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Abstract

Induction variable analysis is an important part of the symbolic analysis in
parallelizing compilers. Induction variables can be formed by for or DO loops
within procedures or loops of recursive procedure calls. This paper presents an
algorithm to find induction variables in formal parameters of procedures caused
by recursive procedure calls. The compile-time knowledge of induction variables
in formal parameters is essential to summarize array sections to be used for data
dependence test and parallelization.
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1 Introduction

Induction variable analysis is an important part of the symbolic analysis in par-
allelizing compilers. Its purpose is to find the scalar variables in programs whose
values can be expressed in linear forms. Induction variables can appear in array
subscripts. Finding induction variables enables parallelizing compilers to form ac-
curate array sections [1, 2, 3, 4] accessed in loops. The accurate array sections allow
the data dependence analysis to discover loop parallelism for parallel execution.

*The work was supported in part by the U.S. National Science Foundation under Grants EIA-9971666
and MIP-9610379 and a grant from the Intel Corporation.



Induction variables are always formed by loops in programs. Much work has
been done to discover induction variables in local variables formed by explicit loops
such as for or DO loops [5, 6]. However, induction variables can also be formed
by loops of recursive procedure calls. For instance, in the recursive procedure X in
Figure 1(b), formal parameter k is an induction variable {kg+2i |0 < ¢ < |n/2|—1}
and it is formed by the loop of recursive call of X to itself. At the same time,
parameters i and n are invariant with respect to that loop. As a result, the section
of array b modified by the assignment b(i,k) = ... is the even elements of the
row i: b(i, k,),b(i, ko + 2),---. With this knowledge, the parallelizing compiler
would know that there are no data dependences between statements sO and si
carried by loop i in the program Figure 1(a), because the data elements of accessed
in statement s0 by loop j are the odd elements each rows of array a. (Notice
that array a is aliased with array b by the call statement at s2.) Therefore, the
parallelizing compiler can parallelize loop i. Without this knowledge, the compiler
would assume that all the elements of row 7 of array a be modified by the procedure
call at s1 and there would be a data dependence cycle between sO and s1 which
would prevent the parallelization of loop 1i.

real a(n,n) subroutine x(b,i,k,n)
doi=1,n real b(n,n)

doj =1, n, 2 b(i,k) = ...
sO: a(i,j) = a(i-1,j) + ... if (k+1 < n) then

enddo call x(b,i,k+2,n)
sl: call x(a,i,2,n) endif
enddo end

(a) loop nest (a) recursive procedure

Figure 1: Interprocedural Induction Variables

The induction variables in procedure parameters formed by the loops of recur-
sive procedure calls or returns are called interprocedural induction variables.

Previous research on induction variable analysis [7, 8, 9, 10, 5, 6, 11] is primarily
concerned with induction variables formed by explicit loops within procedures.
Although [10, 11] mentioned interprocedural induction variable analysis, but the
induction variables targeted are still formed by explicit loops. To the best of our
knowledge, there is no previous work on discovery and analysis of interprocedural
induction variables defined above.

In this paper, we present an algorithm to discover and analyze interprocedural
induction variables in parameters of procedures.

The loops of recursive procedure calls or returns to form interprocedural in-
duction variables are implicit, because they do not exist in the abstract syntax
trees of the program. More importantly, the structures of these loops are quite
different from those of ordinary ezplicit for or DO loops. While the basic technique
of detecting induction variables remains the same as the intraprocedural induc-



tion variable analysis, the interprocedural induction variables analysis first needs
to recover, identify and analyze these implicit loops. We have extended the Full
Program Representation (FPR) graph [12] for this purpose.

The contributions of this paper are:

e the techniques to identify and analyze the unique loop structure of recursive
call and returns and

e the complete algorithm to identify and analyze interprocedural induction vari-
ables.

To form interprocedural induction variables, the loop of recursive calls has to
conform to certain format. Before starting the algorithm of analysis, the compiler
can rule out many programs which do not have interprocedural induction variables
by checking their call graphs and the extended FPR graph first.

The rest of the paper is organized as follows. Section 2 describes the program
model of the programs to be analyzed and other preliminary backgrounds. Section
3 describes the call graph checking. Section 4 describes our extended FPR graph.
Section 5 describes the checking of the extended FPR graph. Section 6 presents
the algorithm to find interprocedural induction variables. Section 7 concludes the
paper with a discussion of related work.

2 Program Model and Preliminaries

2.1 Program Model

The model of the programs to be analyzed is as follows:

e Parameters of procedures can be array variables or scalar variables. We con-
centrate on scalar parameters for induction variable analysis.

e Scalar parameters are passed by reference.
e Scalar parameters are variables of integer type.
e To simplify the presentation, we do not consider

— procedure-valued variables.
— global variables

— pointer variables

e The control structures in procedures include if-then, if-then-else and
explicit loops like for or DO.

e Fach procedure has only one return statement which is the end of the proce-
dure.

2.2 Purpose of Analysis

The purpose of the interprocedural induction variable analysis is to classify all the
scalar parameters of the procedures to the following three categories:



e loop invariant variables with respect to the corresponding loop of procedure
call or return, or

e induction variables with respect to the corresponding loop of procedure call
or return, or

e complex variables whose values cannot be determined as loop invariants or
induction variables using our method.

Loop invariants can be regarded as a special case of induction variables with the
induction step to be 0.

3 Call Graph Checking

According to the assumption of the program model above, the call graph is static.
We can also assume that the call graph is a connected graph because every proce-
dure is assumed to be called at least at one call site. The call graph of a program
is a directed multi-graph (V, E'), where the node set V is the set of procedures and
E the set of edges such that (p,q) € E if and only if there is a call site in procedure
p which calls procedure q.

There are four cases in which we will abort the interprocedural induction vari-
ables analysis:

1. There no no cycles in the call graph. In this case, there will be no loops to
form interprocedural induction variables.

2. There are cycles in the call graph, but at least one of the followings is true:

(a) There is a node with three or more incoming edges. If a node has three
or more incoming edges, it is impossible for its parameters to become
induction variables. Since the call graph is connected and all the other
procedures may either call (directly or indirectly) this procedure or be
called (directly or indirectly) by it. We conservatively assume that all
the parameters of all the procedures are complex variables.

(b) There is a node which is not the header of a natural loop, but has two
or more incoming edges. ! The parameters of such a procedure cannot
be induction variables. For the same reason as above, we conservatively
assume that there are no induction variables in the parameters of all
procedures and the analysis stops here.

(c) After passing these checks, the call graph must have natural loops with
their headers to be the only nodes with 2 incoming edges and all the other
nodes have only one incoming edge. At this step of checking, we need
to check whether all the natural loops are either nested or disjoint. If

YA header d is the head of a back edge n — d (n is the tail of the edge.). An edge n — d is a back edge
if d dominates n. d dominates n if all the paths from the entry node of the graph (the main program in
the call graph) to n include d. Given a back edge n — d, the natural loop with header d is the set of
nodes which can reach n without going through d. The natural loop is the graph model for the explicit
loops like for or DO loops.



there are two natural loops partially overlapped (none of them completely
includes the other and they have common nodes), the analysis stops
here, because the implicit loops of recursive calls do not conform to the
structure of explicit for and DO loops.

After passing these call graph checkings, the compiler needs to build an Ex-
tended Full program Representation (EFPR) graph to further rule out the pro-
grams which cannot have interprocedural induction variables.

4 Extended Full Program Representation (EFPR)
Graph

The Full Program Representation Graph was proposed by Agrawal el al [12] for
interprocedural partial redundancy elimination. We extended it to include the
branch nodes and to capture the full control flow of the whole program.

Suppose there are n procedures in the program. Each procedure has a start
node and a return node in the EFPR graph. The start node and the return node of
procedure i(1 < 4 < n) are denoted s; and r;, respectively. Let S and R be the sets
of start nodes and return nodes of all procedures, respectively, i.e. S = U"{s;}
and R = U?_,{r;}. Let B; be the set of branch nodes in the control flow graph of
procedure ¢ and B = U]";B;. The extended full program representation (EFPR)
graph is a directed graph G = (V, F)) whose node set is V.= S U R U B. Before we
define the edge set F, let us define set A; for procedure i to be A; = B; U{entry;} U
{exit;}, where entry; and exit; are the entry node and the exit node of the control
flow graph of procedure 7. The edge set E of G is defined as follows:

1. If procedure k calls procedure 7 at call site cs, and there is a control flow path
from a node a € Aj of procedure k to c¢s which does not contain any other
call statements or branch nodes, there is an edge (¢, s;) € E where ¢ = a if
a € By or ¢ = s a is entryg.

2. If procedure k calls procedure ¢ at call site cs, and there is a control flow path
from c¢s to a node a € Ay of procedure k which does not contain any other
call statements or branch nodes, there is an edge (r;,¢) € E where ¢ = a if
a € B, or c =1} ais exity.

3. If procedure k calls procedures ¢ and j at call sites ¢s; and c¢sy, respectively,
and there is a control flow path from cs; to cs9 which does not contain any
other call statements or branch nodes, there is an edge (14, s;) € E.

4. If there is a control flow path from node a; € Aj to another node ay € Ay in
the control flow graph of procedure k which does not contain any other call
statements or branch nodes, there is an edge (¢1,c2) € F where ¢; = aq if
a1 € By or ¢ = s if a1 is entry, and co = a9 if ag € By or co = 7, if ay is
exity.

Figure 2(b) shows the EFPR graph for the program in Figure 2(a). We use
rectangles to represent branch nodes in EFPR graphs in this paper.



subroutine P(C,D,M,E)
D=D+2
G=C
call Q(G,D,M,E)
if (D<M) then @
call P(C,D,M,E)

endif @

end o
1
subroutine Q(A,B,N,F)
A=A+1
F=F+3 D<M
if (A<N) then 1
call Q(A,B,N,F)
endif (b) EFPR Graph
end

(a) Program

Figure 2: Nested Recursive Calls and Returns

The EFPR graph captures all the control flows of the whole program. The
EFPR includes the explicit for or DO loops in all procedures as well as the implicit
loops of recursive calls and returns.

5 Checking of EFPR Graph

First of all, we do not consider the programs which have implicit loops and explicit
loops overlapped with each other. Consider the program in Figure 3(a) where
procedures P and Q call each other and there is an explicit loop surrounding the
call of procedure Q in procedure P. The EFPR graph of this program is shown in
Figure 3(b). This example shows that it is possible for implicit loops of recursive
call to overlap with explicit loops and the EFPR graph is irreducible. To rule out
such programs for further analysis, we need to check the branch nodes in a cycle
of procedure calls in the EFPR graph. Given a natural loop

S0 — ... — 81— eee. —> > 8Sp_1 > ... > 80

with header sy, where a “.....” represents a path containing zero or more consecutive

branch nodes between the start nodes, we only need to check that none of these
branch nodes is the header of a natural loop. This can be done by checking that
each of the branch nodes has only one incoming edge.

After this checking, we can assume that a natural loop whose header is a start
node of a procedure does not include any branch node with more than one incoming
edge in the EFPR graph.



program main
call P(...)
end

subroutine P(...)
do ...
call QC...)
enddo

'
[ ]

end

subroutine Q(...)
if ...
call P(...)

endif e

(b) EFPR Graph

end

(a) Program

Figure 3: Checking nested implicit and explicit loops

6 Algorithm for Interprocedural Induction Vari-
able Analysis

As in the intraprocedural induction variable analysis, the analysis for interprocedural
induction variables starts with the innermost loop.

The structure of an innermost loop of recursive calls is illustrated in Figure 4,
where procedures 0,1,---,n — 1 form a loop of recursive calls and sg is the loop
header. To simplify discussion, we assume that there is only one branch node, b;,
between S; 1 modn and s;, 0 <17 < n —1. A dotted edge in Figure 4 represents a
different path from the source to the destination in the EFPR graph. Note that it
is possible that there are multiple different paths from b; to r;_{ mod n due to the
branch nodes between them. For the same reason, there may be multiple paths
from 7; to ;1 mod n- Note the cycles from 7, 1 up to rg and back to r,_; formed
by the dotted edges in Figure 4. Each of these cycles is a control flow of procedure
returns and is called a dual loop of the loop of recursive calls.

The trip count of the loop of recursive calls, denoted as t., is the number of
times the control goes through the loop header sy. Since s is visited at least once,
we have t. > 1. There will be ¢, — 1 full trips of the cycle from sy up to s,_1 and
back to sg. The last trip is a partial trip and one of the branch nodes by, ---.,b,_1,bg
will take the branch off the cycle. The first branch node that takes the branch off
the cycle is called the break point of the loop. If the break point is branch node b;,
the control flow will take one of the paths to reach r; 1 yq n- Then it will make a
partial trip from 7;_; 04, to ro and then make ¢. — 1 full trips of the cycle from



Figure 4: Structure of a typical innermost loop of recursive calls and its dual loop

ro back rq.

Obviously, the innermost loop of recursive calls should not contain any loop
of another recursive calls. In Figure 4, this means that none of si,---,s,_1 is
the header of a natural loop. (Note that the branch nodes bg,---,b,_1 cannot be
headers of natural loops either after the checking described in Section 5.)

For a loop of recursive calls to be the innermost one, any of its dual loop should
not contain any loop of recursive call. That is, any cycle from r¢ to r,_1 and back
to r¢ in the EFPR graph should not contain any start node with more than one
incoming edges.

The third requirement is that any path from the branch node in the loop of
recursive calls to the return node of the procedure to which it belongs does not
contain any loop of recursive calls. That is, any path from b; to r;_1 modn in the
EFPR graph should not contain any start node with more than one incoming edge.
Therefore, the innermost loop of recursive call is defined as follows:

Definition 1 (Innermost Loop of Recursive Calls) The innermost loop of re-
cursive calls is a natural loop with header sq in the EFPR graph, s9 — -+ —
S1+°+8p_1 — -+ — 8o, such that (1) none of s1,---,8,_1 is the header of an-
other natural loop in the EFPR graph and (2) none of paths from rj to rj_1 mod n,
(=0, ---,n—1) contains a start node with more than one incoming edge and (3)
any path from a branch node between s; and Siy1 modn to the return node r; does



not contain a start node with more than one incoming edge. FEach of the cycles in
the EFPR graph rq — -1 — --- — 11 — 19 15 called a dual loop of the the loop
of recursive calls.

The algorithm for interprocedural induction variable analysis is as follows:

while (there is an innermost loop of recursive calls in EFPR graph) do

1. Identify the innermost loop of recursive calls sg — +++ — 8181 = -+ —
s as defined in Definition 1 and illustrated in Figure 4.

2. Construct the interprocedural factored use-def (IFUD) graph of the proce-
dures 0,1,---,n — 1. Apply the modified Tarjan’s algorithm [5, 6] to find
loop invariant, induction and complex variables in the input parameters of
the procedures.

3. Calculate the trip count and the break point of the loop of recursive calls.
Represent the induction variables of input parameters using a basic induction
variable and the trip count obtained.

4. Check the EFPR graph to see if (1) there is only one path from r; to rj_1 mod n
forallj =0,---,n—1. If so, continue to find induction variables in the output
parameters of the procedures caused by the dual loop as follows:

(a) Check if there is only one path in the EFPR graph from the break point
to the return node of the procedure. If there are multiple paths, go to
Step 5; otherwise continue with Step 4(b).

(b) Use the IFUD graph to find the output parameters which are constants
or dependent only on the input parameters which are induction variables
or loop invariants. These output parameters will have constant initial
values. Mark the output parameters which do not have constant initial
values as complex variables.

(c) Apply the modified Tarjan’s algorithm to find loop invariant, induction
and complex variables in the output parameters. Represent the induc-
tion variables of output parameters using the same basic loop induction
variable and the trip count as the loop of recursive calls.

5. Coalesce both the innermost loop and its dual loop in the EFPR.

We next describe each step of the algorithm in detail. We also use the program
in Figure 5 as the working example to illustrate the algorithm.
The EFPR graph of this program is shown in Figure 6(a)

6.1 Finding the innermost loops of recursive calls

The innermost loop of recursive calls is defined in Definition 1. The algorithm of
finding natural loops described in [13] can be used to find all the natural loops in
the EFPR graph. Using Definition 1, the compiler is able to find the innermost
loop of recursive calls and all its dual loops as illustrated in Figure 4.



program main

call X(1,9,1) subroutine Y(C,D,V)
end D=D-2
V=V+D
subroutine X(A,B,U) c2: if (C<D) then
A=A+1 call X(C,D,V)
cl: if (A<B) then C=C-2
call Y(A,B,U) endif
endif end
end

Figure 5: Program of Working Example

'

o :
6? S / /@
phi(A) phi(B phi(U)
5
L \ G \
@
®\ / pht(c) phi(Dg/ \phi(V)
S @
bx
pT(CQ Fg% phi(V’)
& )
X phi(’A?@ ohi(®) <phI(u)
(a) EFPR Graph (b) IFUD Graph

Figure 6: EFPR and IFUD graphs of the working example
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6.2 Detecting Interprocedural Induction Variables

Although the EFPR graph enables the compiler to find the innermost loop of
recursive calls and its dual loops, it does not contain data flow information among
the parameters of the procedures. To detect the interprocedural induction variables
among these parameters, the compiler still needs an interprocedural factored use-
def (IFUD) graph. The basic technique of induction variable detection is the same

follows:

e Form a factored use-def (FUD) graph for the variables using the static single-
assignment (SSA) representation of the program where each variable has a
single definition [14]. SSA representation uses ¢ functions at join points. An
edge of the FUD graph is from a use of a variable to its unique definition.

e Use the modified Tarjan’s algorithm to traverse the FUD graph to find a loop
which (1) has a loop header ¢-term with only two sources: one from the initial
value and the other the back edge of the loop and (2) all the operations in
the loop are either fetches, stores of scalar variables or additions of constant
or loop invariant values. Such a loop defines a basic loop induction variable
and the induction step is the summation of the values added within the loop.
The modified Tarjan’s algorithm makes the traverse efficient because the type
and the value of a sub-expression will be available when it is needed.

The details of the technique can be found in [6].

We next define the interprocedural factored use-def (IFUD) graph.

First of all, we see each parameter of a procedure as both input and output
variables because call by reference is used in our model. At the entry node of the
procedure, the value of the parameter is one of the values passed at the call sites
in the program. Therefore, the parameter at the entry of the procedure is modeled
by a ¢-term with the passed values as its sources. On the other hand, the value
of the parameter at the exit node of the procedure is one of the values reaching
from within the procedure. Hence, the parameter at the exit node is also modeled
by a ¢-term. This ¢-term defines the value to be passed to whatever the actual
parameter bound at a call site.

For this reason, for each parameter X of each procedure P, there are an input
¢-term, denoted ¢(X), and an output ¢-term, denoted ¢(X'), in the IFUD graph.?
The IFUD graph is obtained by merging the factored use-def graphs of the pro-
cedures through these input and output ¢-terms of the formal parameters. The
IFUD graph of the working example is shown in Figure 6(b).

Once the IFUD graph is established, the compiler can start the modified Tar-
jan’s algorithm from any input parameter of the procedures. For example, starting
from ¢(U) in Figure 6(b), the compiler will first find that the loop (¢(B), —, ¢(D), ¢(B))
defines a basic induction variable with induction step equal to —2. Then it will con-
clude that the (¢(U),+,¢(V), dp(U)) does not form an induction variable because

2To simplify presentation, we assume the names of formal parameters of different procedures are
different and we do not need to prefix procedure names to distinguish them.
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the sum of values added in the loop is not constant. Applying the modified Tarjan’s
algorithm from ¢(A) will find that another basic induction variable formed by the
loop (¢(A), p(C),+, p(A)) with induction step equal to 1. As a result, the compiler
will mark input parameters A and C, B and D, as induction variables and input
parameters U and V, as complex variable.

6.3 Trip Count and Break Point

The purpose of this step of the algorithm is to find the trip count ¢, and the break
point of the loop of recursive calls.

To simplify presentation, we assume that there is at most one branch node
between successive start nodes of procedures in the loop of recursive calls defined
in Definition 1.

Given an innermost loop of recursive calls s — -+ — S1-+- 8,1 = -+ = So,
the condition for the branch node, b;, between s; 1 moqn and s; to take the control
to s; is denoted Cj. If there is no such branch node b; between $;_1 moqn and s;,
C; is a constant logic TRUE.

Trip Count

We have defined the trip count, ., as the number of times the control visits sg.

Now the condition to make a full cycle from sy to itself is obviously Cy A
<+ AN Cph_1 N Cy. Each of the conditions Cy,---,C,,_1 can be expressed in terms
of the input parameters of the procedure to which it belongs. Note that these
input parameters have already been marked as loop invariant, induction or complex
variable in Step (c) of the algorithm. The expression of any condition should
not contain any complex variable; otherwise, the trip count of the loop should
be regarded as indeterministic. The input parameters are then replaced by the
linear forms of the basic loop induction variable k£ and each condition becomes an
inequality in terms of k, denoted Cj(k) (0 <7 <n —1).

The basic loop induction variable k is a non-negative integer starting from 0 and
is incremented each time sq is re-visited. Therefore, Co(k)A---ACp_1(k) A (k > 0)
gives the condition for the full trip of the loop in terms of k. This is an integer linear
programming system of a single variable and it may or may not have solutions. If
it has no solution, then there is no full trip in the loop and s is visited only once,
giving t, = 1. If it has solutions, we seek the maximum k satisfying the system.
Let kg > 0 be the maximum integer such that Cy(k) A--- A Cp,_1(k) is true for
all integers k such that 0 < k < k,4,- Then, there are k4, + 1 full trips and the
trip count t. equals to ke + 2. The basic induction variable k of the loop takes

the values 0,1, - - -, kpazs Emaz + 1. Hence, we have
. 1 if system has no solution
¢ Emaz + 2 otherwise

and the basic induction variable k satisfies 0 < k < t. — 1.

12



Consider the working example in Figure 5. Its EFPR graph in Figure 5(a) shows
that the innermost loop sx — by — sy — bx — sx contains two branch node, bx
and by . After analyzing the IFUD graph in Figure 5(b), the compiler can determine
that both ¢(A) and ¢(B) are induction variables and their values in terms of the
basic loop induction variable k are A(k) = Ag+k and B(k) = By — 2k, respectively.
So are the ¢(C) and ¢(D) whose values are expressed by C(k) = A(k) +1 =
Ayg+ k+1 and D(k) = B(k) = By — 2k. The condition of node by in terms of the
values of ¢(A) and ¢(B) is A(k) +1 < B(k), taking the data flow from the entry of
procedure X to branch node bx in X into consideration. Similarly, the condition
of node by is C(k) < D(k) — 2. Therefore, the conditions of bx and by in terms of
kare Cx(k) =3k+1 < By— Ap and Cy (k) = 3k + 3 < By — Ay, respectively. The

largest k satisfying Cx (k) A Cy (k) 18 kmaz = {B(’*?“*:’)J =2 =1

Break Point

According to the definition of k,,,; above, the last trip carrying with k,,q, + 1
is a partial one. The break point of the loop is the first branch node b; (i =
1,2,---,n—1,0) such that its corresponding condition C;(k,q, + 1) is false. That
is, b; is the break point if C;(kpqqs + 1) are true for all 1 < j < i and Cj(kmaq + 1)
is false or by is the break point if Cj(kmay + 1) are true for all 1 <j <n — 1.

In our working example, we have Cx(2) = 3-2+1 < 9 — 1 is true, and
Cy(2) =3-2+3 <9 —1is false. The break point is by .

Putting it all together, the four induction variables in the input parameters can
be expressed as follows:

A(k) = {A[]-l-k‘ogkgkmam'i'l}
B(k) = {Bo—2k|0<k< knar +1}
Ck) = {Ag+k+1]0<k<kne+1}
D(k) = {By—2k|0<k<kpo—+1}

with kpax = 1.

6.4 Induction Variables of Dual Loop

After the analysis of induction variables in the input parameters, the compiler tries
to find possible induction variables in the output parameters formed by its dual
loop.

Given an innermost loop of recursive calls defined in Definition 1, there can be
several paths from r; to 7;_1 modn, (0 < i < mn — 1), in the EFPR graph. If there
are multiple paths from r; to 7;_1 mod n the factored use-def chains from the output
parameters of 7;_1 mod n to that of r; will go through ¢-terms. As a consequence,
none of the output parameters of all the procedures can be an induction variable.
The entire Step 4 should exit and all the output parameters should be marked as
complex variables. In other words, the compiler will continue to detect induction

13



variables in output parameters in Steps 4(a), 4(b) and 4(c) of the algorithm only
if there is only one path r; to ;1 moan for all 2 = 0,--- ,n — 1. These steps are
described as follows:

6.4.1 Checking Paths from Break Point to Return Node

Assume that the break point of the loop of recursive calls shown in Figure 4 is b;.
This step (Step 4(a)) checks if there is a single path from b; to 7j_1 mod n in the
EFPR graph. If there are multiple paths, the initial values for output parameters
of procedure 7;_i mod n cannot be determined. As a consequence, all the output
parameters of the procedures cannot be induction variables and the algorithm goes
to Step 5 immediately.

6.4.2 Determining Initial Values of Output Parameters

At this step (Step 4(b)), the algorithm uses the IFUD graph to find the expressions
for the initial values of the output parameters of the procedure. Since there is a
single path from the break point to the return node in the EFPR graph, a single
expression in terms of the input parameters of the procedure can be found. If
the expression of an output parameters contains a complex input parameter, that
output parameter cannot be an induction variable because its initial value is not
constant.

Continuing our working example with the break point bx, the final values of
input parameters of C' and D are C(kpmqes + 1) and D(kpe, + 1), respectively.
Following the TFUD chains corresponding to the path (sy,bx,ry) in the EFPR
graph, the compiler can find the unique initial values of output parameters C’ and
D', denoted C{, and Dy, as follows: Cj = C(kmaz + 1) and Dj = D(kmas + 1) — 2.

6.4.3 Detecting Induction Variables in Output Parameters

At this step (Step 4(c)), the compiler applies the Tarjan’s algorithm to the IFUD
chains of the output parameters corresponding to the dual loop to find possible
induction variables. This step is similar to Step 2. In our working example, the
result is that both C" and D’ are induction variables expressed as C' (k') = Cj — 2k
and D'(k') = D{+k'. Here, k' is the basic loop induction variable of the dual loop.

The trip count of the dual loop (defined as the number of times r is visited) is
the same as the loop of recursive calls. Therefore, the basic induction variable, &',
takes values 0,1, -, ko and ke + 1, one for each trip. The first trip from r;
(assuming b1 mod n is the break point) to r¢ is a partial trip.

The direction of dual loop is opposite to that of the loop of recursive calls. the
relationship between k and k' is k + k' = k00 +1 = t. — 1. These observations are
summarized in the following theorem:

Theorem 1 If the trip count of the innermost loop of recursive calls, sg — --- —
S$1-°-8Sp_1 — -+ — S, 1S te, then the trip count of its dual loop is also t.. The
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basic loop induction variable of the dual loop is an integer variable k' such that
0 <k <kpoz+1=te—1andk+ k"= kpaz + 1 hold.

In our working example, output parameters A’ and B’ are also induction vari-
ables. Their initial values, A}, and B(, can be obtained by following the IFUD
chains corresponding to the path (ry,rx) in the duel loop and they are: Aj = C}
and Bj = D+ 1. The values A’ and B’ then can be expressed as A'(k') = Afj — 2k’
and B'(k') = Bj + k'. Note that k&' = (knae + 1) — k. We then convert the
expressions of the output parameters to use k instead of &'.

Putting it all together, the four induction variables in the output parameters in
the working example are as follows:

{A0 = kmaz +2k | 0 <k < kpaz + 1}
= {Bo—Fkmar =3 -k |0 <k <kpaa + 1}
= {Ao — kmaz +2k | 0 <k < kg + 1}
= {Bo—Fkmar =2k |0 <k < kpaa + 1}

where k0 = 1.

6.5 Nested Induction Variables

The last step (Step 5) in the while loop of the algorithm is to coalesce the innermost
loop of recursive calls and its dual loop into a simple procedure which summarizes
the effect of the recursive procedure call.

Given the the innermost loop of recursive calls, sg = -+ — 81+ 851 — -+ —
sg, the compiler creates a new procecure to replace all the procedures involved,
namely, procedures 0, 1, - - -, n—1 ( Recall recall that s; is the start node of procedure
i,1=0,1,---,n — 1.) The compiler can create the simple procedure as follows:

1. The simple procedure has the same formal parameters as procedure 0.
2. For each parameter A of procedure (

(a) if both input and output parameters of A? are induction variables or loop
invariants expressed as A(k) and A’(k), respectively, and at least one of
them is an induction variable.

i. calculate AS = A’(0) — A(0). This gives the increment of A as the
side effect of the recursive call.

ii. create a statement A = A + AS in the simple procedure
(b) if both input and output parameters of A are loop invariants, do nothing.
(c) otherwise, mark both input and output parameters of A as a complex

variable.

Let us go back to the example of nested loops of recursive call in Figure 2(a)
again. The induction variables analysis for the innermost loop reveals that A and

3Recall that each parameter has the input and output ¢-terms in the IFUD graph representing the
input and output parameters of the same name.
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subroutine QQ(A,B,N,F) @
A=A+(N-A)
F=F+3#*(N-4)
endif
end @
i
(a) Simple procedure QQ D<M
\

(b) EFPR graph after loop
coalescing

Figure 7: Program 1 after loop coalescing

F' are induction variables and B and N are loop invariant variables. All of output
parameters A', F', B and N’ are loop invariant variables. We have

A(k) = {Ao+k|0gk§kmam+l}
F(k) = {F0+3k|0§k§kmam+l}

and ke = No — Ag — 2. We also have A'(0) = Ag + kmaz + 2 and F'(0) =
Fy + 3kyee + 6. Therefore, increments of A and F are A, = Ny — Ay and Fy =
3(Np — Ag). The simple procedure to replace the innermost loop of recursive calls
and its dual loop is, thus, shown in Figure 7(a) and the new EFPR graph after this
loop coalescing is shown in Figure 7(b). The new IFUD graph after coalescing is
shown in Figure 8.

The further analysis of the innermost loop with loop header node sp will reveal
that input parameter C' and M are loop invariant variables and input variable D
is an induction variable with induction step of 2. Input parameter F can also
be found to be an induction variable with induction step of 3(My — Cy), because
the compiler will find that 3(N — A) is a loop invariant value when the Tarjan’s
algorithm searches from ¢(E) in the IFUD graph in Figure 8.

7 Related Work

Apart from the work on intraprocedural induction variable analysis mentioned in
Section 1, this work is also related to the work described as follows:

e The interprocedural induction variable analysis described in this paper can be
regarded as an extension of the analysis of interprocedural constants [15, 16].
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Figure 8: FUD of Program 1 after loop collapsing

The interprocedural induction variable analysis described in this paper goes
beyond constant propagation and finds loop invariants and induction variables
in formal parameters with respect to the loops of recursive procedure calls and
returns.

e This work is also related to [1] in which a simple algorithm to find loop in-
variant formal parameters with respect to loops of recursive procedure calls
(called recursively invariant parameters there) is described. Induction vari-
ables in formal parameters would be regarded as complex variables (called re-
cursively variant parameters there) by that algorithm. The work in this paper
goes beyond loop invariant parameters and distinguishes induction variables
of both input and output formal parameters from complex formal parameters.

e This work is related and motivated by the work on array sections or array
side effects of procedure calls [1, 17, 2, 3, 4]. To summarize the sections of
arrays modified or used by procedures in recursive calls for parallelization,
the compiler needs to find the induction variables in both input and output
parameters. The work in this paper provides a solution to this problem.
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