
Interprocedural Induction Variable Analysis

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 02-010

Interprocedural Induction Variable Analysis

Peiyi Tang and Pen-chung Yew

February 28, 2002

Interpro
edural Indu
tion Variable Analysis�Peiyi TangDepartment of Computer S
ien
eUniversity of Arkansas at Little Ro
kLittle Ro
k, AR 72204Pen-Chung YewDepartment of Computer S
ien
e and EngineeringUniversity of MinnesotaMinneaplolis, MN 55455February 19, 2002Abstra
tIndu
tion variable analysis is an important part of the symboli
 analysis inparallelizing
ompilers. Indu
tion variables
an be formed by for or DO loopswithin pro
edures or loops of re
ursive pro
edure
alls. This paper presents analgorithm to �nd indu
tion variables in formal parameters of pro
edures
ausedby re
ursive pro
edure
alls. The
ompile-time knowledge of indu
tion variablesin formal parameters is essential to summarize array se
tions to be used for datadependen
e test and parallelization.Key Words: Interpro
edural Indu
tion Variables, Re
ursive Pro
edure Call,Call graphs, Indu
tion Variable Analysis, Extended Full Program Representation(EFPR) Graphs, Interpro
edural Fa
tored Use-Def (IFUD) Graphs.1 Introdu
tionIndu
tion variable analysis is an important part of the symboli
 analysis in par-allelizing
ompilers. Its purpose is to �nd the s
alar variables in programs whosevalues
an be expressed in linear forms. Indu
tion variables
an appear in arraysubs
ripts. Finding indu
tion variables enables parallelizing
ompilers to form a
-
urate array se
tions [1, 2, 3, 4℄ a

essed in loops. The a

urate array se
tions allowthe data dependen
e analysis to dis
over loop parallelism for parallel exe
ution.�The work was supported in part by the U.S. National S
ien
e Foundation under Grants EIA-9971666and MIP-9610379 and a grant from the Intel Corporation.1

Indu
tion variables are always formed by loops in programs. Mu
h work hasbeen done to dis
over indu
tion variables in lo
al variables formed by expli
it loopssu
h as for or DO loops [5, 6℄. However, indu
tion variables
an also be formedby loops of re
ursive pro
edure
alls. For instan
e, in the re
ursive pro
edure X inFigure 1(b), formal parameter k is an indu
tion variable fk0+2i j 0 � i � bn=2
�1gand it is formed by the loop of re
ursive
all of X to itself. At the same time,parameters i and n are invariant with respe
t to that loop. As a result, the se
tionof array b modi�ed by the assignment b(i,k) = ... is the even elements of therow i: b(i; ko); b(i; k0 + 2); � � �. With this knowledge, the parallelizing
ompilerwould know that there are no data dependen
es between statements s0 and s1
arried by loop i in the program Figure 1(a), be
ause the data elements of a

essedin statement s0 by loop j are the odd elements ea
h rows of array a. (Noti
ethat array a is aliased with array b by the
all statement at s2.) Therefore, theparallelizing
ompiler
an parallelize loop i. Without this knowledge, the
ompilerwould assume that all the elements of row i of array a be modi�ed by the pro
edure
all at s1 and there would be a data dependen
e
y
le between s0 and s1 whi
hwould prevent the parallelization of loop i.real a(n,n)do i = 1, ndo j = 1, n, 2s0: a(i,j) = a(i-1,j) + ...enddos1:
all x(a,i,2,n)enddo (a) loop nest
subroutine x(b,i,k,n)real b(n,n)b(i,k) = ...if (k+1 < n) then
all x(b,i,k+2,n)endifend (a) re
ursive pro
edureFigure 1: Interpro
edural Indu
tion VariablesThe indu
tion variables in pro
edure parameters formed by the loops of re
ur-sive pro
edure
alls or returns are
alled interpro
edural indu
tion variables.Previous resear
h on indu
tion variable analysis [7, 8, 9, 10, 5, 6, 11℄ is primarily
on
erned with indu
tion variables formed by expli
it loops within pro
edures.Although [10, 11℄ mentioned interpro
edural indu
tion variable analysis, but theindu
tion variables targeted are still formed by expli
it loops. To the best of ourknowledge, there is no previous work on dis
overy and analysis of interpro
eduralindu
tion variables de�ned above.In this paper, we present an algorithm to dis
over and analyze interpro
eduralindu
tion variables in parameters of pro
edures.The loops of re
ursive pro
edure
alls or returns to form interpro
edural in-du
tion variables are impli
it, be
ause they do not exist in the abstra
t syntaxtrees of the program. More importantly, the stru
tures of these loops are quitedi�erent from those of ordinary expli
it for or DO loops. While the basi
 te
hniqueof dete
ting indu
tion variables remains the same as the intrapro
edural indu
-2

tion variable analysis, the interpro
edural indu
tion variables analysis �rst needsto re
over, identify and analyze these impli
it loops. We have extended the FullProgram Representation (FPR) graph [12℄ for this purpose.The
ontributions of this paper are:� the te
hniques to identify and analyze the unique loop stru
ture of re
ursive
all and returns and� the
omplete algorithm to identify and analyze interpro
edural indu
tion vari-ables.To form interpro
edural indu
tion variables, the loop of re
ursive
alls has to
onform to
ertain format. Before starting the algorithm of analysis, the
ompiler
an rule out many programs whi
h do not have interpro
edural indu
tion variablesby
he
king their
all graphs and the extended FPR graph �rst.The rest of the paper is organized as follows. Se
tion 2 des
ribes the programmodel of the programs to be analyzed and other preliminary ba
kgrounds. Se
tion3 des
ribes the
all graph
he
king. Se
tion 4 des
ribes our extended FPR graph.Se
tion 5 des
ribes the
he
king of the extended FPR graph. Se
tion 6 presentsthe algorithm to �nd interpro
edural indu
tion variables. Se
tion 7
on
ludes thepaper with a dis
ussion of related work.2 Program Model and Preliminaries2.1 Program ModelThe model of the programs to be analyzed is as follows:� Parameters of pro
edures
an be array variables or s
alar variables. We
on-
entrate on s
alar parameters for indu
tion variable analysis.� S
alar parameters are passed by referen
e.� S
alar parameters are variables of integer type.� To simplify the presentation, we do not
onsider{ pro
edure-valued variables.{ global variables{ pointer variables� The
ontrol stru
tures in pro
edures in
lude if-then, if-then-else andexpli
it loops like for or DO.� Ea
h pro
edure has only one return statement whi
h is the end of the pro
e-dure.2.2 Purpose of AnalysisThe purpose of the interpro
edural indu
tion variable analysis is to
lassify all thes
alar parameters of the pro
edures to the following three
ategories:3

� loop invariant variables with respe
t to the
orresponding loop of pro
edure
all or return, or� indu
tion variables with respe
t to the
orresponding loop of pro
edure
allor return, or�
omplex variables whose values
annot be determined as loop invariants orindu
tion variables using our method.Loop invariants
an be regarded as a spe
ial
ase of indu
tion variables with theindu
tion step to be 0.3 Call Graph Che
kingA

ording to the assumption of the program model above, the
all graph is stati
.We
an also assume that the
all graph is a
onne
ted graph be
ause every pro
e-dure is assumed to be
alled at least at one
all site. The
all graph of a programis a dire
ted multi-graph (V;E), where the node set V is the set of pro
edures andE the set of edges su
h that (p; q) 2 E if and only if there is a
all site in pro
edurep whi
h
alls pro
edure q.There are four
ases in whi
h we will abort the interpro
edural indu
tion vari-ables analysis:1. There no no
y
les in the
all graph. In this
ase, there will be no loops toform interpro
edural indu
tion variables.2. There are
y
les in the
all graph, but at least one of the followings is true:(a) There is a node with three or more in
oming edges. If a node has threeor more in
oming edges, it is impossible for its parameters to be
omeindu
tion variables. Sin
e the
all graph is
onne
ted and all the otherpro
edures may either
all (dire
tly or indire
tly) this pro
edure or be
alled (dire
tly or indire
tly) by it. We
onservatively assume that allthe parameters of all the pro
edures are
omplex variables.(b) There is a node whi
h is not the header of a natural loop, but has twoor more in
oming edges. 1 The parameters of su
h a pro
edure
annotbe indu
tion variables. For the same reason as above, we
onservativelyassume that there are no indu
tion variables in the parameters of allpro
edures and the analysis stops here.(
) After passing these
he
ks, the
all graph must have natural loops withtheir headers to be the only nodes with 2 in
oming edges and all the othernodes have only one in
oming edge. At this step of
he
king, we needto
he
k whether all the natural loops are either nested or disjoint. If1A header d is the head of a ba
k edge n! d (n is the tail of the edge.). An edge n! d is a ba
k edgeif d dominates n. d dominates n if all the paths from the entry node of the graph (the main program inthe
all graph) to n in
lude d. Given a ba
k edge n ! d, the natural loop with header d is the set ofnodes whi
h
an rea
h n without going through d. The natural loop is the graph model for the expli
itloops like for or DO loops. 4

there are two natural loops partially overlapped (none of them
ompletelyin
ludes the other and they have
ommon nodes), the analysis stopshere, be
ause the impli
it loops of re
ursive
alls do not
onform to thestru
ture of expli
it for and DO loops.After passing these
all graph
he
kings, the
ompiler needs to build an Ex-tended Full program Representation (EFPR) graph to further rule out the pro-grams whi
h
annot have interpro
edural indu
tion variables.4 Extended Full Program Representation (EFPR)GraphThe Full Program Representation Graph was proposed by Agrawal el al [12℄ forinterpro
edural partial redundan
y elimination. We extended it to in
lude thebran
h nodes and to
apture the full
ontrol
ow of the whole program.Suppose there are n pro
edures in the program. Ea
h pro
edure has a startnode and a return node in the EFPR graph. The start node and the return node ofpro
edure i(1 � i � n) are denoted si and ri, respe
tively. Let S and R be the setsof start nodes and return nodes of all pro
edures, respe
tively, i.e. S = [ni=1fsigand R = [ni=1frig. Let Bi be the set of bran
h nodes in the
ontrol
ow graph ofpro
edure i and B = [ni=1Bi. The extended full program representation (EFPR)graph is a dire
ted graph G = (V;E) whose node set is V = S [R [B. Before wede�ne the edge set E, let us de�ne set Ai for pro
edure i to be Ai = Bi[fentryig[fexitig, where entryi and exiti are the entry node and the exit node of the
ontrol
ow graph of pro
edure i. The edge set E of G is de�ned as follows:1. If pro
edure k
alls pro
edure i at
all site
s, and there is a
ontrol
ow pathfrom a node a 2 Ak of pro
edure k to
s whi
h does not
ontain any other
all statements or bran
h nodes, there is an edge (
; si) 2 E where
 = a ifa 2 Bk or
 = sk a is entryk.2. If pro
edure k
alls pro
edure i at
all site
s, and there is a
ontrol
ow pathfrom
s to a node a 2 Ak of pro
edure k whi
h does not
ontain any other
all statements or bran
h nodes, there is an edge (ri;
) 2 E where
 = a ifa 2 Bk or
 = rk a is exitk.3. If pro
edure k
alls pro
edures i and j at
all sites
s1 and
s1, respe
tively,and there is a
ontrol
ow path from
s1 to
s2 whi
h does not
ontain anyother
all statements or bran
h nodes, there is an edge (ri; sj) 2 E.4. If there is a
ontrol
ow path from node a1 2 Ak to another node a2 2 Ak inthe
ontrol
ow graph of pro
edure k whi
h does not
ontain any other
allstatements or bran
h nodes, there is an edge (
1;
2) 2 E where
1 = a1 ifa1 2 Bk or
1 = sk if a1 is entryk and
2 = a2 if a2 2 Bk or
2 = rk if a2 isexitk.Figure 2(b) shows the EFPR graph for the program in Figure 2(a). We usere
tangles to represent bran
h nodes in EFPR graphs in this paper.5

subroutine P(C,D,M,E)D=D+2G = C
all Q(G,D,M,E)if (D<M) then
all P(C,D,M,E)endifendsubroutine Q(A,B,N,F)A=A+1F=F+3if (A<N) then
all Q(A,B,N,F)endifend (a) Program

sP

sQ

rQ

rP

A<N

D<M(b) EFPR GraphFigure 2: Nested Re
ursive Calls and ReturnsThe EFPR graph
aptures all the
ontrol
ows of the whole program. TheEFPR in
ludes the expli
it for or DO loops in all pro
edures as well as the impli
itloops of re
ursive
alls and returns.5 Che
king of EFPR GraphFirst of all, we do not
onsider the programs whi
h have impli
it loops and expli
itloops overlapped with ea
h other. Consider the program in Figure 3(a) wherepro
edures P and Q
all ea
h other and there is an expli
it loop surrounding the
all of pro
edure Q in pro
edure P. The EFPR graph of this program is shown inFigure 3(b). This example shows that it is possible for impli
it loops of re
ursive
all to overlap with expli
it loops and the EFPR graph is irredu
ible. To rule outsu
h programs for further analysis, we need to
he
k the bran
h nodes in a
y
leof pro
edure
alls in the EFPR graph. Given a natural loops0 ! :::::! s1 ! ::::! � � � ! sn�1 ! ::::! s0with header s0, where a \:::::" represents a path
ontaining zero or more
onse
utivebran
h nodes between the start nodes, we only need to
he
k that none of thesebran
h nodes is the header of a natural loop. This
an be done by
he
king thatea
h of the bran
h nodes has only one in
oming edge.After this
he
king, we
an assume that a natural loop whose header is a startnode of a pro
edure does not in
lude any bran
h node with more than one in
omingedge in the EFPR graph. 6

program main
all P(...)endsubroutine P(...)do ...
all Q(...)enddoendsubroutine Q(...)if ...
all P(...)endifend (a) Program
rQ

rP

sQ

sP

(b) EFPR GraphFigure 3: Che
king nested impli
it and expli
it loops6 Algorithm for Interpro
edural Indu
tion Vari-able AnalysisAs in the intrapro
edural indu
tion variable analysis, the analysis for interpro
eduralindu
tion variables starts with the innermost loop.The stru
ture of an innermost loop of re
ursive
alls is illustrated in Figure 4,where pro
edures 0; 1; � � � ; n � 1 form a loop of re
ursive
alls and s0 is the loopheader. To simplify dis
ussion, we assume that there is only one bran
h node, bi,between si�1 mod n and si, 0 � i � n � 1. A dotted edge in Figure 4 represents adi�erent path from the sour
e to the destination in the EFPR graph. Note that itis possible that there are multiple di�erent paths from bi to ri�1 mod n due to thebran
h nodes between them. For the same reason, there may be multiple pathsfrom ri to ri�1 mod n. Note the
y
les from rn�1 up to r0 and ba
k to rn�1 formedby the dotted edges in Figure 4. Ea
h of these
y
les is a
ontrol
ow of pro
edurereturns and is
alled a dual loop of the loop of re
ursive
alls.The trip
ount of the loop of re
ursive
alls, denoted as t
, is the number oftimes the
ontrol goes through the loop header s0. Sin
e s0 is visited at least on
e,we have t
 � 1. There will be t
 � 1 full trips of the
y
le from s0 up to sn�1 andba
k to s0. The last trip is a partial trip and one of the bran
h nodes b1; � � � ; bn�1; b0will take the bran
h o� the
y
le. The �rst bran
h node that takes the bran
h o�the
y
le is
alled the break point of the loop. If the break point is bran
h node bj ,the
ontrol
ow will take one of the paths to rea
h rj�1 mod n. Then it will make apartial trip from rj�1 mod n to r0 and then make t
 � 1 full trips of the
y
le from7

s1

s0

b1

sn−1

b0

b2

r1

rn−1

r0

...

... ...

....
..

...

Figure 4: Stru
ture of a typi
al innermost loop of re
ursive
alls and its dual loopr0 ba
k r0.Obviously, the innermost loop of re
ursive
alls should not
ontain any loopof another re
ursive
alls. In Figure 4, this means that none of s1; � � � ; sn�1 isthe header of a natural loop. (Note that the bran
h nodes b0; � � � ; bn�1
annot beheaders of natural loops either after the
he
king des
ribed in Se
tion 5.)For a loop of re
ursive
alls to be the innermost one, any of its dual loop shouldnot
ontain any loop of re
ursive
all. That is, any
y
le from r0 to rn�1 and ba
kto r0 in the EFPR graph should not
ontain any start node with more than onein
oming edges.The third requirement is that any path from the bran
h node in the loop ofre
ursive
alls to the return node of the pro
edure to whi
h it belongs does not
ontain any loop of re
ursive
alls. That is, any path from bi to ri�1 mod n in theEFPR graph should not
ontain any start node with more than one in
oming edge.Therefore, the innermost loop of re
ursive
all is de�ned as follows:De�nition 1 (Innermost Loop of Re
ursive Calls) The innermost loop of re-
ursive
alls is a natural loop with header s0 in the EFPR graph, s0 ! � � � !s1 � � � sn�1 ! � � � ! s0, su
h that (1) none of s1; � � � ; sn�1 is the header of an-other natural loop in the EFPR graph and (2) none of paths from rj to rj�1 mod n,(j = 0; � � � ; n� 1)
ontains a start node with more than one in
oming edge and (3)any path from a bran
h node between si and si+1 mod n to the return node ri does8

not
ontain a start node with more than one in
oming edge. Ea
h of the
y
les inthe EFPR graph r0 ! rn�1 ! � � � ! r1 ! r0 is
alled a dual loop of the the loopof re
ursive
alls.The algorithm for interpro
edural indu
tion variable analysis is as follows:while (there is an innermost loop of re
ursive
alls in EFPR graph) do1. Identify the innermost loop of re
ursive
alls s0 ! � � � ! s1 � � � sn�1 ! � � � !s0 as de�ned in De�nition 1 and illustrated in Figure 4.2. Constru
t the interpro
edural fa
tored use-def (IFUD) graph of the pro
e-dures 0; 1; � � � ; n � 1. Apply the modi�ed Tarjan's algorithm [5, 6℄ to �ndloop invariant, indu
tion and
omplex variables in the input parameters ofthe pro
edures.3. Cal
ulate the trip
ount and the break point of the loop of re
ursive
alls.Represent the indu
tion variables of input parameters using a basi
 indu
tionvariable and the trip
ount obtained.4. Che
k the EFPR graph to see if (1) there is only one path from rj to rj�1 mod nfor all j = 0; � � � ; n�1. If so,
ontinue to �nd indu
tion variables in the outputparameters of the pro
edures
aused by the dual loop as follows:(a) Che
k if there is only one path in the EFPR graph from the break pointto the return node of the pro
edure. If there are multiple paths, go toStep 5; otherwise
ontinue with Step 4(b).(b) Use the IFUD graph to �nd the output parameters whi
h are
onstantsor dependent only on the input parameters whi
h are indu
tion variablesor loop invariants. These output parameters will have
onstant initialvalues. Mark the output parameters whi
h do not have
onstant initialvalues as
omplex variables.(
) Apply the modi�ed Tarjan's algorithm to �nd loop invariant, indu
tionand
omplex variables in the output parameters. Represent the indu
-tion variables of output parameters using the same basi
 loop indu
tionvariable and the trip
ount as the loop of re
ursive
alls.5. Coales
e both the innermost loop and its dual loop in the EFPR.We next des
ribe ea
h step of the algorithm in detail. We also use the programin Figure 5 as the working example to illustrate the algorithm.The EFPR graph of this program is shown in Figure 6(a)6.1 Finding the innermost loops of re
ursive
allsThe innermost loop of re
ursive
alls is de�ned in De�nition 1. The algorithm of�nding natural loops des
ribed in [13℄
an be used to �nd all the natural loops inthe EFPR graph. Using De�nition 1, the
ompiler is able to �nd the innermostloop of re
ursive
alls and all its dual loops as illustrated in Figure 4.9

program main
all X(1,9,1)endsubroutine X(A,B,U)A=A+1
1: if (A<B) then
all Y(A,B,U)endifend
subroutine Y(C,D,V)D=D-2V=V+D
2: if (C<D) then
all X(C,D,V)C=C-2endifendFigure 5: Program of Working Example

bx

sX

by

sY

rY

rX(a) EFPR Graph

phi(A) phi(B)

phi(C) phi(D)

phi(C’) phi(D’)

phi(B’)

+ −

− +

+

1

2

1

2

1

−
2

A0
B0

phi(A’)

phi(V)

phi(U)

phi(V’)

phi(U’)

+

U0

(b) IFUD GraphFigure 6: EFPR and IFUD graphs of the working example
10

6.2 Dete
ting Interpro
edural Indu
tion VariablesAlthough the EFPR graph enables the
ompiler to �nd the innermost loop ofre
ursive
alls and its dual loops, it does not
ontain data
ow information amongthe parameters of the pro
edures. To dete
t the interpro
edural indu
tion variablesamong these parameters, the
ompiler still needs an interpro
edural fa
tored use-def (IFUD) graph. The basi
 te
hnique of indu
tion variable dete
tion is the sameas for the intrapro
edural indu
tion variables dete
tion [5, 6℄ and is summarized asfollows:� Form a fa
tored use-def (FUD) graph for the variables using the stati
 single-assignment (SSA) representation of the program where ea
h variable has asingle de�nition [14℄. SSA representation uses � fun
tions at join points. Anedge of the FUD graph is from a use of a variable to its unique de�nition.� Use the modi�ed Tarjan's algorithm to traverse the FUD graph to �nd a loopwhi
h (1) has a loop header �-term with only two sour
es: one from the initialvalue and the other the ba
k edge of the loop and (2) all the operations inthe loop are either fet
hes, stores of s
alar variables or additions of
onstantor loop invariant values. Su
h a loop de�nes a basi
 loop indu
tion variableand the indu
tion step is the summation of the values added within the loop.The modi�ed Tarjan's algorithm makes the traverse eÆ
ient be
ause the typeand the value of a sub-expression will be available when it is needed.The details of the te
hnique
an be found in [6℄.We next de�ne the interpro
edural fa
tored use-def (IFUD) graph.First of all, we see ea
h parameter of a pro
edure as both input and outputvariables be
ause
all by referen
e is used in our model. At the entry node of thepro
edure, the value of the parameter is one of the values passed at the
all sitesin the program. Therefore, the parameter at the entry of the pro
edure is modeledby a �-term with the passed values as its sour
es. On the other hand, the valueof the parameter at the exit node of the pro
edure is one of the values rea
hingfrom within the pro
edure. Hen
e, the parameter at the exit node is also modeledby a �-term. This �-term de�nes the value to be passed to whatever the a
tualparameter bound at a
all site.For this reason, for ea
h parameter X of ea
h pro
edure P , there are an input�-term, denoted �(X), and an output �-term, denoted �(X 0), in the IFUD graph.2The IFUD graph is obtained by merging the fa
tored use-def graphs of the pro-
edures through these input and output �-terms of the formal parameters. TheIFUD graph of the working example is shown in Figure 6(b).On
e the IFUD graph is established, the
ompiler
an start the modi�ed Tar-jan's algorithm from any input parameter of the pro
edures. For example, startingfrom �(U) in Figure 6(b), the
ompiler will �rst �nd that the loop (�(B);�; �(D); �(B))de�nes a basi
 indu
tion variable with indu
tion step equal to �2. Then it will
on-
lude that the (�(U);+; �(V); �(U)) does not form an indu
tion variable be
ause2To simplify presentation, we assume the names of formal parameters of di�erent pro
edures aredi�erent and we do not need to pre�x pro
edure names to distinguish them.11

the sum of values added in the loop is not
onstant. Applying the modi�ed Tarjan'salgorithm from �(A) will �nd that another basi
 indu
tion variable formed by theloop (�(A); �(C);+; �(A)) with indu
tion step equal to 1. As a result, the
ompilerwill mark input parameters A and C, B and D, as indu
tion variables and inputparameters U and V, as
omplex variable.6.3 Trip Count and Break PointThe purpose of this step of the algorithm is to �nd the trip
ount t
 and the breakpoint of the loop of re
ursive
alls.To simplify presentation, we assume that there is at most one bran
h nodebetween su

essive start nodes of pro
edures in the loop of re
ursive
alls de�nedin De�nition 1.Given an innermost loop of re
ursive
alls s0 ! � � � ! s1 � � � sn�1 ! � � � ! s0,the
ondition for the bran
h node, bi, between si�1 mod n and si to take the
ontrolto si is denoted Ci. If there is no su
h bran
h node bi between si�1 mod n and si,Ci is a
onstant logi
 TRUE.Trip CountWe have de�ned the trip
ount, t
, as the number of times the
ontrol visits s0.Now the
ondition to make a full
y
le from s0 to itself is obviously C1 ^� � � ^ Cn�1 ^ C0. Ea
h of the
onditions C0; � � � ; Cn�1
an be expressed in termsof the input parameters of the pro
edure to whi
h it belongs. Note that theseinput parameters have already been marked as loop invariant, indu
tion or
omplexvariable in Step (
) of the algorithm. The expression of any
ondition shouldnot
ontain any
omplex variable; otherwise, the trip
ount of the loop shouldbe regarded as indeterministi
. The input parameters are then repla
ed by thelinear forms of the basi
 loop indu
tion variable k and ea
h
ondition be
omes aninequality in terms of k, denoted Ci(k) (0 � i � n� 1).The basi
 loop indu
tion variable k is a non-negative integer starting from 0 andis in
remented ea
h time s0 is re-visited. Therefore, C0(k)^ � � �^Cn�1(k)^ (k � 0)gives the
ondition for the full trip of the loop in terms of k. This is an integer linearprogramming system of a single variable and it may or may not have solutions. Ifit has no solution, then there is no full trip in the loop and s0 is visited only on
e,giving t
 = 1. If it has solutions, we seek the maximum k satisfying the system.Let kmax � 0 be the maximum integer su
h that C0(k) ^ � � � ^ Cn�1(k) is true forall integers k su
h that 0 � k � kmax. Then, there are kmax + 1 full trips and thetrip
ount t
 equals to kmax + 2. The basi
 indu
tion variable k of the loop takesthe values 0; 1; � � � ; kmax; kmax + 1. Hen
e, we havet
 = (1 if system has no solutionkmax + 2 otherwiseand the basi
 indu
tion variable k satis�es 0 � k � t
 � 1.12

Consider the working example in Figure 5. Its EFPR graph in Figure 5(a) showsthat the innermost loop sX ! bY ! sY ! bX ! sX
ontains two bran
h node, bXand bY . After analyzing the IFUD graph in Figure 5(b), the
ompiler
an determinethat both �(A) and �(B) are indu
tion variables and their values in terms of thebasi
 loop indu
tion variable k are A(k) = A0+k and B(k) = B0�2k, respe
tively.So are the �(C) and �(D) whose values are expressed by C(k) = A(k) + 1 =A0 + k+ 1 and D(k) = B(k) = B0 � 2k. The
ondition of node bX in terms of thevalues of �(A) and �(B) is A(k)+1 < B(k), taking the data
ow from the entry ofpro
edure X to bran
h node bX in X into
onsideration. Similarly, the
onditionof node bY is C(k) < D(k)� 2. Therefore, the
onditions of bX and bY in terms ofk are CX(k) � 3k+1 < B0�A0 and CY (k) � 3k+3 < B0�A0, respe
tively. Thelargest k satisfying CX(k) ^CY (k) is kmax = bB0�A0�33
 = b9�1�33
 = 1.Break PointA

ording to the de�nition of kmax above, the last trip
arrying with kmax + 1is a partial one. The break point of the loop is the �rst bran
h node bi (i =1; 2; � � � ; n� 1; 0) su
h that its
orresponding
ondition Ci(kmax + 1) is false. Thatis, bi is the break point if Cj(kmax + 1) are true for all 1 � j < i and Ci(kmax + 1)is false or b0 is the break point if Cj(kmax + 1) are true for all 1 � j � n� 1.In our working example, we have CX(2) � 3 � 2 + 1 < 9 � 1 is true, andCY (2) � 3 � 2 + 3 < 9� 1 is false. The break point is bY .Putting it all together, the four indu
tion variables in the input parameters
anbe expressed as follows:A(k) = fA0 + k j 0 � k � kmax + 1gB(k) = fB0 � 2k j 0 � k � kmax + 1gC(k) = fA0 + k + 1 j 0 � k � kmax + 1gD(k) = fB0 � 2k j 0 � k � kmax + 1gwith kmax = 1.6.4 Indu
tion Variables of Dual LoopAfter the analysis of indu
tion variables in the input parameters, the
ompiler triesto �nd possible indu
tion variables in the output parameters formed by its dualloop.Given an innermost loop of re
ursive
alls de�ned in De�nition 1, there
an beseveral paths from ri to ri�1 mod n, (0 � i � n � 1), in the EFPR graph. If thereare multiple paths from ri to ri�1 mod n the fa
tored use-def
hains from the outputparameters of ri�1 mod n to that of ri will go through �-terms. As a
onsequen
e,none of the output parameters of all the pro
edures
an be an indu
tion variable.The entire Step 4 should exit and all the output parameters should be marked as
omplex variables. In other words, the
ompiler will
ontinue to dete
t indu
tion13

variables in output parameters in Steps 4(a), 4(b) and 4(
) of the algorithm onlyif there is only one path ri to ri�1 mod n for all i = 0; � � � ; n � 1. These steps aredes
ribed as follows:6.4.1 Che
king Paths from Break Point to Return NodeAssume that the break point of the loop of re
ursive
alls shown in Figure 4 is bj .This step (Step 4(a))
he
ks if there is a single path from bj to rj�1 mod n in theEFPR graph. If there are multiple paths, the initial values for output parametersof pro
edure rj�1 mod n
annot be determined. As a
onsequen
e, all the outputparameters of the pro
edures
annot be indu
tion variables and the algorithm goesto Step 5 immediately.6.4.2 Determining Initial Values of Output ParametersAt this step (Step 4(b)), the algorithm uses the IFUD graph to �nd the expressionsfor the initial values of the output parameters of the pro
edure. Sin
e there is asingle path from the break point to the return node in the EFPR graph, a singleexpression in terms of the input parameters of the pro
edure
an be found. Ifthe expression of an output parameters
ontains a
omplex input parameter, thatoutput parameter
annot be an indu
tion variable be
ause its initial value is not
onstant.Continuing our working example with the break point bX , the �nal values ofinput parameters of C and D are C(kmax + 1) and D(kmax + 1), respe
tively.Following the IFUD
hains
orresponding to the path (sY ; bX ; rY) in the EFPRgraph, the
ompiler
an �nd the unique initial values of output parameters C 0 andD0, denoted C 00 and D00, as follows: C 00 = C(kmax + 1) and D00 = D(kmax + 1)� 2.6.4.3 Dete
ting Indu
tion Variables in Output ParametersAt this step (Step 4(
)), the
ompiler applies the Tarjan's algorithm to the IFUD
hains of the output parameters
orresponding to the dual loop to �nd possibleindu
tion variables. This step is similar to Step 2. In our working example, theresult is that both C 0 and D0 are indu
tion variables expressed as C 0(k0) = C 00�2k0and D0(k0) = D00+k0. Here, k0 is the basi
 loop indu
tion variable of the dual loop.The trip
ount of the dual loop (de�ned as the number of times r0 is visited) isthe same as the loop of re
ursive
alls. Therefore, the basi
 indu
tion variable, k0,takes values 0; 1; � � � ; kmax and kmax + 1, one for ea
h trip. The �rst trip from rj(assuming bj+1 mod n is the break point) to r0 is a partial trip.The dire
tion of dual loop is opposite to that of the loop of re
ursive
alls. therelationship between k and k0 is k+ k0 = kmax+1 = t
� 1. These observations aresummarized in the following theorem:Theorem 1 If the trip
ount of the innermost loop of re
ursive
alls, s0 ! � � � !s1 � � � sn�1 ! � � � ! s0, is t
, then the trip
ount of its dual loop is also t
. The14

basi
 loop indu
tion variable of the dual loop is an integer variable k0 su
h that0 � k0 � kmax + 1 = t
 � 1 and k + k0 = kmax + 1 hold.In our working example, output parameters A0 and B0 are also indu
tion vari-ables. Their initial values, A00 and B00,
an be obtained by following the IFUD
hains
orresponding to the path (rY ; rX) in the duel loop and they are: A00 = C 00and B00 = D00+1. The values A0 and B0 then
an be expressed as A0(k0) = A00�2k0and B0(k0) = B00 + k0. Note that k0 = (kmax + 1) � k. We then
onvert theexpressions of the output parameters to use k instead of k0.Putting it all together, the four indu
tion variables in the output parameters inthe working example are as follows:C 0(k) = fA0 � kmax + 2k j 0 � k � kmax + 1gD0(k) = fB0 � kmax � 3� k j 0 � k � kmax + 1gA0(k) = fA0 � kmax + 2k j 0 � k � kmax + 1gB0(k) = fB0 � kmax � 2� k j 0 � k � kmax + 1gwhere kmax = 1.6.5 Nested Indu
tion VariablesThe last step (Step 5) in thewhile loop of the algorithm is to
oales
e the innermostloop of re
ursive
alls and its dual loop into a simple pro
edure whi
h summarizesthe e�e
t of the re
ursive pro
edure
all.Given the the innermost loop of re
ursive
alls, s0 ! � � � ! s1 � � � sn�1 ! � � � !s0, the
ompiler
reates a new pro
e
ure to repla
e all the pro
edures involved,namely, pro
edures 0; 1; � � � ; n�1 (Re
all re
all that si is the start node of pro
edurei, i = 0; 1; � � � ; n� 1.) The
ompiler
an
reate the simple pro
edure as follows:1. The simple pro
edure has the same formal parameters as pro
edure 0.2. For ea
h parameter A of pro
edure 0(a) if both input and output parameters of A3 are indu
tion variables or loopinvariants expressed as A(k) and A0(k), respe
tively, and at least one ofthem is an indu
tion variable.i.
al
ulate AS = A0(0) � A(0). This gives the in
rement of A as theside e�e
t of the re
ursive
all.ii.
reate a statement A = A + AS in the simple pro
edure(b) if both input and output parameters of A are loop invariants, do nothing.(
) otherwise, mark both input and output parameters of A as a
omplexvariable.Let us go ba
k to the example of nested loops of re
ursive
all in Figure 2(a)again. The indu
tion variables analysis for the innermost loop reveals that A and3Re
all that ea
h parameter has the input and output �-terms in the IFUD graph representing theinput and output parameters of the same name. 15

subroutine QQ(A,B,N,F)A=A+(N-A)F=F+3*(N-A)endifend (a) Simple pro
edure QQ D<M

sP

rP

sQQ

rQQ

(b) EFPR graph after loop
oales
ingFigure 7: Program 1 after loop
oales
ingF are indu
tion variables and B and N are loop invariant variables. All of outputparameters A0; F 0; B0 and N 0 are loop invariant variables. We haveA(k) = fA0 + k j 0 � k � kmax + 1gF (k) = fF0 + 3k j 0 � k � kmax + 1gand kmax = N0 � A0 � 2. We also have A0(0) = A0 + kmax + 2 and F 0(0) =F0 + 3kmax + 6. Therefore, in
rements of A and F are As = N0 � A0 and Fs =3(N0 �A0). The simple pro
edure to repla
e the innermost loop of re
ursive
allsand its dual loop is, thus, shown in Figure 7(a) and the new EFPR graph after thisloop
oales
ing is shown in Figure 7(b). The new IFUD graph after
oales
ing isshown in Figure 8.The further analysis of the innermost loop with loop header node sP will revealthat input parameter C and M are loop invariant variables and input variable Dis an indu
tion variable with indu
tion step of 2. Input parameter E
an alsobe found to be an indu
tion variable with indu
tion step of 3(M0 � C0), be
ausethe
ompiler will �nd that 3(N � A) is a loop invariant value when the Tarjan'salgorithm sear
hes from �(E) in the IFUD graph in Figure 8.7 Related WorkApart from the work on intrapro
edural indu
tion variable analysis mentioned inSe
tion 1, this work is also related to the work des
ribed as follows:� The interpro
edural indu
tion variable analysis des
ribed in this paper
an beregarded as an extension of the analysis of interpro
edural
onstants [15, 16℄.16

phi(C) phi(D) phi(M) phi(E)

phi(A) phi(B) phi(N) phi(F)

phi(A’) phi(B’) phi(N’) phi(F’)

phi(D’) phi(M’)

-

+

2

-

+
*

+

3

phi(E’)phi(C’)

C0 D0 E0M0

Figure 8: FUD of Program 1 after loop
ollapsingThe interpro
edural indu
tion variable analysis des
ribed in this paper goesbeyond
onstant propagation and �nds loop invariants and indu
tion variablesin formal parameters with respe
t to the loops of re
ursive pro
edure
alls andreturns.� This work is also related to [1℄ in whi
h a simple algorithm to �nd loop in-variant formal parameters with respe
t to loops of re
ursive pro
edure
alls(
alled re
ursively invariant parameters there) is des
ribed. Indu
tion vari-ables in formal parameters would be regarded as
omplex variables (
alled re-
ursively variant parameters there) by that algorithm. The work in this papergoes beyond loop invariant parameters and distinguishes indu
tion variablesof both input and output formal parameters from
omplex formal parameters.� This work is related and motivated by the work on array se
tions or arrayside e�e
ts of pro
edure
alls [1, 17, 2, 3, 4℄. To summarize the se
tions ofarrays modi�ed or used by pro
edures in re
ursive
alls for parallelization,the
ompiler needs to �nd the indu
tion variables in both input and outputparameters. The work in this paper provides a solution to this problem.Referen
es[1℄ Zhiyuan Li and Pen-Chung Yew. Interpro
edural analysis for parallel
om-puting. In Pro
eedings of the 1988 International Conferen
e on Parallel Pro-
essing, Vol. II, pages 225{244, August 1988.[2℄ Peiyi Tang. Exa
t side e�e
ts for interpro
edural dependen
e analysis. InPro
eedings of the 1993 ACM International Conferen
e on Super
omputing,pages 137{146, Tokyo, Japan, July 1993.17

[3℄ Yunheung Paek, Jay Hoe
inger, and David Padua. Simpli�
ation of arraya

ess patterns for
ompiler optimizations. In Pro
eedings of the ACM SIG-PLAN Conferen
e on Programming Language Design and Implementation,pages 60{71, June 1998.[4℄ Jay Hoe
inger and Yunheung Paek. The a

ess region test. In Pro
eedings ofthe International Workshop on Languages and Compilers for Parallel Com-puting, August 1999.[5℄ Mi
hael Wolfe. Beyond indu
tion variables. In Pro
eedings of the ACM SIG-PLAN Conferen
e on Programming Language Design and Implementation,pages 162{174, June 1992.[6℄ Mi
hael Wolfe. High Peforman
e Compilers for Parallel Computing. Addison-Wesley, 1995.[7℄ F.E. Allen, John Co
ke, and Ken Kennedy. Redu
tion of operator strength.In Steven S. Mu
hni
k and Neil D. Jones, editors, Program Flow Analsis:Threory and Appli
ations, pages 79{101. Prenti
e-Hall, 1981.[8℄ John Co
ke and Ken Kennedy. An algorithm for redu
tion of operatorstrength. Communi
ations of the ACM, 20(11):850{856, November 1977.[9℄ Z. Ammarguellat and W.L. Harrison III. Automati
 re
ognition of indu
tionvariables and re
urren
e relations by abstra
t interpretation. In Pro
eedingsof the ACM SIGPLAN Conferen
e on Programming Language Design andImplementation, pages 283{295, June 1990.[10℄ M. R. Haghighat and C. D. Poly
hronopoulos. Symboli
 analysis: A basis forparallelization, optimization, and s
heduling of programs. In Pro
eedings of theInternational Workshop on Languages and Compilers for Parallel Computing,pages 567{585. Le
ture Notes in Computer S
ien
e, No. 768, August 1993.[11℄ M. R. Haghighat. Symboli
 Analysis for Parallelizing Compilers. KluwerA
ademi
 Pulblishers, 1995.[12℄ Gagan Agrawal, Joel Salts, and Raja Das. Interpro
edural partial redundan
yelimination and its appli
ations to distributed memory
ompilation. In Pro-
eedings of the ACM SIGPLAN Conferen
e on Programming Language Designand Implementation, pages 258{269, June 1995.[13℄ Afred V. Aho, Ravi Sethi, and Je�ery D. Ullman. Compilers: Prin
iples,Te
hniques and Tools. Addison-Wesley Publishing Company, 1986.[14℄ Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-neth Zade
k. EÆ
iently
omputing stati
 single assignment form and the
on-trol dependen
e graph. ACM Transa
tions on Programming Languages andSystems, 13(4):451{490, O
tober 1991.[15℄ D. Callahan, K.D. Cooper, Ken Kennedy, and L. Tor
zon. Interpro
eduarl
onstant propagation. In Pro
eedings of the SIGPLAN '86 Symposium onCompiler Constru
tion, SIGPLAN Noti
es Vol. 21, No. 7, pages 152{161.ACM, July 1986. 18

[16℄ Dan Grove and Linda Tor
zon. Interpro
edural
onstant propagation: A studyof jump fun
tion implementation. In Pro
eedings of the ACM SIGPLAN Con-feren
e on Programming Language Design and Implementation, pages 90{99,June 1993.[17℄ Paul Havlak and Ken Kennedy. An implementation of interpro
eduralbounded regular se
tion analysis. IEEE Transa
tions on Parallel and Dis-tributed Systems, 2(3):350{360, July 1991.

19

