of each task in ideal graph

Do the following until all tasks have been visited:

1. For an unvisited task i, find its predecessors from matrix prob_edge[np][np].

2. If it has a predecessor, go to 3. Otherwise, do the following:

(a) i_start[i] = 0

(b) i_end[i] = i_start[i] + task_size[i]

(c) Mark task i as visited.

3. If any one of the end times of all the predecessors of task i is unknown, go to 1. Otherwise,

do the following:

(a) For each predecessor j, derive i_start[i] = maxj(i_end[j] + clus_edge[j][i])

(b) i_end[i] = i_start[i] + task_size[i]

(c) Mark task i as visited.

The following explains how some elements of the start and end time matrices are obtained.

In the matrix prob_edge[np][np] (Fig. 18), all the elements in column 1 are Os, which means

that no predecessor of task 1 exists. Therefore, task 1 can be executed first. Its start time,

i_start[l], is 0 and its end time, i_end[l], is the sum of its start time and its weight, which is

1. In column 4 of Fig. 18, only the first row has a non-zero element, 2, Which means that

only task 1 is the predecessor of task 4. Since the end time of task 1 is known, i_startf4] =

i_end[l] + clus_edge[1][4]. Then, i_end[l] = 1 and clus_edge[1][4] = 0, since task 1 and task 4

are in a same abstract node. The end time of task 4, i_end[4], consequently, is 4. In the same

25

way, task 9 has three predecessors, 5, 6, and 7. So, the start time of task 9 is the maximum sum

of the end times of its predecessors and the weights of the clustered problem edges between

the predecessors and the task 9, i.e., 12. Its end time is 14. The complete start time and end

time matrices derived from the problem edge matrix in Fig. 18 and the clustered problem edge

matrix in Fig. 19-a using the above algorithm are shown in Fig. 22-b.

II Algorithm for deriving the lower bound

The lower bound is derived simply from the end time matrix:

lower _bound= i_end[l]

where l is the latest task.

After we obtain the start time and end time of each task, it is easy to derive the ideal edge

matrix i_edge[np][np] which will be used to derive critical edges.

III Algorithm for finding ideal edge matrix i_edge[np][np]

Do the following for each pair of tasks i and j:

1. If there is an edge between i and j in the clustered problem graph, and j is the predecessor

of i, i.e., clus_edge[j][i] > 0, then i_edge[j][i] = i__start[i] - i_end[j].

2. All other elements remain 0.

An example of the ideal edge matrix derived from the start and the end time matrices in

Fig. 22-b is shown in Fig. 22-a.

4.2 Finding Critical Abstract Edges

To find the critical abstract edges we first need to find all critical problem edges. Following is

the basic idea needed for finding the latter.

26

Theorem 1 An edge e;;j in the ideal graph is critical if its weight, i_edge[i][j], is equal

to the weight of the corresponding edge, clus_edge[i][j], in the clustered problem graph and it

directly connects to the latest task.

Proof : Since i_edge[i][j] = clus_edge[i][j], any increase in the weight of the corresponding

edge in the clustered problem graph, clus_edge[i][j], must increase the weight of the ideal edge

i_edge[i][j]. Increasing the weight of any ideal edge, i_edge[i][j], will delay the start time of the

task j. Since the edge i_edge[i][j] directly connects to the latest task, increasing the weight of

the clustered problem edge will lengthen the start time of the latest task, and consequently,

the total time of the program. Hence, by definition, the edge e;;j is critical. D

The following lemmas are needed to prove Theorem 2 below.

Lemma 1 If an ideal edge, i_edge[i][j], is critical, any delay of the start time of the task i

will delay the start time of the task j by the same amount.

Proof : Since i_edge[i][j] is critical, clus_edge[i][j] = i_edge[i][j]. From the definition of the

start time we know that i_start[j] = i_start[i] + task..size[i] + i....edge[i][j]. If i_start[i] increases

by~' from the above equation, i_start[j] must also increase by the same~. D

Lemma 2 If an ideal edge, i_edge[i][j], is critical, there exists a path from task i to the

latest task l in which all the edges are critical.

Proof : We can distinguish the following three cases: the path from task i to the latest

task consists of (1) one edge, (2) two edges, and (3) more than two edges. For first case, task

j is the latest task. Therefore, the critical edge i_edge[i][j] is the path from task i to the latest

task.

For the second case, we assume that the edge i_edge[j][l] is not critical and show that, under

this assumption, i_edge[i] [j] is also not critical, which contradicts the condition of the lemma.

27

First, from the assumption it follows that we can find an amount 6. such that increasing the

weight clus_edge[j][l] by that amount will not increase the weight of the ideal edge, i_edge[j][l],

i.e., i_edge[j][l] ~ clus_edge[j][l] + 6. will still hold. Next, if i_edge[i][j] is critical then, by

definition, increasing the corresponding clustered problem edge by 6. will increase the total

time. The total time before the increase is totaUime = i_end[j] + i_edge[j][l] + task__size[l].

After the increase, i_end[j]' = i_end[j] + 6., and the total time is totaUime' = i__start[l]' +

task_size[l], where i_start[l]' is derived from the definition of the start time:

Therefore,

i__start[l]' - i_end[j]' + clus_edge[j][l]

i_end[j] + 6. + clus_edge[j] [l]

totaLtime' i__start[l]' + task__size[l]

i_end[j] + 6. + clus_edge[j][l] + task__size[l]

From the inequality

i_edge[j] [/] ;:::: clus_edge[j] [/] + 6.

derived above and the equation for total time, we obtain the following inequality

totaUime' - i_end[j] + 6. + clus_edge[j][l] + task__size[l]

< i_end[j] + i_edge[j][l] + task__size[l]

totaLtime

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Hence, increasing the weight of the clustered problem edge, clus_edge[i][j], doesn't lengthen

the total time, and thus the ideal edge, i_edge[i][j] is not critical. This contradicts the given

28

condition and, therefore, the edge i_edge[j][l] is critical.

For the third case we assume that there is no path (i, ... , l) such that all edges on this path

are critical and derive a contradiction from this assumption. Suppose that there is exactly one

ideal edge, i_edge[k1][k2], on the path (i,j, ... , k1 , k2 , ... , l), which is not critical. Similar to the

second case, we derive the inequality i_edge[ki)[k2] ~ clus_edge[k1][k2] + .6.. The total time

before the increase is totaUime = i_end[k1] + i_edge[k1][k2] + (i_end[l] - i__start[k2]). Note

that all edges from node k2 to the latest task l are critical. From lemma 1, the difference,

(i_end[l] - i_start[k2]), is a constant if the weights of the corresponding clustered problem

edges are not changed. Thus, we have

totaLtime = i_end[k1] + i_edge[k1][k2] + C

Similar to the second case, we increase the weight of the clustered problem edge, clus_edge[i] [j]

by some amount .6.. The weight of the corresponding ideal edge, i_edge[i][j]', will increase by

the same amount, since it is critical. This will delay the start time of task j by .6.. Since all

the edges from task i to task k1 on the path are critical, by lemma 1, the delay, .6., will be

transferred to the task ki, i.e., i_end[k1]' = i_end[k1] + .6.. From the definition of the start time

of a task, we obtain i_start[k2]' = i_end[k1]' + clus_edge[k1J[k2]. Thus, we have

totaUime' - i_start[k2]' + C

- i_end[k1] + .6. + clus_[k1][k2] + C

< i_end[k1] + i_[k1][k2] + C

- totaUime

(8)

(9)

(10)

(11)

As in case two, increasing the weight of the clustered problem edge, clus_edge[i][j] doesn't

29

lengthen the total time, and thus the ideal edge, i_edge[i][j] is not critical. This is contrary

to the given condition. Therefore, the edge i_edge[k1][k2] and all other edges on the path are

critical. D

Lemma 3 If an ideal edge, i_edge[i][j], is critical, any delay of the start time of the task i

will postpone the total time.

Proof : From lemma 2, there exists a path from i to the latest task l in which all the edges

are critical. Then by applying lemma 1 repeatedly, the delay of the start time of the task i

will postpone the total time. 0

Theorem 2 An edge in the ideal graph, i_edge[i][j], is critical if its weight is equal to the

weight of the corresponding edge in the clustered problem graph, clus_edge[i][j], and it is the

predecessor of a critical problem edge i_edge[j][k].

Proof: Increasing the weight of the edge clus_edge[i][j] will delay the start time of task j,

because i_edge[i][j] = clus_edge[i][j]. Since the task j is connected by a critical problem edge,

the delay of the start time of the task j will lead to lengthening of the end time of the latest

task (total time), based on lemma 3. Consequently, this edge is critical. D

Based on the above theorems, we can find all critical problem edges in an ideal graph

recursively. This is the main idea of the following algorithm.

I Algorithm for finding critical problem edges

1. Find the set, LS, of latest tasks Vi in the ideal graph from the end time matrix i_end[np].

LS can have one or more elements.

2. Repeat until LS is empty.

For each v; in LS do the following:

30

(a) Find the predecessors of Vi in the matrix clus_edge[np][np].

(b) For each predecessor Vj, compare the weight of the corresponding edge in the clus­

tered problem graph, clus_edge[j][i], with the weight of the edge in the ideal graph,

i_edge[j][i]. If they are equal, then the edge i_edge[j][i] is critical, and criLedge[j][i] =

clus_edge[j][i].

(c) Include all predecessors of Vi that are connected to Vi by a critical problem edge(s)

in LS.

3. All other elements of criLedge[np][np] remain 0.

An example of a critical problem edge matrix, resulting from the clustered problem matrix

(Fig. 19-a) and the ideal edge matrix (Fig. 22-a), is shown in Fig. 22-c.

Since an abstract edge is derived by collapsing clustered problem edges between the same

abstract nodes into one, by definition, if there is at least one critical problem edge among those

clustered problem edges, this abstract edge is critical. Therefore, the algorithm for finding the

critical abstract edge is to detect whether there is a critical problem edge in an abstract edge.

We have the following algorithm.

II Algorithm for finding the critical abstract edges

1. Find all critical problem edges criLedge[i][j] (above algorithm).

2. For abstract nodes Vaz,Vam, where (0 :=::; l,m :=::; na - l), find all critical problem edges

criLedge[i][j] where, problem nodes i, j are included in abstract nodes Vaz, Varn, respec­

tively. Assign the sum of the weights of the critical problem edges as the weight of this

critical abstract edge.

c_abs_edge[Vat][Vam] = L(criLedge[i][j] + criLedge[j][i])

31

Based on the fact that the critical degree of each abstract node is the sum of the weights

of all critical abstract edges directly connected to the abstract node, we have the following

algorithm.

III Algorithm for finding the critical degree of each abstract node

For all i (0::; i ::; na - 1), do

na-1

c_abs_edge[i][na] = L c_abs_edge[i][j]
j=O

An example of the critical abstract edge matrix is shown in Fig. 20-b.

4.3 The Mapping Algorithm

The mapping is performed in two stages: initial assignment and refinement. How to refine the

initial solution and when to stop the refinement are the two most important aspects.

4.3.l The Termination Condition

The system graph closure provides a means to derive a lower bound on the total time of the

problem program. This is based on the following theorem.

Theorem 3 If the total time of any assignment is equal to the total time of the ideal

graph, this assignment is an optimal mapping.

Proof: The communication time between any pair of system nodes can't be lower than

that of the corresponding pair of the nodes in the closure, since the latter is fully connected.

Therefore, the total time of any assignment can't be lower than the total time of the ideal

graph, which is the result of mapping the abstract graph to the system graph closure. If the

total time of an assignment is equal to the total time of the ideal graph, then the optimal

mapping is reached. D

32

(a) Find the predecessors of Vi in the matrix clus_edge[np][np].

(b) For each predecessor Vj, compare the weight of the corresponding edge in the clus­

tered problem graph, clus_edge[j][i], with the weight of the edge in the ideal graph,

i_edge[j][i]. If they are equal, then the edge i_edge[j][i] is critical, and criLedge[j][i] =

clus_edge[j] [i].

(c) Include all predecessors of Vi that are connected to Vi by a critical problem edge(s)

in LS.

3. All other elements of criLedge[np][np] remain 0.

An example of a critical problem edge matrix, resulting from the clustered problem matrix

(Fig. 19-a) and the ideal edge matrix (Fig. 22-a), is shown in Fig. 22-c.

Since an abstract edge is derived by collapsing clustered problem edges between the same

abstract nodes into one, by definition, if there is at least one critical problem edge among those

clustered problem edges, this abstract edge is critical. Therefore, the algorithm for finding the

critical abstract edge is to detect whether there is a critical problem edge in an abstract edge.

We have the following algorithm.

II Algorithm for finding the critical abstract edges

1. Find all critical problem edges criLedge[i][j] (above algorithm).

2. For abstract nodes Vat, Varn, where (0 ::; l, m ::; na - 1), find all critical problem edges

criLedge[i](j] where, problem nodes i, j are included in abstract nodes Vat, Varn, respec­

tively. Assign the sum of the weights of the critical problem edges as the weight of this

critical abstract edge.

c_abs_edge[va1][Vam] = 2::(criLedge[i][j] + criLedge[j][i])

31

Based on the fact that the critical degree of each abstract node is the sum of the weights

of all critical abstract edges directly connected to the abstract node, we have the following

algorithm.

III Algorithm for finding the critical degree of each abstract node

For all i (0 ::; i ::; na - 1), do

na-1

c_abs_edge[i][na] = :L: c_abs_edge[i][j]
j=O

An example of the critical abstract edge matrix is shown in Fig. 20-b.

4.3 The Mapping Algorithm

The mapping is performed in two stages: initial assignment and refinement. How to refine the

initial solution and when to stop the refinement are the two most important aspects.

4.3.1 The Termination Condition

The system graph closure provides a means to derive a lower bound on the total time of the

problem program. This is based on the following theorem.

Theorem 3 If the total time of any assignment is equal to the total time of the ideal

graph, this assignment is an optimal mapping.

Proof: The communication time between any pair of system nodes can't be lower than

that of the corresponding pair of the nodes in the closure, since the latter is fully connected.

Therefore, the total time of any assignment can't be lower than the total time of the ideal

graph, which is the result of mapping the abstract graph to the system graph closure. If the

total time of an assignment is equal to the total time of the ideal graph, then the optimal

mapping is reached. D

32

From theorem 3 we derive the following termination condition:

Termination Condition If the total time of an assignment is equal to the total time of

the ideal graph, terminate the refinement process.

4.3.2 Initial Assignment

Initial assignment tries to achieve the smallest possible total time of a given clustered problem

graph and a system graph. As mentioned before, the critical edges influence the goodness of

the mapping most significantly. Hence the basic idea of the initial assignment algorithm is

to map the critical edges to neighboring system nodes or at least as close as possible. This

usually yields a very good initial assignment, as has been verified by our experiments.

The initial assignment algorithm consists of the following three steps:

1. (a) Using the matrix deg[i], select node Vs from Vs such that deg[vs] has the maximum

degree. In the event of a tie, select any qualifying node arbitrarily. Mark Vs as visited.

(b) Select node Va from Va such that c_abs_edge[va][na] has the maximum critical degree

(see section 3.3.(b)). In the event of a tie, select any qualifying node arbitrarily. Mark

Va as visited.

(c) assi[vs] = Va. Mark Va as a critical abstract node.

2. Repeat until all the abstract nodes that have critical abstract edges have been visited.

(a) Using the matrix c_abs_edge[i][j], select node Va from Va such that Va is unvisited,

c_abs_edge[va][na] has the maximum critical degree, Va is a neighbor of some marked

node v~ in Va and the abstract edge abs_edge[va][v~] is critical, i.e., c_abs_edge[va][v~] >

0. Mark Va as visited.

33

(b) If a node Vs from V. can be selected such that Vs is unvisited, deg[vs] has the maximum

degree and V8 is a neighbor of some marked node v~ in V. (sys_edge[vs][v~] > 0), such

that assi[v~] = v~, then assi[vs] =Va, mark Vs as visited, mark Va as critical abstract

node and go to (a). Otherwise, go to (c).

(c) Select node Vs from V. such that Vs is unvisited, Vs is the closest node from some

marked node v~ in V., i.e., shortest[vs][v~] is smallest, and assi[v~] = v:, then

assi[vs] = Va and mark Vs as visited.

3. Repeat until all nodes in Va have been visited.

(a) Select node Va from Va such that Va is unvisited, mca[va] has the largest communica­

tion intensity and Va is a neighbor of some marked node v~ in Va (abs_edge[va][v:J > 0).

Mark Va as visited.

(b) If a node Vs from V. can be selected such that Vs is unvisited, deg[vs] has the largest

degree and Vs is a neighbor of some marked node v~ in V., (sys_edge[vs][v~] > 0), such

that assi[v~J = v:, then assi[vs] =Va, mark Vs as visited and go to (a). Otherwise go

to (c).

(c) Select node Vs from V. such that Vs is unvisited, Vs is the closest node of some marked

node v~ in V., i.e., shortest[v8][v~] is smallest, and assi[v~J = v~, then assi[vs] = va,

and mark V 8 as visited.

4.3.3 Refinement

The initial assignment which uses the critical abstract edges to guide the mapping process is

usually quite good, but subsequent refinement is likely to improve the mapping further.

An iterative improvement technique has been chosen to refine the mapping.

34

We wish to preserve the mappings of the critical abstract nodes to the system nodes, as

performed by the initial assignment, since they map critical abstract edges to a single system

edge each. Hence, we don't touch the critical abstract nodes, but only change the mapping

of the non-critical abstract nodes. This is achieved by performing random changes to the

assignment and keeping the new mapping if it is better than the current one. A total of ns

changes are allowed. We make use of the termination condition at each iteration. It has been

verified by our experiment that this method works better than pairwise exchanges [2]. The

refinement procedure is described below.

1. Derive an initial assignment Al (algorithm in section 4.3.2).

2. Evaluate the total time (see section 4.3.4).

3. If the total time of Al is equal to the total time of the ideal graph, stop. Otherwise, go

to 4.

4. Repeat the following ns times

(a) Randomly assign the non-critical abstract nodes to the system nodes which are not

occupied by critical abstract nodes.

(b) Evaluate the total time of the changed assignment, A2.

(c) If the total time of the changed assignment A2 is equal to the total time of the ideal

graph, stop; the optimal solution has been reached.

(d) If the total time of A2 is less than that of Al, assign A2 to be the current assignment;

else keep Al.

It is very easy to obtain the time complexity of the former algorithms. The highest order is

O(np2). In the refinement algorithm, procedure 4-(b) determines the time complexity. Because

35

the time complexity of the algorithm for evaluating total time is also O(np2) and ns changes

are allowed, the worst case of the complete procedure is 0(ns * np2) time.

4.3.4 Evaluating Total Time

Mapping of the clustered problem graph to the system graph closure is similar to mapping it

to the system graph. Hence, evaluating the total time is similar to deriving the lower bound,

as described in section 4.1. The main difference is that the system graph usually is not fully

connected. To derive the start and end time matrices, we first generate the communication

matrix comm[np][np], which describes the communication between any pair of problem nodes

under a given assignment.

When an assignment is obtained, the relationship between each abstract node and each

system node has been set up. Hence, the communication time for each pair of problem nodes

can be derived by multiplying the weight of the clustered problem edge between the two nodes

by nij, the length of the shortest path between the two system nodes on which the two problem

nodes are allocated. Thus, comm[i][j] = clus_edge[i][j] * nij· Based on this, we obtain the

following algorithm for deriving the communication matrix.

I Algorithm for finding the communication matrix

1. Find the shortest path between any pair of system nodes shortest[ns][ns] (use some

existing algorithm [16]).

2. Do the following for each pair of the clustered problem nodes i and j:

If i and j are in different abstract nodes Var, Varn, and assi[vsi] = Va/, assi[vsrn] = Varn, then

comm[i][j] ~ clus_edge[i][j] x shortest[vsz][vsrn]

36

Using the matrix comm[i][j], we can derive the start time and end time of each task by

using the following algorithm, which is similar to that used for the ideal graph.

II Algorithm for deriving the start time and end time of each task under a given

assignment

Do the following until all tasks have been visited:

1. For an unvisited task i, find its predecessors from matrix prob_edge[np][np].

2. If it has predecessors, go to 3. Otherwise, do the following:

(a) start[i] = 0

(b) end[i] = start[i] + task_size[i]

(c) Mark task i as visited.

3. If the end time of any of the predecessors of task i is unknown, go to 1. Otherwise, do

the following:

(a) For each predecessor j, derive start[i] = maxi(end[j] + comm[j][i])

(b) end[i] = start[i] + task_size[i]

(c) Mark task i as visited.

III Algorithm for deriving the total time of the program under an assignment

Assign the maximum end time to the total time of the program. The node with the

maximum end time is the latest task.

totaLtime =maxi(end[j])

Fig. 24 shows the result of mapping the clustered problem graph from Fig. 3 onto the system

37

graph in Fig. 5-a using the preceding algorithms. Since the total time of this initial assignment

is equal to that of the ideal graph, it is an optimal mapping and no further refinement is needed.

5 Experiments

It is hard to compare one heuristic approach with other heuristic approaches. To avoid criticism

for having used only several special examples particularly suited to our approach, random

mapping was chosen to be compared with our mapping strategy. For this purpose, a random

problem graph generator was created and a random clustering program was developed. The

weights of the problem nodes and the weights of the problem edges are also produced randomly.

The numbers of nodes in a problem graph range from 30 to 300, while the numbers of nodes

in a system graph range from 4 to 40. The system topologies are hypercubes, meshes, and

random graphs. All algorithms were implemented in C++ and run on a SUN-4 workstation.

Since the problem graphs and the clusterings are produced randomly, the numbers of the

problem nodes and system nodes as well as the total time of each experiment fluctuate sig­

nificantly, thus making it difficult to compare the total times by actual units. To compensate

for the variance, we performed several random mappings of the same problem graph to the

same system graph and take the average of the total times. The percentages of the total times

derived by using our approach and the average total times derived by using random mappings

over the lower bound are used to show the improvement.

38

5.1 Mapping to Hypercube

Table 1

exp ts our approach random

1 104 148
2 115 178
3 110 158
4 118 147
5 105 140
6 106 147
7 100 158
8 100 160
8 107 155
10 105 159

Percentage~
over lower bound

180

160

140

120

100/100

I
I
I
I
I
I
I

I I I I I I I I I
I I I I I I I I I I
-~------!_L_L_L~_J ____ _

1 2 3 4 5 6 7 8 9 10

Fig. 25 Mapping to Hypercubes

improvement

44
63
48
29
35
41
58
60
48
54

Examples

The comparison between mapping randomly produced abstract graphs to a hypercube topol-

ogy using our mapping strategy versus random mapping is shown Table 1. The first column is

the experiment number. In each experiment, the lower bound is used as the basis for compar-

isons and is set to 100 percent. The results of using our approach and random mapping are

represented by the percentages over the lower bound, as shown in columns 2 and 3, respec-

tively. The fourth column describes the improvement of using our approach over the random

mapping. Fig. 25 presents the same results in a graphical form. Each point on the horizontal

39

axis corresponds to one problem graph, i.e., the figure is a histogram. The lower end of each

vertical dashed line shows the result of a mapping using our mapping strategy; the higher end

shows the random mapping result. For example, a lower end value of 110 and an upper end

value of 160 mean that a program mapped by using our approach requires only 10% more time

than the lower bound, while a random mapping would result in a 60% increase in total time.

The results demonstrate that the improvement between the results of our approach and those

of the random mapping range from 29 percent to 63 percent. In 2 out of 10 cases, our results

reached the lower bound.

Table 2

exp ts our approach random

1 100 134
2 100 148
3 105 142
4 100 147
5 100 133
6 112 153
7 100 132
8 100 135
9 100 133
10 103 136
11 107 144

Perc~ntage~
over lower bound

160

150

140

130

120

110
100/10

I
I I
I I
I I
I I
I I
I I I
I I

I I I I I I I I I
-L~---~-~---L-L_L ____ _

1 2 3 4 5 6 7 8 9 1011
Fig. 26 Mapping to Meshes

40

improvement

34
48
37
47
33
41
32
35
33
33
37

Examples

Table 3

exp ts our approach random improvement
1 102 163 61
2 107 178 71
3 105 152 47
4 105 158 53
5 112 180 68
6 104 161 57
7 100 153 53
8 114 182 66
9 108 173 65

12 188 u~ t~
12 105 153 48
13 102 158 56
14 100 177 77
15 100 168 68
16 102 148 46
17 103 147 44

Percenta.e:~
over lower bound

190
180
170
160
150
140
130
120
110
100

I
I I
I
I

I I
I
I
I
I
I

I I I I I I I I I I I I I I
I I I I I I I I I I I I t I I
~----------J ____ ~_J ___ 1_~~-1_1_

1 2 3 4 5 6 7 8 9 1011 13 15 17Examples
Fig. 27 Mapping to Randomly Produced Topologies

5.2 Mapping to Mesh and Random Topologies

Table 2 and Table 3 are analogous to Table 1, and Fig. 26 and 27 are analogous to Fig.

25. They show the results of mapping random problem graphs to mesh architectures and

to randomly produced system architectures, respectively. They show improvements between

the results of our approach and those of the random mapping ranging from 33 percent to 77

percent for the total time. The experiments also demonstrate that the termination condition

41

works well. In Fig. 27 there are 4 out of 15 cases where our mapping stops the refinement by

the termination condition. In Fig. 26, there are 7 out of 11 such cases.

6 Conclusion

In this paper, we presented a mapping strategy which maps a clustered problem graph to a

system graph. This strategy uses the complete execution time of a parallel program, repre-

sented by a clustered problem graph, as the measure to evaluate the goodness of the mapping.

Through the analysis of the critical edges based on the mapping of the abstract graph to the

system graph closure, we obtain two important concepts: critical abstract edges and a lower

bound. The former is used to guide the mapping by attempting to assign critical edges to a

single system edge each. The latter allows us to derive a termination condition which stops

unnecessary refinement and reduce both searching space and mapping time. The algorithms

presented in this paper make it possible to map np problem nodes tons system nodes where

np > ns. The effectiveness of this approach has been verified empirically, by deriving the

mappings of different, randomly generated problem graphs onto hypercube, mesh-connected,

and random system graphs. The results have shown improvements ranging from 29 to 77% in

total execution time over random mappings.

Acknowledgement

The authors would like to thank Meng-lai Yin for useful discussions.

References

[1] S. H. Bokhari, "On the Mapping Problem", IEEE Trans. on Computers, vol. V-30, pp. 207-214, Mar.
1981.

[2] S.-Y. Lee, J .K. Aggarwal, "A Mapping Strategy for Parallel Processing", IEEE Trans. on Computers,
vol. V-36, pp. 433-442, April, 1987.

42

[3] S.Kirkpatrck, C.D.Gelatt, M.P. Vecchi, "Optimization by Simulated Annealing", Science , vol. V220,
pp.671-680, May 13, 1983.

[4] L.M. Ni and K. Hwang, "Optimal Load Balancing in a Multiple Processor System with Many Job Classes",
IEEE Trans. on Software Eng., vol. SE-11, pp.491-496, May 1985.

[5] K. Fukunaga, S. Yamada, T. Kasai. "Assignment of Job Modules onto Array Processors", IEEE Trans.
on Computers, vol. V-36, no. n7, pp. 888-891, July 1987.

[6] F. Berman, M. Goodrich, C. Koelbel, W.J. Robison, K. Showell, "Prep-P: A Mapping Processor for CHiP
Computers", Int 'l Conf. on Parallel Processing, pp. 731-733. 1985.

[7] P. Sadayappan, F. Ercal, "Nearest-Neighbor Mapping of Finite Element Graphs onto Processor Meshes,"
IEEE Trans. on Computers, vol. V-36, pp. 1408-1424, Dec., 1987.

[8] A. Gerasoulis, S. Venugopal, T. Yang, "Clustering Task Graphs for Message Passing Architectures", ACM
International Conference on Supercomputing, June 11-15, 1990, Amsterdam, Boland.

[9] K. Efe, "Heuristic Models of Task Assignment Scheduling in Distributed systems", IEEE Computer,
15(6), 1982, pp.50-56.

[10] A. Gerasoulis, I. Nelken. "Static Scheduling for Linear Algebra DAGs." HCCA4(1989).

[11] M. Cosnard, M. Marrakchi, Y. Robert and D. Trystram. "Parallel Gaussian Elimination on an MIMD
Computer." Parallel Computing, 6, 1988, pp. 275-296.

[12] J. Baxter, L. H. Patel, "The LAST Algorithm: A Heuristic-Based Static Task Allocation Algorithm",
IEEE Int'[Conf. on Parallel Processing, pp. II217-222, Aug., 1989.

[13] L. Kim, C. R. Das and W. Lin, "A Processor Allocation Scheme for Hypercube Computers", IEEE Int'[
Conf. on Parallel Processing, pp. II-231 - II-238, Aug., 1989.

[14] C. Lee, L. Bic, "Comparing Quenching and Slow Simulated Annealing in the Mapping Problem", IEEE
Third Annual Parallel Processing Symposium April, 1989.

[15] D.T. Peng, K.G. Shin, "Static Allocation of Periodic Tasks With Precedence Constraints in Distributed
Real-Time Systems", 9th Int'/ Conf. on Distri. Compt. Syst. , pp. 190-198, CA. June 5-9, 1989.

[16] S. Baase, "Computer Algorithms: Introduction to Design and Analysis", Second Edition, Addison-Wesley
Publishing company, 1988.

43

\\\\\Ill II\\\\\\ I\\\ Ill\ Ill\ Ill\ I\\\ I \\Ill\\ I II\\\\\\\\\\\\\\\\\
3 1970 00882 6726

-

-

-

-

GAYLORD l PRINTED IN U.S.A.

