Partitioning 3D Phantoms Into Homogeneous Cuboids *

Anuj Jain & Sartaj Sahni
Department of Computer and Information Science and Engineering
University of Florida, Gainesville, FL. 32611
{ajain, sahni}@cise.ufl.edu
Jatinder Palta & James Dempsey
Department of Radiation Oncology
University of Florida, Gainesville, FL. 32611
{paltajr,dempsey }Qufl.edu

Abstract

We analyze the heuristic proposed by Jung [3] to partition a 3D phantom into homogeneous
cuboids. We show that the 2D version of this heuristic generates the minimum number of rectangles
when partitioning 2D non-degenerate phantoms. However, this 2D version doesn’t generate optimal
partitions of degenerate 2D phantoms. In fact, the heuristic may generate more than 3 times as
many rectangles as is necessary. The 3D heuristic of [3] doesn’t generate optimal partitionings of 3D
simple phantoms either. We show that slicing partitions of 3D simple phantoms are optimal. Our
analysis suggests a new heuristic for 3D phantoms. This heuristic generated one-third as many cuboids
when used to partition a 3D CT-scan phantom and about one-fourth as many cuboids on randomly
generated 3D phantoms as produced by the heuristic of [3].

Keywords: 3D phantom partitioning, cuboids, heuristic.

1 Introduction

Two- and three-dimensional phantoms' are often partitioned into homogeneous rectangles and cuboids,
respectively, so as to simplify algorithms that operate on the phantom [4]-[7]. For example, in radiation
treatment planning, the patient is described by a 3D phantom [4, 3]. This 3D phantom is composed of
unit cubes/voxels, where different voxels may have different density (so, the phantom is a collection of
heterogeneous voxels). Dose computation is done via ray tracing and the dose computation algorithms
require the computation of the radiological distance between the end points of the ray. The radiological
distance, which is the Euclidean distance weighted by the density, may be obtained by tracing the path
of the ray from one voxel to the next and aggregating the density-weighted Euclidean distance. A faster

way to compute this distance is to trace the path of the ray examining only points at which the ray moves

*This work was supported, in part, by the National Library of Medicine under grant LM06659-03.
1A phantom is a heterogeneous rectangle or cuboid.

from a voxel of one density to a voxel of a different density. To facilitate this latter faster ray trace, Li
and Williamson propose a collection of 3D convex shapes that may be used to partition a 3D phantom
into a collection of homogeneous shapes. However, the decomposition is to be done manually. Jung [3]
proposes an automatic decomposition into cuboids that have the same density (i.e., into homogeneous
cuboids). We use 2DPPP (3DPPP) as an abbreviation for the 2D (3D) phantom partitioning problem.
In 2DPPP (3DPPP) we wish to partition a non-homogeneous 2D (3D) phantom into a minimum number
of homogeneous rectangles (cuboids).

The region partitioning problem is closely related to the phantom partitioning problem. In the 2D
(3D) region partitioning problem, we are given a connected collection of homogeneous pixels (voxels) and
are to partition these into a minimum number of rectangles (cuboids).

The 2D region partitioning problem (2DRPP), has been quite well studied [2, 6, 5]. For example,
Ohtsuki [6] has shown that the minimum number of non-overlapping rectangles in the solution to a
2DRPP is n/2+ h —d — 1, where n is the number of vertices in the region, h is the number of holes, and
d is the maximum number of independent degenerate chords (these terms are defined in Section 3). Imai
and Asano [2] develop an O(n*/?logn) time algorithm for 2DRPP, and Nahar and Sahni [5] develop an
O(n + vlogv), where v is the number of vertical inversions, time algorithm for 2DRPP instances that
have no holes. Wu and Sahni [7] develop algorithms for the case when we are to find a minimum number
of (possibly overlapping) rectangles to cover the region. 3DRPP is known to be NP-hard [1].

Jung [3] has proposed a heuristic to partition a 3D phantom into a minimum number of homogeneous
cuboids. In this paper, we analyze this heuristic. Specifically, we show that the 2D version of this
heuristic is optimal for 2D non-degenerate phantoms. (Section 3), and the 3D version is non-optimal
even for simple 3D phantoms (Section 4). When the heuristic is used on degenerate 2D phantoms, it
may produce partitions that have more than three times as many rectangles as is necessary. When used
on general 3D phantoms, the number of cuboids produced by the heuristic of [3] may be the square (or
more) of the minimum number of cuboids needed to partition the phantom.

Our analysis of Jung’s [3] heuristic leads to a new heuristic (Section 6), which on all test phantoms

resulted in far fewer cuboids than did Jung’s [3] heuristic (Section 7).

2 Preliminaries

Definition 1 A pixel is a unit square whose sides are parallel to the x- and y-azes. A voxel is a unit

cube whose sides are parallel to the z-y, y-z and z-z planes. Each pizel/vozel is homogeneous and has

a non-negative integer density associated with it. A 2D (8D) phantom is a collection of pizels (vozels)
that defines a rectangle (cuboid). In 2DPPP (3DPPP), we are to partition the pizels (vozels) of a 2D
(8D) phantom into a minimum number of homogeneous rectangles (cuboids), where the pizels (vozels) in
each homogeneous rectangle (cuboid) have the same density. A component of a phantom is a mazimal

connected collection of pizels/vozels that have the same density.

Definition 2 A region is a connected collection of pizels/vozels that have the same density. The piz-
els/vozels that comprise a region define the interior of the region. The remaining pizels/vozels define the
exterior of the region. In 2DRPP (3DRPP), we are to partition the interior pizels (vozels) of the 2D

(8D) region into a minimum number of rectangles (cuboids).

Instances of 2DRPP and 3DRPP may be drawn by either shading the interior pixels/voxels as in
Figure 1(a) (in this case, exterior pixels are unshaded) or by shading the exterior pixels as in Figure 1(b).
In these drawings, individual pixels (voxels) are not shown; rather the boundaries of interior/exterior
regions are drawn as lines or edges (faces) that are parallel to the z- and y-axes (zy-, yz-, zz-planes).

These regions are rectilinear regions.

Definition 3 A hole is a connected set of exterior pizels/vozels that is bounded by interior pizels/vozels
on all sides. Figure 1(a) shows 2D holes (w1 and w2 are holes), and Figure 1(b) shows a 3D hole (the
shaded cuboid is a hole).

Interior
totall/y concave vertex Convex edge
| h | ~Concave
270 edge
] o v totally convex vertex
(a) 2D region (b) 3D region

Figure 1: Example 2D and 3D holes

An instance of 2DPPP (3DPPP) may be solved by decomposing a phantom into its unique components
(note that each component defines a region) and solving the 2DRPP (3DRPP) defined by each of these

components. Hence, 2DPPP may be solved optimally using the 2DRPP algorithms of [2, 6, 5|. Further,
from the proof of [1], it follows that 3DPPP is NP-hard.
Jung’s [3] heuristic (1) for 3SDPPP partitions the phantom into cuboids in two steps—initial cuboid

construction and cuboid growing.
Heuristic 1 Jung’s [3] heuristic.

1. Initial Cuboid Construction In this step the given heterogeneous phantom is partitioned into a
set of (homogeneous) cuboids. We start with each vozel defining a cuboid. Then, pairs of adjacent
cuboids that have the same size and density are combined. This pairwise combining of adjacent
cuboids continues until no more combining is possible. The search for combinable pairs is done in
the following way. First examine adjacent pairs of cuboids along the x-axis, then along the y-azxis,
then along the z-axis. This three-stage examination is repeated until no adjacent cuboids that have
the same size and density remain. The cuboids resulting from this step are called unexamined

cuboids.

2. Cuboid Growing In this step the number of cuboids is decreased by extending each of the unex-
amined cuboids as much as possible. The cuboids from Step 1 are examined in decreasing order
of volume. The faces of the cuboid being examined are moved outward, in decreasing order of face
area, till a face with different density or a face of an already examined cuboid or the boundary of the
phantom is reached. When extending a face, previously unexamined, cuboids with the same density
are either fully or partially absorbed into the growing cuboid. When an unexamined cuboid is partly
absorbed into the growing cuboid, the rest of the unexamined cuboid is split into new cuboids that are
labeled as unexamined cuboids. A cuboid once examined and grown is finalized and is not subject

to further change. Cuboid growing continues until no unexamined cuboids remain.

A 2D version of Heuristic 1 may be obtained by eliminating the work done in one of the three
dimensions, say dimension z.

We use the 3D phantom of Figure 2(a) to illustrate the working of Jung’s heuristic. Figure 2(b) gives
a 2D view of the phantom. The 2D view is obtained by projecting the 3D view on to the front face of the
phantom. The 2D view is used for ease of drawing. Figures 2(c)—(g) show the initial cuboid construction
step of Jung’s algorithm. Figures 3(a) and (b) show the 2 iterations of step 2 of Jung’s heuristic that
take place on our example. Figure 3(c) shows the end results and Figure 3(d) shows the 3D view of the

parititioning.

(a) 3D Phantom region (b) 2D View

(c) Step 1 (d) Step 1
(e) Step 1 (f) Step 1
E \%

A
FlG s Wx] €
P
H| Y|z
3 A
B T H
K|L B¢
M| N olE
c o Q R U F 1

Result of the partitioning after part of HJ's Algo, (Region Construction)

(g) Step 1

Figure 2: Step 1 (5)f Jung’s heuristic

E \
A E v
Fle s wl x ¢ A G
P Flc s wl x
H| Y|z P
H| Y|z
J A"
J A
B T H
K|L B | ¢ B T H
KL B | ¢
M| N D|E
M| N D|E
c o Q F I
R u o , .
c Q R u F 1
Extending the largest region at the end of last step — Region P.
Extending the largest region at the end of last step.
Region P merges with regions Sand T The region PST merges with regions Q, Rand U.
(a) Step 2 (b) Step 2
I 16
Result after the end of region growing part of HJ’s Algorithm.
r2 I
rl 9
5
rl p 9
r3 3
5 7
4 3
. L . r4 r8
Phantom is divided into total of 9 regions including all the
densities. Regions r1-r9 extend into the z direction throught
the full thickness of the phantom. 3-D view of the partioning obtained by HJ’s algorithm.

(c) Final 2D (d) Final 3D

Figure 3: Step 2 of Jung’s heuristic

3 Analysis for 2D Phantoms (2DPPP)

In this section, we determine the conditions under which the 2D version of Heuristic 1 obtains a parti-
tioning into a minimum number of rectangles. Since, pixels of one component of the phantom cannot be
in the same rectangle as pixels of another component, it is sufficient to analyze Heuristic 1 for an instance
of 2DRPP in which the interior pixels are to be partitioned into a minimum number of rectangles. Before

proceeding with the analysis, we define several terms.

Definition 4 Final result-The rectangles into which the interior pizels of the 2DRPP instance are

partitioned by Heuristic 1.

Definition 5 Concave vertex—-A verter in a rectilinear 2D region such that the two edges incident on
the vertex make an interior angle of 270 degrees (Figure 4(a)).
Convex vertex—A vertex in a rectilinear 2D region such that the two edges incident on the verter make

an interior angle of 90 degree (Figure 4(a)).

Degenerate chord

(—}——=Convex vertex
Concave vertex

Co-horizontal concave vertices
,,,,,,, — D (

+—= Chord

Degenerate chord

Chord]
(a) Degenerate region (b) Non-
degenerate
region

Figure 4: Degenerate and non-degenrate regions

Definition 6 Chord-A horizontal or a vertical line segment that begins at a concave vertez, extends in
the region interior, and ends in the region interior or at the first point at which it meets an edge of the
region (Figure 4(a)).

Degenerate chord-A chord that joins two co-horizontal (having the same y-coordinate) or two co-

vertical (having the same z-coordinate) concave vertices. (Figure 4(a)).

Two degenerate chords are independent iff they do not have a common vertez.

Definition 7 Degenerate rectilinear region-A rectilinear region is degenerate iff it is possible to
draw a degenerate chord in the region (Figure 4(a)). Non-degenerate rectilinear region-A rectilinear
region in which it isn’t possible to draw a degenerate chord is called non-degenerate (Figure 4(b)).

A 2D phantom is degenerate iff it has a degenerate component. A 2D phantom is non-degenerate iff

it has no degenerate component.

The following lemmas are used to prove that Heuristic 1 partitions a non-degenerate 2D region opti-

mally.

Lemma 1 The sides of all rectangles in the final result are composed of boundary edges and/or parts of

chords.

Proof By induction on the number of rectangles in the final result.

Induction Base: The expansion of the first rectangle examined in Step 2 of the heuristic stops only
when we meet the boundary of the region on all four sides. Some of the sides of this expanded rectangle
may be formed fully of a boundary edge (either all or part of a boundary edge) of the region while others
may be only partially formed by boundary edges. The latter kind of sides would have met one or more
concave vertices (Figure 5). The remainder of each such side must be formed by a horizontal or vertical

chord drawn from a concave vertex that this particular side meets.

Concave vertex

|— formed by boundary

formed by boundary and chord

Figure 5: First rectangle formed by Heuristic 1

Induction Hypothesis: Assume that the first k£ expanded/finalized rectangles have their sides
composed of boundary edges and/or chords.

Induction Step: The expansion of the (k+1)st rectangle being expanded stops only when the expanded

rectangle meets the boundary of the region or that of one or more of the previously expanded k rectangles.

We note that:

(a) Each side that meets the boundary of the region either is composed fully of a boundary edge or is

composed of boundary edges and chords drawn from the concave vertices that the side meets.

(b) From the induction hypothesis, it follows that each side that meets the boundary of a finalized
rectangle but not the boundary of the region is composed of parts of the chords or chord parts that

form this boundary of the finalized rectangle that is met.

From (a) and (b) it is clear that all sides of the (k+1)st finalized rectangle are composed of the boundary

edges of the region and/or some portion of chords of the region. [

Lemma 2 FEvery concave vertez in a non-degenerate region is a vertex of exactly one finalized rectangle.

Proof First we prove that every concave vertex is a vertex of at least one finalized rectangle. Since all
of the non-degenerate region is covered by finalized rectangles, the portions el and e2 of the boundary
edges closest to any concave vertex v must lie on the boundary of two different finalized rectangles r1

and r2. Figure 6 shows two possibilities for r1 and r2.

(a) 3 rectangles at v (b) 2 rectangles

Figure 6: Finalized rectangles at a concave vertex

If r1 terminates at v (as in Figure 6(a)), then v is a vertex of r1. If r1 extends beyond v (as in
Figure 6(b)), then v is a vertex of 72. In either case, v is a vertex of a finalized rectangle.
Next, we provide a proof by contradiction that each concave vertex can be a vertex of at most one

finalized rectangle. Suppose that there is a concave vertex v that is a vertex of more than one finalized

rectangle. Since a concave vertex makes an interior angle of 270 degrees and each vertex of a finalized
rectangle makes an interior angle of 90 degrees, there must be exactly three finalized rectangles, r1, r2,

and 73, that have v as a vertex (Figure 7).

el
rl
e2 \Y cl

Figure 7: Vertex with 3 finalized rectangles

Without loss of generality, assume that r1 was the first of these three rectangles to be finalized. For
the downward expansion of r1 to terminate at v, side ¢l must meet a horizontal boundary edge or a
horizontal side of an already finalized rectangle (7’ in Figure 7). Both possibilities require another concave
vertex v’ such that (v,v') is a degenerate chord (Lemma 1). Since the region is non-degenerate, there

can be no degenerate chord. [

Corollary 1 When Heuristic 1 is used to partition a non-degenerate region, there is exactly one chord

drawn?® from each concave verter.

Proof If two chords cl and ¢2 are drawn from a concave vertex v then v is a vertex of 3 rectangles

namely r1, r2, and r3 (Figure 7). []

Lemma 3 Suppose that a non-degenerate region is partitioned using Heuristic 1. In the final result, the

chords drawn from the concave vertices form only ‘T’-intersections at their other terminating end.

Proof Consider the chord ¢ drawn from the concave vertex v. There are two possiblities for where ¢
ends. (1) c ends at a boundary of the non-degenerate region. In this case ¢ and this boundary must form
a ‘T’ (otherwise, ¢ is a degenerate chord). (2) c ends at a side of a finalized rectangle r. ¢ cannot be a
side (or part of a side) of r nor can it end at a vertex of r (if it were/did, ¢ wouldn’t end at a side of).

Therefore, ¢ forms a ‘T’ intersection with the side of r that it meets. [|

2The finalized rectangles may be viewed as the result of drawing chords so as to divide the region into rectangles.

10

Corollary 2 For non-degenerate regions, the terminating end of each chord forms a vertex of exactly

two finalized rectangles.

Proof Since the terminating end v of chord ¢ forms a ‘T’-intersection and since c lies within the region,

there must be a finalized rectangle on either side of ¢ that has v as a vertex. (Figure 8). []
Edge of an expanded
r1 rectangle.
c [v
r2

Figure 8: T-intersection formed by a chord

Theorem 1 For non-degenerate rectilinear regions, the number of finalized rectangles is minimum.

Proof From Lemma 1, it follows that each vertex of a finalized rectangle is either an original vertex
of the region or is an end point of a chord. A convex vertex must be a vertex of exactly one finalized
rectangle (convex vertices cannot be shared by 2 or more rectangles), a concave vertex is also a vertex of
exactly one finalized rectangle (Lemma 2), and the terminating end of each chord is a vertex of exactly
two rectangles (Corollary 2).

Therefore the total number of vertices in the finalized rectangles is number of convex vertices + number
of concave vertices +2«number of chords = n + 2xnumber of concave vertices, where n is the number
of vertices in the region (Lemma 2). Therefore, the number of finalized rectangles = (n + 2+number of
concave vertices)/4. Ohtsuki [6] has shown that this is the minimum number of rectangles needed to

partition a non-degenerate rectilinear region. [|

Corollary 3 Heuristic 1 produces optimal partitions for 2D non-degenerate phantoms.

Theorem 2 For degenerate rectilinear regions the number of finalized rectangles may exceed the mini-
mum number of rectangles by as much as the number of independent degenerate chords that can be drawn

in the region.

Proof The maximum number of finalized rectangles is (n + 2*number of concave vertices)/4 = n/2 +

h —1, where n is the number of vertices and A is the number of holes. This corresponds to the case when

11

a distinct chord is drawn from each concave vertex. Ohtsuki [6] has shown that the minimum number of
rectangles needed to partition a rectilinear region is n/2 + h — d — 1, where d is the maximum number
of independent degenerate chords. Hence the number of finalized rectangles is at most d more than the

minimum possible. [|

As an example, consider the degenerate rectilinear region shown in Figure 9. For this region, n =
20,h =2, and d = 6. So, the minimum number of rectangles in any partitioning is 20/2+2 —1—6 = 5.
Heuristic 1 could give the partitioning of Figure 9, which has n/2 +h —1 =20/2 +2 — 1 = 11. This is
because Heuristic 1 may draw no degenerate chords. Therefore, the ratio of number of rectangles given
by Heuristic 1 to the minimum number of rectangles is 11/5 = 2.2. By increasing the number of holes in
the example of Figure 9 from 2 to i (simply add more vertical slabs), this ratio becomes (5 + 37) /(3 + 4),

which approaches 3 as 7 becomes large.

Result of Algorithm proposed by Hagjae

Figure 9: Finalized rectangles from Heuristic 1

For hole-free regions, the number of concave vertices is n/2 — 2 [7]. Since, in the worst case, d
= number of concave vertices/2, the minimum number of rectangles in the partitioning of a hole-free
rectilinear reagion may be as small as (n/2+0—d—1) =n/2 —1— (n/2 — 2)/2 while the number of
finalized rectangles could be as large as n/2 + 0 — 1. Therefore, the ratio of number of rectangles given
by Heuristic 1 to the minimum number of rectangles is (n/2 —1)/(n/2 —1— (n/2 —2)/2) =2 —4/n.

This ratio approaches 2 as n becomes large.

4 Analysis for 3D Phantoms (3DPPP)

In this section, we show that Heuristic 1 is non-optimal even for simple 3D phantoms. We also show that
slicing partitions are optimal for simple 3D phantoms. Since, voxels of one component of the phantom
cannot be in the same cuboid as voxels of a different component, it is sufficient to analyze Heuristic 1

for an instance of 3DRPP in which the interior voxels are to be partitioned into a minimum number of

12

cuboids.

4.1 Definitions

Definition 8 Surface—This refers to the boundary faces of the region.

Definition 9 Convex edge-An edge for which the 2 adjacent surfaces make an interior angle of 90
degrees.

Concave edge-An edge for which the 2 adjacent surfaces make an interior angle of 270 degrees.
Totally concave vertex—Verter at which all incident edges are concave edges.

Totally convex vertex—Verter at which all incident edges are convex edges.

We use the notation c —vertex to refer to a totally convex vertez and k —vertex to refer to a vertex that
is not totally conver.

Ezamples are shown in Figure 1(b).

Definition 10 Simple region-A region that satisfies the following two conditions:

1. No surface that has a concave edge may be extended over one or more of its concave edges to reach

another concave edge.

2. There is no surface with two or more concave edges with the property that two of these concave
edges can be joined by a line segment in the © — vy, y — z or z — x planes, that lies wholly outside

the surface, except at the two end points.

A simple phantom is a phantom, all of whose components are simple regions.

For an example of a simple region, see Figure 1(b). Each edge of the inner cuboid, which is hole, is
concave. It isn’t possible to draw a line between any two concave edges such that the line lies in the
z—1y,y— zor z— z planes and is not contained wholly within a surface, as each surface is rectangular.

Figure 10 shows an example non-simple region. The shaded area depicts a hole. p8 is a boundary
surface of the hole and el3 and e23 are concave edges. The line /1 that joins el3 and e23 does not lie

wholly in a surface.

Definition 11 Degenerate concave edges—Two concave edges form a degenerate pair iff they are not

the edges of the same surface and they satisfy the following conditions (Figure 11):
1. They are parallel to the same axis.

13

p2 hole
e23

Interior
pl

e13

v
Line that lies outside any existing plane

Figure 10: Non-simple region

2. They can be joined by a line segment parallel to one of the azes, lying wholly outside any surface

except at the two end points where the line segment joins the two edges.

Degenerate concave edges

clll | &

Figure 11: Degenerate concave edges

Definition 12 Slice-A slice is an extension of a surface adjacent to a concave edge in a 3D region,
such that it divides the 3D region into 2 or more sub-regions. For an extended surface to qualify as a
slice, all its area should lie in the interior of the region (surface is considered as interior). All the edges

of the slice lie wholly on surfaces of the region and/or, on perpendicular slices (Figures 12 and 14) .

Definition 13 Slice segment-A slice segment is a rectilinear extension of a surface adjacent to a
concave edge in a 3D region. For an extended surface to qualify as a slice segment, all its area should lie
in the interior of the region (surface is considered as interior) (Figures 18, 14, 15 and 16). Note that all

slices are slice segments, but the converse is not true.

Definition 14 Planes-Apart from the usual meaning of the word, it is used to collectively refer to the

slice segments and the surfaces in a 3D region at any particular time.

14

l§||ce

Concave edge cl

Slice s

=Sub-region 1 e, .

Concave edge c2

Sub—vregiun 2

Slice obtained by extending p1 Example of a slice through two concave edges in a non-simple region
adjacent to concave edge k This slice intersects several concave edges.
(a) Rectangular slice (b) Non-rectangular slice

Figure 12: Slices

7 Slice segment

Slice segment obtained by extending pl
adjacent to concave edge k

Figure 13: Slice segment

rl

[Slicesl

=
(R

2 S r3

Example of a slice dividing region into 3 sub-regions

Figure 14: Horizontal slice

15

Slice segment s3

Slice segment 4

Slice segment sl

//) 77777777777777777 A— ice segment s2

Figure 15: A partitioning obtained by slice segments

Definition 15 Slice segment partitioning (SSP)-A partitioning of a rectilinear 3D region into
cuboids, in which slice segments are formed for concave edges by extending a surface adjacent to each
concave edge such that the extended surface cuts the 270 degree angle of the concave edge into a 90 degree

angle and a 180 degree angle. The slice segments in the partitioned region satisfy the following conditions:
1. Each slice segment is bounded by a surface or some other slice segment along all its edges.

2. There is exactly one slice segment per concave edge, unless the concave edge is cut perpendicularly

by some other slice segment.

3. If a concave edge is cut perpendicularly by a slice segment, then the two sub-concave edges obtained

can be treated as independent concave edges and follow the same rule as described in condition 2.

Note that condition 1 of Definition 10 and condition 3 of Definition 15 together imply that in every

SSP of a simple region, there is exactly one slice segment per concave edge.

Definition 16 Slicing algorithm-Any algorithm for SDRPP that obtains an SSP by drawing slices for
each concave edge in the region, in some sequence, till no concave edge remains. The resulting partitioning

is called a slicing partition (SP).

We distinguish between an edge of a partitioning and an edge of the 3D region that is to be partitioned.
An edge of a partitioning is a maximally long line of the partitioning. For example, some of the edges in
the SP of Figure 16 are (v5,v6), (v6,v1,v13), and (v12,v7,v14). Note that (v12,v7) is not an edge of
this partitioning, because (v12,v7) may be extended to the longer line (v12,v7,v14) that is also a line of
the partitioning. Every edge has exactly two end (or terminating) points and zero or more pass-through

(intermediate) vertices. For example, the end points of the edge (v5,v6) are v5 and v6. We say that

16

p3 (v2, V3, v8, v9)
G
2 3 = P4 (v4, V3, v9, v10)
vees v = p7(V5, V6, V1, V2, V3, vd)

Sice segment s1(v6, v13, v14, v12)

(V5, V6, V12, v11)p6~—1- [SRS T v
viz Lo

14
44— p8 (v7, v8, V9, v10, v11, v12)

vi1 / v10
p5 (V5, v4, v11, v10)

V7

SVP = V(pl)+V(p2)+V(p3)+V(p4)+V(p5)+V(p6)+ V(p7)+V(p8)
= (4+4+4+ 4+ 4+ 4+6+6) = 36

Figure 16: SP of a simple region

(v5,v6) terminates at vertices v5 and v6. This edge has no pass-through vertices. The end points of the
edge (v12,v7,v14) are v12 and v14, and the edge has the single pass-through vertex v7.
Every edge of a partitioning is of one of the following types: (Figure 16):

1. A new edge—-An edge such that no part of the edge existed in the original region. Example:
(v13,v14)

2. An extended edge—An edge for which some part of the edge already existed in the region and
the rest of it did not. Example: (v6,v1,v13).

3. An original edge The whole edge existed in the region. Example: (v5,v11).

4.2 SSPs and Heuristic 1

Lemma 4 Heuristic 1 is not a slicing algorithm.

Proof To see this, examine Figure 17. This figure depicts a partitioning that could be generated by
Heuristic 1. The cuboids are indexed 1 through 5 in the order they were created by the heuristic. The
partitioning of Figure 17 cannot be obtained by a slicing algorithm, because in a slicing algorithm the
slices need to be drawn in some sequence. Therefore, the first slice to be drawn would have all its edges on

boundary surfaces. However, there is no extension of a surface in Figure 17 that meets this requirement.

Even though Heuristic 1 is not a slicing algorithm, it produces SSPs.
Lemma 5 Heuristic 1 yields an SSP.

17

Slice segment s3

4, /| - Slice segment 2

Slice segment sl

Slice segment 4

Figure 17: Partitioning obtained by Algorithm 1

Proof It can be proved by induction that the faces of each cuboid in the final result of Algorithm 1, are
composed of boundary surfaces of the original region or extensions of these boundary surfaces. Therefore,
in the final result, all the cuboid boundaries are original surfaces and/or extension of some of the surfaces.
The extension of a surface would be bounded by perpendicular boundary surfaces or extensions of some
other surfaces, along all its edges. Therefore, any extended surface can be considered as a slice segment,

and each slice segment satisfies all the conditions required for the partitioning to be called SSP. [

Lemma 6 Heuristic 1 may generate a non-optimal partitioning for a simple 3D region.

Proof Consider the simple 3D region of Figure 18(a). This region is a cuboid with two opposite corners
removed. The removed corners are of different dimensions. Figure 18(b) shows the partitioning obtained
by Heuristic 1. The 6 cuboids are numbered in the order in which they are generated by the heuristic.
Notcie that the partitioning is an SSP but not an SP. Figure 18(c) shows a 5 cuboid SP for the simple
3D region of Figure 18(a).]

It is easy to see that, for general 3D regions, the worst-case ratio of number of cuboids given by
Heuristic 1 to the minimum number of cuboids is at least as large as the corresponding ratio for 2DRPP.
Figure 19(a) shows an example 3D region for which this ratio approaches oo as the example is made
larger. The shown non-simple region has 5 externally protruding horizontal slots on its right side and
5 externally protruding vertical slots on its left side. Assume that each horizontal slot is 1 voxel wide
and one voxel high, and that each vertical slot is one voxel wide and one voxel deep. The maximum
width of the region is 3 voxels. Note that the voxels are not drawn to scale. The middle voxels have

been drawn wider then the left- and right-end voxels so as to avoid cluttering the figure. Figure 19(b)

18

z i)

(a) Simple region (b) SSP partitioning
3,
1
2
4
//5//

(c) SP partitioning

Figure 18: SSP and SP partitionings of a simple 3D region

19

shows an optimal partitioning of the 3D region of Figure 19(a). This optimal partitioning has exactly
11 cuboids—5 vertical cuboids each of depth and width 1 and height 9, 5 horizontal cuboids of width and
height 1 and depth 9, and 1 cuboid whose width is 1 and whose height and depth are 9. Figure 19(c)
shows a partitioning that Heuristic 1 may produce. On the front face, we have 5 cuboids whose height
and depth is 1 and whose width is 3. Between every two such cuboids on the front face is a cuboid whose
height and depth is 1 and whose width is 2. Behind the front face of cuboids is a similar arrangement of
cuboids whose width is one less than that of the cuboids on the front face. The pattern of 9 cuboids of
height and depth 1 repeats to the back face, giving us a total of 81 cuboids. Extending this construction
from 5 protruding slots on the left and right side, to n protruding slots on the left and right side, we get
a non-simple 3D region for which the Heuristic 1 could produce a partitioning that has (2n —1)? cuboids

while the optimal partitioning has 2n + 1 cuboids.

(a) Non-simple region

(c) Heuristic 1

Figure 19: Bad example for Heuristic 1

20

5 Slicing Partitions

Having established the non-optimality of Heuristic 1 for 3D simple regions, we turn our attention to
slicing partitions. First, observe that slicing partitions may not be optimal for non-simple 3D regions. In
fact, even though the optimal partitioning of Figure 19(b) is a slicing partition, other slicing partitions
of the non-simple region of Figure 19(a) may not be optimal. For example, consider the slicing partition
that results from making 8 horizontal slices that extend the 8 concave edges on the right side of the
region (Figure 20). We are now left with 9 non-simple regions. In each of these, we make 8 slices parallel
to the front face and extending the 8 vertical concave edges. Each of the 9 simple regions decomposes
into 9 cuboids, for a total of 81 cuboids. By generalizing the region of Figure 19(a) to one that has n
slots on the left and right ends, we get a 3D non-simple region for which an SP may have (2n — 1)?

cuboids, whereas the optimal partitioning has only 2n + 1 cuboids.

I\ R

Figure 20: Possible slicing partition for Figure 19(a)

In the sequel, we first show that all slicing partitions of a 3D simple region yield the same number of
cuboids. Note that this property does not hold for SSPs. This statement follows from the example of
Figure 18 and observation that an SP is a special case of an SSP. Then we show that slicing partitions

are optimal for simple regions.

Lemma 7 In an SP of a simple region, every vertex that was originally present in the region is a vertex

of exactly one cuboid.

Proof An original vertex that is totally convex (i.e., a c-vertex) can be a vertex of only one cuboid
regardless of which surfaces are chosen to form slice segments because a totally convex vertex makes an

internal angle of 90 degrees.

21

Consider a vertex v that is not totally convex (i.e., at least one of the edges incident at v is concave,
a k-vertex). In an SP, a slice segment is drawn through every concave edge. When a slice segment is
drawn through an edge, the edge remains as an edge only on one side of the slice segment. On the other
side, the surface that had the edge as one of its edges, is extended through the edge and thus the edge no
longer exists. Therefore, v also exists only on the former side of the slice segment. Since a slice segment
is formed for every concave edge that is incident to v, v remains a vertex only in one sub-region in an

SP. Since v is a vertex in only one sub-region, it can be a vertex of only one cuboid (Figures 21 and 22).

v remains asavertex only in r2

tension of el

Concaye edge e2
el

Vop2l 12 ’
| New edge
Already existing Pl g :
edge of s1 — | ~Slice segment sl
e et -
e IS { """""""""
Extms'in of e4

Figure 21: v is a vertex of cuboid r2

New edge corresponding to el

New edge fore3
r2
Slice segment 1
//iel v, | ~—Slice segment 2
| rr3
J— e . | New edge for €2

v remainsasavertex only in r3

Figure 22: v is a vertex of cuboid r3

Lemma 8 Fvery new vertex in an SP of a simple region is a vertex of exactly two cuboids.

Proof A new vertex v is obtained when a slice segment meets a surface of the region or another slice
segment, perpendicularly. In a simple region there is no concave edge meeting at v. So, the vertex v

makes an interior angle of 90 degrees on either side of the slice segment. Since, the partitioned region

22

Regions closest to v having v asavertex

\

%o &5’

pl

ps

Slice Segment

No other plane can share v as avertex

Figure 23: New vertex v

is composed of disjoint cuboids, vertex v is a vertex of exactly two cuboids formed on either side of the

slice segment containing the area closest to v (Figure 23).

Lemma 9 In an SP of a simple region, every concave edge present in the original simple region corre-

sponds to ezactly one unique new edge.

Proof As per the definition of an SP, when a slice segment is formed for a concave edge along one of
the two possible planes, it meets the boundary of the original region or another slice segment, along all
edges. For a concave edge lying on a slice segment, a new edge (as described in Definition 15) is obtained
somewhere in the middle of a surface, or in the middle of a slice segment, opposite to the concave edge
(Figure 21).

Since the region is simple, no other concave edge parallel to this new edge can lie on the slice segment.
Also, no concave edge can be cut perpendicularly. Therefore, this new edge corresponds to exactly one
unique concave edge, as there is only one slice segment per concave edge (as described in Definition 15).

Lemma 10 Every new vertex of an SP of a simple region is the end point of exactly two edges of the

SP, and every original vertez is the end point of either 2 or 3 edges.

Proof From Lemma 9, it follows that every new vertex is a vertex of only the slice that created the
vertex. The two edges of the slice that meet at this vertex terminate at this vertex. No other edge of the
SP terminates at the new vertex (note that the new vertex has an additional edge that passes through

it). So, every new vertex of an SP is the end point of exactly 2 edges of the SP.

23

The three edges that terminate at an original c-vertex of a simple 3D region also terminate at this
vertex in every SP of the simple region. A k-vertex, however, has 2 terminating edges and 1 pass-through

edge in the SP. ™

Definition 17 An edge of a 3D region is a c-c edge if both its vertices are totally convez; it is a c-k edge

if exactly one vertex is totally convex; and it is a k-k edge if it has no totally convex vertex.

In the simple region of Figure 16 (ignore the slice s1), (v5,v6) is a c-c edge, (v1,v2) is a c-k edge (v2
is totally convex but v1 is not), and (v1,v7) is a k-k edge.

Consider any partitioning of a 3D region. The distinct-vertezr count (DVC) is the number of distinct
vertices in the partitioning, and is equal to Nypig + Npew, Where Nop;g is the number of vertices originally
in the 3D region and Ny, is the number of new vertices. For the SP of Figure 16, N,y = 12 and
Npew = 2.

When exactly m edges of a partitioning have vertex v as their end point (i.e., when exactly m edges
terminate at vertex v), we say that each of these m edges contributes 1/m to the vertex v. So, if the
end points of an edge are vertices u and v, and if the edge contributes 1/m to u and 1/n to v, then
the edge contributes 1/m + 1/n to the DVC for the partitioning. For the example of Figure 16, edge
(v1,v2) contributes 1/2 to vertex v1 (note that v1 is an end point of the edges (v1,v2) and (v1,v7)) and
1/2 to vertex v2. Therefore, edge (v1,v2) contributes 1/2 + 1/2 = 1 to DV C. The edge (v12,v7,v14)
contributes 1/3 to vertex v12, 0 to vertex v7 (v7 is not an end point of this edge), and 1/2 to vertex v14.
Therefore, this edge contributes 1/3 + 1/2 = 5/6 to DVC.

Since every vertex of an SP is the end point of either 2 or 3 edges (Lemma 10), by adding together
the contributions of all edges in an SP, we get the number of distinct vertices in the SP. An arbitrary
partitioning of a simple region may, however, have vertices that are the end point of no edge. Therefore,
the sum of the edge contributions for an arbitrary partitioning provides only a lower bound on the number

of distinct vertices in the partitioning.

Lemma 11 The contribution of an edge to the DVC of an SP as well as to that of an arbitrary parti-

tioning are as summarized in Table 1.

Proof First, note that in a 3D region, at most 3 edges may terminate at any vertex. Next, note that
at most 2 edges may terminate at the end point of a new edge (this follows from the observation that

the region interior lies to either side of the new edge). Therefore, a new edge contributes at least 1/2 +

24

Edge Type | SP | Arbitrary
New 1 >1
c-c 2/3 2/3
c-k 5/6 >5/6
k-k 1 >1

Table 1: Edge contributions to DVC of an SP and of an arbitrary partitioning

1/2 = 1 to the DVC of a partitioning. Since the end points of a new edge are new vertices, Lemma 10
implies that, in an SP, each end point of a new edge contributes exactly 1/2 to the DVC. Therefore,
every new edge of an SP contributes exactly 1 to the DVC of the SP.

Observe that the totally convex end (i.e., the ¢ end) of an original edge is not extended in any
partitioning and that 3 edges terminate at this end of the edge. Therefore, this end contributes 1/3 to
the DVC. The k end of an original edge may or may not be extended in a partitioning (in Figure 16,
(v12,v7) is extended to (v12,v7,v14), but (v7,v8) is not extended). If the k end is extended, the edge
terminates at a new vertex. From Lemma 10, we know that, in an SP, exactly two edges terminate at
this new vertex. Further, in an arbitrary partitioning, at most 2 edges terminate at this new vertex. So,
when the k end is extended, the k end contributes 1/2 to the DVC of an SP and at least 1/2 to the DVC
of an arbitrary partitioning. If the k end is not extended in the partitioining, then at least one of the
other original edges that terminates at this k end has to be extended so as to subdivide the 270 degree
interior angle at this k end. Once again, we see that the k end contributes 1/2 to the DVC of an SP and

at least 1/2 to that of an arbitrary partitioning. [

Theorem 3 The number of cuboids in every SP of a simple region is the same.

Proof From Lemma 9, the number of new edges in every SP equals the number of concave edges in
the simple region. Therefore, every SP has the same number of new edges, and so the contribution of
these new edges to the DVC of every SP is the same. Since the number of c-c¢, c-k, and k-k edges are a
property of the simple region and not of the partitioning, their contribution to the DVC is also the same
for every SP. Finally, since the sum of the edge end point contributions equals the number of distinct
vertices in an SP, every SP has the same DVC.

The number of new vertices in a partitioning, Npew, equals DV C' — Nyig. From Lemma 8, every new
vertex of an SP is the vertex of exactly 2 cuboids and from Lemma 7, every original vertex is the vertex

of exactly 1 cuboid of the SP. Therefore, the number, N, s, of effective vertices (i.e., weighted sum of

25

number of vertices, each vertex is weighted by the number of cuboids it is a vertex of) in an SP equals
Norig+2% Nypew = 2% DV C — Nypjg is the same in every SP. Since the number of cuboids in a partitioning

is Nesr/8, every SP has the same number of cuboids. []

Let #concave be the number of concave edges in a simple 3D region and let #cc be the number of
c-c edges. #ck and #kk are similarly defined. From the proof of Theorem 3, it follows that the number

of cuboids in an SP of an n vertex 3D simple region is given by
[2 % (#cc* (2/3) + #ck * (5/6) + #kk + #concave) — n]/8
Theorem 4 FEvery slicing partition of a simple region is optimal.

Proof We need to show that the number of cuboids in an SP of a simple region is < the number of
cuboids in any other partitioining of a simple region. We do this in two parts. First, we show that the
DVC, DV C(SP), for an SP is < the DVC, DV C(arb), for any arbitrary partition. Next, we show that
DV C(SP) < DVC(arb) implies that the number of cuboids in the SP is < the number of cuboids in the
arbitrary partitioning.

For every concave edge in a simple region there is at least one distinct corresponding new edge in the
partitioning. From Lemma 9, the number of new edges in an SP equals the number of concave edges.
Therefore, the total contribution to DV C(SP) from new edges equals the number of concave edges,
whereas the contribution to DV C(arbd) is at least this much. Since the number of c-c, ¢-k, and k-k edges
are a property of the simple region and not of the partitioning, their contribution to DV C(SP) is no
more than their contribution to DV C(arb). Finally, the sum of the edge end point contributions equals
DV C(SP), but is < DV C(arb) (because, some vertices of an arbitrary partition may not be the end
point of an edge). Therefore, DVC(SP) < DV C(arb).

For the second part of the proof, we see that Ny, (SP) = DCV(SP) — Nyrig and Npey(arb) =
DV C(arb) — Nypig. Therefore, Npey(SP) < Nypeyw(arb). Observe that every new vertex of an arbitrary
partitioning is a vertex of at least 2 cuboids and every original vertex is the vertex of at least 1 cuboid.
From this observation and the proof of Theorem 3, Ngff(SP) = Norig + 2 * Npew(SP) < Nopig + 2 *
Npew(arb) < Negg(arb). Since the number of cuboids in SP is Ngs¢(SP)/8 and that in an arbitrary

partitioning is N,s(arb)/8, the theorem follows. |

26

6 New Heuristic

We may improve upon Heuristic 1 by developing a heuristic that favors the use of degenerate slice

segments. Heuristic 2 is a simple heuristic that does this.
Heuristic 2

1 From the given phantom of vozels of different densities choose one particular density and treat
all the voxels of that density as interior vozels and the remaining vozels as exterior voxels. The

interior vozels define one or more regions.
2 Form a list, concave, of the concave edges in the regions defined in Step 1.

3 Pick an edge e € concave. There are two possible mazimal slice segments (a slice segment is
mazimal if it cannot be extended further while retaining the slice properties) that include e. From
these two segments, select and draw the slice segment that includes the larger number of concave

edges.

4 Delete all concave edges (including e) that are included in the drawn slice segment from concave.
Edges in concave that are cut by the slice segment are replaced by two concave edges that represent

the two edge segments resulting from the cut.
5 Repeat Steps 8 and 4 until concave becomes empty.
6 Repeat Steps 1 through 5 for each of the different densities in the given phantom.

We illustrate the working of our new heuristic using the 3D phantom of Figure 2(a). Without loss of
generality, we assume that the new heursitic first partitions the region whose density is d1. Figure 24(a)
depicts a possible slice that passes through 2 concave edges. However, this slice will not be choosen by
the new heuristic, because the slice through both edges e2 and e6 passes through 4 concave edges. Note
that in this phantom, regardless of which concave edge we begin with, for the region of density d1 we
will always end up choosing a horizontal slice thus giving only 5 cuboids for density d1 and 2 cuboids
always for density d2. Incidentally, this is also the optimal parttioning for this phantom. Figure 24(Db)

shows the partitioning obtained by the new heuristic.

27

(a) A slice (b) Heuristic 2 partitioning

Figure 24: Example for Heuristic 2

7 Experimental Results

Heuristic 2 was implemented in C++ and benchmarked against Heuristic 1. Since neither of the heuristics
was implemented with run-time efficiency in mind, we compare only the number of cuboids generated
by each. For benchmarking, we used the 81 x 81 x 80 voxel CT (computer tomography)-scan phantom
used in [3] as well as several randomly generated phantoms.

The CT-scan phantom was first preprocessed, as in [3], so as to reduce the number of densities to
3. This was done using a standard binning/thresholding process as would be used in a real treatment
planning system [3]. Heuristic 1 partitioned the 3-density CT-scan phantom into 10087 homogeneous
cuboids, while Heuristic 2 partitioned the phantom into 3387 homogeneous cuboids, achieving a reduction
in the number of cuboids by approximately 65%!

The randomly generated phantoms were created by initializing the density of each voxel to 1. Then,
the density of a randomly selected % of the voxels was changed to 2. Table 2 gives the characteristics
of the random phantoms as well as the number of cuboids in the partitionings generated by the two

heuristics. Heuristic 2 consistently generated at least 70% fewer cuboids.

8 Conclusion

We have shown that the phantom partitioning heuristic of [3] obtains optimal partitions for non-
degenerate 2D but not for simple 3D phantoms. Slicing algorithms, on the other hand, generate optimal

partitionings of simple 3D phantoms but not of general 3D phantoms. We have also proposed a simple

28

Phantom size | % density | #cuboids | #cuboids | % decrease
2 voxels | Heuristic 1 | Heuristic 2
30 x 30 x 30 60 11546 2850 75
30 x 30 x 30 60 11479 2832 75
30 x 30 x 30 60 11439 2889 75
30 x 30 x 30 60 11518 2821 75
30 x 30 x 30 60 11518 2854 75
30 x 30 x 30 70 10624 2891 72
30 x 30 x 30 70 10544 2845 73
30 x 30 x 30 80 8934 2689 70
40 x 40 x 40 30 25132 6713 73
40 x 40 x 40 40 27216 6469 76
40 x 40 x 40 50 27778 6377 77
50 x 50 x 50 30 48998 12869 74
50 x 50 x 50 40 53140 12282 77

Table 2: Experimental results

heuristic for non-simple 3D phantoms. Experiments conducted using both randomly generated phan-

toms as well as a CT-scan phantom indicate that our heuristic generates far fewer cuboids than does the

heuristic of [3].

References

1]

Victor J. Dielissen and Anne Kaldewaij. Rectangular partition is polynomial in two dimensions but

NP-complete in three. Information Processing Letters, 38(1):1-6, April 1991.

H. Imai and T. Asano. Efficient algorithms for geometric graph search problems. SIAM J. Comput-
ing, 15(2):478-494, May 1986.

Haejae Jung. Algorithms for external beam dose computation. PhD dissertation, University of

Florida, 2000. Chapter 4.

Zuofeng Li and Jeffrey F. Williamson. Volume-based geometric modeling for radiation transport

calculations. Medical Physics, 19(3):667-677, May/June 1992.

Surendra Nahar and Sartaj Sahni. Fast algorithm for polygon decomposition. IEEE Transactions

on Computer-Aided-Design, 7(4):473-483, April 1988.

Tatsuo Ohtsuki. Minimum dissection of rectilinear regions. In International Symposium on Circuits

and Systems, 1982. Pages 1210-1213.

29

[7] San-yuan Wu and Sartaj Sahni. Covering rectilinear polygons by rectangles. IEEE Transactions on

Computer-Aided-Design, 9(4):377-388, April 1990.

30

