Vol. 14, No. 6 (2003) 1129-1146 © World Scientific

International Journal of Foundations of Computer Science, \\
Id tifi
© World Scientific Publishing Company wivw.worldsclentific.com

EFFICIENT ALGORITHMS FOR SELECTION AND
SORTING OF LARGE DISTRIBUTED FILES ON DE BRUILJN
AND HYPERCUBE STRUCTURES

DAVID S. L. WEI

Dept. of Comp. and Info. Sc., Fordham University, Bronz, NY 10458
wei@dsm. fordham. edu

SANGUTHEVAR RAJASEKARAN

Dept. of Comp. and Info. Sc., University of Florida, Gainesville, FL 32611
raj@cise.ufl.edu

KSHIRASAGAR NAIK

Dept. of Elect. and Comp. Eng., University of Waterloo, Waterloo, Ontario, N2L 3G1
knaik@swen.uwaterloo.ca

SY-YEN KUO

Dept. of Elect. Eng., National Taiwan University, Taipei, Taiwan
sykuo@cc.ee.ntu.edu.tw

Received 21 January 2002
Accepted 19 March 2003
Communicated by H.-C. Yen

ABSTRACT

In this paper we show the power of sampling techniques in designing efficient distributed
algorithms. In particular, we apply sampling techniques in the design of selection algo-
rithms on the hypercube and de Bruijn networks, and show that the message com-
plexity of selecting an item from a set (file) is less sensitive to the cardinality of the
set (file). Given a file with n keys, our algorithm performs a selection on a p-node de
Bruijn network or hypercube using only O(ploglogn) messages and suffering a delay of
O(1 log plog log n), with high probability. Our selection scheme outperforms the existing
approaches in terms of both message complexity and communication delay. Because of
the lesser sensitivity of message complexity and communication delay of our algorithms
to the file size, our distributed selection schemes are very attractive in applications where
very large database systems are involved. Using our selection algorithms, we also show
that both quicksort-based sorting scheme and enumeration sorting scheme can be devel-
oped for sorting large distributed files on the hypercube and de Bruijn networks. Both
of our sorting algorithms outperform the existing distributed sorting schemes in terms
of both message complexity and communication delay.

Keywords: Distributed selection; distributed sorting; hypercube; de Bruijn network; large
distributed files.

1129

1130 D. S. L. Wei et al.

1. Introduction

Large, distributed files must be processed in some applications, such as national cen-
sus, personnel information system of large companies, etc. In this paper, we develop
efficient schemes for selection of and sorting the keys of large files distributed over a
number of sites linked by an interconnection network. In this context, selection and
sorting are explained as follows. The n keys of a given file F' are evenly distributed
over a network of p nodes, i.e. each node contains approximately 7 keys. Selection
of the kth key means finding the value of the key whose rank is k in F. Sorting
F means relocating the n keys among the p nodes such that all the keys at the
ith node are smaller (greater) than all the keys at the jth node for i < j (Z > 7).
Also, after sorting a file, each node contains the same number of keys as before
sorting®. In the development of our schemes, we logically organize the nodes (sites)
into hypercube and de Bruijn structures. Both structures have been widely used
as logical structures for developing distributed algorithms for classical problems
[3, 7, 9]. Both the structures can be emulated (realized) on a wavelength division
multiplexed (WDM) network or an ATM network using wavelength assignment or
virtual path layout, respectively [24].

Due to the fact that the cost of passing a message from one node to an adja-
cent one is much higher than a singular, local computation, distributed algorithms
are designed in such a way that the number of messages needed for the desired
computation is minimized, while keeping the communication delay as small as pos-
sible [22]. The efliciencies of distributed algorithms are thus commonly expressed
in terms of message count and communication delay.

The selection problem has attracted considerable attention within the dis-
tributed computing community. In [20], Shrira et al. present a selection algorithm
based on a Communicating Sequential Processes-like synchronous message passing
model. Their algorithm finds the kth key from a file of size n using O(pn®°!) mes-
sages, where p is the number of nodes. Using sampling techniques, Frederickson
[6] designed three selection algorithms for a network of nodes with asynchronous
message passing. On a ring of p nodes, his selection algorithm finds the kth key

of a file of size n in O(p'*¢logn) messages with O(r .171(1)_2%1)3) communication delay,

or in O(p log? plog n) messages with O(7plogn) communication delay. On a mesh
of size /p x /p, Frederickson’s algorithm selects the kth key from a file of size
n using O(p**2 %) messages with O(rp'/ 2}%?—;) communication delay, or using
O(p log'/? plog n) messages with O(rp!'/?
binary tree network, his algorithm performs selection using O(plogn) messages,
with O(r log? plog n) communication delay. The sampling technique used by Freder-
ickson [6] is a variant of [11]. In [21], Santoro et al. presented & distributed selection
algorithm, which uses O(ploglogn) messages on an average and uses O(plogn)
messages in the worst case for a point-to-point communication model. The

logn) communication delay. On a p-node

2The sorting problem we defined is referred to as static sorting problem in [18].

Efficient Algorithms for Selection and Sorting 1131

performance analysis in terms of communication delay was not given. A lower bound
given in {6] shows that selection of the median from a file of n keys evenly distributed
in a p-node complete interconnection network, in the worst case, requires at least
Q(plogn) messages. Due to this deterministic lower bound, in order to obtain a
selection algorithm in which the message complexity is asymptotically lower than
the lower bound, we use a randomized sampling technique which is a variant of the
sampling technique reported in [5]. Given a file with n keys and a p-node de Bruijn
network or hypercube, our algorithm performs selection using only O(ploglogn)
messages and suffering a delay of O(7 log ploglogn) with high probability. By “with
high probability”, we mean in the probability of at least (1 —n™%) for any fixed «,
where n is the input size of the problem being solved, the algorithm will correctly
solve the problem in the given message complexity and communication delay. Our
randomized selection algorithm beats the said deterministic lower bound in terms
of message complexity and outperforms those existing algorithms in terms of both
the message complexity and the communication delay.

Distributed sorting of a large file is of vital importance in very large database
system in that a sorted distributed file can provide much faster data retrieval or
other data manipulation operations. In {23], Wegner presents a distributed sorting
algorithm which sorts a file of size n over p nodes by sending O(np) messages, in the
worst case, and uses an expected O(nlogn) messages on an average. Rotem et al.
studied the distributed sorting problem in [18]. Though the algorithm was not given
in detail, according to their study, a sorting of a file of size n can be done in O(n)
messages using a completely connected network. In [8], Hofstee et al. presented a
distributed sorting algorithm in Dijkstra’s command language. The message com-
plexity of their algorithm is O(nlog %) where n is the number of elements and p
is the number of process. All of the above research works on distributed sorting
ignore the communication structure of a network on which a distributed algorithm
runs, and thus the performance analysis in termms of communication delay was not
given. Besides, the communication structure of a network affects the message com-
plexity of the algorithm designed for the network. Using our selection algorithms to
select pivot element(s) we develop a quicksort-based sorting scheme which, in the
worst case, sorts a distributed file of size n on a p-node hypercube using O{(n log? D)
messages. We also show a lower bound of Q(nlogp) for sorting a file of size n
on a p-node network with a diameter logp. We then develop a sorting algorithm
which sorts a distributed file of size n on a p-node hypercube or de Bruijn network
in O(nlogp) messages, which is optimal in terms of the message complexity. Our
distributed sorting scheme is fully distributed without a central control.

Development of our selection and sorting schemes is carried out as follows. First,
we develop a consensus protocol (a distributed version of a prefix computation).
Second, we develop a distributed sparse enumeration sorting scheme, where each
node of the network contains at most one key and there are at most ,/p keys in
the network to begin with. This sorting leads to the ith node (¢ < ,/p) holding the
ith key of the sorted list. Third, using the consensus protocol and the distributed

1132 D. S. L. Wei et al.

sparse enumeration sort, a randomized selection scheme is developed. Finally, using
the idea of selection, we sort the n keys distributed among the p nodes. The rest
of the paper is thus organized as follows. Section 2 defines the computation models
and gives some facts that will be helpful throughout. Section 3 presents a consensus
protocol and the distributed sparse enumeration sorting scheme. The randomized
technique for selecting the keys of a large file is presented in Section 4. Section 5
presents several sorting algorithms. Finally, some concluding remarks are given in
Section 6.

2. Preliminaries
2.1. Definition of Models

Though our selection algorithms are applicable on a variety of networks, we only
employ the de Bruijn network and the hypercube as examples.

De Bruijn Networks

A d-ary directed de Bruijn network DB(d,m) has p = d™ nodes [3, 13, 24].
A node v is labelled as dmdmm—1...d; where each d; is a d-ary digit. Node v =
dmdpm—1...d1 is connected to the nodes labelled d,,_1...dod17, denoted by SH(v,r),
where r is an arbitrary d-ary digit. One can view the link connecting v to SH(v,r)
as an output edge of v and an input edge of node SH (v, r) though we assume that
a link can be used to carry data in both directions. We emphasize on the sense
of direction for the convenience of algorithm description. We also use lgg (v ry to
denote the outgoing link connecting to node SH(v,r). One can easily see that any
node in the network is reachable from any other node in exactly m steps although
there might exist a shorter path. Also, it’s not hard to see that for a p-node binary
de Bruijn network, i.e. the one with d = 2, the diameter of the network is log p, i.e.
m = log p.

Hypercube

A hypercube of dimension m, denoted by H,,, consists of p = 2™ nodes [10].
Each node is labelled with an m-bit binary string, b,,b;n—1 - - - bab1. For any node u,
there is a bidirectional link connecting u to node v if and only if labels (addresses)
of v and v differ in exactly one bit position. It is easy to see that the diameter
of the network is m since the maximum number of different bits between any two
nodes is m. Also, the hypercube H,, can be constructed from two identical H,,—1
by connecting the ith node of one H,, 1 to the ith node of the other for 0 < i <«
9m=1_Tn other words, an H,, can be recursively partitioned into 2% subhypercubes
Hy_r,1 <k < m. In the design of our quicksort based sorting scheme for the
hypercube, we use these properties of hypercube. Also, we define H,,,(0) to be the

m bits

——
subhypercube of H,, composed of nodes of the form - - - % 0, and define H,,(1) to

m bits

—
be the subhypercube H,, composed of nodes of the form *---* 1.

Efficient Algorithms for Selection and Sorting 1133

Computational Model

We assume that the network size and the diameter of the network are known
to each node of the network. We also assume that each node knows its own unique
identity. Both assumptions have been justified in numerous previous works (see e.g.
(3, 22]). We also assume that each link in the network can be used to carry data
in both directions. The network is supposed to be fault-free, i.e. during the entire
course of computation no node or link will become faulty. A message sent by a
node is eventually delivered to the destination node after an arbitrary, but finite
delay. The readers interested in fault-tolerant computing are referred to {1], which
addresses fault-tolerant distributed sorting problem.

The message complexity is measured in terms of the total number of messages
produced by all of the nodes together during the entire course of the running of the
algorithm. In message count, if a message travels for h hops during the entire course
of the algorithm, h messages, rather than only one message, will be counted. Thus
a message complexity of O(plogn) could mean that each of p node has individully
produced O(logn) messages®, or that all of p nodes together produce O(plogn)
messages during the entire course of the algorithm. Throughout the paper a message
means a key, a record, or a number with a constant number of bytes. Since a message
takes up a constant number of bytes, the space complexity of the algorithm is the
same as its message complexity. Communication delay is measured in terms of
the number of hops needed for a packet (message) to travel from its source to
its destination and the maximum transmission delay on a link. We let 7 be the
maximum transmission delay on a link.

2.2. Some Facts from Probability Theory

We need the following lemmas in the analysis of our randomized algorithms.

Lemma 2.1. Let X be the number of heads in r independent flips of a coin, and
q be the probability of a head in a single flip. X is also known to have a binomial
distribution B(r,q). The following three facts are known as Chernoff bounds [2]:

PriX >w < (%)w e’

Pr[X > (14 €)rq] < exp(—e’rq/2),and

Pr[X < (1 —€)rq] < exp(—e’rg/3),

forany 0 <e< 1, and w > rq.

b A message is normally produced by executing a “send” instruction in the algorithm.

1134 D. S. L. Wei et al.

Lemma 2.2. (Chebyshev’s Inequality) Let X be a random variable with ex-
pectation E(X) = ux and standard deviation ox. Then for any real number c, we
have
1
Pr{X —px| 2 cox] <
Lemma 2.3. Let X1, Xs,---,X,, be independent random variables and let X =
Yiri Xi. Then 0% =Y ", 0%,

3. Consensus Protocol and Distributed Sparse Enumeration Sort

In this section we present a consensus protocol and a distributed sparse enumeration
sort which are basic operations in the development of schemes for selecting and
sorting the keys of large distributed files.

3.1. The Consensus Protocol

Bermond and Konig [3] have developed a generic consensus protocol on the de
Bruijn network. A consensus protocol can be viewed as a distributed version of pre-
fix computation [4] which will be repeatedly invoked by our selection and sorting
algorithms. As such, to help understand our algorithms, their algorithm is verbatim
presented in Figure 1. Bermond’s algorithm has been well designed with termina-
tion detection, which can provide useful synchronization when it is invoked as a
subroutine by an invoking algorithm such as our selection or sorting algorithm. Be
reminded that a distributed algorithm is designed in such a way that each node
of the network individually runs the identical copy of the algorithm. All nodes of
the network run asynchronously, i.e. the speed of the nodes are independent of
each other. Synchronization is achieved by designing the algorithm in three-phase
computations, i.e. (1) receives messages from adjacent nodes, (ii) does computation
based on the received messages, and (iii) sends the computed values to its adjacent
nodes. By repeatedly performing this three-phase computation, the desired func-
tion (e.g. consensus) can be eventually achieved. When this algorithm is invoked as
a subroutine by another algorithm, it will be treated as a computation step by the
invoking algorithm and is thus represented by a single invoking statement in the
invoking algorithm. Since this algorithm (which performs consensus or a distributed
prefix computation) is with termination detection, when the invoking algorithm is
running (Be reminded that each node of the network runs an identical copy of the
invoking algorithm), no node can proceed to the next step of the invoking algorithm
until the invoked algorithm has terminated at every node. The algorithm can be
invoked spontaneously or upon receiving a message.

Bermond’s algorithm can be used to compute various prefix computation func-
tions by using different computations in Step 3.4.c of the protocol. For example, if
we replace the statement “Compute R” of Step 3.4.c by a statement of summing
up all the data items in New, the function of this protocol will be computing a

Efficient Algorithms for Selection and Sorting 1135

sum of those data items contributed from each node in the network. It’s not hard
to see that this algorithm can achieve a consensus or finish a prefix computation
on a p-node binary de Bruijn network using O(plogp) messages with O(7logp)
communication delay. We can also apply the algorithm to the hypercube by just
tailoring the algorithm in such a way that in phase ¢ the set IN of incoming links
contains only those links along the (i — 1)th dimension and only send computed
data to those outgoing links along the ith dimension.

In fact, the number of messages needed to achieve a consensus or finish a
distributed prefix computation can be reduced to O(p) by slightly modifying
Bermond’s algorithm. This modified algorithm for distributed prefix computation,
stated in what follows, will be used as a building block in our distributed random-
ized selection algorithm. We give a high level description of this modified algorithm
in the proof of the following lemma.

Lemma 3.1. A prefiz computation can be realized in a decentralized manner on a
p-node de Bruijn network or hypercube using O(p) messages with O(7 logp) com-
munication delay.

Proof: A basic difference between the algorithm of Bermond and the modified one
is explained as follows. On the one hand, the entire course of the computation of
Bermond’s algorithm can be thought of as a superposition of p prefix computation
trees. On the other hand, in our modified distributed prefix computation, we allow
exactly one prefix computation tree to participate in computation, thereby reducing
the total number of messages needed.

The modified distributed prefix computation algorithm works as follows. The
node in which the prefix computation was issued marks itself. It then sends a special
message along both incoming links. The nodes which received the special message
from the outgoing link(s)¢ pass the received special message to the neighboring nodes
via the incoming links. After logp rounds of receiving and passing of the special
message, each node in the network will receive the message. Thus the receiving and
passing of the special message will be repeated for exactly logp times. In the ith
iteration, the nodes which receive the special message update their variable OUT;
to include the outgoing link on which the special message was received. The variable
OUT; will be used later to control the behavior of the consensus algorithm such that
exactly one prefix computation tree is involved in the computation. We then execute
Bermond’s algorithm with a modification. We replace Step 3.2, namely “for each
outgoing link do send (Phase, New)” by “for each outgoing link in OUTppase do
send (Phase, New)”. The effect of this computation is that the computed results
will be obtained only in those nodes which are marked. Then depending on the
applications, there may be a need to broadcast the computed result to all nodes
by simply sending the result from the marked nodes along the links which had

°Note that if there is only one marked node, there will be only one outgoing link receiving the
message.

1136 D. S. L. Wei et al.

Variables used in each node P:

Inf: The global information known by P (To begin with, Inf consists of the identity of
the node P plus its initial data).

New: The new information obtained by P since the beginning of the current phase.
Phase: The number of phase at which P is executing.

R: The result obtained by P. It depends on the application.

l: Represents an incoming link of P.

IN: The set of incoming links on which P can receive messages (when P receives a
message “end” on some incoming link [it deletes this link from IN).

INITIATION

1. New = Inf
2. Phase =0
PHASES
3. while New # 0 do
begin
31 Phase = Phase + 1
3.2 for each outgoing link do send (Phase, New)
3.3 New =0
34 for each incoming link / in /N do
begin
3.4.a receive (Phase,I) on !
3.4.b if I =“end”
then IN = IN —{I}
else begin
New = NewU (I — Inf)
Inf=Inful
end
3.4.c Compute R
end
end
TERMINATION
4. Phase = Phase + 1
5. for each outgoing link do send (Phase, “end’’)
6. while IN # 0 do
begin
6.1 for each incoming link I in IN do
begin
6.1.a receive (Phase,I) on !
6.1.b if I =“end” then IN = IN — {i}
end
6.2 Phase = Phase + 1
end

Fig. 1. A general consensus protocol.

ever been traveled by the special message. Clearly, the one and only one prefix
computation tree needs no more than 2 Ziozglp 2° = O(p) messages. Thus the revised
version of distributed prefix computation uses only O(p) messages while it never
asymptotically increases the communication delay. U

Efficient Algorithms for Selection and Sorting 1137

3.2. A Distributed Sparse Enumeration Sorting Algorithm

To guarantee an O(p) message complexity, in addition to using the distributed
prefix computation presented in the previous subsection, our randomized selection
algorithm also uses a distributed sparse enumeration sort as one of the building
blocks. In this subsection, we present this sparse enumeration sorting scheme. We
give a high level description of this sparse enumeration sort in the proof of the
following lemma.

Lemma 3.2. For any fized e < %, a set of p¢ keys distributed in a p-node hypercube
H,, (m = logp), with no more than one key per node, can be sorted in O(p)
messages with O(7 log p) communication delay.

Proof The proof is done by giving a four-step sorting scheme. 1) Using the modified
algorithm, perform a distributed prefix computation to assign a unique label to each
key from the range [1,p]. 2) Route these keys to a sub-hypercube of size p%—a
packet whose label is g can be routed to a node indexed ¢ in the subhypercube. Note
that the routing is a monotone routing and, thus, a greedy routing can be performed
requiring only O(,/p - logp) = O(p) messages and with O(logp) communication
delay. With this prefix computation and routing step we basically concentrate the
keys to be sorted in a subhypercube whose size is p1/2. If € < %, some tail nodes
(in lexicographic order) may not receive a key and thus use co as a pseudo-key. Let
the subhypercube in which the keys are concentrated be an Hy g -

3) Next we make a copy of these keys in every H Llogp in the hypercube. The
number of such copies made will be /p. These copies can be made in O(p) mes-
sages with %—log p = O(logp) communication delay, because in the ith step we can
double the copies by sending the keys via the links along the (i + % log p)th dimen-
sion, which requires ,/p - 21~ messages. Thus, the entire copying process requires

\/]_Jziézli’gpy = O(p) messages. If H% log p* Hzl_ logp " * .,H’; log p 18 the sequence of
H Llog p S in Hp,, we make use of the copy in H % logp 1O cOmpute the rank of the
rth key, i.e., the key whose label is r (as computed in step 1). Rank computation
is done using the modified distributed prefix algorithm. 4) Finally we route the
key whose rank is j to the node indexed j in H1 log p* Once again the routing is a
monotone one. :

According to Lemma 3.1, distributed prefix computation uses O(p) messages
and suffers O(7logp) delay. Routing uses O(p) messages and suffers O(7logp)
delay. Copying of keys also uses O(p) messages and suffers O(7 log p) delay. Thus, in
summary, the sparse enumeration sort can be done in O{p) messages with O{(7 logp)
communication delay. O

Using a similar scheme and the sparse enumeration sorting of Nassimi and Sahni
[12] for perfect shuffle networks, we can also prove the following lemma.

Lemma 3.3. For any fized e < %, a set of p* keys distributed in a p-node de Bruijn

network, with no more than one keys per node can be sorted in O(p) messages with
O(7logp) communication delay.

1138 D. S. L. Wei et al.

4. The Randomized Distributed Selection Algorithm

‘We are now ready to present the details of our randomized selection algorithm. The
algorithm is designed based on random sampling {16, 17]. The basic idea in random
sampling is as follows: (1) Sample a set .S of o(n) keys at random from the collection
N of surviving keys (To begin with, N is the given file). (2) Identify two keys a
and b in S such that, with high probability, the key to be selected is in between a
and b. Also, if S’ is the set of all input keys in between a and b, then |S’| should
be small enough so that we can directly process S’. The techniques of recursive
randomized selection of Floyd and Rivest [5] can not be directly used in the design
of our distributed randomized selection algorithm. This is because in a recursive
version of random sampling the size of sample set S, which contains information
for which we are seeking the kth key, is shrinking as recursion proceeds. It can be
shown that in a typical stage of recursion the probability of failure at that stage
is O(|S]™%). But |S| is diminishing such that the probability of failure is rising
as the algorithm proceeds. Therefore, the failure probability is very high when
the size of sample set is very small, say a constant. This is a fundamental barrier
with recursive random sampling and is also a challenging problem to handle in
developing distributed algorithms using random sampling. A feasible solution is to
stop the algorithm when the problem size (or the size of sample set) is reduced to
a certain sized and switch to a different technique, say sparse enumeration sorting.

Our selection algorithm is given in Figure 2. Be reminded that each node of the
network has an identical copy of the algorithm and these nodes work together (No-
ticed that each node individually execute its own copy of the algorithm.)to achieve
the task of distributed selection. Throughout our selection algorithm, the algorithm
of Lemma 3.1 is employed several times for distributed prefix computations. We as-
sume that the algorithm selects the kth key from a file of size n. To begin with, each
key of the file is alive. To obtain a small set S’ of keys from the given large file such
that the key to be selected is extremely likely to be in S’, we have to repeatedly
execute Step 1 through Step 5 for several times (the number of times needed for
the repeat block is analyzed in the proof of the theorem). If kth key is the one
originally to be selected, since the value of k is updated accordingly in Step 5 of
the repeat block, kth key in S’ remains the one originally desired. Step 6 sorts the
keys in S” such that the jth key of S’ moves to jth node for all 7,1 < j < |S’|. Step
7 is to report the desired key, the kth key of the originally large file. Be advised
that only node k (Noticed that the current value of k may be different from the
original value of k.) needs to report this key.

Theorem 4.1. Selection on a file F' can be distributedly performed on a p-node de
Bruijn network or hypercube in O(ploglogn) messages with communication delay
O(1 logploglogn) with probability 1 — p~<.

dWe choose square root of the network size as the certain size to obtain the desired performance.

Efficient Algorithms for Selection and Sorting 1139

0. Contribute the size of local file to the prefix computation and trigger or participate in
a prefix computation to obtain the size n of the entire file.
(*To begin with, each key in each local memory is alive.*)
N =n.
repeat
1. Flip an N¢-sided coin for each alive key in the local memory.
An alive key gets included in the random sample, S, with probability N ~¢.
¢ is chosen in such a way that |S| < p%. (*The value of € is given in the analysis.*)
2. Let np, be the number of alive keys included in S.
Contribute 7p, and trigger or participate in a prefix computation to elect
n = maxp,{np, }.
repeat for 7 times
If there still are more than 1 alive keys included in S, contribute 1;
Otherwise contribute 0.
Trigger or participate in a prefix computation to obtain the label g
for the key to be contributed if there is one.
If 1 was contributed, using the randomized routing scheme of [14]
to route the key to node q.
end repeat
(*The function of Step 2 is to concentrate the sample keys.*)
3. Perform the sparse enumeration sorting of Lemma 3.2.
4. Let 2 = [k21] = [k- N—€].
If i (the label of the node) is equal to max{1l,z — N%(l_e)},
then mark the key received from sorting (Step 3) as [and
trigger a prefix computation to broadcast key 1.
If i (the label of the node) is equal to min{z + N%(l—e), 1S3,
then mark the key received from sorting (Step 3) as h and
upon receiving key [, trigger a prefix computation to broadcast key h.
5. Count the number, ;, of alive keys with a value in the range [key;, keyn].
Contribute &; and trigger a prefix sum to obtain & = Y, @;.
Also count the number, &;, of alive keys with a value < key;.
Contribute &; and trigger a prefix sum to obtain & = Y, &;.
If k is not in the interval (&,a + a] or if @ # O(N%“h%e) go to Step 1.
Mark those alive keys (in the local memory) that are < key; or > keyp, as dead.
Set k =k — a.
until N < p%
Perform Step 2 to concentrate surviving keys and perform Step 3 to sort these keys.
If the label of the node is k, report the unique alive key.

o

Fig. 2. The randomized selection algorithm.

Proof: The message bound and communication delay can be obtained by examining
each step of the repeat loop followed by an estimation of the number of times the
repeat loop will be executed. '

Assuming that N = O(p?), we choose € to be 1 — 7= such that with high
probability |S| = O(N'~€) < pz. Though N is diminishing in each iteration, we
can always perform an extra prefix computation so that each node knows the new
N and thereby choose an appropriate €. In each iteration, Step 1 needs only lo-

cal computation. In Step 2, using Chernoff bounds, it can be shown that with

1140 D. S. L. Wei et al.

probability 1 — N=%, a > 0, n = O(1) and, thus, the repeat loop of Step 2 will be
executed for only O(1) times. And both the prefix computation (Lemma 3.1) and
randomized routing [14] use O(p) messages and suffer O(7logp) delay with proba-
bility 1 — p~® for some constant «. Thus, Step 2 requires only O(p) messages with
O(r log p) communication delay with probability 1 —p~®. According to Lemma 3.2,
Step 3 uses O(p) messages with O(7logp) communication delay with probability
1 — p~®. Steps 4 and 5 perform several prefix computations (in addition to some
local computations) and thus can also be done in O(p) messages with O(7 logp)
communication delay with probability 1 —p~<.

We now consider the failure that the kth key we seek falls outside of S’. There
are two possible cases for this mode of failure, namely keyy < key; and keyy > keys.
We shall only prove the case of keyy < key;. (The other case can be proved simi-
larly.) This case happens when fewer than [keys in sample set S are less than or
equal to keyx. Let N be the set of surviving keys and let X; = 1 if the dth key in
S is at most keyy, and 0 otherwise. Also let |N| = N. Then, Pr[X; = 1] = £ and

PriX,=0]=1- % Let X = ZlASll X; be the number of keys of S that are < keyg.

=
Because each X; is a Bernoulli trial, X has a binomial distribution. We thus have

px = E[X]= N'~¢

?

2| =

and

0% = var[X] = N'~¢ <%> <1 - %> < %Nl"e.

Therefore, ox < %N 7(1-9), Using Chebyshev’s Inequality, we have

Pr|X — ux| > Ni079) = Pr|X — px| > 2N1(0-9gy] = O(N~5(179),

The second mode of failure is that S contains more than O(N §+3¢€) keys. Let
z, = rank(select(r, S),N). We can prove that

Elz,] = r%. (1

Therefore, if we select a key z from S with rank [k %1, the expected rank of z in

N, E[rank(z,N)], is kl'%] x A

5] = k. We can also prove that

1 N
Oz, < §|TS'.|T/_2 (2)

Let E[|S’|] be the expected number of keys lying in between key; and keyy,. Then
we have

E[|9|] = E[rank{(key;,N)] — E[rank(keyn, N)]

Efficient Algorithms for Selection and Sorting 1141
N 18]
= — (k2
st
N 3
= .2Ni(1=9
5]
= 9N¢. Ni(1-9)
_oN3tic
Let px, = E[rank(keyx,N)]. By (2), we have ox, < N %N%"'%e. Then
using Chebyshev’s Inequality, we have

(k% — Ni(i=9)

N

Na=ay _ S

Il

Prrank(keys, N)-px, | > N1 = Prljrank(heye, N)—px,| 2 2N~ H0x,] = O(N-30-9),

Consequently, each iteration of the repeat loop can be done in O(p) messages
with O(7 log p) communication delay with probability 1—N~%, N being the number
of alive keys at the beginning of this iteration. Because we assume that N = O(p")
and we choose € to be 1 — 51—, the probability of failure of both modes is O(p~*)
for some constant «.

We then show that the expected number of times that the repeat loop is
executed is O(loglogn). If there are N alive keys at the beginning of any iter-
ation of the loop, then the number of remaining alive keys at the end of this
iteration is O{N %"”ie) = O(N¢) (for any fixed ¢ < 1) with high probability.
This implies that the expected number of times the repeat loop is executed is
O(logt + 1) = O(loglogn). Steps 0 and 7 can also be performed in O(p) messages
with O(7logp) communication delay with probability 1 — p~. a

We can also trade message complexity and running time for the lower failure
probability. This leads to the following corollary.

Corollary 4.1. Selection on a file of size n can be distributedly performed on
a p-node de Bruijn network or hypercube in t - O(p) = O(%oég—}) messages with
communication delay t - O(t logp) = O(t logn) with probability 1 —n™%, a > 1.

5. Sorting Large Distributed Files on the Hypercube and de
Bruijn Networks

In this section we present a quicksort-based sorting scheme which uses the selection
of previous section for sorting a large distributed file on the hypercube. Using our
randomized selection algorithms, we also develop an enumeration sorting scheme
for sorting large distributed files in both de Bruijn networks and the hypercube. A
common index scheme used for sorting a distributed file F' of size n in a p-node
network is that each key, key;, will be residing in [rank(key;, F) - £]th node after
sorting. We first present a lower bound for sorting a distributed file in the hypercube
in Lemma 5.1.

Lemma 5.1. Sorting a distributed file F' of size n in a p-node hypercube in the
worst case requires at least)(nlog p) messages and delay Q(T%).

1142 D. S. L. Wei et al.

Proof WLOG, assume that n divides p. For any key, key;, if initially key; resides

in node Py 5, _,...bp5, and [rank(key;, F) - 2] =37 | b®, the key needs logp hops

to reach its destination (node). If each of n keys suffers the same situation, in total

we need at least nlogp messages for each key to reach its right position (node).

Since we have Q(n logp) messages to be consumed and in a p-node hypercube we

have only plogp links to evacuate these messages, it suffers at least % delay. O
Using a similar argument, we can also prove the following lemma.

Lemma 5.2. Sorting a distributed file F of size n in a p-node de Brutgjn network
in the worst case requires at least Q(nlogp) messages and delay Q(T% logp).

Proof: The reason that it suffers more delay in the de Bruijn network is that de
Bruijn network has only O{p) links to evacuate O(n log p) messages. O
We then present our sorting algorithm which can sort a distributed file of size

n in a p-node hypercube in O(nlog? p) messages with O(% log? p) communication
delay. This algorithm is near optimal in the sense of both message complexity and
communication delay. The basic idea behind our algorithm is: (1) select a median
from the keys in current (sub)hypercube, H; (initially 4 = n), and broadcast the
median to each node in current H;; (2) each node in H; compares each key in its
local memory with the received median and mark a key as 0 if it is less than or
equal to the median, and 1 otherwise; (3) each node in H;_;(0) sends those keys (in
its own local memory) marked 1 via the link along the ith dimension to the nodef
in H;_1(1), and each node in H;_1(1) sends those keys marked 0 via the link along
ith dimension to the node in H;_1(0); (4) perform prefix computation and packing
(monotone routing) for at most logp times to balance the load such that each node
has 2 keys; (5) repeat (1)-(4) for logp times. This way, upon termination of the
algorithm, each key will be in its right position (node), i.e. each key in node F; is
less than or equal to each key in node Pj, for all 4,5, 1 < ¢ < j < p. To do so, each
node in the network individually executes the following algorithm.
i=0
repeat
1. Perform selection algorithm of Figure 2 to select I_%Jth key.

(*The node which holds the selected key will broadcast the key to every node

by triggering a prefix computation. Label the selected key as median.*)
2. Compare each key in the local memory with the received median.

Mark a key as 0 if it is less than or equal to the median, and 1 otherwise.

If sth bit of the address of the node is 0,

then send those keys marked 1 to the adjacent node via the link along ¢th dimension;

Otherwise, send those keys marked 0 to the adjacent node via the link along ith dimension;
3. Let np, be the number of keys in the local memory.

Contribute 77p, and trigger a prefix computation to elect 7 = maxp,{np;}.

repeat for n times

If there still are more than 1 old keys in local memory, contribute 1;

p; denotes the complement of b;.
fNote that the node in H;_1(1) is the adjacent node of the one in H;_1(0) along the ith dimension.

Efficient Algorithms for Selection and Sorting 1143

Otherwise contribute 0.

Trigger a prefix computation to obtain the label g for the key to be packed.

If 1 was contributed, using a greedy routing scheme to route the key to node g.
(*The routing is a monotone one.*)

end repeat (*The node will receive exactly =

T new keys.*¥)

4. Close the link along the i¢th dimension.
n=7%p=4%

5, i=1+1

until : =logp

Analysis

The message bound and communication delay can be obtained by examining
each step of the repeat loop. Assume that each node can only process one key
at a time. According to Theorem 4.1, Step 1 can be performed in O(ploglogn)
messages with O(7logploglogn) communication delay. Step 2 can be done in n
messages and with T% communication delay in the worst case. In Step 3, in the
worst case, 7 will be 2%. It thus needs 2-;3 -p+nlogp = O(nlogp) messages for
balancing the keys among nodes. The communication delay in Step 3 is clearly
O(T% log p). Steps 4 and 5 need only local computation. Thus each iteration of the
repeat loop generates O(nlog p) messages and contributes a communication delay
of O(T% logp). The repeat loop is performed for exactly logp times. We thus have
the following theorem.

Theorem 5.1. Sorting of a distributed file of size n can be distributedly per-
formed on a p-node hypercube in O(n log? p) messages and with communication
delay O(T% log? p), provided n = Q(p log? p), with probability 1 —n™%,a > L.

This quicksort-based sorting scheme doesn’t work on the de Bruijn network
due to the fact that quick-sort based sorting is a recursive scheme whereas the
de Bruijn network is not a recursively constructed network. Fortunately, using a
different approach, the following sorting scheme performs efficient sorting on the de
Bruijn network by repeatedly employing selection and routing algorithms.

0. i=1
1. repeat
l.a Perform a selection algorithm to select 7| 2 |th key.

(*The node which holds the selected key will broadcast the key to every node
by triggering a prefix computation.*)

1.b Compare each unmarked key in the local memory with the selected key.
Label an unlabelled key as i if it is less than or equal to the selected key.

lc i=1i+1

until i =p+1
i=1
2. repeat
2.a Route the key in memory cell i to node r (assuming that the label of the key is r)
using a greedy routing scheme.
2.b i=1i+4+1

G n
untllz—p—i—l

1144 D. S. L. Wei et al.

If we employ the selection algorithm of Figure 2 in the above sorting scheme,
we obtain the following theorem.

Theorem 5.2. Sorting of a distributed file of size n can be distributedly performed
on a p-node de Bruijn network in O(n log p) messages and with communication delay
O(rn) provided = QO with probability 1 —n~%,a > 1, which is nearly
optimal.

To'g%é—ﬁ logp)
Proof: Selection requires O(ploglogn) messages and O(7 logploglogn) delay, and
is executed for p times. Also, in the worst case, each of n keys needs logp hops to
reach its destination. It, thus, requires O(ploglogn)+nlogp = O(nlogp) messages
in total provided @ = Q(logp) Since each node has 2 keys, the greedy routing
algorithm will be executed for 2 times for routing p keys each time. In the worst
case, each time each of p keys may go for the same destination (node) and it thus
takes p steps for the destination node to process the received keys. Therefore, the
algorithm will totally suffers 7n + O(rploglogn) = O(rn) communication delay.[]

This selection-based enumeration sorting scheme can also be applied on the
hypercube to obtain the following theorem. Comparing the quicksort-based sorting
with the selection-based enumeration sort, one can see a trade off between message
complexity and communication delay. However, it is obvious that the performance
of both sorting schemes (for sorting large distributed files) is highly dependent on
the performance of the selection algorithm employed.

Theorem 5.3. Sorting of a distributed file of size n can be distributedly per-
formed on a p-node hypercube in O(nlogp) messages and with communication
delay O(mn) provided = O with probability 1 —n~%,« > 1, which is
nearly optimal.

Toglogn log n logp)

6. Conclusions

In this paper, we presented a randomized selection algorithm which performs selec-
tion of the kth key from a file of size n in a p-node de Bruijn network or hypercube
using only O(ploglogn) messages and suffering O(logploglogn) communication
delay. Our randomized selection outperforms the existing approaches in terms of
both message complexity and communication delay. The property that the number
of messages needed and communication delay are less sensitive to the size of the
file makes our distributed selection schemes extremely attractive in the applications
of very large database systems. Using our selection algorithms to select pivot ele-
meﬂt(s), we have also developed two near optimal sorting schemes for sorting large
distributed files on hypercube and de Bruijn network. Our algorithms are fully dis-
tributed with no central control involved. According to the lower bound we have
shown in this paper, the algorithm we have presented for sorting a large distributed
file is still not optimal in the sense of communication delay. Searching a tighter
lower bound or discovering an upper bound algorithm with matching time bounds
(communication delay) is still open.

Efficient Algorithms for Selection and Sorting 1145

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

G. Alari, B. Bourgon, J. Chacko, and A.K. Datta, " Adaptive distributed sorting,”
Proceedings of the 1996 IEEE 15th Annual International Phoenix Conference on
Computers and Communications, pp.1-7, 1996.

D. Angluin and L.G. Valiant, “Fast Probabilistic Algorithms for Hamiltonian Circuits
and Matchings,” Journal of Computer and System Sciences 18(2), 1979, pp. 155-193.
J.-C. Bermond and J.-C. Konig, “General and Efficient Decentralized Consensus Pro-
tocols II,” Parallel and Distributed Algorithms, editors: M. Cosnard et al., North-
Holland, 1989, pp. 199-210.

T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, McGraw Hill,
1991.

R.W. Floyd and R.L. Rivest, “Expected Time Bounds for Selection,” Comm. of the
ACM, vol.18, no. 3, March 1975, pp. 165-172.

G.N. Frederickson, “Tradeoffs for Selection in Distributed Networks,” in Proceedings
of 2nd ACM Symposium on Principles of Distributed Computing, 1983, pp. 154-160.
JM. Helary and A. Mostefaoui, “A O(logoN) Fault-Tolerant Distributed Mutual
Exclusion Algorithm Based on Open-Cube Structure,” IEEE ICDC’9/4, June, 1994.
H.P. Hofsee, A.J. Martin, and J.L.A. Van De Snepscheut, ” Distributed sorting,” Sci-
ence of Computer Programming, 15, 1990, pp. 119-133.

J.M. Helary, A. Mostefaoui, and M. Raynal, “A General Scheme for Token- and
Tree- Based Distributed Mutual Exclusion Algorithms,” IEEE Trans. on Parallel
and Distributed Systems, Vol. 5, No. 11, Nov. 1994, pp. 1185-1196.

F.T. Leighton, “Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
and Hypercubes,” Morgan Kaufmann, 1992.

J.I. Munro and M.S. Paterson, “Selection and Sorting with Limited Storage,” Theo-
retical Computer Science 12, 1980, pp. 315-323.

D. Nassimi and S. Sahni,“Parallel Permutation and Sorting Algorithms and a New
Generalized Connection Network,” JACM, July 1982, pp. 642-667.

R. K. Pankaj and R. G. Gallager, “Wavelength Requirements of All-Optical Net-
works,” IEEE/ACM Trans. on Networking, Vol. 3, No. 3, June 1995, pp. 269-280.
M. Palis, S. Rajasekaran, and D.S.L. Wei, “Packet Routing and PRAM Emulation on
Star Graphs and Leveled Networks,” Journal of Parallel and Distributed Computing,
vol. 20, no. 2, Feb. 1994,

S. Rajasekaran, W. Chen, and S. Yooseph., “Unifying Themes for Parallel Selection,”
Proc. Fifth International Symposium on Algorithms and Computation, August 1994.
S. Rajasekaran and J.H. Reif, “Derivation of Randomized Sorting and Selection Al-
gorithms,” in Parallel Algorithm Derivation and Program Transformation, Edited by
R. Paige, J.H. Reif, and R. Wachter, Kluwer Academic Publishers, 1993, pp. 187-205.
S. Rajasekaran and S. Sen, “Random Sampling Techniques and Parallel Algorithms
Design,” in Synthesis of Parallel Algorithms, Editor: J.H. Reif, Morgan-Kaufman Pub-
lishers, 1993, pp. 411-451.

Rotem, D., Santoro, N., and S.J. Sidney, ” Distributed Sorting,” IEEE Trans. on Com-
puters, 34 (4):372-376, 1985.

S. Rajasekaran and D. Wei, “Designing Efficient Distributed Algorithms Using Sam-
pling Techniques,” 11th International Parallel Processing Symposium, IEEE, Geneva,
Switzerland, April 1-5, 1997.

L. Shrira, N. Francez, and M. Rodeh, “Distributed K-Selection: From a Sequential to
a Distributed Algorithm,” in Proceedings of 2nd ACM Symposium on Principles of
Distributed Computing, 1983, pp. 143-153.

1146 D. S. L. Wei et al.

21.

22.
23.

24.

Santoro, N., M., Sidney, J.B., and S.J. Sidney, “A distributed selection algorithm and
its expected communication complexity,” Theoretical Computer Science, 100(1992),
pp. 185-204.

G. Tel, Introduction to Distributed Algorithms, Cambridge University Press, 1994.
L.M. Wegner, “Sorting a Distributed File in a Network,” in Proc. Princeton Conf.
Inform. Sci. Syst., 1982, pp.505-509.

David S.L. Wei and K. Naik, “An Efficient Multicast Protocol Using de Bruijn Struc-
tures for Mobile Computing,” ACM Computer Communication Review, vol. 27, no.
3, pp. 14-35, July 1997.

Copyright of International Journal of Foundations of Computer Science is the property
of World Scientific Publishing Company and its content may not be copied or emailed
to multiple sites or posted to a listserv without the copyright holder's express written
permission. However, users may print, download, or email articles for individual use.

