
International Journal of Foundations of Computer Science Vol. 13 No. 4 (2002) 613-627
© World Scientific Publishing Company

APPROXIMATION ALGORITHMS FOR SCHEDULING
MALLEABLE TASKS UNDER PRECEDENCE CONSTRAINTS

RENAUD LEPERE

Laboratoire ID (Informatique et Distribution) - IMAG, 51 rue J.Kuntzmann

38330 Montbonnot St Martin, France

and

DENIS TRYSTRAM

Laboratoire ID (Informatique et Distribution) - IMAG,
51 rue J.Kuntzmann, 38330 Montbonnot St.Martin, France

Denis.Trystram@imag.fr.

and

GERHARD J. WOEGINGER

Institut fur Mathematik, Technische Universitdt Graz, Steyrergasse 30, A-8010 Graz, Austria
Supported by the START program Y43-MAT of the Austrian Ministry of Science

gwoegiQopt. math. t u - g r a z . ac . a t

Received 20 December 2000
Accepted 4 December 2001

Communicated by Albert Zomaya

ABSTRACT

This work presents approximation algorithms for scheduling the tasks of a parallel ap
plication that are subject to precedence constraints. The considered tasks are malleable
which means that they may be executed on a varying number of processors in parallel.
The considered objective criterion is the makespan, i.e., the largest task completion time.
We demonstrate a close relationship between this scheduling problem and one of its
subproblems, the allotment problem. By exploiting this relationship, we design a poly
nomial time approximation algorithm with performance guarantee arbitrarily close to
(3 + \ /5) /2 » 2.61803 for the special case of series parallel precedence constraints and for
the special case of precedence constraints of bounded width. These special cases cover
the important situation of tree structured precedence constraints. For arbitrary prece
dence constraints, we give a polynomial time approximation algorithm with performance
guarantee 3 + V § « 5.23606.

K e y w o r d s : parallel computing - scheduling - malleable tasks - precedence constraints
- series parallel order - bounded width - approximation algorithm - project management
- discrete time-cost tradeoff problem.

613

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
02

.1
3:

61
3-

62
7.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

T
W

E
N

T
E

 o
n

03
/0

6/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

mailto:Denis.Trystram@imag.fr

614 R. Lepere, D. Trystram & G. Woeginger

1. Introduction

Scheduling and load-balancing are central issues in the parallelization of large
scale applications. One of the main problems in this area concerns efficient schedul
ing of the tasks of a parallel program. This problem asks to determine at what time
and on which processor all the tasks should be executed. Among the various possi
ble approaches, the most commonly used is to consider the tasks of the program at
the finest level of granularity, and to apply some adequate clustering heuristics for
reducing the relative communication overhead; see Gerasoulis & Yang [9]. Several
models have been developed for modeling the communication and the parallelization
overhead in these problems. In models with a finer communication representation
(like in the LogP model [3]), the impact of the parallelization overhead is usually
ignored.

Recently, a new computational model called Malleable tasks (MT) has been pro
posed by Turek, Wolf & Yu [19] as an alternative to the usual delay model. Under
the MT model, the precedence task graph depicts a coarse grain vision of a parallel
application and tasks are computational units which may be themselves executed
in parallel. The execution time of a malleable tasks depends upon the number of
processors alloted to execute it and is determined more or less precisely for each
application. The influence of communications inside malleable tasks is taken into
account implicitely by this execution time which includes a penalty due to the
management of the parallelization (communications, synchronization, etc.). The
communications between malleable tasks are usually neglected, since the granular
ity under the MT model is large. The MT model allows to exploit two levels of
parallelism: inside and between malleable tasks.

The MT model is particulary well-suited for applications such as domain de
composition where a coarse grain description of the application is natural. Blayo,
Debreu, Mounie & Trystram applied malleable tasks for solving an application for
the simulation of the oceanographic circulation based on adaptive mesh refinement
within finite differences [1]. The MT model has been also used for tree search for
determining the polynomial roots using Descartes' method [20]. In this application,
Decker & Krandick considered independant MT with identical computing times.
We refer the reader to Lepere, Mounie, Robic & Trystram [13] for more details and
motivations of the MT model.

MT are closely related to two other models, namely to the model of multipro
cessor tasks (see e.g. Drozdowski [7]) and to the model of divisible tasks (Prasanna
& Musicus [17]). The difference between these models lies in the freedom allowed
to the task allotment, that is, the number of processors which execute each task: A
multiprocessor task requires to be executed by a fixed integer number of processors,
whereas divisible tasks share the processors as a continuously divisible resource.

LI. The malleable tasks model

Throughout this paper we assume that the parallel program is represented by a
set of generic malleable tasks, that is, computational units that may be parallelized

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
02

.1
3:

61
3-

62
7.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

T
W

E
N

T
E

 o
n

03
/0

6/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Approximation Algorithms for Scheduling Malleable Tasks 615

and that are linked by precedence constraints. The precedence constraints are
determined a priori by the analysis of the data flow between the tasks. More
formally, let G = (V, E) be a directed graph where V = {1,2, . . . , n } represents
the set of malleable tasks, and where E C V x V represents the set of precedence
constraints among the tasks. If there is an arc from task i to task j in E, then task
i must be processed completely before task j can begin its execution. This situation
will be denoted by i —> j ' , i is called a predecessor of j , and j is called a successor
of i. All tasks are available at time 0 for execution, and they are to be scheduled on
an overall number of m processors. Every task j is specified by m positive integers
Pj,q (1 £ Q S m) where Pj,q denotes the execution time of task j when it is executed
in parallel on q processors.

Motivated by the usual behavior of parallel programs (cf. Cosnard & Trystram
[2]), we make the following assumptions on the task execution times. Blayo, De-
breu, Mounie & Trystram [1] have shown these assumptions to be realistic while
implementing actual parallel applications.
Assumption 1 (Monotonous penalty assumptions)

(a) The execution time pjfq of a malleable task j is a non-increasing function of
the number q of processors executing the task.

(b) The work Wji9 = q • pjtq of a malleable task j is a non-decreasing function of
the number q of processors executing the task.

Assumption (a) means that adding some processors for executing a malleable task
cannot increase its execution time. In practice, the execution time even goes down
in this situation, at least until a threshold from which onwards there is no more
parallelism. Assumption (b) reflects that the total overhead for managing and
administrating the parallelism usually increases with the number of processors.

A schedule a is specified by two functions starta : V —> IN and allots : V —> [1, m]
where the function starta associates to each task a date of execution (or starting
time), and where the function allota specifies the number of processors to execute
a task. In schedule <r, the task j completes at time Ca(j) = starta(j) + Pj,allota(j)-
We say that task j is active during the time interval from starta(j) to Ca(j)y and
we denote by active(t) the set of all tasks that are active at time t. A schedule a
is a feasible schedule, if at any moment t in time at most m processors are engaged
in the computation

2_] allota (j) < m for alH > 0,
j£active(t)

and if all the precedence constraints are respected:
starta (i) + Pi,aUotv(i) < starta (j) for all i ->• j .

The makespan Cm a x of a schedule a is the maximum of all task completion times
CaiJ)- We now introduce the central problem of this paper.
Problem 2 MAKESPAN PROBLEM FOR MALLEABLE TASKS (IVIT-MAKE-

SPANJ

INSTANCE: A directed graph G = (V,E) that represents a set of n precedence con
strained malleable tasks; the number m of processors; positive integers pjiq with

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
02

.1
3:

61
3-

62
7.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

T
W

E
N

T
E

 o
n

03
/0

6/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

616 R. Lepere, D. Trystram & G. Woeginger

1 < j < n and 1 < q < m that specify the task execution times.

GOAL: Find a feasible schedule that minimizes the makespan Cmax-

Consider an instance of MT-MAKESPAN, and assume that some processor allotment
a has been prespecifled for all tasks, and that task j is to be executed on exactly
ctj processors. Then the execution time of task j is pj, and its work is ctjPj. With
every directed path through the precedence graph G = (V>E), we associate the
total execution time pj of the vertices on this path. The longest path under this
definition of length is called the critical path of the allotment a, and its length
is denoted by La. Moreover, we denote by Wa = $^?=i ajPj the overall work in
allotment a. Clearly,

c(a) = max{ZA —Wa] < Cm a x (1)
m

holds for the makespan Cmax of any feasible schedule a under allotment a: Since
the schedule must obey the precedence constraints, the tasks along the critical path
form a chain that forces the makespan to at least La. Since the total work Wa can
only be distributed across m processors, some processor will run for at least Wa jm
time units. The value c(a) in equation (1) will be called the cost of allotment a.
With this discussion, it is fairly natural to consider the following auxiliary problem.
P r o b l e m 3 ALLOTMENT PROBLEM FOR MALLEABLE TASKS £MT-ALLOT
MENT,}

INSTANCE: A directed graph G = (V,E) that represents a set of n precedence con
strained malleable tasks; the number m of processors; positive integers p^q with
1 < j < n and 1 < q < m that specify the task execution times.
GOAL: Find an allotment a : V —t [l,m] that minimizes the cost c(a).

1.2. Known results

The complexity of the makespan problem for malleable tasks has been studied in
the paper of Du and Leung [8]: The problem with arbitrary precedence constraints is
strongly NP-hard for m = 2 processors, and the problem of scheduling independent
malleable tasks is strongly NP-hard for ra = 5 processors.

Only a few positive results are available for scheduling malleable tasks, and
most of them concern independent task systems. Jansen & Porkolab [11] provide
a polynomial time approximation scheme (PTAS) for the special case where the
number m of processors is a fixed constant, and where the tasks are independent.
For the case of independent tasks and an arbitrary number of machines, the best
approximability result known has a performance guarantee of 2 (Ludwig & Tiwari
[14]). For the slightly easier case where the execution times additionally satisfy
the monotonous penalty Assumption 1, Mounie, Rapine & Trystram [16] gave a
polynomial time approximation algorithm with a performance guarantee of \/3 ^
1.73205.

Now let us turn to scheduling malleable tasks under precedence constraints.
Prasanna & Musicus [17] proposed an algorithm for some specially structured prece
dence task graphs for the so-called continuous version of the problem; in the con
tinuous version, a non-integer number of processors may be alloted to any task.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
02

.1
3:

61
3-

62
7.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

T
W

E
N

T
E

 o
n

03
/0

6/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Approximation Algorithms for Scheduling Malleable Tasks 617

Moreover, they assume the same speed-up function for all tasks. The results of
Lenstra & Rinnooy Kan [12] for makespan minimization of precedence constrained
sequential tasks imply that unless P=NP> makespan minimization of precedence
constrained malleable tasks cannot have a polynomial time approximation algorithm
with worst case performance guarantee better than 4/3.

The ALLOTMENT PROBLEM FOR MALLEABLE TASKS is closely related
to the discrete time-cost tradeoff problem, a well-known problem from the project
management literature; see e.g. De, Dunne, Ghosh & Wells [4]. The discrete time-
cost tradeoff problem is a bicriteria problem for projects, where a project essentially
is a system of precedence constrained tasks. Every task may be executed according
to several different alternatives, where each alternative takes a certain amount of
time and costs a certain amount of money. By selecting one alternative for every
task, one fixes the cost (= total cost of all tasks) and the duration (= length
of the longest chain) of the project. In the budget variant of the discrete time-
cost tradeoff problem, the instance consists of such a project together with a cost
bound C The goal is to select alternatives for all tasks such that the project
duration is minimized subject to the condition that the project cost is at most
C; the corresponding optimal duration is denoted by D*(C). By rounding the
solutions of a linear programming relaxation, Skutella [18] derives a polynomial
time algorithm for this budget variant that finds a solution with project cost at
most 2C and project duration at most 2D* (C).

Now let us discuss the connection between the allotment problem M T - A L L O T

MENT and the discrete time-cost tradeoff problem. In the allotment problem M T -
ALLOTMENT, every task j can be executed in m alternative ways by assigning ctj
machines to it, where 1 < aj < m. In the language of the discrete time-cost tradeoff
problem, the resulting duration of task j is Pj,aj and the resulting cost of task j is
ajPj,aj/mi *-e-' ^ s contribution to the value ^Wa. Then the corresponding project
cost equals ~ Wa, the corresponding project duration equals La, and the maximum
of these two values equals the cost c(a) of allotment a. By combining the above
mentioned result of Skutella [18] with a binary search procedure, we now get the
following proposition.

P ropos i t ion 1 The ALLOTMENT PROBLEM FOR MALLEABLE TASKS pos
sesses a polynomial time 2-approximation algorithm. •

We furthermore note that the arguments of De, Dunne, Ghosh & Wells [5] imply
that the ALLOTMENT PROBLEM FOR MALLEABLE TASKS is NP-complete
in the strong sense.

2. Resu l t s a n d out l ine of t h e p a p e r

We want to stress that all results in this paper are based on the monotonous
penalty Assumption 1. In this paper, we derive polynomial time approximation
algorithms for various cases of the MAKESPAN PROBLEM FOR MALLEABLE
TASKS and of the ALLOTMENT PROBLEM FOR MALLEABLE TASKS. Let us

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
02

.1
3:

61
3-

62
7.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

T
W

E
N

T
E

 o
n

03
/0

6/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

618 R. Lepere, D. Trystram & G. Woeginger

first define for m > 3 the real numbers r(ra) by
, x . (m 2m — a

rim) = mm max< —,
K/*<(m+l)/2 I fi m — fi + .

(2)

Moreover, let ^u(ra) be the integer /i with 1 < £* < (m + l) / 2 for which this minimum
is attained. The following lemma provides the reader with some intuition on the
(somewhat erratic) behaviour of the values r(m) and /i(ra). For small m, the values
of /i(ra) and r(rn) are listed in Figure 1.

Lemma 1 The real numbers r(m) and the integers p>{m) satisfy the following prop
erties.

(i) For all m>2, we have r(m) < (3 + y/E)/2 w 2.61803.

(ii) As m tends to infinity, r(m) tends to (3 + V5)/2.

(Hi) For every m > 2, the value fi(m) either equals the integer above or the integer
below | (3m — \/5m2 + 4m).

(iv) For every m > 2 with m ^ 3 and m ^ 5, we have p,(m) < m/2.

(ty v4s m tends £o infinity, fj,(m)/m tends to (3 — s/E)/2 & 0.38196. •

| m
2
3
4
5
6
7
8

1 9

li(m)
1
2
2
3
3
3
4
4

r(mj

2.0000
2.0000
2.0000
2.3333
2.2500
2.3333
2.4000
2.3.333

1 m

10
11
12
13
14
15
16
17

fi(m)

4
5
5
6
6
6
7
7

2.5000
2.4285
2.4000
2.5000
2.4444
2.5000
2.5000
2.4545 J

1 m
18
19
20
21
22
23
24
25

fi(m)

8
8
8
9
9
9
10
10

2.5454
2.5000
2.5000
2.5384
2.5000
2.5555
2.5333
2.5000J

1 m
26
27
28
29
30
31
32
33

fi(m)
10
11
11
12
12
13
13
13

r(m) 1

2.5625
2.5294
2.5454
2.5555
2.5263
2.5789
2.5500
2.5384 J

Figure 1: A listing of the values pi(m) and r(m) for 2 < m < 33.

The straightforward proof of Lemma 1 is omitted. The following theorem summa
rizes our structural main result on the problems MT-MAKESPAN and M T - A L L O T

MENT; its proofs can be found in Section 3. The theorem demonstrates that these
two problems are strongly interlocked and interrelated. Moreover, up to some small
constant factor it is sufficient to deal with the approximability of the - seemingly
easier - problem MT-ALLOTMENT.

Theorem 4 / / there exists a polynomial time Q-approximation algorithm A for
problem MT-ALLOTMENT on m processors, then there exists a polynomial time
Q - r(m)-approximation algorithm B for problem MT-MAKESPAN on m processors.
An immediate consequence of Proposition 1, Theorem 4, and Lemma l(i) is the
following corollary.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
02

.1
3:

61
3-

62
7.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

T
W

E
N

T
E

 o
n

03
/0

6/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Approximation Algorithms for Scheduling Malleable Tasks 619

Corollary 1 The MAKESPAN PROBLEM FOR MALLEABLE TASKS possesses
a polynomial time approximation algorithm with performance guarantee 3 -f v5 w
5.23606. •

The following Theorem 5 will be a strong and helpful tool for handling specially
structured precedence constraints. Its proof can be found in Section 4.
Theo rem 5 Consider the decision version of problem M T - ALLOTMENT where for
a given instance I of MT-ALLOTMENT and for a positive integer bound X, one
must decide whether there exists an allocation of cost at most X. If there exists a
pseudo-polynomial time exact algorithm for this decision version with running time
polynomially bounded in the size of I and in the value of X, then there does exist a
fully polynomial time approximation scheme for problem MT-ALLOTMENT.

A directed precedence graph G = (V, E) is series parallel (see e.g. Mohring [15]) if
(i) it is a single vertex, (ii) it is the series composition of two series parallel graphs, or
(iii) it is the parallel composition of two series parallel graphs. Only graphs that can
be constructed via rules (i)-(iii) are series parallel. Here the series composition of
two directed graphs G\ = (Vi,Ei) and G2 = (V2, E2) with V\ ft V2 = 0 is the graph
that results from G\ and G2 by making all vertices in V\ predecessors of all vertices
in V2, whereas the parallel composition of G\ and G2 simply is their disjoint union.
Series parallel precedence constraints are a proper generalization of tree precedence
constraints. We have the following result for series parallel precedence constraints.
T h e o r e m 6 There exists a pseudo-polynomial time exact algorithm for the decision
version of the restriction of problem MT-ALLOTMENT to series parallel precedence
graphs.

Two tasks i and j are called independent if neither i is a predecessor of j nor j
is a predecessor of i. A set of tasks is independent, if the tasks in it are pairwise
independent. The width of the precedence graph G is the cardinality of its largest
independent set. We have the following result for precedence graphs of bounded
width.

T h e o r e m 7 There exists a pseudo-polynomial time exact algorithm for the decision
version of the restriction of problem MT-ALLOTMENT to precedence graphs whose
width is bounded by a constant d.

The proofs of Theorems 6 and 7 can be found in Sections 5 and 6, respectively.
Finally, by combining the statements in Theorems 4, 5, 6, and 7, we derive the
following corollary.

Corol lary 2 For the restriction of the MAKESPAN PROBLEM FOR MALLEABLE
TASKS to (a) series parallel precedence graphs and to (b) precedence graphs of
bounded width, there exist polynomial time approximation algorithms whose perfor
mance guarantee can be made arbitrarily close to (3 + \ /5) /2. •

3. Prom allotments to makespans

In this section we will prove Theorem 4. Consider an instance / of the malleable
tasks problem as defined in Problems 2 and 3. Consider an optimal allotment a +

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
02

.1
3:

61
3-

62
7.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

T
W

E
N

T
E

 o
n

03
/0

6/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

620 R. Lepere, D. Trystram & G. Woeginger

and a ^-approximate allotment aA for instance / with respect to problem M T -
ALLOTMENT. Denote by W+ and WA the total work in these two allotments,
and by £ + and LA the lengths of their critical paths, respectively. Since aA is a
^-approximate allotment, we have

maxfl/4 , — WA\ < £-max{I,+ , — W+\. (3)
. m ra

Moreover, consider an optimal feasible schedule for instance I with respect to prob
lem MT-MAKESPAN, and let C^ a x denote the optimal makespan. By applying
equation (1) to C^ a x and to the allotment induced by the optimal schedule, and by
using the fact that a + minimizes the allotment cost, we get that

max{L+, ±-W+) < C*max. (4) ra

We will now define and analyze an approximation algorithm B for problem
MT-MAKESPAN. This approximation algorithm is based on the value /i(ra) with
1 < M m) < (ra + l) /2 as we defined in the paragraph after equation (2). To
simplify the presentation, we will from now on briefly write \i for £*(ra), and omit
the dependence on ra. Algorithm B is a generalization of Graham's [10] well-
known list scheduling algorithm for sequential tasks. The algorithm is described
in Figure 2. The resulting schedule is denoted aB, the corresponding makespan is
C^ a x , the underlying allotment is aB, the total work in aB is WB, and the length of
the critical path in aB is LB. The only difference between allotments aA and aB is
that the tasks using more than JJ, processors in aA are compressed to /i processors in
aB. By the monotonous penalty Assumption 1(b), reducing the number of alloted
processors cannot increase the work of a task. Together with inequalities (3) and
(4) this yields

WB < WA < meC*max. (5)
The time interval from 0 to C^ a x is partitioned into three types of time slots: During
the first type of time slot, at most fi — 1 processors are busy. During the second
type, at least fi and at most m — fj, processors are busy, and during the third type
at least ra — pi -f 1 processors are busy. The corresponding sets of time slots are
denoted by T\, T^, and T3, respectively. The overall length of the time slots in set
Ti, 1 < i < 3, is denoted by \T{\. If fj, < ra/2, then every time slot from 0 to CB

ax

belongs to exactly one of the three types, and all three types may actually occur.
In the boundary case where fj, = (ra -j- l) /2 every time slot from 0 to C^ a x either
belongs to the first or to the third type. In this boundary case there are no time
slots of second type, since this would require that at least (ra + l) /2 and at most
(ra —1)/2 processors are busy, which clearly is impossible. Since in either case these
three types of time slots cover the whole interval from 0 to C^ a x , we get that

C £ « = |Ti| + | r 2 | + |T3 |. (6)
Since during time slots of the first (respectively second and third) type at least one
(respectively ft and ra — ft + 1) processors are busy, we get that

wB > |ri| + Ai|r2| + (m-Ai + i)|r3|. (7)
L e m m a 2 The sets T\ and Ti of time slots satisfy the following inequality with

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
02

.1
3:

61
3-

62
7.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

T
W

E
N

T
E

 o
n

03
/0

6/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Approximation Algorithms for Scheduling Malleable Tasks 621

1. Initialization.
- Allot to task j (j = 1 , . . . , n) exactly af — minlaj1 , fj,} processors.
- This fixes the execution time pf and the work wf = af • pf of every
task j .

2. Repeat the following step until all tasks have been sched
uled.
- Let READY denote the set of tasks whose predecessors all have already
been scheduled.
- Compute for each task j £ READY the earliest possible start time un
der the allotment aB.
- Schedule the task in READY with the smallest computed earliest start
time (ties are broken in favor of tasks with smaller indices).

Figure 2: Approximation algorithm B for problem MT-MAKESPAN.

respect to the length LA of the critical path in allotment aA.

|Ti| + £ |r2 | < LA. (8)
m

Proof. T •
he idea is to construct a 'heavy' directed path V in the transitive closure of the

graph G = (V,E). The last task in the path V is any multiprocessor task j \ that
completes at time C^ a x in the schedule aB. After we have defined the last i > 1
tasks ji —> j t - i —)• •••—>• j2 —>• i i o n the path V, we find the next task ji+\ as
follows: Consider the latest time slot t in Xi U T2 that lies before the starting time
of task ji in o~B. Consider the set V of tasks that consists of task ji and of all its
predecessor tasks that start after time t in aB. Since during time slot t at most
m — fi processors are busy, and since aB allots at most /* processors to any task in
V'} all the tasks in V cannot be ready for execution during the time slot t. Hence,
for every task in V' some predecessor is being executed during the time slot t. As
the next task ji+i on path V, we select any predecessor of task ji that is running
during slot t. This procedure terminates when V contains a task that starts before
all time slots in Tx U T2.

Now consider a task j on the resulting path V. \iaB allots less than /J, processors
to task j , then aA and aB both allot the same number of processors to j . In this
case the execution times of j in aA and aB are identical. In schedule O~B such a task
j may be executed during any time slot in T\ UT2. If aB allots exactly fi processors
to task j , then aA may allot any number k of processors to j , where \x < k < m. By
the monotonous penalty Assumption 1 (b), the work fj, * pf in aB is less or equal to
the work k -pf in aA. Therefore, the execution time pf of task j in allotment aA is
at least jji/k > fi/m times the execution time pf of j in allotment aB. In schedule
CTB such a task j may be executed during any time slot in T2, but not during a time
slot i nT i .

By our construction, the tasks on the directed path V cover all time slots in

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
02

.1
3:

61
3-

62
7.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

T
W

E
N

T
E

 o
n

03
/0

6/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

622 R. Lepere, D. Trystram & G. Woeginger

T\ U T2 in schedule <TB- Let us estimate the length LA(V) of the path V under
the allotment aA. The tasks that are executed during time slots in T\ contribute
a total length of at least |Ti| to LA(V). The tasks that are executed during time
slots in T2 contribute a total length of at least |T2 |/i/m to LA(V). Since the length
LA of the critical path in aA is an upper bound on LA(V), our proof is complete.
•

Now let us complete the proof of Theorem 4. Multiplying (6) by m — /i 4- 1 and
subtracting (7) from it yields

(w - ^ + l K w < WB + (m-(i)\T1\ + (m-2n + l)\T2\. (9)
We distinguish two cases. In the first case we assume that m//jt < (2m — jj)/{m —
/i + 1). Then (2) yields r(ra) = (2m — £0/(ra — fJ> + 1)- Moreover, the assumed
inequality is equivalent to (m — 2/i + 1) < /i(m — /j,)/m. Plugging this into (9),
using (8) to bound |Ti| + /i |T2 | /m, using (5) to bound WB, and using (3) and (4)
to bound LA by Q C^ a x altogether yields that

(m - / i + l) C f a x < ^ + (m- / i) |T i | + / i (m- / i) | r 2 | /m < WB + (m-v)LA

< m £ C m a x + (™ - ^) £ C m a x = (2m - /*)# C ^ a x .

Hence, in this case schedule aB indeed yields a Q • r(m)-approximation for C^ a x .
In the second case we assume that the inequality m/fi > (2m — fJ>)/(m — /i + 1)
holds. Then (2) yields r(m) = m/fi. Moreover, the assumed inequality is equivalent
to (m — fj) < (m — 2/i + l)m/fi. By plugging this into (9) and by using similar
arguments as in the first case, we conclude that
(m - / i + l)Cfax < P ^ B 4 - (m - 2 / i + l)m|T1|//i + (m ~ 2 / i + l) | T 2 |

< WB + (m - 2/i + l)mLA/fi

< meC^ax-^{m-2fi-\-l)meC^ax/fi = (m - / i + l) m ^ Q a x / / i .
Hence, also in the second case schedule crB yields a £-r(m)-approximationfor C^ a x .
Since it is straightforward to implement algorithm B in polynomial time, the proof
of Theorem 4 is complete.

4. From a pseudo-polynomial t ime algorithm to an FPTAS

In this section we will prove Theorem 5. Our first goal is to get a fast algorithm
for the following auxiliary allotment problem MT-ALLOTMENT on series parallel
precedence graphs: We assume that we are given an instance / of MT-ALLOTMENT,

a positive real £, and an a priori bound X such that there exists an allotment for
/ with cost at most X. Our goal is to find within polynomial time an allotment a
that satisfies c(a) < (1 -f e)X.

Define Z = eX/n. Furthermore, define a scaled instance V by setting pfj =
[pj,q/Z\ for all tasks j and all 1 < q < m while keeping the same precedence
constraints as in instance J. Note that pjiq < Z(Pjq + 1)- Moreover, note that
instance i7 must have an allotment of cost at most X/Z', since the original instance
/ had some allotment of cost at most X. Take the pseudo-polynomial time algorithm
that exists according to the assumption of Theorem 5, and apply it to the scaled
instance J7 with bound [X/Z\. Denote the resulting allotment by a with c(a) <

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
02

.1
3:

61
3-

62
7.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

T
W

E
N

T
E

 o
n

03
/0

6/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Approximation Algorithms for Scheduling Malleable Tasks 623

[X/Z\, and interprete allotment a for V as an allotment ft for the original instance
/ . Consider an arbitrary path V with \V\ tasks in allotment ft. Then

! > > W) < E ^ i , W) + 1) = Z\V\ + Zj2^,aU) < Zn + ZL".(10)

This implies L? <Zn + ZLa. Moreover,
X > (i) - P i , W) ^ E ^ « (i) ' (i (i) + 1) < Z m n + Z W « . (11)

This implies W^ < Z ran + 2T Wa. Putting things together we conclude that

c(ft) = m a x { l / , — Wfi] < max{Zn + ZLa, Zn + Z—W?}
m m

= Zn + Zc(a) < eX + Z{X/Z) = (l+e)X.
Hence, the cost of allotment ft for / is at most (l-\-s)X as desired. By the assumption
of Theorem 5, the time to find ft is polynomially bounded in the size of I and in
X/Z = ne. To summarize, we can solve our auxiliary problem and find the desired
allotment within a running time that is polynomially bounded in the size of i" and
in 1/e.

It remains to get rid of the assumption that we do have an a priori knowledge
of the bound X. Let P = Xw=iPj,i denote the total execution time of all tasks
in I when they are executed on a single processor. By the monotonous penalty
Assumption 1, every critical path in every allotment for I has length at most P,
and also the average work of every allotment is at most P. Therefore, the cost of
the optimal allotment is at most F , and we can find an (1 + ^-approximation by
performing a binary search over the interval from 1 to P . This completes the proof
of Theorem 5.

5. Al lo tments for series paral lel g raphs

In this section we will prove Theorem 6. Hence, we are given an instance / of
MT-ALLOTMENT where the precedence graph G = (V, E) is series parallel, together
with a positive integer bound X. Our goal is to decide within pseudo-polnomial
time, whether there exists an allotment a with cost c(a) < X.

It is well known that a series parallel graph can be decomposed in polynomial
time into its atomic parts according to the series and parallel compositions (see e.g.
Mohring [15]). Essentially, such a decomposition corresponds to a rooted, ordered,
binary tree where all interior vertices are labeled by s or p (series or parallel com
position) and where all leaves correspond to single vertices of the precedence graph
G. We associate with every interior vertex v of the decomposition tree the series
parallel graph G(v) induced by the leaves of the subtree below v. Note that for the
root vertex we have G(root) = G.

For a vertex v in the decomposition tree, and for an integer £ with 1 < t < X,
we denote by F[v,£] the smallest possible value w with the following property:
There exists an allotment a for the tasks in G(v) with La < £ and Wa < w. It is
easy to compute all such values F[v,£] by a dynamic programming approach that
starts in the leaves of the decomposition tree, and then moves upwards towards the
root. This algorithm is sketched in Figure 3. The time complexity of this dynamic

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
02

.1
3:

61
3-

62
7.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

T
W

E
N

T
E

 o
n

03
/0

6/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

624 R. Lepere, D. Trystram & G. Woeginger

1. Initialization of leaf vertices.
- For every leaves v of the decomposition tree and for every £ with
0 < £ < X, set
F[v,£] := mini<g<m{g -pViq | pViq < £}.

2. Handling interior vertices of the decomposition tree.
- For every interior vertex v with left child v\ and right child v2 and for
every £ with 0 < £ < X do the following:
- If v is a p vertex, then F[v,£] := F[vu£] + F[v2,£]
- If v is an s vertex, then F[v,£\ := mini<£<^_i F[vi,k] + F[v2,^ — k]

3. Termination.
- Answer YES if there exists some 1 < £ < X with F[roo£, £]/ra < X.
Otherwise, answer NO.

Figure 3: A dynamic programming algorithm for computing F[v,£].

programming algorithm is 0(nmX2) which is pseudo-polynomially bounded in the
input size as desired. By storing appropriate auxiliary information and by perform
ing some backtracking, one can also explicitly compute the corresponding allotment
with cost at most X while increasing the running time only by a constant factor.
Since these are standard techniques, we do not elaborate on them.

6. Allotments for graphs of bounded width

In this section we will prove Theorem 7. We are given an instance I of M T -
ALLOTMENT where the width of the precedence graph G = (V, E) is some fixed
constant cf, together with a positive integer bound X. Our goal is to decide within
pseudo-polnomial time, whether there exists an allotment a with cost c(a) < X.

A well-known theorem of Dilworth [6] states that if the width of a precedence
graph equals d then the set V of tasks can be partitioned into d totally ordered
chains V^\ . . . , V^d\ Moreover, it is straightforward to compute such a chain
partition in 0(nd) time. Now consider a maximal set U of independent tasks in
G, and let G(U) be the graph that is induced by all the tasks in U together with
all their predecessors. For appropriate integers 1 < i¥,..., i% < n the task set of
graph G(U) consists of the first ff tasks from every chain V^\

For a maximal independent set U and for d integers £\,..., £d with 1 < £j < X,
we denote by F[U, £\,..., £d] the smallest possible value w with the following prop
erty: There exists an allotment a for the tasks in G(U) with total work Wa < to,
such that the total execution time on every directed path ending in the ff th task in
the j th chain V^ is bounded by £j. It is easy to compute all values F[f7, l i , . . . , £d]
by a dynamic programming approach, as long as set U is handled before set U'
whenever G(U) is a subgraph of G(Uf). This algorithm is sketched in Figure 4.
The time complexity of this dynamic programming algorithm is 0{nmX2d) which
is pseudo-polynomially bounded in the input size. This completes the proof of

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
02

.1
3:

61
3-

62
7.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

T
W

E
N

T
E

 o
n

03
/0

6/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Approximation Algorithms for Scheduling Malleable Tasks 625

1. Initialization.
- If U is the set of tasks without predecessors, then ff = 1 and G(U)
contains the first task from every chain. For all £i,...,£d with 1 <
£j < X compute the value F[U, £i,... ,<£<*] by enumerating all possible
allotments for these d tasks.

2. Handling the other independent sets U.
- Assume the following (and otherwise, proceed in a symmetric way):
Ŷ > 2 holds, and the «Y^n ^as^ m c n a m V^ is task v. For 1 < % < &,

the ifth task in chain V^ is a predecessor of v. For k < i < d, the
$th task in chain V^') is not a predecessor of v. Let Z be the maximal
independent set for which G(Z) equals G(U) — {v}.
- For all £u ...,£d with 1 < £j < X set

F[U, £U; . . , £d] := min{g • pv,q + F[Z, %,..., Q)
where the minimum is taken over all values q and £'x,..., £f

d such that
1 < q < m, such that ^ + pV}q = £\ for 1 < %: < /?, and such that ££• = €«•
for k < i < d.

3. Termination.
- Let U* be the set of tasks without successors in G. Answer YES
if there exist some 1 < £\1... ,£d < X with F[U*,£i,.. .,£d]/m < X.
Otherwise, answer NO.

Figure 4: A dynamic programming algorithm for computing F[U, £\,..., £d].

Theorem 7.

7. Conclusions

In this paper, we have studied the problem of scheduling malleable tasks in the
presence of precedence constraints. We designed a polynomial time approximation
algorithm with performance guarantee arbitrarily close to (3 + \/5)/2 for the special
case of series parallel precedence constraints and for the special case of precedence
constraints of bounded width. Series parallel precedence constraints contain tree
structured precedence constraints as a proper special case. For arbitrary precedence
graphs of malleable tasks, we exploited a relationship to the discrete time-cost
tradeoff problem and thus derived a polynomial time approximation algorithm with
performance guarantee 3 + y/b. We hope that these preliminary theoretical results
may open a way to obtain good practical approximation algorithms for scheduling
malleable tasks under precedence constraints.

References

1. E. BLAYO, L. DEBREU, G. MOUNIE, AND D. TRYSTRAM [1999]. Dynamic load bal
ancing for ocean circulation with adaptive meshing. Proceedings of the 5th European
Conference on Parallel Computing (Euro-Par'99), Springer LNCS 1685, 303-312.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
02

.1
3:

61
3-

62
7.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

T
W

E
N

T
E

 o
n

03
/0

6/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

626 R. Lepere, D. Trystram & G. Woeginger

2. M. COSNARD AND D. TRYSTRAM [1995]. Parallel Algorithms and Architectures.
International Thomson Publishing.

3. D. CULLER, R . K A R P , D.PATTERSON, A.SAHAY, E. SANTOS, K. SCHAUSER, R.

SUBRAMANIAN, AND T. VON ElCKEN [1996]. LogP: A practical model of parallel
computation. Communications of the ACM 39, 78-85.

4. P . D E , E.J. DUNNE, J .B. GOSH, AND C.E. WELLS [1995]. The discrete time-cost
tradeoff problem revisited. European Journal of Operational Research 81, 225-238.

5. P . D E , E.J. DUNNE, J .B. GOSH, AND C.E. WELLS [1997]. Complexity of the
discrete time-cost tradeoff problem for project networks. Operations Research ^5,
302-306.

6. R .P . DlLWORTH [1950]. A decomposition theorem for partially ordered sets. Annals
of Mathematics 51, 161-166.

7. M. DROZDOWSKI [1996]. Scheduling multiprocessor tasks - An overview. European
Journal of Operational Research 94-, 215-230.

8. J. Du AND J.Y.-T. LEUNG [1989]. Complexity of scheduling parallel task systems.
SI AM Journal on Discrete Mathematics 2, 473-487.

9. A. GERASOULIS AND T. YANG [1992]. PYRROS: Static scheduling and code genera
tion for message passing multiprocessors. Proceedings of the 6th ACM International
Conference on Supercomputing, 428-437.

10. R.L. GRAHAM [1966]. Bounds for certain multiprocessing anomalies. Bell System
Technical Journal ^5, 1563-1581.

11. K. JANSEN AND L. PORKOLAB [1999]. Linear time approximation schemes for
scheduling malleable parallel tasks. Proceedings of the 10th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA '99), 490-498.

12. J.K. LENSTRA AND A.H.G. RINNOOY KAN [1978]. Complexity of scheduling under
precedence constraints. Operations Research 26, 22-35.

13. R. LEPERE, G. MOUNIE, B. ROBIC, AND D. TRYSTRAM [1999]. Malleable tasks:
An electromagnetic efficient model for solving actual parallel applications. Proceed
ings of the International Conference on Parallel Computing 99 (Parco '99), Imperial
College Press, 598-605.

14. W. LUDWIG AND P. TlWARI [1994]. Scheduling malleable and non malleable parallel
tasks. Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA '94), 167-176.

15. R.H. MOHRING [1989]. Computationally tractable classes of ordered sets. In: I.
Rival (ed.) Algorithms and Order, Kluwer Academic Publishers, 105-193.

16. G. MOUNIE, C H . RAPINE, AND D. TRYSTRAM [1999]. Efficient approximation al
gorithms for scheduling malleable tasks. Proceedings of the 11th Annual Symposium
on Parallel Algorithms and Architectures (SPAA '99), 23-32.

17. G.N.S. PRASANNA AND B.R. MUSICUS [1991]. Generalized multiprocessor schedul
ing using optimal control. Proceedings of the 3rd Annual Symposium on Parallel
Algorithms and Architectures (SPAA'91), 216-228.

18. M. SKUTELLA [1998]. Approximation algorithms for the discrete time-cost tradeoff
problem. Mathematics of Operations Research 23, 909-929.

19. J. T U R E K , J. W O L F , AND P. Yu [1992]. Approximate algorithms for scheduling par-
allelizable tasks. Proceedings of the 4th Annual Symposium on Parallel Algorithms
and Architectures (SPAA '92), 323-332.

20. T H . DECKER AND W. KRANDICK [1999]. Parallel real root isolation using the

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
02

.1
3:

61
3-

62
7.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

T
W

E
N

T
E

 o
n

03
/0

6/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Approximation Algorithms for Scheduling Malleable Tasks 627

Descartes method. Proceedings of the 6th High Performance Conference (HiPC99),
261-268.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
02

.1
3:

61
3-

62
7.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

T
W

E
N

T
E

 o
n

03
/0

6/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

