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ABSTRACT 

This work presents approximation algorithms for scheduling the tasks of a parallel ap
plication that are subject to precedence constraints. The considered tasks are malleable 
which means that they may be executed on a varying number of processors in parallel. 
The considered objective criterion is the makespan, i.e., the largest task completion time. 
We demonstrate a close relationship between this scheduling problem and one of its 
subproblems, the allotment problem. By exploiting this relationship, we design a poly
nomial time approximation algorithm with performance guarantee arbitrarily close to 
(3 + \ /5 ) /2 » 2.61803 for the special case of series parallel precedence constraints and for 
the special case of precedence constraints of bounded width. These special cases cover 
the important situation of tree structured precedence constraints. For arbitrary prece
dence constraints, we give a polynomial time approximation algorithm with performance 
guarantee 3 + V § « 5.23606. 

K e y w o r d s : parallel computing - scheduling - malleable tasks - precedence constraints 
- series parallel order - bounded width - approximation algorithm - project management 
- discrete time-cost tradeoff problem. 
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614 R. Lepere, D. Trystram & G. Woeginger 

1. Introduction 

Scheduling and load-balancing are central issues in the parallelization of large 
scale applications. One of the main problems in this area concerns efficient schedul
ing of the tasks of a parallel program. This problem asks to determine at what time 
and on which processor all the tasks should be executed. Among the various possi
ble approaches, the most commonly used is to consider the tasks of the program at 
the finest level of granularity, and to apply some adequate clustering heuristics for 
reducing the relative communication overhead; see Gerasoulis & Yang [9]. Several 
models have been developed for modeling the communication and the parallelization 
overhead in these problems. In models with a finer communication representation 
(like in the LogP model [3]), the impact of the parallelization overhead is usually 
ignored. 

Recently, a new computational model called Malleable tasks (MT) has been pro
posed by Turek, Wolf & Yu [19] as an alternative to the usual delay model. Under 
the MT model, the precedence task graph depicts a coarse grain vision of a parallel 
application and tasks are computational units which may be themselves executed 
in parallel. The execution time of a malleable tasks depends upon the number of 
processors alloted to execute it and is determined more or less precisely for each 
application. The influence of communications inside malleable tasks is taken into 
account implicitely by this execution time which includes a penalty due to the 
management of the parallelization (communications, synchronization, etc.). The 
communications between malleable tasks are usually neglected, since the granular
ity under the MT model is large. The MT model allows to exploit two levels of 
parallelism: inside and between malleable tasks. 

The MT model is particulary well-suited for applications such as domain de
composition where a coarse grain description of the application is natural. Blayo, 
Debreu, Mounie & Trystram applied malleable tasks for solving an application for 
the simulation of the oceanographic circulation based on adaptive mesh refinement 
within finite differences [1]. The MT model has been also used for tree search for 
determining the polynomial roots using Descartes' method [20]. In this application, 
Decker & Krandick considered independant MT with identical computing times. 
We refer the reader to Lepere, Mounie, Robic & Trystram [13] for more details and 
motivations of the MT model. 

MT are closely related to two other models, namely to the model of multipro
cessor tasks (see e.g. Drozdowski [7]) and to the model of divisible tasks (Prasanna 
& Musicus [17]). The difference between these models lies in the freedom allowed 
to the task allotment, that is, the number of processors which execute each task: A 
multiprocessor task requires to be executed by a fixed integer number of processors, 
whereas divisible tasks share the processors as a continuously divisible resource. 

LI. The malleable tasks model 

Throughout this paper we assume that the parallel program is represented by a 
set of generic malleable tasks, that is, computational units that may be parallelized 
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Approximation Algorithms for Scheduling Malleable Tasks 615 

and that are linked by precedence constraints. The precedence constraints are 
determined a priori by the analysis of the data flow between the tasks. More 
formally, let G = (V, E) be a directed graph where V = {1,2, . . . , n } represents 
the set of malleable tasks, and where E C V x V represents the set of precedence 
constraints among the tasks. If there is an arc from task i to task j in E, then task 
i must be processed completely before task j can begin its execution. This situation 
will be denoted by i —> j ' , i is called a predecessor of j , and j is called a successor 
of i. All tasks are available at time 0 for execution, and they are to be scheduled on 
an overall number of m processors. Every task j is specified by m positive integers 
Pj,q (1 £ Q S m ) where Pj,q denotes the execution time of task j when it is executed 
in parallel on q processors. 

Motivated by the usual behavior of parallel programs (cf. Cosnard & Trystram 
[2]), we make the following assumptions on the task execution times. Blayo, De-
breu, Mounie & Trystram [1] have shown these assumptions to be realistic while 
implementing actual parallel applications. 
Assumption 1 (Monotonous penalty assumptions) 

(a) The execution time pjfq of a malleable task j is a non-increasing function of 
the number q of processors executing the task. 

(b) The work Wji9 = q • pjtq of a malleable task j is a non-decreasing function of 
the number q of processors executing the task. 

Assumption (a) means that adding some processors for executing a malleable task 
cannot increase its execution time. In practice, the execution time even goes down 
in this situation, at least until a threshold from which onwards there is no more 
parallelism. Assumption (b) reflects that the total overhead for managing and 
administrating the parallelism usually increases with the number of processors. 

A schedule a is specified by two functions starta : V —> IN and allots : V —> [1, m] 
where the function starta associates to each task a date of execution (or starting 
time), and where the function allota specifies the number of processors to execute 
a task. In schedule <r, the task j completes at time Ca(j) = starta(j) + Pj,allota(j)-
We say that task j is active during the time interval from starta(j) to Ca(j)y and 
we denote by active(t) the set of all tasks that are active at time t. A schedule a 
is a feasible schedule, if at any moment t in time at most m processors are engaged 
in the computation 

2_] allota (j) < m for alH > 0, 
j£active(t) 

and if all the precedence constraints are respected: 
starta (i) + Pi,aUotv(i) < starta (j) for all i ->• j . 

The makespan Cm a x of a schedule a is the maximum of all task completion times 
CaiJ)- We now introduce the central problem of this paper. 
Problem 2 MAKESPAN PROBLEM FOR MALLEABLE TASKS (IVIT-MAKE-

SPANJ 

INSTANCE: A directed graph G = (V,E) that represents a set of n precedence con
strained malleable tasks; the number m of processors; positive integers pjiq with 
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616 R. Lepere, D. Trystram & G. Woeginger 

1 < j < n and 1 < q < m that specify the task execution times. 

GOAL: Find a feasible schedule that minimizes the makespan Cmax-

Consider an instance of MT-MAKESPAN, and assume that some processor allotment 
a has been prespecifled for all tasks, and that task j is to be executed on exactly 
ctj processors. Then the execution time of task j is pj, and its work is ctjPj. With 
every directed path through the precedence graph G = (V>E), we associate the 
total execution time pj of the vertices on this path. The longest path under this 
definition of length is called the critical path of the allotment a, and its length 
is denoted by La. Moreover, we denote by Wa = $^?=i ajPj the overall work in 
allotment a. Clearly, 

c(a) = max{ZA —Wa] < Cm a x (1) 
m 

holds for the makespan Cmax of any feasible schedule a under allotment a: Since 
the schedule must obey the precedence constraints, the tasks along the critical path 
form a chain that forces the makespan to at least La. Since the total work Wa can 
only be distributed across m processors, some processor will run for at least Wa jm 
time units. The value c(a) in equation (1) will be called the cost of allotment a. 
With this discussion, it is fairly natural to consider the following auxiliary problem. 
P r o b l e m 3 ALLOTMENT PROBLEM FOR MALLEABLE TASKS £MT-ALLOT
MENT,} 

INSTANCE: A directed graph G = (V,E) that represents a set of n precedence con
strained malleable tasks; the number m of processors; positive integers p^q with 
1 < j < n and 1 < q < m that specify the task execution times. 
GOAL: Find an allotment a : V —t [l,m] that minimizes the cost c(a). 

1.2. Known results 

The complexity of the makespan problem for malleable tasks has been studied in 
the paper of Du and Leung [8]: The problem with arbitrary precedence constraints is 
strongly NP-hard for m = 2 processors, and the problem of scheduling independent 
malleable tasks is strongly NP-hard for ra = 5 processors. 

Only a few positive results are available for scheduling malleable tasks, and 
most of them concern independent task systems. Jansen & Porkolab [11] provide 
a polynomial time approximation scheme (PTAS) for the special case where the 
number m of processors is a fixed constant, and where the tasks are independent. 
For the case of independent tasks and an arbitrary number of machines, the best 
approximability result known has a performance guarantee of 2 (Ludwig & Tiwari 
[14]). For the slightly easier case where the execution times additionally satisfy 
the monotonous penalty Assumption 1, Mounie, Rapine & Trystram [16] gave a 
polynomial time approximation algorithm with a performance guarantee of \/3 ^ 
1.73205. 

Now let us turn to scheduling malleable tasks under precedence constraints. 
Prasanna & Musicus [17] proposed an algorithm for some specially structured prece
dence task graphs for the so-called continuous version of the problem; in the con
tinuous version, a non-integer number of processors may be alloted to any task. 
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Approximation Algorithms for Scheduling Malleable Tasks 617 

Moreover, they assume the same speed-up function for all tasks. The results of 
Lenstra & Rinnooy Kan [12] for makespan minimization of precedence constrained 
sequential tasks imply that unless P=NP> makespan minimization of precedence 
constrained malleable tasks cannot have a polynomial time approximation algorithm 
with worst case performance guarantee better than 4/3. 

The ALLOTMENT PROBLEM FOR MALLEABLE TASKS is closely related 
to the discrete time-cost tradeoff problem, a well-known problem from the project 
management literature; see e.g. De, Dunne, Ghosh & Wells [4]. The discrete time-
cost tradeoff problem is a bicriteria problem for projects, where a project essentially 
is a system of precedence constrained tasks. Every task may be executed according 
to several different alternatives, where each alternative takes a certain amount of 
time and costs a certain amount of money. By selecting one alternative for every 
task, one fixes the cost (= total cost of all tasks) and the duration (= length 
of the longest chain) of the project. In the budget variant of the discrete time-
cost tradeoff problem, the instance consists of such a project together with a cost 
bound C The goal is to select alternatives for all tasks such that the project 
duration is minimized subject to the condition that the project cost is at most 
C; the corresponding optimal duration is denoted by D*(C). By rounding the 
solutions of a linear programming relaxation, Skutella [18] derives a polynomial 
time algorithm for this budget variant that finds a solution with project cost at 
most 2C and project duration at most 2D* (C). 

Now let us discuss the connection between the allotment problem M T - A L L O T 

MENT and the discrete time-cost tradeoff problem. In the allotment problem M T -
ALLOTMENT, every task j can be executed in m alternative ways by assigning ctj 
machines to it, where 1 < aj < m. In the language of the discrete time-cost tradeoff 
problem, the resulting duration of task j is Pj,aj and the resulting cost of task j is 
ajPj,aj/mi *-e-' ^ s contribution to the value ^Wa. Then the corresponding project 
cost equals ~ Wa, the corresponding project duration equals La, and the maximum 
of these two values equals the cost c(a) of allotment a. By combining the above 
mentioned result of Skutella [18] with a binary search procedure, we now get the 
following proposition. 

P ropos i t ion 1 The ALLOTMENT PROBLEM FOR MALLEABLE TASKS pos
sesses a polynomial time 2-approximation algorithm. • 

We furthermore note that the arguments of De, Dunne, Ghosh & Wells [5] imply 
that the ALLOTMENT PROBLEM FOR MALLEABLE TASKS is NP-complete 
in the strong sense. 

2. Resu l t s a n d out l ine of t h e p a p e r 

We want to stress that all results in this paper are based on the monotonous 
penalty Assumption 1. In this paper, we derive polynomial time approximation 
algorithms for various cases of the MAKESPAN PROBLEM FOR MALLEABLE 
TASKS and of the ALLOTMENT PROBLEM FOR MALLEABLE TASKS. Let us 
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618 R. Lepere, D. Trystram & G. Woeginger 

first define for m > 3 the real numbers r(ra) by 
, x . (m 2m — a 

rim) = mm max< —, 
K/*<(m+l)/2 I fi m — fi + . 

(2) 

Moreover, let ^u(ra) be the integer /i with 1 < £* < ( m + l ) / 2 for which this minimum 
is attained. The following lemma provides the reader with some intuition on the 
(somewhat erratic) behaviour of the values r(m) and /i(ra). For small m, the values 
of /i(ra) and r(rn) are listed in Figure 1. 

Lemma 1 The real numbers r(m) and the integers p>{m) satisfy the following prop
erties. 

(i) For all m>2, we have r(m) < (3 + y/E)/2 w 2.61803. 

(ii) As m tends to infinity, r(m) tends to (3 + V5)/2. 

(Hi) For every m > 2, the value fi(m) either equals the integer above or the integer 
below | (3m — \/5m2 + 4m). 

(iv) For every m > 2 with m ^ 3 and m ^ 5, we have p,(m) < m/2. 

(ty v4s m tends £o infinity, fj,(m)/m tends to (3 — s/E)/2 & 0.38196. • 

| m 
2 
3 
4 
5 
6 
7 
8 

1 9 

li(m) 
1 
2 
2 
3 
3 
3 
4 
4 

r(mj 

2.0000 
2.0000 
2.0000 
2.3333 
2.2500 
2.3333 
2.4000 
2.3.333 

1 m 

10 
11 
12 
13 
14 
15 
16 
17 

fi(m) 

4 
5 
5 
6 
6 
6 
7 
7 

_____ 

2.5000 
2.4285 
2.4000 
2.5000 
2.4444 
2.5000 
2.5000 
2.4545 J 

1 m 
18 
19 
20 
21 
22 
23 
24 
25 

fi(m) 

8 
8 
8 
9 
9 
9 
10 
10 

_____ 

2.5454 
2.5000 
2.5000 
2.5384 
2.5000 
2.5555 
2.5333 
2.5000J 

1 m 
26 
27 
28 
29 
30 
31 
32 
33 

fi(m) 
10 
11 
11 
12 
12 
13 
13 
13 

r(m) 1 

2.5625 
2.5294 
2.5454 
2.5555 
2.5263 
2.5789 
2.5500 
2.5384 J 

Figure 1: A listing of the values pi(m) and r(m) for 2 < m < 33. 

The straightforward proof of Lemma 1 is omitted. The following theorem summa
rizes our structural main result on the problems MT-MAKESPAN and M T - A L L O T 

MENT; its proofs can be found in Section 3. The theorem demonstrates that these 
two problems are strongly interlocked and interrelated. Moreover, up to some small 
constant factor it is sufficient to deal with the approximability of the - seemingly 
easier - problem MT-ALLOTMENT. 

Theorem 4 / / there exists a polynomial time Q-approximation algorithm A for 
problem MT-ALLOTMENT on m processors, then there exists a polynomial time 
Q - r(m)-approximation algorithm B for problem MT-MAKESPAN on m processors. 
An immediate consequence of Proposition 1, Theorem 4, and Lemma l(i) is the 
following corollary. 
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Corollary 1 The MAKESPAN PROBLEM FOR MALLEABLE TASKS possesses 
a polynomial time approximation algorithm with performance guarantee 3 -f v5 w 
5.23606. • 

The following Theorem 5 will be a strong and helpful tool for handling specially 
structured precedence constraints. Its proof can be found in Section 4. 
Theo rem 5 Consider the decision version of problem M T - ALLOTMENT where for 
a given instance I of MT-ALLOTMENT and for a positive integer bound X, one 
must decide whether there exists an allocation of cost at most X. If there exists a 
pseudo-polynomial time exact algorithm for this decision version with running time 
polynomially bounded in the size of I and in the value of X, then there does exist a 
fully polynomial time approximation scheme for problem MT-ALLOTMENT. 

A directed precedence graph G = (V, E) is series parallel (see e.g. Mohring [15]) if 
(i) it is a single vertex, (ii) it is the series composition of two series parallel graphs, or 
(iii) it is the parallel composition of two series parallel graphs. Only graphs that can 
be constructed via rules (i)-(iii) are series parallel. Here the series composition of 
two directed graphs G\ = (Vi,Ei) and G2 = (V2, E2) with V\ ft V2 = 0 is the graph 
that results from G\ and G2 by making all vertices in V\ predecessors of all vertices 
in V2, whereas the parallel composition of G\ and G2 simply is their disjoint union. 
Series parallel precedence constraints are a proper generalization of tree precedence 
constraints. We have the following result for series parallel precedence constraints. 
T h e o r e m 6 There exists a pseudo-polynomial time exact algorithm for the decision 
version of the restriction of problem MT-ALLOTMENT to series parallel precedence 
graphs. 

Two tasks i and j are called independent if neither i is a predecessor of j nor j 
is a predecessor of i. A set of tasks is independent, if the tasks in it are pairwise 
independent. The width of the precedence graph G is the cardinality of its largest 
independent set. We have the following result for precedence graphs of bounded 
width. 

T h e o r e m 7 There exists a pseudo-polynomial time exact algorithm for the decision 
version of the restriction of problem MT-ALLOTMENT to precedence graphs whose 
width is bounded by a constant d. 

The proofs of Theorems 6 and 7 can be found in Sections 5 and 6, respectively. 
Finally, by combining the statements in Theorems 4, 5, 6, and 7, we derive the 
following corollary. 

Corol lary 2 For the restriction of the MAKESPAN PROBLEM FOR MALLEABLE 
TASKS to (a) series parallel precedence graphs and to (b) precedence graphs of 
bounded width, there exist polynomial time approximation algorithms whose perfor
mance guarantee can be made arbitrarily close to (3 + \ /5) /2. • 

3. Prom allotments to makespans 

In this section we will prove Theorem 4. Consider an instance / of the malleable 
tasks problem as defined in Problems 2 and 3. Consider an optimal allotment a + 
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620 R. Lepere, D. Trystram & G. Woeginger 

and a ^-approximate allotment aA for instance / with respect to problem M T -
ALLOTMENT. Denote by W+ and WA the total work in these two allotments, 
and by £ + and LA the lengths of their critical paths, respectively. Since aA is a 
^-approximate allotment, we have 

maxfl/4 , — WA\ < £-max{I,+ , — W+\. (3) 
. m ra 

Moreover, consider an optimal feasible schedule for instance I with respect to prob
lem MT-MAKESPAN, and let C^ a x denote the optimal makespan. By applying 
equation (1) to C^ a x and to the allotment induced by the optimal schedule, and by 
using the fact that a + minimizes the allotment cost, we get that 

max{L+, ±-W+) < C*max. (4) ra 

We will now define and analyze an approximation algorithm B for problem 
MT-MAKESPAN. This approximation algorithm is based on the value /i(ra) with 
1 < M m ) < (ra + l ) /2 as we defined in the paragraph after equation (2). To 
simplify the presentation, we will from now on briefly write \i for £*(ra), and omit 
the dependence on ra. Algorithm B is a generalization of Graham's [10] well-
known list scheduling algorithm for sequential tasks. The algorithm is described 
in Figure 2. The resulting schedule is denoted aB, the corresponding makespan is 
C^ a x , the underlying allotment is aB, the total work in aB is WB, and the length of 
the critical path in aB is LB. The only difference between allotments aA and aB is 
that the tasks using more than JJ, processors in aA are compressed to /i processors in 
aB. By the monotonous penalty Assumption 1(b), reducing the number of alloted 
processors cannot increase the work of a task. Together with inequalities (3) and 
(4) this yields 

WB < WA < meC*max. (5) 
The time interval from 0 to C^ a x is partitioned into three types of time slots: During 
the first type of time slot, at most fi — 1 processors are busy. During the second 
type, at least fi and at most m — fj, processors are busy, and during the third type 
at least ra — pi -f 1 processors are busy. The corresponding sets of time slots are 
denoted by T\, T^, and T3, respectively. The overall length of the time slots in set 
Ti, 1 < i < 3, is denoted by \T{\. If fj, < ra/2, then every time slot from 0 to CB

ax 

belongs to exactly one of the three types, and all three types may actually occur. 
In the boundary case where fj, = (ra -j- l ) /2 every time slot from 0 to C^ a x either 
belongs to the first or to the third type. In this boundary case there are no time 
slots of second type, since this would require that at least (ra + l ) /2 and at most 
(ra —1)/2 processors are busy, which clearly is impossible. Since in either case these 
three types of time slots cover the whole interval from 0 to C^ a x , we get that 

C £ « = |Ti| + | r 2 | + |T3 |. (6) 
Since during time slots of the first (respectively second and third) type at least one 
(respectively ft and ra — ft + 1) processors are busy, we get that 

wB > |ri| + Ai|r2| + (m-Ai + i)|r3|. (7) 
L e m m a 2 The sets T\ and Ti of time slots satisfy the following inequality with 
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1. Initialization. 
- Allot to task j (j = 1 , . . . , n) exactly af — minlaj1 , fj,} processors. 
- This fixes the execution time pf and the work wf = af • pf of every 
task j . 

2. Repeat the following step until all tasks have been sched
uled. 
- Let READY denote the set of tasks whose predecessors all have already 
been scheduled. 
- Compute for each task j £ READY the earliest possible start time un
der the allotment aB. 
- Schedule the task in READY with the smallest computed earliest start 
time (ties are broken in favor of tasks with smaller indices). 

Figure 2: Approximation algorithm B for problem MT-MAKESPAN. 

respect to the length LA of the critical path in allotment aA. 

|Ti| + £ |r2 | < LA. (8) 
m 

Proof. T • 
he idea is to construct a 'heavy' directed path V in the transitive closure of the 

graph G = (V,E). The last task in the path V is any multiprocessor task j \ that 
completes at time C^ a x in the schedule aB. After we have defined the last i > 1 
tasks ji —> j t - i —)• •••—>• j2 —>• i i o n the path V, we find the next task ji+\ as 
follows: Consider the latest time slot t in Xi U T2 that lies before the starting time 
of task ji in o~B. Consider the set V of tasks that consists of task ji and of all its 
predecessor tasks that start after time t in aB. Since during time slot t at most 
m — fi processors are busy, and since aB allots at most /* processors to any task in 
V'} all the tasks in V cannot be ready for execution during the time slot t. Hence, 
for every task in V' some predecessor is being executed during the time slot t. As 
the next task ji+i on path V, we select any predecessor of task ji that is running 
during slot t. This procedure terminates when V contains a task that starts before 
all time slots in Tx U T2. 

Now consider a task j on the resulting path V. \iaB allots less than /J, processors 
to task j , then aA and aB both allot the same number of processors to j . In this 
case the execution times of j in aA and aB are identical. In schedule O~B such a task 
j may be executed during any time slot in T\ UT2. If aB allots exactly fi processors 
to task j , then aA may allot any number k of processors to j , where \x < k < m. By 
the monotonous penalty Assumption 1 (b), the work fj, * pf in aB is less or equal to 
the work k -pf in aA. Therefore, the execution time pf of task j in allotment aA is 
at least jji/k > fi/m times the execution time pf of j in allotment aB. In schedule 
CTB such a task j may be executed during any time slot in T2, but not during a time 
slot i nT i . 

By our construction, the tasks on the directed path V cover all time slots in 
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622 R. Lepere, D. Trystram & G. Woeginger 

T\ U T2 in schedule <TB- Let us estimate the length LA(V) of the path V under 
the allotment aA. The tasks that are executed during time slots in T\ contribute 
a total length of at least |Ti| to LA(V). The tasks that are executed during time 
slots in T2 contribute a total length of at least |T2 |/i/m to LA(V). Since the length 
LA of the critical path in aA is an upper bound on LA(V), our proof is complete. 
• 

Now let us complete the proof of Theorem 4. Multiplying (6) by m — /i 4- 1 and 
subtracting (7) from it yields 

( w - ^ + l K w < WB + (m-(i)\T1\ + (m-2n + l)\T2\. (9) 
We distinguish two cases. In the first case we assume that m//jt < (2m — jj)/{m — 
/i + 1). Then (2) yields r(ra) = (2m — £0/(ra — fJ> + 1)- Moreover, the assumed 
inequality is equivalent to (m — 2/i + 1) < /i(m — /j,)/m. Plugging this into (9), 
using (8) to bound |Ti| + /i |T2 | /m, using (5) to bound WB, and using (3) and (4) 
to bound LA by Q C^ a x altogether yields that 

( m - / i + l ) C f a x < ^ + (m- / i ) |T i | + / i (m- / i ) | r 2 | /m < WB + (m-v)LA 

< m £ C m a x + ( ™ - ^ ) £ C m a x = (2m - /*)# C ^ a x . 

Hence, in this case schedule aB indeed yields a Q • r(m)-approximation for C^ a x . 
In the second case we assume that the inequality m/fi > (2m — fJ>)/(m — /i + 1) 
holds. Then (2) yields r(m) = m/fi. Moreover, the assumed inequality is equivalent 
to (m — fj) < (m — 2/i + l)m/fi. By plugging this into (9) and by using similar 
arguments as in the first case, we conclude that 
( m - / i + l)Cfax < P ^ B 4 - ( m - 2 / i + l)m|T1|//i + ( m ~ 2 / i + l ) | T 2 | 

< WB + (m - 2/i + l)mLA/fi 

< meC^ax-^{m-2fi-\-l)meC^ax/fi = ( m - / i + l ) m ^ Q a x / / i . 
Hence, also in the second case schedule crB yields a £-r(m)-approximationfor C^ a x . 
Since it is straightforward to implement algorithm B in polynomial time, the proof 
of Theorem 4 is complete. 

4. From a pseudo-polynomial t ime algorithm to an FPTAS 

In this section we will prove Theorem 5. Our first goal is to get a fast algorithm 
for the following auxiliary allotment problem MT-ALLOTMENT on series parallel 
precedence graphs: We assume that we are given an instance / of MT-ALLOTMENT, 

a positive real £, and an a priori bound X such that there exists an allotment for 
/ with cost at most X. Our goal is to find within polynomial time an allotment a 
that satisfies c(a) < (1 -f e)X. 

Define Z = eX/n. Furthermore, define a scaled instance V by setting pfj = 
[pj,q/Z\ for all tasks j and all 1 < q < m while keeping the same precedence 
constraints as in instance J. Note that pjiq < Z(Pjq + 1)- Moreover, note that 
instance i7 must have an allotment of cost at most X/Z', since the original instance 
/ had some allotment of cost at most X. Take the pseudo-polynomial time algorithm 
that exists according to the assumption of Theorem 5, and apply it to the scaled 
instance J7 with bound [X/Z\. Denote the resulting allotment by a with c(a) < 
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Approximation Algorithms for Scheduling Malleable Tasks 623 

[X/Z\, and interprete allotment a for V as an allotment ft for the original instance 
/ . Consider an arbitrary path V with \V\ tasks in allotment ft. Then 

! > > W ) < E ^ i , W ) + 1) = Z\V\ + Zj2^,aU) < Zn + ZL".(10) 

This implies L? <Zn + ZLa. Moreover, 
X > ( i ) - P i , W ) ^ E ^ « ( i ) ' ( i ( i ) + 1) < Z m n + Z W « . (11) 

This implies W^ < Z ran + 2T Wa. Putting things together we conclude that 

c(ft) = m a x { l / , — Wfi] < max{Zn + ZLa, Zn + Z—W?} 
m m 

= Zn + Zc(a) < eX + Z{X/Z) = (l+e)X. 
Hence, the cost of allotment ft for / is at most (l-\-s)X as desired. By the assumption 
of Theorem 5, the time to find ft is polynomially bounded in the size of I and in 
X/Z = ne. To summarize, we can solve our auxiliary problem and find the desired 
allotment within a running time that is polynomially bounded in the size of i" and 
in 1/e. 

It remains to get rid of the assumption that we do have an a priori knowledge 
of the bound X. Let P = Xw=iPj,i denote the total execution time of all tasks 
in I when they are executed on a single processor. By the monotonous penalty 
Assumption 1, every critical path in every allotment for I has length at most P, 
and also the average work of every allotment is at most P. Therefore, the cost of 
the optimal allotment is at most F , and we can find an (1 + ^-approximation by 
performing a binary search over the interval from 1 to P . This completes the proof 
of Theorem 5. 

5. Al lo tments for series paral lel g raphs 

In this section we will prove Theorem 6. Hence, we are given an instance / of 
MT-ALLOTMENT where the precedence graph G = (V, E) is series parallel, together 
with a positive integer bound X. Our goal is to decide within pseudo-polnomial 
time, whether there exists an allotment a with cost c(a) < X. 

It is well known that a series parallel graph can be decomposed in polynomial 
time into its atomic parts according to the series and parallel compositions (see e.g. 
Mohring [15]). Essentially, such a decomposition corresponds to a rooted, ordered, 
binary tree where all interior vertices are labeled by s or p (series or parallel com
position) and where all leaves correspond to single vertices of the precedence graph 
G. We associate with every interior vertex v of the decomposition tree the series 
parallel graph G(v) induced by the leaves of the subtree below v. Note that for the 
root vertex we have G(root) = G. 

For a vertex v in the decomposition tree, and for an integer £ with 1 < t < X, 
we denote by F[v,£] the smallest possible value w with the following property: 
There exists an allotment a for the tasks in G(v) with La < £ and Wa < w. It is 
easy to compute all such values F[v,£] by a dynamic programming approach that 
starts in the leaves of the decomposition tree, and then moves upwards towards the 
root. This algorithm is sketched in Figure 3. The time complexity of this dynamic 
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624 R. Lepere, D. Trystram & G. Woeginger 

1. Initialization of leaf vertices. 
- For every leaves v of the decomposition tree and for every £ with 
0 < £ < X, set 
F[v,£] := mini<g<m{g -pViq | pViq < £}. 

2. Handling interior vertices of the decomposition tree. 
- For every interior vertex v with left child v\ and right child v2 and for 
every £ with 0 < £ < X do the following: 
- If v is a p vertex, then F[v,£] := F[vu£] + F[v2,£] 
- If v is an s vertex, then F[v,£\ := mini<£<^_i F[vi,k] + F[v2,^ — k] 

3. Termination. 
- Answer YES if there exists some 1 < £ < X with F[roo£, £]/ra < X. 
Otherwise, answer NO. 

Figure 3: A dynamic programming algorithm for computing F[v,£]. 

programming algorithm is 0(nmX2) which is pseudo-polynomially bounded in the 
input size as desired. By storing appropriate auxiliary information and by perform
ing some backtracking, one can also explicitly compute the corresponding allotment 
with cost at most X while increasing the running time only by a constant factor. 
Since these are standard techniques, we do not elaborate on them. 

6. Allotments for graphs of bounded width 

In this section we will prove Theorem 7. We are given an instance I of M T -
ALLOTMENT where the width of the precedence graph G = (V, E) is some fixed 
constant cf, together with a positive integer bound X. Our goal is to decide within 
pseudo-polnomial time, whether there exists an allotment a with cost c(a) < X. 

A well-known theorem of Dilworth [6] states that if the width of a precedence 
graph equals d then the set V of tasks can be partitioned into d totally ordered 
chains V^\ . . . , V^d\ Moreover, it is straightforward to compute such a chain 
partition in 0(nd) time. Now consider a maximal set U of independent tasks in 
G, and let G(U) be the graph that is induced by all the tasks in U together with 
all their predecessors. For appropriate integers 1 < i¥,..., i% < n the task set of 
graph G(U) consists of the first ff tasks from every chain V^\ 

For a maximal independent set U and for d integers £\,..., £d with 1 < £j < X, 
we denote by F[U, £\,..., £d] the smallest possible value w with the following prop
erty: There exists an allotment a for the tasks in G(U) with total work Wa < to, 
such that the total execution time on every directed path ending in the ff th task in 
the j th chain V^ is bounded by £j. It is easy to compute all values F[f7, l i , . . . , £d] 
by a dynamic programming approach, as long as set U is handled before set U' 
whenever G(U) is a subgraph of G(Uf). This algorithm is sketched in Figure 4. 
The time complexity of this dynamic programming algorithm is 0{nmX2d) which 
is pseudo-polynomially bounded in the input size. This completes the proof of 
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Approximation Algorithms for Scheduling Malleable Tasks 625 

1. Initialization. 
- If U is the set of tasks without predecessors, then ff = 1 and G(U) 
contains the first task from every chain. For all £i,...,£d with 1 < 
£j < X compute the value F[U, £i,... ,<£<*] by enumerating all possible 
allotments for these d tasks. 

2. Handling the other independent sets U. 
- Assume the following (and otherwise, proceed in a symmetric way): 
Ŷ > 2 holds, and the «Y^n ^as^ m c n a m V^ is task v. For 1 < % < &, 

the ifth task in chain V^ is a predecessor of v. For k < i < d, the 
$th task in chain V^') is not a predecessor of v. Let Z be the maximal 
independent set for which G(Z) equals G(U) — {v}. 
- For all £u ...,£d with 1 < £j < X set 

F[U, £U; . . , £d] := min{g • pv,q + F[Z, %,..., Q) 
where the minimum is taken over all values q and £'x,..., £f

d such that 
1 < q < m, such that ^ + pV}q = £\ for 1 < %: < /?, and such that ££• = €«• 
for k < i < d. 

3. Termination. 
- Let U* be the set of tasks without successors in G. Answer YES 
if there exist some 1 < £\1... ,£d < X with F[U*,£i,.. .,£d]/m < X. 
Otherwise, answer NO. 

Figure 4: A dynamic programming algorithm for computing F[U, £\,..., £d]. 

Theorem 7. 

7. Conclusions 

In this paper, we have studied the problem of scheduling malleable tasks in the 
presence of precedence constraints. We designed a polynomial time approximation 
algorithm with performance guarantee arbitrarily close to (3 + \/5)/2 for the special 
case of series parallel precedence constraints and for the special case of precedence 
constraints of bounded width. Series parallel precedence constraints contain tree 
structured precedence constraints as a proper special case. For arbitrary precedence 
graphs of malleable tasks, we exploited a relationship to the discrete time-cost 
tradeoff problem and thus derived a polynomial time approximation algorithm with 
performance guarantee 3 + y/b. We hope that these preliminary theoretical results 
may open a way to obtain good practical approximation algorithms for scheduling 
malleable tasks under precedence constraints. 
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