
ar
X

iv
:c

s/
04

03
02

7v
2 

 [
cs

.O
H

] 
 1

1 
M

ay
 2

00
4

An approach to membrane computing under inexactitude
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Abstract. In this paper we introduce a fuzzy version of symport/antiport membrane
systems. Our fuzzy membrane systems handle possibly inexact copies of reactives and
their rules are endowed with threshold functions that determine whether a rule can be
applied or not to a given set of objects, depending of the degree of accuracy of these
objects to the reactives specified in the rule. We prove that these fuzzy membrane
systems generate exactly the recursively enumerable finite-valued fuzzy subsets of N.
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1 Introduction

Membrane computing is a formal computational paradigm, invented in 1998 by Gh. Păun
[9], that rewrites multisets of objects within a spatial structure inspired by the membrane
structure of living cells and according to evolution rules that are reminiscent of the processes
that take place inside cells. Most approaches to membrane computing developed so far have
been exact: the objects used in the computations are exact copies of the reactives involved
in the biochemical reactions modelled by the rules, and every application of a given rule
always yields exact copies of the objects it is assumed to produce. But, in everyday’s practice,
one finds that cells do not behave in this way. Biochemical reactions may deal with inexact,
mutated copies of the reactives involved in them, and errors may happen when a biochemical
reaction takes place. These errors can be due, for instance, to the inexactitude of the chemical
compounds used or to unnoticed changes in the surrounding conditions.

The inexactitude underlying cell processes made Gh. Păun ask in his very first list of
open problems in membrane computing [10], dated October 2000, for the development of
“approximate” mathematical approaches. A first answer to this question was given by A.
Obtu lowicz and Gh. Păun himself by extending the classical model to a probabilistic one
[7]. Actually, these authors discussed several ways of introducing probabilities in membrane
computing: at the level of objects (each object lies in a membrane with a certain probability),
at the level of rules (at each moment, each rule is fired with a certain probability), and at the
level of targets (outputs of applications of rules are moved to each possible membrane with a
certain probability).

Beyond this probabilistic approach, Gh. Păun has asked more specifically for the devel-
opment of a rough set version of membrane computing in a later list of open problems [12]
and Obtu lowicz [6] has discussed several possible rough set based mathematical models of
uncertainty that could be used in membrane computing. In the Concluding Remarks section
of their aforementioned paper [7], A. Obtu lowicz and Gh. Păun proposed the use of fuzzy
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set approaches to introduce uncertainty effects in membrane computing. But, although the
probabilistic approaches developed in that paper can be easily generalized to the possibilistic
setting, other fuzzy approaches to the membership of objects to membranes may have some
drawbacks. For instance, the classical rules of fuzzy logic —for the usual operations between
fuzzy sets valued in [0, 1] and involutive complement operation c [3]— entail that, for every
membrane (including the environment) m0, the maximum of the membership values of a given
object to all membranes other than m0 must be the image under c of its membership value
to m0. Then, it is straightforward to prove that this rule implies that, for every object, there
exists some α ∈ [0, 1] such that its membership value to each membrane is α ∧ c(α) for all
membranes but one, and α ∨ c(α) for the remaining membrane: almost a crisp situation.

Nevertheless, there is one uncertainty aspect that cannot be handled by means of probabilis-
tic methods and that is suitable to being attacked using a fuzzy set approach: the inexactitude
of the reactives involved in computations. I.e., the fact that the actual objects used in com-
putations, as well as the actual output of the latter, need not be exact copies of the reactives
that are assumed to be used in the computations or to be produced by them but only approx-
imate copies of these reactives. In this paper we present a first approach to the use of fuzzy
methods to handle this kind of uncertainty. For simplicity, we consider only symport/antiport
systems [8] —membrane systems whose rules only move reactives through membranes— but
it is straightforward to extend our approach to other models of membrane computing. Our
fuzzy symport/antiport systems also move objects through membranes, but now these objects
can be inexact copies of reactives and each rule is endowed with threshold functions that de-
termine whether it can be applied or not to a given set of objects, depending of the degree of
approximation of these objects to the reactives specified in the rule. Then we prove that these
fuzzy membrane systems are universal in the sense that they generate exactly the recursively
enumerable finite-valued fuzzy subsets of N.

2 Preliminaries

In this section we recall some concepts on fuzzy sets and multisets and on symport/antiport
membrane systems, and we take the opportunity to establish some notations and conventions,
some of them not the standard ones, that we shall use.

2.1 Fuzzy sets

Any subset Y of a set X can be identified with its membership, or characteristic, mapping
χY : X → {0, 1}, defined by χY (x) = 1 if x ∈ Y and χY (x) = 0 if x /∈ Y . Fuzzy subsets
generalize this interpretation of subsets as membership mappings by allowing membership
values other than 0 and 1. Thus, a fuzzy subset of a set X is a mapping from X to the unit
interval [0, 1]. More in general, given any subset I of [0, 1], an I-fuzzy subset of a set X is a
mapping from X to I. Whenever we speak about I-fuzzy subsets (or multisets, see below),
we shall assume that 0, 1 ∈ I. A fuzzy subset of a set X is finite-valued when its image is a
finite subset of [0, 1], i.e., when it is I-fuzzy for some finite subset I of [0, 1].

For every fuzzy subset ϕ : X → [0, 1], its t-level, for every t ∈ [0, 1], is

ϕt = {x ∈ X | ϕ(x) ≥ t}.

Notice that ϕ0 = X and, for every t, t′ ∈ [0, 1], if t ≤ t′, then ϕt ⊇ ϕt′ . For every fuzzy subsets
ϕ, ϕ′ : X → [0, 1], ϕ = ϕ′ if and only if ϕt = ϕ′

t for every t ∈ [0, 1].



If ϕ is I-fuzzy and t0, t1 ∈ I are such that the open interval ]t0, t1[ does not contain any
element of I, then ϕt = ϕt1 for every t ∈]t0, t1]. Thus, if ϕ, ϕ′ are I-fuzzy subsets of X , then
ϕ = ϕ′ if and only if ϕt = ϕ′

t for every t ∈ I. This allows us, when dealing with I-fuzzy
subsets, to consider only their t-levels for t ∈ I.

A (crisp) multiset, or bag, over a set V is simply a mapping d : V → N. The usual inter-
pretation of a multiset d : V → N is that it describes a set consisting of d(v) “exact” copies
of each v ∈ V , without specifying which element of the set is a copy of which element of V .
A natural generalization of this interpretation of multisets leads to a first definition of fuzzy
multiset, or fuzzy bag, over a set V as a mapping F : V × [0, 1] → N. Such a fuzzy multiset can
be understood as describing a set consisting, for each v ∈ V and t ∈ [0, 1], of F (v, t) “possibly
inexact” copies of v with degree of similarity t to it. In other words, we understand that a
fuzzy multiset F over V describes a set endowed with a family (F (v))v∈V of fuzzy subsets
that contains F (v, t) elements x such that F (v)(x) = t, for every v ∈ V and t ∈ [0, 1].

It will be convenient for our purposes to take a slightly modified definition of fuzzy multiset.
The first modification affects both crisp and fuzzy multisets. Sometimes we shall need to
represent the fact that the set described by a multiset (resp., a fuzzy multiset) F over V
contains an arbitrarily large number of copies of some elements v of V (resp., with some
degree of similarity t). We shall do it by writing F (v) = ∞ (resp., F (v, t) = ∞). Thus, our
(crisp and fuzzy) multisets will actually take values in N ∪ {∞}. To simplify the notations,
from now on we shall denote this set N ∪ {∞} by N∞.

On the other hand, we impose two limitations on the interpretation of a fuzzy multiset as a
set that allow us to modify its definition; cf. [1]. First, we shall assume that if an element of the
set described by a fuzzy multiset over V is an inexact copy of v ∈ V with degree of similarity
t > 0, then it cannot be an inexact copy of any other element in V with any non-zero degree
of similarity. And second, we shall also assume that the set described by a fuzzy multiset over
V does not contain any element that is not a copy of some v ∈ V with some non-zero degree
of similarity, or, rather, we shall not take into consideration these elements. These conditions
entail that, for every v ∈ V , the value F (v, 0) must be equal to

∑
w∈V−{v}

∑
t∈]0,1] F (w, t)

and in particular that the restriction of F to V ×{0} is determined by the restriction of F to
V×]0, 1].

These restraints allow us to define in this paper a fuzzy multiset over a set V as a mapping

F : V×]0, 1] → N∞.

Not having to care about the images under fuzzy multisets of the elements of the form (v, 0)
will greatly simplify some of the definitions and results that will be introduced in the main
body of this paper.

For every I ⊆ [0, 1], we shall denote I − {0} by I+. Consistently with our definition of
fuzzy multiset over a set V , given any I ⊆ [0, 1], an I-fuzzy multiset over V will be a mapping
F : V × I+ → N∞. Every such I-fuzzy multiset can be understood as defined on the whole
V×]0, 1] by extending it by means of F (v, t) = 0 for every v ∈ V and t ∈]0, 1] − I+.

A fuzzy multiset F : V×]0, 1] → N∞ over a finite set V is finite-valued when F (v, t) = 0
for all ordered pairs (v, t) ∈ V×]0, 1] except a finite number of them. This is equivalent to say
that the image of F is finite and the preimage under F of every n ∈ N∞ − {0} is a finite set.
If I ⊆ [0, 1] is a finite set such that F (v, t) 6= 0 for some v ∈ V implies t ∈ I, then we shall
identify such a fuzzy multiset with the I-fuzzy multiset F : V × I+ → N∞ obtained as its
restriction to V × I+.



2.2 Crisp symport/antiport membrane systems

In this subsection we explain in detail the basic model of membrane systems with symport/anti-
port rules, with notations that are not the usual ones but that will be helpful in the gener-
alization of this model to the fuzzy setting. The interested reader can look up Chapter 4 of
Gh. Păun’s textbook on molecular computing [11] and the references cited therein for more
information on this model of computation.

Given an alphabet V , we denote by V ∗ the set of words over V . Given a word w ∈ V ∗, we
denote by |w| the length of w and, given a letter a ∈ V , by |w|a the number of occurrences of
a in w.

A membrane structure µ is a finite rooted tree whose nodes are called membranes. We shall
always denote by M the set of membranes of a membrane structure and, in practice, we shall
assume that these membranes are injectively labelled by natural numbers, in such a way that
the root’s label is 1. The edges of µ are oriented pointing to the root.

This tree represents a hierarchical structure of nested membranes, with the edges represent-
ing the relation “being directly inside”: an edge going from a membrane m to a membrane m′

means that m is directly included in m′. The tree’s root 1 is then called the skin membrane,
because it surrounds the whole membrane system, and the tree’s leaves are called elementary
membranes, because no further membrane lies inside them.

We expand every membrane structure µ by adding a new node to it labelled env and an
arc going from 1 to env; let µ denote the resulting tree and M its set of nodes M ∪ {env}.
This new node env is called the environment, because it surrounds the skin membrane. In
this way, env becomes the root of µ. Although, formally, env is not a membrane, when we
generically talk about membranes, we shall include it unless we explicitly state otherwise.

For every m ∈ M , we shall denote by ε(m) the target node of the arc in µ whose source
node is m, i.e., the membrane which m is directly included into. Notice that ε(1) = env, and
that if m 6= 1, then ε(m) ∈ M .

We understand that every m ∈ M defines a region Km. For an elementary membrane, it
would represent the space enclosed by it, and for any other membrane it would represent
the space comprised between this membrane and those directly included in it. The env node
also defines a region Kenv, which would represent the space outside the skin membrane: the
environment, indeed. The rules in the membrane systems considered in this paper will move
in a controlled way objects from regions Km to regions Kε(m) and, the other way round, from
regions Kε(m) to regions Km.

At each moment, every such region contains a set of objects that are copies of elements of
a certain finite set of reactives. If V stands for this set of reactives, the content of all regions
Km, with m ∈ M , at any moment is represented by means of an M -indexed family (Fm)m∈M

of multisets over V
Fm : V → N∞, m ∈ M.

We shall call such an M -indexed family of multisets (Fm)m∈M a configuration.

Now, a symport/antiport membrane system, a P-system for short, is a structure

Π = (V, Vout, µ,mout, (Sm)m∈M , (Rm)m∈M )

where:

– V is the set of reactives used by the membrane system; it is a finite set.



– Vout ⊆ V is the set of output reactives ; these are the only objects that matter at the end
of a computation.1

– µ is a membrane structure, with set of membranes M .
– mout ∈ M is the output membrane; the results of the computations are read in the region

defined by this membrane.
– (Sm)m∈M is a configuration, called initial, that describes the initial content of each region

Km. We assume that, for each v ∈ V , Senv(v) is either 0 or ∞, and that Sm(v) 6= ∞ for
every m ∈ M and v ∈ V .

– For every m ∈ M , Rm is a finite set of evolution rules associated to the membrane m:
notice that the environment has no rule associated to it. These rules represent changes of
place of objects between Km and regions adjacent to it. Every rule in Rm has the form

R = (a, in; b, out),

where a, b ∈ V ∗ represent the multisets of reactives that enter (in) or exit (out) the region
defined by the membrane m under the action of this rule.
When b or a is the empty word λ, the rule R is said to be a symport rule, and it is simply
written (a, in) or (b, out), respectively. When a, b 6= λ, the rule R is said to be an antiport
rule.

Let m0 ∈ M be a membrane and ε(m0) the membrane in µ directly outside it. An evolution
rule R = (a, in; b, out) ∈ Rm0 can be applied to a configuration (Fm)m∈M when, for every
v ∈ V ,

Fε(m0)(v) ≥ |a|v and Fm0(v) ≥ |b|v.

And when it can be applied, its application produces a new configuration (F ′
m)m∈M , which

we call the result of this application, that is obtained as follows:

– F ′
m = Fm if m 6= m0, ε(m0);

– F ′
m0

(v) = Fm0(v) − |b|v + |a|v for every v ∈ V ;
– F ′

ε(m0)
(v) = Fε(m0)(v) + |b|v − |a|v for every v ∈ V .

This represents that (F ′
m)m∈M is obtained from (Fm)m∈M by moving, for every v ∈ V , |a|v

copies of v from Kε(m0) to Km0 and |b|v copies of v from Km0 to Kε(m0).

A transition for a P-system Π consists of a maximal simultaneous application of evolution
rules. These rules are chosen non-deterministically in such a way that no further rule in Rm,
for any m, can be triggered simultaneously to them. Formally, a transition consists of the
simultaneous application to a configuration (Fm)m∈M of a family of rules

(Rm,1, . . . , Rm,rm)m∈M ,

with Rm,i = (am,i, in; bm,i, out) ∈ Rm, for every m ∈ M and i = 1, . . . , rm. This family of
rules must satisfy the following two conditions:

(1) For every elementary membrane m and for every v ∈ V ,

rm∑

i=1

|bm,i|v ≤ Fm(v);

1 In the original definition of symport/antiport membrane systems, no set of output reactives is
distinguished, i.e., V = Vout. But, the specification of a set of output reactives will simplify a proof
in the fuzzy setting, and it does not increase the computational power of these systems: see Remark
1 at the end of this section.



for every non-elementary membrane m ∈ M , say with m = ε(m1) = . . . = ε(ml), and for
every v ∈ V ,

l∑

j=1

rmj∑

i=1

|amj,i|v +

rm∑

i=1

|bm,i|v ≤ Fm(v);

and, finally,
r1∑

i=1

|a1,i|v ≤ Fenv(v).

(2) No further rule can be added to any (Rm,1, . . . , Rm,rm) in such a way that the resulting
family of rules still satisfies the application condition (1).

These conditions globally impose that there are enough reactives in all regions to allow the
simultaneous application of all rules Rm,i, but that there are not enough reactives to allow
the application of any further rule.

Now, the simultaneous application of these rules to a configuration (Fm)m∈M produces a

new configuration (F̂m)m∈M that is obtained as follows:

– For every elementary membrane m and for every v ∈ V ,

F̂m(v) = Fm(v) +

rm∑

i=1

|am,i|v −
rm∑

i=1

|bm,i|v.

– For every non-elementary membrane m ∈ M , say with m = ε(m1) = . . . = ε(ml), and for
every v ∈ V ,

F̂m(v) = Fm(v) +

rm∑

i=1

|am,i|v +

l∑

j=1

rmj∑

i=1

|bmj ,i|v −
l∑

j=1

rmj∑

i=1

|amj,i|v −
rm∑

i=1

|bm,i|v.

– And, for every v ∈ V ,

F̂env(v) = Fenv(v) +

r1∑

i=1

|b1,i|v −
r1∑

i=1

|a1,i|v.

We shall forbid the existence in R1 of any symport rule of the form (a, in) with a ∈ V ∗

such that Senv(v) = ∞ if |a|v > 0, because any such rule could be applied an infinite number
of times in any transition.

A finite sequence of transitions between configurations of a P-system Π , starting with the
initial configuration, is called a computation with respect to Π . A computation C halts when
it reaches a halting configuration (H(C)m)m∈M where no rule can be applied. The output of
such a halting computation C is the final number of output reactives contained in the region
defined by the output membrane:

OutΠ,C =
∑

v∈Vout

H(C)mout
(v).

A computation that does not halt does not yield any output.

The set Gen(Π) ⊆ N generated by Π is the set of all outputs OutΠ,C of halting computa-
tions C with respect to Π .

We have now the following result; see [8,11,4].



Theorem 1. A subset of N is recursively enumerable if and only if it is generated by some
P-system.

Moreover, every recursively enumerable subset of N can be generated by a P-system that
satisfies the following conditions:

– its membrane structure has only two nodes, and the output membrane is the elementary
one;

– it has only symport rules;
– all reactives used by the P-system are output reactives;
– the rules associated to the output membrane are (α, in), (#, in) and (#, out) for some

specific reactives α and #, and α is the only reactive that may enter the output membrane
in any halting computation;

– in the initial configuration, both the skin membrane and the output membrane do not
contain any copy of this reactive α. �

Remark 1. Notice that last theorem establishes that every recursively enumerable subset of
N is generated by a P-system all whose reactives are considered as output reactives. Since,
by Church-Turing Thesis, a P-system with a set of output reactives specified will generate
a recursively enumerable subset of N, we deduce that the specification of a set of output
reactives does not increase the computational power of the model, as we claimed when we
defined our P-systems.

Besides, we also have that every recursively enumerable subset of N is generated by a P-
system with only one output reactive: the only reactive α that may enter the output membrane
in any halting computation in the P-system given by the last theorem.

3 The fuzzy model

We assume henceforth the existence of a universe X containing all objects we use in compu-
tations.

Roughly described, a fuzzy P-system will be a structure similar to a crisp P-system, sup-
ported on a membrane structure that defines regions whose contents evolve following rules that
specify the transport of reactives through membranes. But the details will be quite different.

To begin with, we shall use reactives as “ideal definitions” of chemical compounds, and
hence they are fuzzy subsets of X : for every reactive v : X → [0, 1], we understand that
v(x) = t denotes that the object x ∈ X is a copy of v ∈ V with a degree t of exactitude. So,
v(x) = 1 means that x is an exact copy of the reactive v, and v(x) = 0 means that x cannot
represent in any way the reactive v.

Actually, every reactive will be, for the purposes of each fuzzy P-system, a finite-valued
fuzzy subset of X : this represents that, in any fuzzy P-system, only a finite set of values of
accuracy of objects to reactives will be taken into account. This can be seen as translating
nature’s discreteness, or that the accuracy of an object to a reactive cannot be measured
exactly, but only up to some threshold. As we shall explain in the Conclusion, this finite-
valuedness assumption does not decrease the computational power of our fuzzy P-systems: if
we allowed the reactives to take values in the whole [0, 1], the set of natural numbers generated
by a fuzzy P-system would still be finite-valued.

We shall say that an object x ∈ X is similar to a reactive v ∈ V when v(x) > 0. To simplify
the definition of an application of a rule, and as it was already hinted in §2.1, we shall assume



in this paper that each object in X is similar to at most one reactive, and it will be clear from
the definition of the application of a rule that in each fuzzy P-system we shall not care about
objects that are not similar to some reactive among those used in it.

As in the crisp case, fuzzy P-systems will be supported by a membrane structure and each
membrane in it will define a region. But, the reactives being fuzzy sets, the content of these
regions at each moment will be formally described by means of an M -indexed family of fuzzy
multisets over a set V of reactives. These fuzzy multisets specify, for every v ∈ V and for
every value t ∈]0, 1], how many objects in each region Km are copies of the reactive v with
degree of accuracy t.

Since each fuzzy P-system will involve only a finite set of reactives V , and, for the purposes
of each specific P-system, we consider each reactive as a finite-valued fuzzy subset of X , all
possible values of accuracy of objects to reactives used in a given fuzzy P-system form a finite
subset of [0, 1]. Thus, we shall specify in the description of a fuzzy P-system a finite subset I
of [0, 1] that will contain all these images as well as all other elements in [0, 1] needed in that
description. Then, a configuration for this fuzzy P-system, with set of membranes M and set
of reactives V , will be a family of I-valued fuzzy multisets (Fm)m∈M over V ,

Fm : V × I+ → N∞, m ∈ M.

Each such mapping Fm specifies, for every v ∈ V and for every t ∈ I+, how many objects there
exist in the region Km such that v(x) = t at the moment described by the configuration. We
impose several conditions on these configurations. First, every Fm with m ∈ M is such that
Fm(v, t) < ∞ for every v ∈ V and for every t ∈ I+: this translates the fact that the regions
defined by the membranes other than the environment can only contain at any time a finite
set of objects. Second, we allow the environment to contain at every moment an unlimited
supply of copies of some reactives v, and then with all possible degrees of accuracy t ∈ I+:
we shall represent it by writing Fenv(v, t) = ∞ for every t ∈ I+.

Now, a fuzzy symport/antiport membrane system, a fuzzy P-system for short, is a structure

Π = (V, V0, µ,mout, I, (Sm)m∈M , (Rm)m∈M ),

where:

– V is the finite set of reactives used by the membrane system.
– Vout ⊆ V is the set of output reactives.
– µ is a membrane structure, with set of membranes M .
– mout ∈ M is the output membrane.
– I is a finite subset of [0, 1] containing 0 and 1.
– (Sm)m∈M is a family of I-valued fuzzy multisets over V , called the initial configuration,

which describes the initial content of all regions Km. We impose that, for each v ∈ V ,
either Senv(v, t) = 0 for every t ∈ I+ or Senv(v, t) = ∞ for every t ∈ I+. This translates
the assumption that, for every reactive v, it either happens that the environment does not
contain any object similar to it or that it contains an unbounded homogeneous supply of
copies of it.

– For every m ∈ M , Rm is a finite set of evolution rules associated to m. Each evolution
rule in Rm has the form

R = ((a, in; b, out), τin, τout),

where:



— (a, in; b, out) is a crisp symport/antiport rule; we shall say that a reactive v is incoming
(resp., outgoing) for this rule R when |a|v > 0 (resp., |b|v > 0).

— τin, τout : V → I are threshold functions that determine, for every incoming or outgo-
ing reactive for R, respectively, the degree of accuracy of an object to this reactive that
is necessary for this object to be considered as this reactive to the effect of triggering
an application of this rule.
We impose on these threshold functions that τin(v) > 0 for every incoming reactive
and τout(v) > 0 for every outgoing reactive: objects that are not similar to an incoming
or outgoing reactive can never play its role in the application of a rule. Moreover, and
for simplicity, we do not impose any threshold condition on reactives that are not
incoming or outgoing: if |a|v = 0, then τin(v) = 0, and if |b|v = 0, then τout(v) = 0.

As in the crisp case, when b or a is the empty word λ, R is said to be a symport rule, and
we shall simply write it as ((a, in), τ) or ((b, out), τ), respectively: in the rules of the first
type, τ represents τin, and in those of the second type, it represents τout. When a, b 6= λ,
R is said to be an antiport rule.
Also as in the crisp case, and for the very same reason as then, we forbid the existence
in R1 of symport rules of the form ((a, in), τ) with a ∈ V ∗ such that Senv(v,−) = ∞ if
|a|v > 0.

Let m0 ∈ M be a membrane and ε(m0) the membrane in µ directly outside it. An evolution
rule

R = ((a, in; b, out), τin, τout)

in Rm0 can be triggered in a configuration (Fm)m∈M when, for every v ∈ V ,

∑

t≥τin(v)

Fε(m0)(v, t) ≥ |a|v and
∑

t≥τout(v)

Fm0(v, t) ≥ |b|v.

This means that there are more copies of every incoming or outgoing reactive in the re-
gions Kε(m0) and Km0 , respectively, within the degree of accuracy required by the threshold
functions, than the specified quantities.

When a rule
R = ((a, in; b, out), τin, τout) ∈ Rm0

can be triggered in a configuration (Fm)m∈M , an application of it modifies this configuration
into a new configuration (F ′

m)m∈M , which we call the result of this specific application. This
new configuration is obtained as follows:

(1) For every reactive v ∈ V , we choose |a|v objects in Kε(m0) with degree of accuracy to v
at least τin(v). Formally, to do it, for every v ∈ V , we take a mapping enterRv : I+ → N

such that:
— If t < τin(v), then enterRv (t) = 0.
— If t ≥ τin(v), then 0 ≤ enterRv (t) ≤ Fε(m0)(v, t).
—

∑
t∈I+ enterRv (t) = |a|v.

Notice in particular that if |a|v = 0, then enterRv (t) = 0 for every t ∈ I+.
This corresponds to choosing, for every t ≥ τin(v), a certain number enterRv (t) of objects
x in Kε(m0) such that v(x) = t and in such a way that the total amount of these objects
is |a|v. These objects, or, rather, the number of them within each degree t ≥ τin(v) of
accuracy to v, are chosen in a non-deterministic way: taking a different mapping enterRv
would correspond to a different application of the rule and hence it could lead to a different
result.



(2) In a similar way, for every v ∈ V , we choose |b|v objects in Km0 with degree of accuracy to
v at least τout(v). As before, we do it by taking, for every v ∈ V , a mapping exitRv : I+ → N

such that:
— If t < τout(v), then exitRv (t) = 0.
— If t ≥ τout(v), then 0 ≤ exitRv (t) ≤ Fm0(v, t).
—

∑
t∈I+ exitRv (t) = |b|v.

We have again that if |b|v = 0, then exitRv (t) = 0 for every t ∈ I+.
(3) For every reactive v ∈ V , we move from Km0 to Kε(m0) the |b|v possibly inexact copies

of it that have been chosen by means of the mapping exitRv , and we move from Kε(m0)

to Km0 the |a|v possibly inexact copies of it that have been chosen by means of enterRv .
This leads to a new configuration (F ′

m)m∈M defined as follows:

– F ′
m = Fm if m 6= m0, ε(m0).

– F ′
m0

(v, t) = Fm0(v, t) − exitRv (t) + enterRv (t) for every v ∈ V and t ∈ I+.
– F ′

ε(m0)
(v, t) = Fε(m0)(v, t) + exitRv (t) − enterRv (t) for every v ∈ V and t ∈ I+.

Consequently, if Fenv(v, t) = ∞, then F ′
env(v, t) = ∞, too, and if Fenv(v, t) 6= ∞, then

F ′
env(v, t) 6= ∞ either.

This new configuration (F ′
m)m∈M is the result of this application of R. Let us point out

again that a given rule may admit several applications to a given configuration, yielding
different results, depending on the mappings taken in steps (1) and (2). This does not happen
in the crisp case.

Now, a transition for a fuzzy P-system Π consists of a maximal simultaneous application
of rules in the same sense as in the crisp case: the triggering condition must be satisfied
simultaneously for all rules, and then all steps (1) and (2) corresponding to rules being applied
in one transition are performed simultaneously, and finally all steps (3) are performed together.
The rules applied in a given transition are chosen non-deterministically but so that no further
rule in Rm for any m can be triggered simultaneously to them. In particular, a given rule can
be triggered several times in the same transition, provided enough copies of the corresponding
incoming and outgoing reactives are available within the required degree of exactitude.

Formally, a transition consists of the simultaneous application to a configuration (Fm)m∈M

of a family of rules
(Rm,1, . . . , Rm,rm)m∈M ,

with
Rm,i = ((am,i, in; bm,i, out), τ

m,i
in , τm,i

out ) ∈ Rm, m ∈ M, i = 1, . . . , rm.

These rules must satisfy that:

(a) For every v ∈ V and for every t ∈ I+,
– for every elementary membrane m,

∑

i s.t. τm,i
out (v)≥t

|bm,i|v ≤
∑

t′≥t

Fm(v, t′);

– for every non-elementary membrane m ∈ M with m = ε(m1) = . . . = ε(ml),

∑

i s.t. τm,i
out (v)≥t

|bm,i|v +
l∑

j=1

∑

i s.t. τ
mj,i

in
(v)≥t

|amj,i|v≤
∑

t′≥t

Fm(v, t′);



– finally, as far as env goes,

∑

i s.t. τ1,i
in

(v)≥t

|a1,i|v ≤
∑

t′≥t

Fenv(v, t′).

(b) No further rule can be added to any (Rm,1, . . . , Rm,rm) so that the resulting family of
rules still satisfies condition (a).

And then the simultaneous application of these rules to a configuration (Fm)m∈M produces

a new configuration (F̂m)m∈M that is obtained as follows:

(c) For every m ∈ M , for every rule Rm,i, i = 1, . . . , rm, and for every v ∈ V , we take
mappings enterm,i

v , exitm,i
v : I+ → N in such a way that:

–
∑

t∈I+ enterm,i
v (t) = |am,i|v and

∑
t∈I+ exitm,i

v (t) = |bm,i|v.

– If t < τm,i
in (v), then enterm,i

v (t) = 0, and if t < τm,i
out (v), then exitm,i

v (t) = 0.
– For every t ∈ I+,

• for every elementary membrane m,

rm∑

i=1

exitm,i
v (t) ≤ Fm(v, t);

• for every non-elementary membrane m ∈ M with m = ε(m1) = . . . = ε(ml),

rm∑

i=1

exitm,i
v (t) +

l∑

j=1

rmj∑

i=1

entermj ,i
v (t) ≤ Fm(v, t);

•
r1∑

i=1

enter1,iv (t) ≤ Fenv(v, t).

(d) The new configuration (F̂m)m∈M produced by this application is obtained as follows: for
every v ∈ V and t ∈ I+,

– for every elementary membrane m,

F̂m(v, t) = Fm(v, t) +

rm∑

i=1

enterm,i
v (t) −

rm∑

i=1

exitm,i
v (t);

– for every non-elementary membrane m ∈ M with m = ε(m1) = . . . = ε(ml),

F̂m(v, t) = Fm(v, t) +
∑rm

i=1 enter
m,i
v (t) +

∑l

j=1

∑rmj

i=1 exit
mj ,i
v (t)

−
∑rm

i=1 exit
m,i
v (t) −

∑l

j=1

∑rmj

i=1 enter
mj ,i
v (t);

– Finally,

F̂env(v, t) = Fenv(v, t) +

r1∑

i=1

exit1,iv (t) −
r1∑

i=1

enter1,iv (t).

A finite sequence of transitions between configurations of a fuzzy P-system Π , starting with
the initial configuration, is called a computation with respect to Π . A computation halts when
it reaches a halting configuration where no rule can be triggered.



Given a halting computation C with halting configuration (H(C)m)m∈M , the (crisp) mul-
tiset over I+ associated to it is

HC : I+ → N

t 7→
∑

v∈V0
H(C)mout

(v, t)

Thus, for every t ∈ I+, HC(t) is the number of objects in the output region that, at the end
of the computation, are copies of some output reactive with degree of exactitude t.

Then, the output of a halting computation C will be the fuzzy subset of N

OutΠ,C : N → I
n 7→

∨
{t | HC(t) = n}

In words, OutΠ,C(n) is the greatest degree of exactitude t in I for which, at the end of the
computation C, there exist n objects in the output region that are copies of some output
reactive with degree of exactitude t.

Finally, the fuzzy set of natural numbers generated by a fuzzy membrane system Π is
the join of all the outputs of halting computations with respect to Π . This is the mapping
GenΠ : N → I defined by

GenΠ(n) =
∨

C halting

OutΠ,C(n), n ∈ N.

Thus,

GenΠ(n) =
∨{∨

{t ∈ I+ | HC(t) = n} | C halting
}

=
∨
{t ∈ I+ | HC(t) = n for some halting computation C}.

Notice that, I being finite, this supremum is actually a maximum, and that if HC(t) 6= n for
every halting computation C, then GenΠ(n) =

∨
∅ = 0.

The following lemma is a direct consequence of the last description of GenΠ(n) and the
finiteness of I.

Lemma 1. For every fuzzy P-system Π, for every n ∈ N and for every t0 ∈ I+, GenΠ(n) ≥ t0
if and only if there exists some halting computation C and some t ≥ t0 such that HC(t) = n.
�

Crisp P-systems can be seen as special cases of their fuzzy version. Indeed, every crisp
P-system

Π = (V, Vout, µ,mout, (Sm)m∈M , (Rm)m∈M )

defines a fuzzy P-system

Πf = (V, Vout, µ,mout, {0, 1}, (Sf
m)m∈M , (Rf

m)m∈M )

where each fuzzy multiset Sf
m : V ×{1} → N∞ is defined from the corresponding crisp multiset

Sm : V → N∞ in the natural way: for every v ∈ V , Sf
m(v, 1) = Sm(v). As far as the rules

goes, each Rf
m consists of the rules in Rm with threshold mappings τin and τout that send,

respectively, every incoming and every outgoing reactive of the rule to 1 and all other reactives
to 0.



Proposition 1. Let Π be a crisp P-system and Πf the fuzzy P-system defined by it. Then
GenΠf = χGenΠ

, i.e., GenΠf (n) = 1 if n ∈ GenΠ and GenΠf (n) = 0 otherwise.

Proof. Since the configurations for Πf are {0, 1}-valued, all objects in the membranes and
the environment in the initial configuration of Πf are exact copies of the reactives in V and
only exact copies of reactives can enter the skin membrane from the environment. Therefore,
at any moment of any computation with respect to Πf every region defined by a membrane
only contains exact copies of reactives. Furthermore, a rule R ∈ Rm can be applied to a
configuration (Fm)m∈M of Π if and only if the corresponding rule Rf in Rf

m can be triggered

in the corresponding configuration (F f
m)m∈M of Πf (the one defined by F f

m(v, 1) = Fm(v) for

every m ∈ M and v ∈ V ), and the result of the (unique) application in Πf of Rf to (F f
m)m∈M

is also the configuration corresponding to the result of the application of R in Π to (Fm)m∈M .

By the formal definitions of transition in crisp and fuzzy P-systems, this argument also en-
tails that every transition for Π defines, in a bijective way, a transition for Πf , which produces
the configuration for Πf corresponding to the configuration produced by the transition for Π .
Thus, every computation C with respect to Π defines, also in a bijective way, a computation
with respect to Πf , which we shall denote by Cf , in such a way that C is halting if and only
if Cf is halting and, if they both are halting, HCf (1) = OutΠ,C .

Therefore, for every halting computation C with respect to Π ,

OutΠf ,Cf (n) =

{
1 if n = OutΠ,C

0 otherwise

and thus

GenΠf (n) =





1 if there exists some halting computation Cf w.r.t. Πf

such that OutΠf ,Cf (n) = 1
0 otherwise

=





1 if there exists some halting computation C w.r.t. Π
such that OutΠ,C = n

0 otherwise

=

{
1 if n ∈ GenΠ

0 otherwise

as we claimed.

This proposition remains true if we enlarge the set {0, 1} in the definition of Πf to any finite
subset I of [0, 1] containing 0 and 1 and then we set, for every m ∈ M , Sf

m(v, t) = Sm(v) if
t = 1 and Sf

m(v, t) = 0 otherwise, and Sf
env(v, t) = Senv(v) for every t ∈ I+, but we still endow

all rules with threshold functions that take value 1 on every incoming or outgoing reactive.
In this case, at any moment of any computation with respect to Πf every region defined by a
membrane (other than the environment) will only contain exact copies of reactives and hence
the proof of the last proposition is still valid.

4 Universality

A fuzzy language over an alphabet Σ is a fuzzy subset L : Σ∗ → [0, 1] of Σ∗. Such a fuzzy
language is recursively enumerable when all its levels

Lt = {w ∈ Σ∗ | L(w) ≥ t}, t ∈ [0, 1],



are recursively enumerable in the usual sense; cf. [2]. Notice that, since L0 = Σ∗, it is enough
to consider in this definition the t-levels with t > 0. Moreover, arguing as at the beginning of
§2.1, we can see that if L is I-valued, then it is enough to consider its t-levels with t ∈ I+.

Now, in parallel to the definition of a recursively enumerable subset of N as the set of lengths
of some recursively enumerable language, we shall say that a fuzzy subset F : N → [0, 1] of
N is recursively enumerable when there exists some recursively enumerable fuzzy language
L : Σ∗ → [0, 1], over some alphabet Σ, such that, for every n ∈ N,

F (n) =
∨

{L(w) | w ∈ Σ∗, |w| = n}.

Now we have the following characterization of recursively enumerable fuzzy subsets of N in
terms of levels, which is the one we shall use henceforth.

Proposition 2. An I-valued fuzzy subset F : N → I is recursively enumerable if and only if
Ft is a recursively enumerable subset of N, for every t ∈ I+.

Proof. Let L : Σ∗ → I be a recursively enumerable fuzzy language such that, for every n ∈ N,

F (n) =
∨

{L(w) | w ∈ Σ∗, |w| = n}.

Then, for every t ∈ I+,

Ft = {n ∈ N |
∨
{L(w) | w ∈ Σ∗, |w| = n} ≥ t}

= {n | there exists some w ∈ Σ∗ with |w| = n such that L(w) ≥ t}
= {|w| | w ∈ Lt}

is the set of lengths of a recursively enumerable language, and hence recursively enumerable
itself.

Conversely, let F : N → I be a fuzzy subset of N such that each Ft is recursively enumerable,
and consider the fuzzy language over a singleton {a}

L : {a}∗ → I
an 7→ F (n)

It is clear that Lt = {an | n ∈ Ft} and hence, if every Ft with t ∈ I+ is recursively enumerable,
the same happens for each Lt with t ∈ I+. Therefore, L is a recursively enumerable fuzzy
language. And it is also clear that, for every n,

F (n) = L(an) =
∨

{L(w) | w ∈ {a}∗, |w| = n},

which finally implies that F is recursively enumerable, too.

Our goal now is to prove that a finite-valued fuzzy subset of N is recursively enumerable if
and only if it is generated by a fuzzy P-system. We begin with the easy implication in this
equivalence.

Theorem 2. Every fuzzy subset of N generated by a fuzzy P-system is recursively enumerable.

Proof. Let
Π = (V, Vout, µ,mout, I, (Sm)m∈M , (Rm)m∈M )



be a fuzzy P-system. For every t ∈ I+, let Π(t) be the crisp P-system

Π(t) = (V × I+, Vout × {t}, µ,mout, (Sm)m∈M , (Rc
m)m∈M ),

where each Sm : V × I+ → N is now understood as a multiset over V × I+ and, for every
m ∈ M , the set of rules Rc

m contains, for each ((a, in; b, out), τin, τout) ∈ Rm, say with
a = a1 . . . ap and b = b1 . . . bq, each possible rule of the form

(
(a1, ti1) . . . (ap, tip), in; (b1, tj1) . . . (bq, tjq ), out

)

with ti1 , . . . , tip , tj1 , . . . , tjq ∈ I+ such that tik ≥ τin(ak) for every k = 1, . . . , p and tjl ≥
τout(bl) for every l = 1, . . . , q, and it only contains rules obtained in this way. Notice thus
that these membrane systems Π(t) only differ in their sets of output reactives, and hence they
have exactly the same halting computations, but any such halting computation may produce
in each Π(t) a different output.

Now, we can identify the configurations for Π with the configurations for each Π(t), by
simply understanding a fuzzy multiset over V as a multiset over V × I+. We can also identify
each application of a rule R ∈ Rm to a configuration for Π with the application of some
rule contributed by R in Rc

m (a different rule for each application) to the corresponding
configuration for each Π(t). From the explicit description of transitions for crisp and fuzzy
P-systems, we deduce that we can actually identify each transition for Π from a configuration
(Fm)m∈M to a configuration (F̂m)m∈M with a transition for each Π(t) from the configuration

corresponding to (Fm)m∈M to the configuration corresponding to (F̂m)m∈M . This finally

entails that every halting computation with respect to any Π(t) corresponds to a halting
computation with respect to Π .

Now, let us fix an arbitrary t0 ∈ I+; we want to prove that the t0-level (GenΠ)t0 is
recursively enumerable. For every halting computation C with respect to Π , let HC : I+ → N

be the multiset on I+ associated to it, and let h
(t0)
C ∈ N be the output of the corresponding

halting computation with respect to Π(t0). Since the output set of reactives of Π(t0) is Vout ×

{t0}, it is clear that h
(t0)
C = HC(t0).

Now, by Lemma 1, we have that GenΠ(n) ≥ t0 if and only if h
(t)
C = n for some halting

computation C and some t ≥ t0. Thus, n ∈ (GenΠ)t0 if and only if n ∈ GenΠ(t) for some
t ≥ t0, i.e.

(GenΠ)t0 =
⋃

t≥t0

GenΠ(t) .

Since every GenΠ(t) is a recursively enumerable subset of N and there are only a finite number
of them, this implies that (GenΠ)t0 is recursively enumerable, too. And since t0 was arbitrary,
this shows that GenΠ is a recursively enumerable fuzzy subset of N.

The converse implication is given by the following result.

Theorem 3. Every recursively enumerable finite-valued fuzzy subset of N is generated by a
fuzzy P-system.

Proof. Let F : N → I be a recursively enumerable I-valued fuzzy subset of N, with I finite
and containing 0 and 1. Each level Ft, with t ∈ I+, is recursively enumerable, and therefore,
by Theorem 1, it is generated by a P-system

Π(t) = (V (t), V
(t)
out, µ,mout, (S

(t)
m )m∈M , (R(t)

m )m∈M )



that satisfies the conditions listed in that theorem: V
(t)
out = V (t); it only has symport rules;

it has only two membranes, the skin membrane 1 and the output membrane mout = 2; the
only rules associated to the output membrane are (α(t), in), (#(t), in) and (#(t), out) for some
specific reactives α(t) and #(t); α(t) is the only reactive that may enter the output membrane

in any halting computation; and S
(t)
1 (α(t)) = S

(t)
2 (α(t)) = 0. We shall assume that the sets of

reactives V (t) are pairwise disjoint.

Now, consider the fuzzy P-system

Π = (V, Vout, µ
′,mout, I, (Sm)m∈M , (Rm)m∈M )

defined as follows:

– V =
⊔

t∈I+ V (t).
– Vout = V .
– µ′ is a linear tree obtained from µ by adding a third membrane, labelled 3, as the new

elementary membrane.
– mout = 2.
– For every m = 1, 2, for every v ∈ V , and for every t, t′ ∈ I+,

Sm(v, t′) =

{
S
(t)
m (v) if v ∈ V (t) and t′ = 1

0 otherwise

And set S3(v, t) = 0 for every v ∈ V and t ∈ I+.
Thus, membranes 1 and 2 in Π contain the sum of their contents in all Π(t), with all
objects being exact copies of the corresponding reactives, while the new membrane 3
is empty at the beginning. Notice in particular that, for every t, t′ ∈ I+ and for every
i = 1, 2, 3, Si(α

(t), t′) = 0.

Finally, as far as Senv goes, if v ∈ V (t), then Senv(v, t′) = S
(t)
env(v) for every t′ ∈ I+.

I.e., the environment contains an unbounded number of copies of v in Π(t) exactly when
the environment in Π contains an unbounded number of copies of this reactive with any
non-zero degree of exactitude.

– For every m = 1, 2, and for every rule (a, in) or (a, out) in some R
(t)
m , the set Rm contains

a corresponding rule
((a, in), τ) or ((a, out), τ)

where the threshold mapping τ is defined as follows: for every v ∈ V , if |a|v = 0, then
τ(v) = 0, and if |a|v > 0, then

τ(v) =

{
t if v = α(t) for some t ∈ I+

1 otherwise

On the other hand, if for every t ∈ I+ − {1} we denote by s(t) the least element in I
greater than t (which exists because I is finite), then R3 contains, for every t ∈ I+ −{1},
a rule

((α(t), in), τ)

with τ(α(t)) = s(t).
And Rm, m = 1, 2, 3, do not contain any rule other than these ones.

To simplify the notations, set

Va = {α(t) | t ∈ I+}.



Thus, at the beginning, all membranes in Π other than the environment only contain exact
copies of non-output reactives. Furthermore, Π contains rules of two types. There are rules
induced from rules in some Π(t) that move exact copies of reactives in V −Va as well as copies
of reactives α(t) with degree of similarity at least t, in the same way as the corresponding
rule moved them in Π(t). And rules that remove from the output membrane all copies of
reactives α(t) with degree of similarity greater than the corresponding t and bury them in the
elementary membrane.

In particular, no non-exact copy of a reactive in V −Va may ever enter the skin membrane
from the environment, and the only objects similar to some α(t) that enter it must have
degree of accuracy at least t. Therefore, all objects that, at some moment of a computation
with respect to Π , are contained in some membrane other than the environment, are either
exact copies of reactives in V − Va or similar to some α(t) with degree of exactitude at least
t. Moreover, no copy of a reactive α(t) with degree of similarity greater than t may remain in
the output membrane when a computation halts.

Now, the fact that each rule involves only reactives in some V (t) and the form of the rules

in each R
(t)
2 imply that in a given configuration for Π , the application conditions for a rule

coming from Π(t), a rule coming from Π(t′) with t 6= t′ and any one of the new rules in R3

are independent of each other.

Using these remarks, one can easily see that every transition with respect to Π consists of
the application in parallel of families of rules coming from rules that form transitions with
respect to some P-systems Π(t) plus the application of all rules in R3 necessary to remove
from the output membrane all copies of reactives α(t) with degree of exactitude greater than
t. Therefore, every halting computation with respect to Π corresponds to a family of halting
computations (Ct)t∈I+ performed in parallel, every Ct with respect to the corresponding
Π(t). These computations Ct are uniquely determined by C, and they may halt at different
moments: C halts when all computations Ct halt and no copy of any α(t) with degree of
exactitude greater than t remains in the output membrane.

Then, the output component H(C)2 of the halting configuration of a halting computation
C corresponding to a family of halting computations (Ct)t∈I+ with respect to the P-systems
(Π(t))t∈I+ satisfies that, for every t, t′ ∈ I+,

H(C)2(v, t) =

{
(HCt

)2(α(t)) if v = α(t)

0 otherwise

Hence, the mapping HC associated to this halting computation C is given by

HC(t) = (HCt
)2(α(t)) = OutΠ(t),Ct

.

Now, by Lemma 1, for every t0 ∈ I+, GenΠ(n) ≥ t0 if and only if there exists some halting
computation C with respect to Π , corresponding to some family of halting computations
(Ct)t∈I+ , and some t′ ≥ t0 such that HC(t′) = n. Since, moreover, every halting computation
with respect to any Π(t′) will be part of some halting computation with respect to Π , this
condition is equivalent to the existence of some t′ ≥ t0 and some halting computation Ct′

with respect to Π(t′) such that OutΠ(t′),Ct′
= n, i.e., to the fact that n ∈ GenΠ(t′) for some

t′ ≥ t0. In all, this shows that

(GenΠ)t0 =
⋃

t′≥t0

Gen(Π(t′)) =
⋃

t′≥t0

Ft′ .



And finally, since the t-levels of F are decreasing in t, this entails that

(GenΠ)t0 = Ft0 .

Thus, GenΠ and F have exactly the same levels, and therefore they are the same fuzzy subset
of N.

5 Conclusion

In this paper we have introduced a fuzzy version of the symport/antiport model of membrane
systems that uses inexact copies of reactives in the transitions. Then, we have proved that
this fuzzy model of computation is universal, in the sense that it generates all recursively
enumerable finite-valued fuzzy subsets of N. This means a first step towards the use of fuzzy
methods to answer a question posed by Gh. Păun in the last problem of his first list of open
problems in membrane computing [10]: “What about ‘approximate’ computing, whatever this
can mean?”

The key ingredients in our model are the use of fuzzy multisets in configurations, the
endowment of evolution rules with threshold mappings that determine the degree of exactitude
of objects to reactives in order to be affected by the rules, and an appropriate way of evaluating
the content of the output membrane at the end of a halting computation. These ingredients
could also be used mutatis mutandis to define the fuzzy version of any other membrane
computing model: in this paper we only considered the symport/antiport model for simplicity.

When proving the universality of our fuzzy P-systems we have not addressed any minimality
question like the least number of membranes or the least number of output reactives that are
necessary to generate all recursively enumerable finite-valued fuzzy subsets of N: we leave
these as open problems. Nevertheless, let us mention here that we have specified a set of
output reactives in our P-systems with the only purpose of simplifying the proof of Theorem
2. Nowhere else in this paper it is needed and, as one would expect, that theorem can also be
proved without distinguishing output reactives, but at the prize of using more involved crisp
P-systems: this proof will appear elsewhere [5].

We would like to point out here that the finite-valuedness of the fuzzy subsets of N generated
by our fuzzy P-systems is not due to the specification beforehand of the finite set of possible
values I, but rather to the finiteness of the sets of rules and the initial configuration. This
effect also appears for instance in fuzzy grammars where only a finite number of rules have a
non-zero weight.

Indeed, assume for the moment that such an I is not specified and that in all fuzzy subsets
and multisets used in the definition of a fuzzy P-system Π , as well as in the description of
how it works, all sets I and I+ are replaced by [0, 1] and ]0, 1], respectively.

Since the ensemble of evolution rules
⋃

m∈M Rm in Π is finite and each rule only involves
a finite set of reactives, it is clear that the set of the images of all threshold functions of all
rules is a finite subset of [0, 1]. Moreover, similarly to the crisp case, we would assume that the
initial content of regions other than the environment is finite (in our definition it is entailed by
the fact that I is finite), and thus we would impose that the initial configuration is given by
finite-valued fuzzy multisets Sm for every m ∈ M (but not for the environment). Hence, the
set of possible exactitude values of objects to reactives in the initial contents of the regions
Km described by these multisets form a finite subset of [0, 1]. Let the union of these two finite
sets be J = {t0, t1, . . . , tm} with t0 < t1 < . . . < tm, and assume for simplicity that t0 = 0,



tm = 1. To the effect of triggering a rule, any two copies of the same reactive with degrees of
accuracy t, t′ in some interval [tl, tl+1[, l = 0, . . . ,m− 1, are indistinguishable, and any object
with degree of accuracy t ∈]tl, tl+1[ to some reactive must come from the environment.

Additionally, we still must impose that the environment contains an unbounded homoge-
neous supply of some reactives. In order not to distinguish any degree of similarity, we would
impose it by assuming that Senv(v, t) is either 0 for every t ∈]0, 1] or ∞ for every t ∈]0, 1].

This would entail that, for every t, t′ ∈]tl, tl+1[, l = 0, . . . ,m− 1, and for every computation
C with respect to Π , there exists a computation C′ such that HC′(t′) = HC(t). Indeed, C′

has the same ordered sequence of families of rules as C, but for every v and every application
of a rule R, enterRv (t′) and exitRv (t′) in the application in C′ take the values of enterRv (t) and
exitRv (t) in the corresponding application in C, and enterRv (t) and exitRv (t) in the application
in C′ take the values of enterRv (t′) and exitRv (t′) in the corresponding application in C.

Therefore, if some t ∈]tl, tl+1[ is contained in

{t ∈]0, 1] | HC(t) = n for some halting computation C}

for some n ∈ N, then the whole interval [tl, tl+1[ is contained in this set. This entails that the
supremum of this set, which would define GenΠ(n), belongs to J . Thus, after all, the fuzzy
set GenΠ is still finite-valued, and moreover its set of values is contained in J .

Besides, Senv(v, t) = ∞ for some v ∈ V and every t ∈]0, 1] entails that the universe in
non-countably infinite, and that a non-countably infinite number of computations may exist.

These observations, and the obvious fact that working with fuzzy sets and multisets that
are explicitly specified as finite-valued greatly simplifies all notations, definitions and proofs,
motivated us to restrict ourselves from the very beginning to the finite set J , or rather a finite
extension I of it, as the set of values of any fuzzy set related to the fuzzy P-system Π .

To end this paper, we would like to point out that, although formally correct, our specific
approach has a drawback from the fuzzy mathematics point of view. The association to a
multiset H : I+ → N of the fuzzy subset of N

C(H) : N → I
n 7→

∨
{t | H(t) = n}

that underlies our definition of the output of a halting computation with respect to a fuzzy
P-system is not additive in any natural sense, and in particular it cannot be considered a fuzzy
cardinality; see [1]. We have tried to use some specific simple fuzzy cardinalities in this step,
and we have obtained that the resulting fuzzy P-systems did not generate all finite-valued
recursively enumerable fuzzy subsets of N, but we have not ruled out the possibility of using
some other, cunningly chosen, fuzzy cardinality. Our current research agenda includes this
problem, as well as the problem of getting rid of the assumption used in this paper that an
object can only be similar to one reactive.
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