
Closure Property of Probabilistic Turing

Machines and Alternating Turing

Machines with Subalgorithmic Spaces

by

Géza Horváth

Katsushi Inoue

Akira Ito

and

Yue Wang

Department of Computer Science and Systems Engineering
Faculty of Engineering
Yamaguchi University
Ube, 755-8611 Japan

Mailing Address:
Katsushi Inoue
Department of Computer Science and Systems Engineering
Faculty of Engineering
Yamaguchi University
Ube, 755-8611 Japan
Email: inoue@csse.yamaguchi-u.ac.jp

1

1. Introduction

Freivalds [4] showed a surprising result of the language {anbn|n ≥ 1} being
recognized by a two-way Monte Carlo finite automaton (i.e., a two-way prob-
abilistic finite automaton with error probability less than 1/2). This result
influenced many subsequent papers [3,8,14]. As far as we know, it is unknown
whether the classes of languages recognized by o(log n) space bounded two-way
Monte Carlo Turing machines [5] and two-way probabilistic Turing machines
[7] are closed under concatenation, Kleene closure, and length-preserving ho-
momorphism. By using an adaptation of the proof of the above result, and a
separation result by Frievald and Karpinski [5], Section 3 of this paper shows
that (1) the class of languages recognized by o(log n) space-bounded two-way
Monte-Carlo Turing machines is not closed under these operations, and (2) the
class of languages recognized by o(log log n) space-bounded two-way unbounded
error probabilistic Turing machines is not closed under these operations.

Many investigations of alternating Turing machines (aTm’s) with subalgo-
rithmic spaces have been made [1,2,6,10,12,13]. Chang, Ibarra and Ravikumar
[2] showed that the language {0n10n|n ≥ 1} can be accepted by a weakly log log
n space-bounded one-way aTm. Ito, Inoue, and Takanami [10] showed that there
exists a language accepted by a strongly log log n space-bounded two-way aTm,
but not accepted by any weakly o(log n) space-bounded one-way aTm. Iwama
[12] showed that the languages accepted by weakly o(log log n) space-bounded
two-way aTm’s are regular. Furthermore, Braunmühl, Genger and Rettinger
[1], Geffert [6], and Lískiewicz and Reischuk [13] showed that the alternation
hierarchy for aTm’s with space bounds between log log n and log n is infinite.

Section 4 of this paper answers an open question [10] of whether the class of

languages accepted by S(n) space-bounded two-way aTm’s is closed under con-

catenation, Kleene closure, and length-preserving homomorphism for log log n ≤
S(n)≤ o(log n), and shows that the class mentioned above is not closed under

these operations.

2. Preliminaries

For each word w, |w| denotes the length of w, and for each set T, |T| denotes
the number of elements of T. See [9] for undefined terms.

A two-way probabilistic Turing machine we consider here has a read-only
input tape delimited by the left endmarker C/ and the right endmaker $, and a
semi-infinite read-write work tape, initially blank. Of course, the input head of
the machine can move left or right. See [7] for the definitions of this machine.
As in Freivalds and Karpinski [5], we distinguish between two types of two-way
probabilistic Turing machines: Two-way Monte Carlo Turing machines and
two-way unbounded error probabilistic Turing machines.

We say that a two-way Monte Carlo Turing machine M recognizes language
L in space S(n) if there is a positive constant ε such that:

2

(1) for any x ∈L, the probability of the event ”M accepts x
in space not exceeding S(|x|)” exceeds 1

2 + ε, and
(2) for any x /∈L, the probability of the event ”M rejects x

in space not exceeding S(|x|)” exceeds 1
2 + ε.

We say that a two-way unbounded error probabilistic Turing machine M
recognizes language L in space S(n) if:
(1) for any x ∈L, the probability of the event ”M accepts x

in space not exceeding S(|x|)” exceeds 1
2 , and

(2) for any x /∈L, the probability of the event ”M rejects x
in space not exceeding S(|x|)” exceeds 1

2 .
Let MSPACE(S(n)) (resp., PSPACE(S(n))) denote the class of languages rec-
ognized by two-way Monte Carlo Turing machines (resp., two-way unbounder
error probabilistic Turing machines) in space S(n).

A two-way alternating Turing machine (2aTm) we consider here has a read-
only input tape delimited by the left endmaker C/ and the right endmaker $, an
input head which can move left or right on the input tape, and a semi-infinite
read-wrie work tape, initially blank. See [1,2,6,10,12,13] for the definition of
2aTm’s.

We can view the computation of a 2aTm M as a tree whose nodes are labeled
by configurations. A configuration of M is of the form (i, (q, γ, k)), where i is
the input tape head position, and component(q, γ, k) represents the state of the
finite control, the non-blank contents of the work tape, and the work tape head
position. If q is the state associated with configuration c, then c is said to be
a universal (resp., existential, accepting) configuration if q is universal (resp.,
existential, accepting) state. The initial configuration of M is IM=(0,(q0, λ, 1)),
where q0 is the initial state of M and λ is the null string. A computation tree of
M on input w is a tree such that the root is labeled by IM and the children of
any nonleaf node labeled by a universal (resp., existential) configuration include
all (resp., one) of the immediate successors (of M on w) of that configuration.
A computation tree is accepting if it is finite and all the leaves are labeled
by accepting configurations. M accepts an input w if there is an accepting
computation tree of M on w.

Let l be a non-negative integer and c = (i, (q, γ, k)) be a configuration of M.
c is l space-bounded if |γ| ≤l.

A computation tree of M (on some input) is l space-bounded if each node of
the tree is labeled by a l space-bunded configuration of M.

Let S(n): N →N∪{0} be a function, where N denotes the set of all the
positive integers. M is weakly S(n) space-bounded if for every input w of length
n, n ≥ 1, that is accepted by M, there exists an S(n) space-bounded accepting
computation tree of M on w. M is strongly S(n) space-bounded if for every input
w of length n (accepted by M or not), n ≥ 1, any computation tree of M on w
is S(n) space-bounded.

Let weak-ASPACE(S(n)) (resp., strong-ASPACE(S(n))) denote the class of
languages accepted by weakly(resp., strongly) S(n) space-bounded 2aTm’s.

3

3. Closure Property of Probabilistic Turing Machines

This section shows that MSPACE(o(log n)) and PSPACE(o(log log n)) are
not closed under concatenation, Kleene closure, and length preserving homomor-
phism. The following two lemmas (which were given by Freivalds and Karpinski
[5]) are used to get our desired result.
Lemma 3.1. Let A,B⊆ Σ∗ with A∩B= ∅ (empty set). Suppose that there are
an infinite set I of positive integers, and functions G(n), H(n) such that G(n) is
a fixed polynomial in n, and for each n ∈I, there is a set W(n) of words in Σ∗

such that:
(1) |w| ≤G(n) for each word w ∈W(n),
(2) there is a constant c > 1 such that |W(n)| ≥cn for each n ∈I, and
(3) for every n ∈I and every w,w′ ∈W(n) with w 6= w′, there are words

u, v ∈ Σ∗ such that:
(a) |uwv| ≤H(n), |uw′v| ≤H(n), and
(b)

either

{
uwv ∈A
uw′v ∈B

or

{
uwv ∈B
uw′v ∈A.

Then, if a two-way Monte Carlo Turing machine with space bound S(n) sepa-
rates A and B, then S(H(n)) cannot be o(log n).
Lemma 3.2. Let A,B⊆ Σ∗ with A∩B= ∅. Suppose that there is an infinite set
I of positive integers and a function H(n) such that for each n ∈I, there is an
ordered set of pairs of words W(n)={(u1, v1), (u2, v2), ..., (un, vn)} such that for
every string γ(1)γ(2)...γ(n) ∈ {0, 1}n, there is a word w such that{

uiwvi ∈A, if γ(i) = 1,
uiwvi ∈B, if γ(i) = 0,

and |uiwvi| ≤H(n) for all i ∈ {1, 2, ..., n}. Then, if a two-way unbounded error
probabilistic Turing machine with space bound S(n) separates A and B, then
S(H(n)) cannot be o(log log n).

The following lemma is a key one.
Lemma 3.3. Let
L1 = {am11am21...1amk | k ≥ 2 & ∀i(1 ≤ i ≤ k) [mi ≥ 1] &m1 = mk},
L2 = {1am |m ≥ 1}∗,
L3 = {am11am21...1amk | k ≥ 2 & ∀i(1 ≤ i ≤ k) [mi ≥ 1]}, and
L4 = {am1b1a

m2b2...bk−1a
mk | k ≥ 2 & ∀i(1 ≤ i ≤ k) [mi ≥ 1] &

∃j(1 ≤ j ≤ k − 1) [bj = 2 & ∀r(1 ≤ r ≤ k − 1, r 6= j) [br = 1] &m1 = mj+1]}.
Then,
(1) L1 ∈ MSPACE(0), and thus ∈ PSPACE(0),
(2) L1∪L2 ∈ MSPACE(0), and thus ∈ PSPACE(0),
(3) L3 ∈ MSPACE(0), and thus ∈ PSPACE(0),
(4) L4 ∈ MSPACE(0), and thus ∈ PSPACE(0),
(5) L1L2 /∈ MSPACE(o(log n)), and
(6) L1L2 /∈ PSPACE(o(log log n)).
Proofs of (1),(2), and (4): By an adaptation of the proof of the fact [4] that
{anbn| n ≥ 1} ∈ MSPACE(0).

4

Proof of (3): Obvious.
Proof of (5): We first note that L1L2 = {am11am21...1amk | k ≥ 1 & ∀i(1 ≤
i ≤ k)[mi ≥ 1] & ∃j(2 ≤ j ≤ k)[m1 = mj]}.

For any integer n ≥ 1, let V(n) = {1am11am21...1amn ∈ {1, a}+ | ∀i(1 ≤
i ≤ n)[1 ≤ mi ≤ n]}. For each w = 1am11am21...amn ∈V(n) let contents(w) =
{aj | j = mi for some i(1 ≤ i ≤ n)}. Divide V(n) into contents-equivalence
classes by making w and w′contents-equivalent if contents(w) = contents(w′).
There are

contents(n) = (n1) + (n2) + ...+ (nn) = 2n − 1

contents-equivalence classes of words in V(n). We denote by W(n) the set
of all the representatives arbitrarily chosen from these contents(n) contents-
equivalence classes. For each word w ∈ W(n), |w| ≤ G(n)4= (n + 1)n, which is
a fixed polynomial in n. Let I be the set of positive integers greater than or
equal to 2. Thus, for any n ∈ I, |W(n)| = contents(n) = 2n − 1 ≥ cn for some
constant c > 1. It is easily seen that for every n ∈ I and every w,w′ ∈W(n)
with w 6= w′, there are words u = ak (1 ≤ k ≤ n), v = ε such that

(a) |uwv| ≤H(n)4=G(n) + n, |uw′v| ≤H(n), and
(b) either {uwv ∈ L & uw′v ∈ L} or {uw′v ∈L & uwv ∈ L},

where for any language T, T denotes the complement of T.
Thus, by Lemma 3.1, if a two-way Monte Carlo Turing machine with space

bound S(n) recognizes L1L2, then S(H(n)) can not be o(log n), and thus S(n)
can not be o(log n). This completes the proof of ’L1L2 /∈ MSPACE(o(log n))’.
Proof of (6): Let I be the set of positive integers, and let H: I→I be the function

such that H(n) = 2n+ n(n+1)
2 .

For each n ∈ I, let W(n)={(u1, v1), (u2, v2), ..., (un, vn)} be the ordered set of
pairs of words such that for each i, 1 ≤ i ≤ n, ui = ai and vi = ε.
Furthermore, for the string α(1)α(2)...α(n) ∈ {0, 1}n, let 0 < k1 < k2 < ... < kl
be all the values of i such that α(i) = 1, and wα(1)α(2)...α(n) = 1ak11ak2 ...1akl

be the string corresponding to α(1)α(2)...α(n).
It is easy to see that for each n ∈ I and for each string α(1)α(2)...α(n) ∈ {0, 1}n,{

uiwα(1)α(2)...α(n)vi ∈ L1L2 if α(i) = 1,
uiwα(1)α(2)...α(n)vi ∈ L1L2 if α(i) = 0,

and |uiwα(1)α(2)...α(n)vi| ≤ H(n) for all i ∈ {1, 2, ..., n}.
Thus by Lemma 3.2, if a two-way unbounded error probabilistic Turing

machine with space bound S(n) recognizes L1L2, then S(H(n)) can not be

o(log log n) and thus S(n) can not be o(log log n). This completes the proof

of ’L1L2 /∈ PSPACE(o(log log n))’.

By using Lemma 3.3., we can get the following theorem.

Theorem 3.1. MSPACE(o(log n)) and PSPACE(o(log log n)) are not closed

under concatenation, Kleene closure, and length-preserving homomorphism.

5

Proof. Let Li, i ∈ {1, 2, 3, 4}, be the languages described in Lemma 3.3.

Concatenation: Nonclosure under concatenation follows from Lemma 3.3 (1),

(5) and (6), and from the obvious fact that L2 ∈ MSPACE(o(log n))∩
PSPACE(o(log log n)).

Kleene closure: It follows that (L1∪L2)∗∩L3 = L1L2 /∈ MSPACE(o(log n))∪
PSPACE(o(log log n)) (from Lemma 3.3 (5) and (6)). From this, Lemma 3.3 (2)

and (3), and from the obvious fact that MSPACE(o(log n)) and PSPACE(o(log log n))

are closed under intersection with regular languages, nonclosure under Kleene

closure follows.

Length-preserving homomorphism: Nonclosure under length-preserving homo-

morphism follows from Lemma 3.3 (4), (5) and (6), and from the fact that g(L4)

= L1L2, where g : {1, 2, a} → {1, a} is a length-preserving homomorphism such

that g(1) = g(2) = 1 and g(a) = a.

4. Closure Property of ASPACE(o(log n))

This section shows that weak-ASPACE(S(n)) and strong-ASPACE(S(n)) are
not closed under concatenation, Kleene closure, and length-preserving homo-
morphism for any log log n ≤S(n)=o(log n). This result answers an open ques-
tion in [10].

We first introduce a new idea of ”rejecting computation tree” which was
introduced in [11].

Given a 2aTm M, we write c
M̀, x

c′ if configuration c′ is derived from con-

figuration c in one step of M on an input tape x. Let CM be the set of all the
configurations of M. For each c ∈CM , let SuccM,x(c) = {c′ ∈ CM | c M̀, x

c′}. If

SuccM,x(c) = ∅, then c is said to be a halting configuration of M on x.
Let l be a non-negative integer. An l space-bounded rejecting computation

tree of M on input x is a (possibly infinite) nonempty labeled tree with the
following properties:

(1) Each internal node v (non leaf node) of the tree is labeled with an l space-
bounded configuration of M, label(v).

(2) The root node is labeled with IM .
(3) If v is an internal node, and label(v) is universal, then v has exactly one

child u such that label(u) ∈ SuccM,x(label(v)).
(4) If v is an internal node, label(v) is existential and SuccM,x(label(v)) =
{c1, c2, ..., ck}, then v has exactly k children v1, v2, ..., vk such that label(vi) =
ci(1 ≤ i ≤ k).

(5) Each leaf node is a halting configuration which is not accepting, or a
configuration which is not l space-bounded.

A reduced graph of l space-bounded rejecting computation tree (abbreviated
by RG(l)) of M on input x is a finite, labeled directed multi-graph G=(V’,E,label|

6

V’) obtained from an l space bounded rejecting computation tree T=(V,E,label)
of M on x by identifying nodes v and v′ such that label(v) = label(v′) where
V’⊆V and the labeling function label|V’: V’→CM is injective.

For any directed graph G, let V(G) and E(G) denote the sets of nodes and
edges of G, respectively.

Let δ−G = {v′ ∈ V (G) | (v′, v) ∈ E(G)} for each node v ∈V(G). Obviously,
for a reduced graph of l space-bounded rejecting computation tree, there exists
at most one node v such that δ−G(v)=0 labeled with IM .

Let δ+G(v) = {v′ ∈ V (G) | (v, v′) ∈ E(G)} for each node v ∈V(G). An RG(l)
G is regular if |δ+G(v)|=1 for each node v labeled with a universal configuration.

The following fact is used to get our desired result.
Fact 4.1. Let M be a 2aTm, x be a word, and l be a non-negative integer. The
following statements are equivalent:

(1) There doesn’t exist an l space-bounded accepting computation tree of M
on x.

(2) There exists a regular RG(l) of M on x.
Lemma 4.1. Let
L5 = {B(1)#B(2)#...#B(n)cw1cw2c...cwkccw

′
1cw

′
2c...cw

′
r ∈ {0, 1,#, c}+ |

n ≥ 2 & k ≥ 1 & r ≥ 1 & ∀i(1 ≤ i ≤ k)[wi ∈ {0, 1}+] &
∀j(1 ≤ j ≤ r − 1)[w′j ∈ {0, 1}+] & w′r ∈ {0, 1}dlogne &
∀l(1 ≤ l ≤ k)[wl 6= w′r]}, where for each m(1 ≤ m ≤ n), B(m) denotes
the binary representation (with no leading zeros) of the integer m,
L6 = {cw|w ∈ {0, 1}+}∗,
L7 = {B(1)#B(2)#...#B(n)cw1cw2c...cwkccw

′
1cw

′
2c...cw

′
r ∈ {0, 1,#, c}+ |

n ≥ 2 & k ≥ 1 & r ≥ 1 & ∀i(1 ≤ i ≤ k)∀j(1 ≤ j ≤ r) [wi, w
′
j ∈ {0, 1}+]},and

L8 = {B(1)#B(2)#...#B(n)cw1cw2c...cwkcc1w
′
1c2w

′
2...crw

′
r ∈ {0, 1,#, c, d}+ |

n ≥ 2 & k ≥ 1 & r ≥ 1 & ∃i(1 ≤ i ≤ r) [ci = d& w′i ∈ {0, 1}dlogne &
∀j(1 ≤ j ≤ k) [wj 6= w′i] & ∀l(1 ≤ l ≤ r, l 6= i)[cl = c& w′l ∈ {0, 1}+]]}.
Then
(1) L5 ∈ strong-ASPACE(log log n),
(2) L5∪L6 ∈ strong-ASPACE(log log n),
(3) L7 ∈ strong-ASPACE(log log n),
(4) L8 ∈ strong-ASPACE(log log n), and
(5) L5L6 /∈ weak-ASPACE(o(log n)).
Proofs of (1)-(4): By standard techniques as in [10]. We leave the proofs to
the reader as an easy exercise.
Proof of (5): Suppose to the contrary there is a weakly L(n) space-bounded
2aTm M which accepts L5L6.

For each n ≥ 2, let
W(n) ={B(1)#B(2)#...#B(n)cw1cw2c...cwp(n)ccw1cw2c...cwp(n)|∀i(1 ≤ i ≤ p(n))

[wi ∈ {0, 1}dlogne]}, where p(n) = 2dlogne.
As easily seen, each x in W(n) is not in L5L6. Thus, from Fact 4.1, for each

x ∈ W(n), there exists a fixed regular reduced graph of L(r(n)) space-bounded
rejecting computation tree of M on x, where r(n) is the length of each word in
W(n) and r(n) = O(n log n). We denote this graph by G(x).

For each x =B(1)#B(2)#...#B(n)cw1cw2c...cwp(n)ccw1cw2c...cwp(n) in W(n),

7

we call the left part of x (i.e., B(1)#B(2)#...#B(n)cw1cw2c...cwp(n)) the left
segment of x, and the right part of x (i.e., ccw1cw2c...cwp(n)) the right segment
of x.

For each x ∈W(n), we partition V(G(x)), the set of nodes of G(x), as follows:

V(G(x))=Vleft(G(x))∪Vright(G(x)),

where Vleft(G(x)) (resp., Vright(G(x))) denotes the set of nodes of G(x) which
are labeled by configurations representing that the input head of M is on the
left segment of x or on the left endmaker C/ (resp., on the right segment of x
or on the right endmaker $).

We then extract the set set of nodes in Vleft(G(x)) (resp., Vright(G(x))) that
are labeled by configurations which M enters just after the input head crosses
from the right segment of x to the left segment of x (resp., from the left segment
of x to the right segment of x). That is, we have

V←left(G(x)) = {v ∈Vleft(G(x))|(v′, v) ∈E(G(x))&v′ ∈Vright(G(x))},
V→right(G(x)) = {v ∈Vright(G(x))|(v′, v) ∈E(G(x))&v′ ∈Vleft(G(x))},

where E(G(x)) denotes the set of edges of G(x).
Furthermore, we partition E(G(x)) as follows:
E(G(x))=Eleft(G(x))∪Eright(G(x))∪E←(G(x))∪ E→(G(x)),

where
Eleft(G(x)) = {(v, v′) ∈E(G(x))|v ∈Vleft(G(x)) & v′ ∈Vleft(G(x))},
Eright(G(x)) = {(v, v′) ∈E(G(x))|v ∈Vright(G(x)) & v′ ∈Vright(G(x))},
E←(G(x)) = {(v, v′) ∈E(G(x))|v ∈Vright(G(x)) & v′ ∈ V←left(G(x))},
E→(G(x)) = {(v, v′) ∈E(G(x))|v ∈Vleft(G(x)) & v′ ∈ V→right(G(x))}.

We let
Cross-Pair(G(x)) =< label(V←left(G(x))), label(V→right (G(x)))>.
For each word x =B(1)#B(2)#...#B(n)cw1cw2c...cwp(n)ccw1cw2c...cwp(n) ∈

W(n), let contents(x) = {w ∈ {0, 1}dlogne|w = wi for some 1≤ i ≤ p(n)}. For
any two words x, y ∈ W(n), divide W(n) into contents-equivalence classes by
making x and y contents-equivalent if contents(x)=contents(y).
There are

contents(n) =

(
p(n)

1

)
+

(
p(n)

2

)
+ ...+

(
p(n)
p(n)

)
= 2p(n) − 1

contents-equivalence classes.
We denote by CONTENTS(n) the set of all the representatives arbitrarily

chosen from these contents(n) contents-equivalence classes. Of course,

|CONTENTS(n)|=contents(n)=2p(n) − 1.

Proposition 4.1 For two different elements x, y ∈ CONTENT (n),

Cross-Pair(G(x)) 6= Cross-Pair(G(y)).

[Proof. Suppose to the contrary that Cross-Pair(G(x)) = Cross-Pair(G(y)).
From G(x) and G(y), we construct the following graph G(x)©| G(y):

V(G(x)©| G(y)) =Vleft(G(x))∪Vright(G(y)),
E(G(x)©| G(y)) =Eleft(G(x))∪Eright(G(y))∪E←∪E→,

where

8

E← = {(u, v′) ∈VrightG(y))×V←left(G(x))|(u, u′) ∈E←(G(y))&(v, v′) ∈E←(G(x))&
label(u′) = label(v′)}, and
E→ = {(v, u′) ∈VleftG(x))×V→right(G(y))|(v, v′) ∈E→(G(x))&(u, u′) ∈E→(G(y))&
label(u′) = label(v′)}.
Intuitively, G(x)©| G(y) is the graph obtained by connecting the part of G(x)
which correspondes to the left segment of x with the part of G(y) which cor-
respondes to the right segment of y (see Fig.1). From our assumption that
Cross-Pair(G(x)) = Cross-Pair(G(y)), it is easy to see that the following fact
holds.
Fact 4.2. (1) For any v ∈Vleft(G(x)), label(δ+

G(x)©| G(y)
(v)) = label(δ+G(x)(v)),

and
(2) for any v ∈Vright(G(y)), label(δ+

G(x)©| G(y)
(v)) = label(δ+G(y)(v)).

We assume without loss of generality that

contents(y)−contents(x) 6= ∅ (empty set).

Now, consider the word z1z2 such that
(i) z1 is identical with the left segment of x, and
(ii) z2 is identical with the right segment of y.

Let v0 be the node of G(x) labeled by IM (note that v0 is in V(G(x)©| G(y)).
We consider the following depth-first search on V(G(x)©| G(y)) starting at v0:
©1 v := v0;
©2 for each vi ∈ V(G(x)©| G(y)) such that δ+(v) = {v1, v2, ..., vk}:
• if vi has not been searched, then set v := vi and repeat ©2 .
• if every vi in δ+(v) has searched, then return to v.
From Fact 4.2 we can easily see that the sequence of values of variable v

above constructs a regular reduced graph of L(r(n)) space-bounded rejecting
computation tree of M on z1z2. This contradicts the fact that z1z2 is in L5L6.
This completes the proof of Proposition 4.1.]

For each n ≥ 2,

C(n) = {Cross-Pair(G(x))|x ∈ CONTENTS(n)}.

Then

|C(n)| ≤ 22·e[n],

where e[n] = sL(r(n))tL(r(n)), s and t are the numbers of states and work tape
symbols of M, respectively.

Since L(n) = o(log n), it follows that for large n,

contents(n)>C(n).

Therefore, such a large n, there must exist two different x, y in CONTENTS(n)

such that Cross-Pair(G(x)) = Cross-Pair(G(y)). This contradicts Proposi-

tion 4.1, which completes the proof of Lemma 4.1 (5).

By using Lemma 4.1., we can get the following theorem.

Theorem 4.1. For each function log log n ≤S(n) =o(log n), weak-ASPACE(S(n))

and strong-ASPACE(S(n)) are not closed under concatenation, Kleene closure,

9

and length-preserving homomorphism.

Proof. Let Li, i ∈ {5, 6, 7, 8}, be the languages described in Lemma 4.1.

Concatenation: Nonclosure under concatenation follows from Lemma 4.1 (1)

and (5), and from the obvious fact that L5 ∈ strong-ASPACE(log log n).

Kleene closure: It follows that (L5∪L6)∗∩L 7 =L5L6 /∈weak-ASPACE(o(log n))

(from Lemma 4.1 (5)). From this, Lemma 4.1 (2) and (3), and from the obvi-

ous fact that strong-ASPACE(L(n)) and weak-ASPACE(L(n)) are closed under

intersection for any function L(n), nonclosure under Kleene closure follows.

Length-preserving homomorphism: Nonclosure under length-preserving homo-

morphism follows from Lemma 4.1 (4) and (5), and from the fact that h(L8) =L5L6,

where h : {0, 1,#, c, d} → {0, 1,#, c} is a length-preserving homomorphism such

that h(0)=0, h(1)=1, h(#)=# and h(c) = h(d) = c.

5. Conclusion

We conclude this paper by giving the following open problem:
• Is closed PSPACE(L(n)) under concatenation, Kleene closure and length-
preserving homomorphism for log log n ≤L(n) = o(log n)?

10

tdtdtdtd

dtdtdtdt

v8

v7

v6

v5

v4

v3

v2

v1

u8

u7

u6

u5

u4

u3

u2

u1

-

-

-

-

-

-

-

�

�

�

�

�

$

%

�

�����
�

���
��-

�

�

-

'

&-��

(1) G(x)

t
dqtdqt
dqtdq

dqt
dqtdqtdq
t

v8

v′7

v6

v′5

v4

v′1

v2
v′3

u′8

u7

u′6

u5

u′4

u3
u′2

u1

���
�:

XXXXz

���
�:

XXXXz

���
�:

��
��:

XX
XXy

XXX
Xy

XX
XXy

����9

XX
XXy

$

%
$
%
���
�
��

�

�

�

�

�
�
'

&��
��

-

-

-

-

(2) G(y)

tdtdtdtd

dqt
dqtdqtdq
t

v8

v7

v6

v5

v4

v3

v2

v1

u′8

u7

u′6

u5

u′4

u3
u′2

u1

-

XXXXz

-

--

�

XX
XXy

XXX
Xy

XX
XXy

����9

���
�:$

%
$
%
���
�
��

�

�

�

�
��
-

�

�

-

'

&-��

(3) G(x)©| G(y)

Fig. 1. Connection of graphs G(x) and G(y), where for simplicity, we
identify node v with its lavel, label(v).

11

References

[1] B. V. Braunmühl, R. Gengler and R. Rettinger, ”The alternation hierarchy
for subalgorithmic space is infinite”, Comput. Complexity 3, pp. 207-230, 1993.

[2] J. H. Chang, O. H. Ibarra and B. Ravikumar, ”Some observations concerning
alternating Turing machines using small space”, Information Processing Letters
25, pp. 1-9, 1987.

[3] C. Dwork and L. Stockmeyer, ”A time complexity gap for two-way prob-
abilistic finite-state automata”, SIAM J. COMPUT. 19, pp. 1011-1023, 1990.

[4] R. Freivalds, ”Probabilistic two-way machines”, Proceedings of the Interna-
tional Symposium on Mathematical Foundations of Computer Science, LNCS
118, pp. 33-45, 1981.

[5] R. Freivalds and M. Karpinski, ”Lower space bounds for randomized com-
putation”, Proceedings of ICALP’94, LNCS 820, pp. 580-592, 1994.

[6] V. Geffert, ”A hierarchy that does not collapse: alternations in low level
space”, Informatique théorique et Applications / Theoretical Informatics and
Applications 28, no.5, pp. 462-512, 1994.

[7] J. Gill, ”Computational complexity of probabilistic Turing machines”, SIAM
J. COMPUT. 6, no.4, pp. 675-695, 1977.

[8] A.G. Greenberg and A. Weiss, ”A lower bound for probabilistic algorithms
for finite state machines”, JCSS, Vol. 33, pp. 88-105, 1986.

[9] J. E. Hopcroft and J. D. Ullman, ”Formal Languages and Their Relation
to Automata”, Addison-Wesley, Reading, Mass., 1969.

[10] A. Ito, K. Inoue and I. Takanami, ”A note on alternating Turing machines
using small space”, IEICE Trans. E 70 (10), pp. 990-996, 1987.

[11] A. Ito, T. Okazaki, K. Inoue and Y. Wang, ”Nonclosure under comple-
mentation of two-dimensional alternating o(log logm) space complexity class”,
IEICE Trans. Vol. I81-D-I, no 6, pp. 593-603, 1998.

[12] K. Iwama, ”ASPACE(o(log log n)) is regular”, SIAM J. COMPUT. 22, pp.
207-221, 1993.

[13] M. Lískiewicz and R. Reischuk, ”The sublogarithmic alternating space
world”, SIAM J. COMPUT. 25, pp. 828-861, 1996.

[14] J. Wang, ” A note on two-way probabilistic automata”, Information Pro-
cessing Letters 43, pp. 321-326, 1992.

12

