
Interprocedural Induction Variable Analysis

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 02-010

Interprocedural Induction Variable Analysis

Peiyi Tang and Pen-chung Yew

February 28, 2002

Interproedural Indution Variable Analysis�Peiyi TangDepartment of Computer SieneUniversity of Arkansas at Little RokLittle Rok, AR 72204Pen-Chung YewDepartment of Computer Siene and EngineeringUniversity of MinnesotaMinneaplolis, MN 55455February 19, 2002AbstratIndution variable analysis is an important part of the symboli analysis inparallelizing ompilers. Indution variables an be formed by for or DO loopswithin proedures or loops of reursive proedure alls. This paper presents analgorithm to �nd indution variables in formal parameters of proedures ausedby reursive proedure alls. The ompile-time knowledge of indution variablesin formal parameters is essential to summarize array setions to be used for datadependene test and parallelization.Key Words: Interproedural Indution Variables, Reursive Proedure Call,Call graphs, Indution Variable Analysis, Extended Full Program Representation(EFPR) Graphs, Interproedural Fatored Use-Def (IFUD) Graphs.1 IntrodutionIndution variable analysis is an important part of the symboli analysis in par-allelizing ompilers. Its purpose is to �nd the salar variables in programs whosevalues an be expressed in linear forms. Indution variables an appear in arraysubsripts. Finding indution variables enables parallelizing ompilers to form a-urate array setions [1, 2, 3, 4℄ aessed in loops. The aurate array setions allowthe data dependene analysis to disover loop parallelism for parallel exeution.�The work was supported in part by the U.S. National Siene Foundation under Grants EIA-9971666and MIP-9610379 and a grant from the Intel Corporation.1

Indution variables are always formed by loops in programs. Muh work hasbeen done to disover indution variables in loal variables formed by expliit loopssuh as for or DO loops [5, 6℄. However, indution variables an also be formedby loops of reursive proedure alls. For instane, in the reursive proedure X inFigure 1(b), formal parameter k is an indution variable fk0+2i j 0 � i � bn=2�1gand it is formed by the loop of reursive all of X to itself. At the same time,parameters i and n are invariant with respet to that loop. As a result, the setionof array b modi�ed by the assignment b(i,k) = ... is the even elements of therow i: b(i; ko); b(i; k0 + 2); � � �. With this knowledge, the parallelizing ompilerwould know that there are no data dependenes between statements s0 and s1arried by loop i in the program Figure 1(a), beause the data elements of aessedin statement s0 by loop j are the odd elements eah rows of array a. (Notiethat array a is aliased with array b by the all statement at s2.) Therefore, theparallelizing ompiler an parallelize loop i. Without this knowledge, the ompilerwould assume that all the elements of row i of array a be modi�ed by the proedureall at s1 and there would be a data dependene yle between s0 and s1 whihwould prevent the parallelization of loop i.real a(n,n)do i = 1, ndo j = 1, n, 2s0: a(i,j) = a(i-1,j) + ...enddos1: all x(a,i,2,n)enddo (a) loop nest
subroutine x(b,i,k,n)real b(n,n)b(i,k) = ...if (k+1 < n) thenall x(b,i,k+2,n)endifend (a) reursive proedureFigure 1: Interproedural Indution VariablesThe indution variables in proedure parameters formed by the loops of reur-sive proedure alls or returns are alled interproedural indution variables.Previous researh on indution variable analysis [7, 8, 9, 10, 5, 6, 11℄ is primarilyonerned with indution variables formed by expliit loops within proedures.Although [10, 11℄ mentioned interproedural indution variable analysis, but theindution variables targeted are still formed by expliit loops. To the best of ourknowledge, there is no previous work on disovery and analysis of interproeduralindution variables de�ned above.In this paper, we present an algorithm to disover and analyze interproeduralindution variables in parameters of proedures.The loops of reursive proedure alls or returns to form interproedural in-dution variables are impliit, beause they do not exist in the abstrat syntaxtrees of the program. More importantly, the strutures of these loops are quitedi�erent from those of ordinary expliit for or DO loops. While the basi tehniqueof deteting indution variables remains the same as the intraproedural indu-2

tion variable analysis, the interproedural indution variables analysis �rst needsto reover, identify and analyze these impliit loops. We have extended the FullProgram Representation (FPR) graph [12℄ for this purpose.The ontributions of this paper are:� the tehniques to identify and analyze the unique loop struture of reursiveall and returns and� the omplete algorithm to identify and analyze interproedural indution vari-ables.To form interproedural indution variables, the loop of reursive alls has toonform to ertain format. Before starting the algorithm of analysis, the ompileran rule out many programs whih do not have interproedural indution variablesby heking their all graphs and the extended FPR graph �rst.The rest of the paper is organized as follows. Setion 2 desribes the programmodel of the programs to be analyzed and other preliminary bakgrounds. Setion3 desribes the all graph heking. Setion 4 desribes our extended FPR graph.Setion 5 desribes the heking of the extended FPR graph. Setion 6 presentsthe algorithm to �nd interproedural indution variables. Setion 7 onludes thepaper with a disussion of related work.2 Program Model and Preliminaries2.1 Program ModelThe model of the programs to be analyzed is as follows:� Parameters of proedures an be array variables or salar variables. We on-entrate on salar parameters for indution variable analysis.� Salar parameters are passed by referene.� Salar parameters are variables of integer type.� To simplify the presentation, we do not onsider{ proedure-valued variables.{ global variables{ pointer variables� The ontrol strutures in proedures inlude if-then, if-then-else andexpliit loops like for or DO.� Eah proedure has only one return statement whih is the end of the proe-dure.2.2 Purpose of AnalysisThe purpose of the interproedural indution variable analysis is to lassify all thesalar parameters of the proedures to the following three ategories:3

� loop invariant variables with respet to the orresponding loop of proedureall or return, or� indution variables with respet to the orresponding loop of proedure allor return, or� omplex variables whose values annot be determined as loop invariants orindution variables using our method.Loop invariants an be regarded as a speial ase of indution variables with theindution step to be 0.3 Call Graph ChekingAording to the assumption of the program model above, the all graph is stati.We an also assume that the all graph is a onneted graph beause every proe-dure is assumed to be alled at least at one all site. The all graph of a programis a direted multi-graph (V;E), where the node set V is the set of proedures andE the set of edges suh that (p; q) 2 E if and only if there is a all site in proedurep whih alls proedure q.There are four ases in whih we will abort the interproedural indution vari-ables analysis:1. There no no yles in the all graph. In this ase, there will be no loops toform interproedural indution variables.2. There are yles in the all graph, but at least one of the followings is true:(a) There is a node with three or more inoming edges. If a node has threeor more inoming edges, it is impossible for its parameters to beomeindution variables. Sine the all graph is onneted and all the otherproedures may either all (diretly or indiretly) this proedure or bealled (diretly or indiretly) by it. We onservatively assume that allthe parameters of all the proedures are omplex variables.(b) There is a node whih is not the header of a natural loop, but has twoor more inoming edges. 1 The parameters of suh a proedure annotbe indution variables. For the same reason as above, we onservativelyassume that there are no indution variables in the parameters of allproedures and the analysis stops here.() After passing these heks, the all graph must have natural loops withtheir headers to be the only nodes with 2 inoming edges and all the othernodes have only one inoming edge. At this step of heking, we needto hek whether all the natural loops are either nested or disjoint. If1A header d is the head of a bak edge n! d (n is the tail of the edge.). An edge n! d is a bak edgeif d dominates n. d dominates n if all the paths from the entry node of the graph (the main program inthe all graph) to n inlude d. Given a bak edge n ! d, the natural loop with header d is the set ofnodes whih an reah n without going through d. The natural loop is the graph model for the expliitloops like for or DO loops. 4

there are two natural loops partially overlapped (none of them ompletelyinludes the other and they have ommon nodes), the analysis stopshere, beause the impliit loops of reursive alls do not onform to thestruture of expliit for and DO loops.After passing these all graph hekings, the ompiler needs to build an Ex-tended Full program Representation (EFPR) graph to further rule out the pro-grams whih annot have interproedural indution variables.4 Extended Full Program Representation (EFPR)GraphThe Full Program Representation Graph was proposed by Agrawal el al [12℄ forinterproedural partial redundany elimination. We extended it to inlude thebranh nodes and to apture the full ontrol ow of the whole program.Suppose there are n proedures in the program. Eah proedure has a startnode and a return node in the EFPR graph. The start node and the return node ofproedure i(1 � i � n) are denoted si and ri, respetively. Let S and R be the setsof start nodes and return nodes of all proedures, respetively, i.e. S = [ni=1fsigand R = [ni=1frig. Let Bi be the set of branh nodes in the ontrol ow graph ofproedure i and B = [ni=1Bi. The extended full program representation (EFPR)graph is a direted graph G = (V;E) whose node set is V = S [R [B. Before wede�ne the edge set E, let us de�ne set Ai for proedure i to be Ai = Bi[fentryig[fexitig, where entryi and exiti are the entry node and the exit node of the ontrolow graph of proedure i. The edge set E of G is de�ned as follows:1. If proedure k alls proedure i at all site s, and there is a ontrol ow pathfrom a node a 2 Ak of proedure k to s whih does not ontain any otherall statements or branh nodes, there is an edge (; si) 2 E where = a ifa 2 Bk or = sk a is entryk.2. If proedure k alls proedure i at all site s, and there is a ontrol ow pathfrom s to a node a 2 Ak of proedure k whih does not ontain any otherall statements or branh nodes, there is an edge (ri;) 2 E where = a ifa 2 Bk or = rk a is exitk.3. If proedure k alls proedures i and j at all sites s1 and s1, respetively,and there is a ontrol ow path from s1 to s2 whih does not ontain anyother all statements or branh nodes, there is an edge (ri; sj) 2 E.4. If there is a ontrol ow path from node a1 2 Ak to another node a2 2 Ak inthe ontrol ow graph of proedure k whih does not ontain any other allstatements or branh nodes, there is an edge (1; 2) 2 E where 1 = a1 ifa1 2 Bk or 1 = sk if a1 is entryk and 2 = a2 if a2 2 Bk or 2 = rk if a2 isexitk.Figure 2(b) shows the EFPR graph for the program in Figure 2(a). We useretangles to represent branh nodes in EFPR graphs in this paper.5

subroutine P(C,D,M,E)D=D+2G = Call Q(G,D,M,E)if (D<M) thenall P(C,D,M,E)endifendsubroutine Q(A,B,N,F)A=A+1F=F+3if (A<N) thenall Q(A,B,N,F)endifend (a) Program

sP

sQ

rQ

rP

A<N

D<M(b) EFPR GraphFigure 2: Nested Reursive Calls and ReturnsThe EFPR graph aptures all the ontrol ows of the whole program. TheEFPR inludes the expliit for or DO loops in all proedures as well as the impliitloops of reursive alls and returns.5 Cheking of EFPR GraphFirst of all, we do not onsider the programs whih have impliit loops and expliitloops overlapped with eah other. Consider the program in Figure 3(a) whereproedures P and Q all eah other and there is an expliit loop surrounding theall of proedure Q in proedure P. The EFPR graph of this program is shown inFigure 3(b). This example shows that it is possible for impliit loops of reursiveall to overlap with expliit loops and the EFPR graph is irreduible. To rule outsuh programs for further analysis, we need to hek the branh nodes in a yleof proedure alls in the EFPR graph. Given a natural loops0 ! :::::! s1 ! ::::! � � � ! sn�1 ! ::::! s0with header s0, where a \:::::" represents a path ontaining zero or more onseutivebranh nodes between the start nodes, we only need to hek that none of thesebranh nodes is the header of a natural loop. This an be done by heking thateah of the branh nodes has only one inoming edge.After this heking, we an assume that a natural loop whose header is a startnode of a proedure does not inlude any branh node with more than one inomingedge in the EFPR graph. 6

program mainall P(...)endsubroutine P(...)do ...all Q(...)enddoendsubroutine Q(...)if ...all P(...)endifend (a) Program
rQ

rP

sQ

sP

(b) EFPR GraphFigure 3: Cheking nested impliit and expliit loops6 Algorithm for Interproedural Indution Vari-able AnalysisAs in the intraproedural indution variable analysis, the analysis for interproeduralindution variables starts with the innermost loop.The struture of an innermost loop of reursive alls is illustrated in Figure 4,where proedures 0; 1; � � � ; n � 1 form a loop of reursive alls and s0 is the loopheader. To simplify disussion, we assume that there is only one branh node, bi,between si�1 mod n and si, 0 � i � n � 1. A dotted edge in Figure 4 represents adi�erent path from the soure to the destination in the EFPR graph. Note that itis possible that there are multiple di�erent paths from bi to ri�1 mod n due to thebranh nodes between them. For the same reason, there may be multiple pathsfrom ri to ri�1 mod n. Note the yles from rn�1 up to r0 and bak to rn�1 formedby the dotted edges in Figure 4. Eah of these yles is a ontrol ow of proedurereturns and is alled a dual loop of the loop of reursive alls.The trip ount of the loop of reursive alls, denoted as t, is the number oftimes the ontrol goes through the loop header s0. Sine s0 is visited at least one,we have t � 1. There will be t � 1 full trips of the yle from s0 up to sn�1 andbak to s0. The last trip is a partial trip and one of the branh nodes b1; � � � ; bn�1; b0will take the branh o� the yle. The �rst branh node that takes the branh o�the yle is alled the break point of the loop. If the break point is branh node bj ,the ontrol ow will take one of the paths to reah rj�1 mod n. Then it will make apartial trip from rj�1 mod n to r0 and then make t � 1 full trips of the yle from7

s1

s0

b1

sn−1

b0

b2

r1

rn−1

r0

...

... ...

....
..

...

Figure 4: Struture of a typial innermost loop of reursive alls and its dual loopr0 bak r0.Obviously, the innermost loop of reursive alls should not ontain any loopof another reursive alls. In Figure 4, this means that none of s1; � � � ; sn�1 isthe header of a natural loop. (Note that the branh nodes b0; � � � ; bn�1 annot beheaders of natural loops either after the heking desribed in Setion 5.)For a loop of reursive alls to be the innermost one, any of its dual loop shouldnot ontain any loop of reursive all. That is, any yle from r0 to rn�1 and bakto r0 in the EFPR graph should not ontain any start node with more than oneinoming edges.The third requirement is that any path from the branh node in the loop ofreursive alls to the return node of the proedure to whih it belongs does notontain any loop of reursive alls. That is, any path from bi to ri�1 mod n in theEFPR graph should not ontain any start node with more than one inoming edge.Therefore, the innermost loop of reursive all is de�ned as follows:De�nition 1 (Innermost Loop of Reursive Calls) The innermost loop of re-ursive alls is a natural loop with header s0 in the EFPR graph, s0 ! � � � !s1 � � � sn�1 ! � � � ! s0, suh that (1) none of s1; � � � ; sn�1 is the header of an-other natural loop in the EFPR graph and (2) none of paths from rj to rj�1 mod n,(j = 0; � � � ; n� 1) ontains a start node with more than one inoming edge and (3)any path from a branh node between si and si+1 mod n to the return node ri does8

not ontain a start node with more than one inoming edge. Eah of the yles inthe EFPR graph r0 ! rn�1 ! � � � ! r1 ! r0 is alled a dual loop of the the loopof reursive alls.The algorithm for interproedural indution variable analysis is as follows:while (there is an innermost loop of reursive alls in EFPR graph) do1. Identify the innermost loop of reursive alls s0 ! � � � ! s1 � � � sn�1 ! � � � !s0 as de�ned in De�nition 1 and illustrated in Figure 4.2. Construt the interproedural fatored use-def (IFUD) graph of the proe-dures 0; 1; � � � ; n � 1. Apply the modi�ed Tarjan's algorithm [5, 6℄ to �ndloop invariant, indution and omplex variables in the input parameters ofthe proedures.3. Calulate the trip ount and the break point of the loop of reursive alls.Represent the indution variables of input parameters using a basi indutionvariable and the trip ount obtained.4. Chek the EFPR graph to see if (1) there is only one path from rj to rj�1 mod nfor all j = 0; � � � ; n�1. If so, ontinue to �nd indution variables in the outputparameters of the proedures aused by the dual loop as follows:(a) Chek if there is only one path in the EFPR graph from the break pointto the return node of the proedure. If there are multiple paths, go toStep 5; otherwise ontinue with Step 4(b).(b) Use the IFUD graph to �nd the output parameters whih are onstantsor dependent only on the input parameters whih are indution variablesor loop invariants. These output parameters will have onstant initialvalues. Mark the output parameters whih do not have onstant initialvalues as omplex variables.() Apply the modi�ed Tarjan's algorithm to �nd loop invariant, indutionand omplex variables in the output parameters. Represent the indu-tion variables of output parameters using the same basi loop indutionvariable and the trip ount as the loop of reursive alls.5. Coalese both the innermost loop and its dual loop in the EFPR.We next desribe eah step of the algorithm in detail. We also use the programin Figure 5 as the working example to illustrate the algorithm.The EFPR graph of this program is shown in Figure 6(a)6.1 Finding the innermost loops of reursive allsThe innermost loop of reursive alls is de�ned in De�nition 1. The algorithm of�nding natural loops desribed in [13℄ an be used to �nd all the natural loops inthe EFPR graph. Using De�nition 1, the ompiler is able to �nd the innermostloop of reursive alls and all its dual loops as illustrated in Figure 4.9

program mainall X(1,9,1)endsubroutine X(A,B,U)A=A+11: if (A<B) thenall Y(A,B,U)endifend
subroutine Y(C,D,V)D=D-2V=V+D2: if (C<D) thenall X(C,D,V)C=C-2endifendFigure 5: Program of Working Example

bx

sX

by

sY

rY

rX(a) EFPR Graph

phi(A) phi(B)

phi(C) phi(D)

phi(C’) phi(D’)

phi(B’)

+ −

− +

+

1

2

1

2

1

−
2

A0
B0

phi(A’)

phi(V)

phi(U)

phi(V’)

phi(U’)

+

U0

(b) IFUD GraphFigure 6: EFPR and IFUD graphs of the working example
10

6.2 Deteting Interproedural Indution VariablesAlthough the EFPR graph enables the ompiler to �nd the innermost loop ofreursive alls and its dual loops, it does not ontain data ow information amongthe parameters of the proedures. To detet the interproedural indution variablesamong these parameters, the ompiler still needs an interproedural fatored use-def (IFUD) graph. The basi tehnique of indution variable detetion is the sameas for the intraproedural indution variables detetion [5, 6℄ and is summarized asfollows:� Form a fatored use-def (FUD) graph for the variables using the stati single-assignment (SSA) representation of the program where eah variable has asingle de�nition [14℄. SSA representation uses � funtions at join points. Anedge of the FUD graph is from a use of a variable to its unique de�nition.� Use the modi�ed Tarjan's algorithm to traverse the FUD graph to �nd a loopwhih (1) has a loop header �-term with only two soures: one from the initialvalue and the other the bak edge of the loop and (2) all the operations inthe loop are either fethes, stores of salar variables or additions of onstantor loop invariant values. Suh a loop de�nes a basi loop indution variableand the indution step is the summation of the values added within the loop.The modi�ed Tarjan's algorithm makes the traverse eÆient beause the typeand the value of a sub-expression will be available when it is needed.The details of the tehnique an be found in [6℄.We next de�ne the interproedural fatored use-def (IFUD) graph.First of all, we see eah parameter of a proedure as both input and outputvariables beause all by referene is used in our model. At the entry node of theproedure, the value of the parameter is one of the values passed at the all sitesin the program. Therefore, the parameter at the entry of the proedure is modeledby a �-term with the passed values as its soures. On the other hand, the valueof the parameter at the exit node of the proedure is one of the values reahingfrom within the proedure. Hene, the parameter at the exit node is also modeledby a �-term. This �-term de�nes the value to be passed to whatever the atualparameter bound at a all site.For this reason, for eah parameter X of eah proedure P , there are an input�-term, denoted �(X), and an output �-term, denoted �(X 0), in the IFUD graph.2The IFUD graph is obtained by merging the fatored use-def graphs of the pro-edures through these input and output �-terms of the formal parameters. TheIFUD graph of the working example is shown in Figure 6(b).One the IFUD graph is established, the ompiler an start the modi�ed Tar-jan's algorithm from any input parameter of the proedures. For example, startingfrom �(U) in Figure 6(b), the ompiler will �rst �nd that the loop (�(B);�; �(D); �(B))de�nes a basi indution variable with indution step equal to �2. Then it will on-lude that the (�(U);+; �(V); �(U)) does not form an indution variable beause2To simplify presentation, we assume the names of formal parameters of di�erent proedures aredi�erent and we do not need to pre�x proedure names to distinguish them.11

the sum of values added in the loop is not onstant. Applying the modi�ed Tarjan'salgorithm from �(A) will �nd that another basi indution variable formed by theloop (�(A); �(C);+; �(A)) with indution step equal to 1. As a result, the ompilerwill mark input parameters A and C, B and D, as indution variables and inputparameters U and V, as omplex variable.6.3 Trip Count and Break PointThe purpose of this step of the algorithm is to �nd the trip ount t and the breakpoint of the loop of reursive alls.To simplify presentation, we assume that there is at most one branh nodebetween suessive start nodes of proedures in the loop of reursive alls de�nedin De�nition 1.Given an innermost loop of reursive alls s0 ! � � � ! s1 � � � sn�1 ! � � � ! s0,the ondition for the branh node, bi, between si�1 mod n and si to take the ontrolto si is denoted Ci. If there is no suh branh node bi between si�1 mod n and si,Ci is a onstant logi TRUE.Trip CountWe have de�ned the trip ount, t, as the number of times the ontrol visits s0.Now the ondition to make a full yle from s0 to itself is obviously C1 ^� � � ^ Cn�1 ^ C0. Eah of the onditions C0; � � � ; Cn�1 an be expressed in termsof the input parameters of the proedure to whih it belongs. Note that theseinput parameters have already been marked as loop invariant, indution or omplexvariable in Step () of the algorithm. The expression of any ondition shouldnot ontain any omplex variable; otherwise, the trip ount of the loop shouldbe regarded as indeterministi. The input parameters are then replaed by thelinear forms of the basi loop indution variable k and eah ondition beomes aninequality in terms of k, denoted Ci(k) (0 � i � n� 1).The basi loop indution variable k is a non-negative integer starting from 0 andis inremented eah time s0 is re-visited. Therefore, C0(k)^ � � �^Cn�1(k)^ (k � 0)gives the ondition for the full trip of the loop in terms of k. This is an integer linearprogramming system of a single variable and it may or may not have solutions. Ifit has no solution, then there is no full trip in the loop and s0 is visited only one,giving t = 1. If it has solutions, we seek the maximum k satisfying the system.Let kmax � 0 be the maximum integer suh that C0(k) ^ � � � ^ Cn�1(k) is true forall integers k suh that 0 � k � kmax. Then, there are kmax + 1 full trips and thetrip ount t equals to kmax + 2. The basi indution variable k of the loop takesthe values 0; 1; � � � ; kmax; kmax + 1. Hene, we havet = (1 if system has no solutionkmax + 2 otherwiseand the basi indution variable k satis�es 0 � k � t � 1.12

Consider the working example in Figure 5. Its EFPR graph in Figure 5(a) showsthat the innermost loop sX ! bY ! sY ! bX ! sX ontains two branh node, bXand bY . After analyzing the IFUD graph in Figure 5(b), the ompiler an determinethat both �(A) and �(B) are indution variables and their values in terms of thebasi loop indution variable k are A(k) = A0+k and B(k) = B0�2k, respetively.So are the �(C) and �(D) whose values are expressed by C(k) = A(k) + 1 =A0 + k+ 1 and D(k) = B(k) = B0 � 2k. The ondition of node bX in terms of thevalues of �(A) and �(B) is A(k)+1 < B(k), taking the data ow from the entry ofproedure X to branh node bX in X into onsideration. Similarly, the onditionof node bY is C(k) < D(k)� 2. Therefore, the onditions of bX and bY in terms ofk are CX(k) � 3k+1 < B0�A0 and CY (k) � 3k+3 < B0�A0, respetively. Thelargest k satisfying CX(k) ^CY (k) is kmax = bB0�A0�33 = b9�1�33 = 1.Break PointAording to the de�nition of kmax above, the last trip arrying with kmax + 1is a partial one. The break point of the loop is the �rst branh node bi (i =1; 2; � � � ; n� 1; 0) suh that its orresponding ondition Ci(kmax + 1) is false. Thatis, bi is the break point if Cj(kmax + 1) are true for all 1 � j < i and Ci(kmax + 1)is false or b0 is the break point if Cj(kmax + 1) are true for all 1 � j � n� 1.In our working example, we have CX(2) � 3 � 2 + 1 < 9 � 1 is true, andCY (2) � 3 � 2 + 3 < 9� 1 is false. The break point is bY .Putting it all together, the four indution variables in the input parameters anbe expressed as follows:A(k) = fA0 + k j 0 � k � kmax + 1gB(k) = fB0 � 2k j 0 � k � kmax + 1gC(k) = fA0 + k + 1 j 0 � k � kmax + 1gD(k) = fB0 � 2k j 0 � k � kmax + 1gwith kmax = 1.6.4 Indution Variables of Dual LoopAfter the analysis of indution variables in the input parameters, the ompiler triesto �nd possible indution variables in the output parameters formed by its dualloop.Given an innermost loop of reursive alls de�ned in De�nition 1, there an beseveral paths from ri to ri�1 mod n, (0 � i � n � 1), in the EFPR graph. If thereare multiple paths from ri to ri�1 mod n the fatored use-def hains from the outputparameters of ri�1 mod n to that of ri will go through �-terms. As a onsequene,none of the output parameters of all the proedures an be an indution variable.The entire Step 4 should exit and all the output parameters should be marked asomplex variables. In other words, the ompiler will ontinue to detet indution13

variables in output parameters in Steps 4(a), 4(b) and 4() of the algorithm onlyif there is only one path ri to ri�1 mod n for all i = 0; � � � ; n � 1. These steps aredesribed as follows:6.4.1 Cheking Paths from Break Point to Return NodeAssume that the break point of the loop of reursive alls shown in Figure 4 is bj .This step (Step 4(a)) heks if there is a single path from bj to rj�1 mod n in theEFPR graph. If there are multiple paths, the initial values for output parametersof proedure rj�1 mod n annot be determined. As a onsequene, all the outputparameters of the proedures annot be indution variables and the algorithm goesto Step 5 immediately.6.4.2 Determining Initial Values of Output ParametersAt this step (Step 4(b)), the algorithm uses the IFUD graph to �nd the expressionsfor the initial values of the output parameters of the proedure. Sine there is asingle path from the break point to the return node in the EFPR graph, a singleexpression in terms of the input parameters of the proedure an be found. Ifthe expression of an output parameters ontains a omplex input parameter, thatoutput parameter annot be an indution variable beause its initial value is notonstant.Continuing our working example with the break point bX , the �nal values ofinput parameters of C and D are C(kmax + 1) and D(kmax + 1), respetively.Following the IFUD hains orresponding to the path (sY ; bX ; rY) in the EFPRgraph, the ompiler an �nd the unique initial values of output parameters C 0 andD0, denoted C 00 and D00, as follows: C 00 = C(kmax + 1) and D00 = D(kmax + 1)� 2.6.4.3 Deteting Indution Variables in Output ParametersAt this step (Step 4()), the ompiler applies the Tarjan's algorithm to the IFUDhains of the output parameters orresponding to the dual loop to �nd possibleindution variables. This step is similar to Step 2. In our working example, theresult is that both C 0 and D0 are indution variables expressed as C 0(k0) = C 00�2k0and D0(k0) = D00+k0. Here, k0 is the basi loop indution variable of the dual loop.The trip ount of the dual loop (de�ned as the number of times r0 is visited) isthe same as the loop of reursive alls. Therefore, the basi indution variable, k0,takes values 0; 1; � � � ; kmax and kmax + 1, one for eah trip. The �rst trip from rj(assuming bj+1 mod n is the break point) to r0 is a partial trip.The diretion of dual loop is opposite to that of the loop of reursive alls. therelationship between k and k0 is k+ k0 = kmax+1 = t� 1. These observations aresummarized in the following theorem:Theorem 1 If the trip ount of the innermost loop of reursive alls, s0 ! � � � !s1 � � � sn�1 ! � � � ! s0, is t, then the trip ount of its dual loop is also t. The14

basi loop indution variable of the dual loop is an integer variable k0 suh that0 � k0 � kmax + 1 = t � 1 and k + k0 = kmax + 1 hold.In our working example, output parameters A0 and B0 are also indution vari-ables. Their initial values, A00 and B00, an be obtained by following the IFUDhains orresponding to the path (rY ; rX) in the duel loop and they are: A00 = C 00and B00 = D00+1. The values A0 and B0 then an be expressed as A0(k0) = A00�2k0and B0(k0) = B00 + k0. Note that k0 = (kmax + 1) � k. We then onvert theexpressions of the output parameters to use k instead of k0.Putting it all together, the four indution variables in the output parameters inthe working example are as follows:C 0(k) = fA0 � kmax + 2k j 0 � k � kmax + 1gD0(k) = fB0 � kmax � 3� k j 0 � k � kmax + 1gA0(k) = fA0 � kmax + 2k j 0 � k � kmax + 1gB0(k) = fB0 � kmax � 2� k j 0 � k � kmax + 1gwhere kmax = 1.6.5 Nested Indution VariablesThe last step (Step 5) in thewhile loop of the algorithm is to oalese the innermostloop of reursive alls and its dual loop into a simple proedure whih summarizesthe e�et of the reursive proedure all.Given the the innermost loop of reursive alls, s0 ! � � � ! s1 � � � sn�1 ! � � � !s0, the ompiler reates a new proeure to replae all the proedures involved,namely, proedures 0; 1; � � � ; n�1 (Reall reall that si is the start node of proedurei, i = 0; 1; � � � ; n� 1.) The ompiler an reate the simple proedure as follows:1. The simple proedure has the same formal parameters as proedure 0.2. For eah parameter A of proedure 0(a) if both input and output parameters of A3 are indution variables or loopinvariants expressed as A(k) and A0(k), respetively, and at least one ofthem is an indution variable.i. alulate AS = A0(0) � A(0). This gives the inrement of A as theside e�et of the reursive all.ii. reate a statement A = A + AS in the simple proedure(b) if both input and output parameters of A are loop invariants, do nothing.() otherwise, mark both input and output parameters of A as a omplexvariable.Let us go bak to the example of nested loops of reursive all in Figure 2(a)again. The indution variables analysis for the innermost loop reveals that A and3Reall that eah parameter has the input and output �-terms in the IFUD graph representing theinput and output parameters of the same name. 15

subroutine QQ(A,B,N,F)A=A+(N-A)F=F+3*(N-A)endifend (a) Simple proedure QQ D<M

sP

rP

sQQ

rQQ

(b) EFPR graph after loopoalesingFigure 7: Program 1 after loop oalesingF are indution variables and B and N are loop invariant variables. All of outputparameters A0; F 0; B0 and N 0 are loop invariant variables. We haveA(k) = fA0 + k j 0 � k � kmax + 1gF (k) = fF0 + 3k j 0 � k � kmax + 1gand kmax = N0 � A0 � 2. We also have A0(0) = A0 + kmax + 2 and F 0(0) =F0 + 3kmax + 6. Therefore, inrements of A and F are As = N0 � A0 and Fs =3(N0 �A0). The simple proedure to replae the innermost loop of reursive allsand its dual loop is, thus, shown in Figure 7(a) and the new EFPR graph after thisloop oalesing is shown in Figure 7(b). The new IFUD graph after oalesing isshown in Figure 8.The further analysis of the innermost loop with loop header node sP will revealthat input parameter C and M are loop invariant variables and input variable Dis an indution variable with indution step of 2. Input parameter E an alsobe found to be an indution variable with indution step of 3(M0 � C0), beausethe ompiler will �nd that 3(N � A) is a loop invariant value when the Tarjan'salgorithm searhes from �(E) in the IFUD graph in Figure 8.7 Related WorkApart from the work on intraproedural indution variable analysis mentioned inSetion 1, this work is also related to the work desribed as follows:� The interproedural indution variable analysis desribed in this paper an beregarded as an extension of the analysis of interproedural onstants [15, 16℄.16

phi(C) phi(D) phi(M) phi(E)

phi(A) phi(B) phi(N) phi(F)

phi(A’) phi(B’) phi(N’) phi(F’)

phi(D’) phi(M’)

-

+

2

-

+
*

+

3

phi(E’)phi(C’)

C0 D0 E0M0

Figure 8: FUD of Program 1 after loop ollapsingThe interproedural indution variable analysis desribed in this paper goesbeyond onstant propagation and �nds loop invariants and indution variablesin formal parameters with respet to the loops of reursive proedure alls andreturns.� This work is also related to [1℄ in whih a simple algorithm to �nd loop in-variant formal parameters with respet to loops of reursive proedure alls(alled reursively invariant parameters there) is desribed. Indution vari-ables in formal parameters would be regarded as omplex variables (alled re-ursively variant parameters there) by that algorithm. The work in this papergoes beyond loop invariant parameters and distinguishes indution variablesof both input and output formal parameters from omplex formal parameters.� This work is related and motivated by the work on array setions or arrayside e�ets of proedure alls [1, 17, 2, 3, 4℄. To summarize the setions ofarrays modi�ed or used by proedures in reursive alls for parallelization,the ompiler needs to �nd the indution variables in both input and outputparameters. The work in this paper provides a solution to this problem.Referenes[1℄ Zhiyuan Li and Pen-Chung Yew. Interproedural analysis for parallel om-puting. In Proeedings of the 1988 International Conferene on Parallel Pro-essing, Vol. II, pages 225{244, August 1988.[2℄ Peiyi Tang. Exat side e�ets for interproedural dependene analysis. InProeedings of the 1993 ACM International Conferene on Superomputing,pages 137{146, Tokyo, Japan, July 1993.17

[3℄ Yunheung Paek, Jay Hoeinger, and David Padua. Simpli�ation of arrayaess patterns for ompiler optimizations. In Proeedings of the ACM SIG-PLAN Conferene on Programming Language Design and Implementation,pages 60{71, June 1998.[4℄ Jay Hoeinger and Yunheung Paek. The aess region test. In Proeedings ofthe International Workshop on Languages and Compilers for Parallel Com-puting, August 1999.[5℄ Mihael Wolfe. Beyond indution variables. In Proeedings of the ACM SIG-PLAN Conferene on Programming Language Design and Implementation,pages 162{174, June 1992.[6℄ Mihael Wolfe. High Peformane Compilers for Parallel Computing. Addison-Wesley, 1995.[7℄ F.E. Allen, John Coke, and Ken Kennedy. Redution of operator strength.In Steven S. Muhnik and Neil D. Jones, editors, Program Flow Analsis:Threory and Appliations, pages 79{101. Prentie-Hall, 1981.[8℄ John Coke and Ken Kennedy. An algorithm for redution of operatorstrength. Communiations of the ACM, 20(11):850{856, November 1977.[9℄ Z. Ammarguellat and W.L. Harrison III. Automati reognition of indutionvariables and reurrene relations by abstrat interpretation. In Proeedingsof the ACM SIGPLAN Conferene on Programming Language Design andImplementation, pages 283{295, June 1990.[10℄ M. R. Haghighat and C. D. Polyhronopoulos. Symboli analysis: A basis forparallelization, optimization, and sheduling of programs. In Proeedings of theInternational Workshop on Languages and Compilers for Parallel Computing,pages 567{585. Leture Notes in Computer Siene, No. 768, August 1993.[11℄ M. R. Haghighat. Symboli Analysis for Parallelizing Compilers. KluwerAademi Pulblishers, 1995.[12℄ Gagan Agrawal, Joel Salts, and Raja Das. Interproedural partial redundanyelimination and its appliations to distributed memory ompilation. In Pro-eedings of the ACM SIGPLAN Conferene on Programming Language Designand Implementation, pages 258{269, June 1995.[13℄ Afred V. Aho, Ravi Sethi, and Je�ery D. Ullman. Compilers: Priniples,Tehniques and Tools. Addison-Wesley Publishing Company, 1986.[14℄ Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-neth Zadek. EÆiently omputing stati single assignment form and the on-trol dependene graph. ACM Transations on Programming Languages andSystems, 13(4):451{490, Otober 1991.[15℄ D. Callahan, K.D. Cooper, Ken Kennedy, and L. Torzon. Interproeduarlonstant propagation. In Proeedings of the SIGPLAN '86 Symposium onCompiler Constrution, SIGPLAN Noties Vol. 21, No. 7, pages 152{161.ACM, July 1986. 18

[16℄ Dan Grove and Linda Torzon. Interproedural onstant propagation: A studyof jump funtion implementation. In Proeedings of the ACM SIGPLAN Con-ferene on Programming Language Design and Implementation, pages 90{99,June 1993.[17℄ Paul Havlak and Ken Kennedy. An implementation of interproeduralbounded regular setion analysis. IEEE Transations on Parallel and Dis-tributed Systems, 2(3):350{360, July 1991.

19

