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ABSTRACT

We extend the classic work of R.J. Parikh on context-free languages with operators
min and max on unary alphabet. The new theory is called CAN (Compositional Algebra
of Numbers) and can be used to model software processes that can be concatenated,
concurrently executed, and recursively invoked. We propose and analyze an algorithm
which constructs the execution time sets of a CAN in semilinear form. Finally, we con-
sider several interesting variations of CAN whose execution time sets can be constructed
with algorithms.

Keywords: real-time, specification, software recursion, concurrency, context-free, semi-
linear

1. Introduction

In the design of sophisticated systems, usually, various nonregular behaviors are
described and need to be verified. Classic nonregular behaviors refer to those which
cannot be described by finite-state automaton and are often observed in systems
implemented with unrestricted software recursion, multiple infinite queues, range-
unbounded variables, etc. Although research on formal methods and automated
verification is booming some success reported everywhere, in general, there is still
very little we can do to analyze such sophisticated systems. For example, in the
model-checking approach of real-time systems, it is usually difficult to determine
timing constants corresponding to the true timing behaviors of program codes. It
is our belief that by adopting certain specification paradigms, some real-time sys-
tems with highly nonregqular behavior descriptions in the classic specification theories
actually exhibit regularities that allow mechanical analysis and verification.

*The work was partially supported by the NSC, Taiwan, ROC under grants NSC 90-2213-E-
001-006 and NSC 90-2213-E-001-035, and the by the Broadband Network Protocol Verification
Project of the Institute of Applied Science & Engineering Research, Academia Sinica, 2001.
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In this paper, we propose a new theory for the execution time analysis of con-
current and recursive behaviors. We call the theory Compositional Algebra of Num-
bers (CAN) and show that it can help identify the behavioral regularity of a class
of dynamically concurrent and recursive systems which may have previously been
thought to be nonregular. Intuitvely, we interpret numerical operations as process
constructors. Specifically, numerical addition represents the execution time of con-
catenated sequential processes. For example, we may have a process construction
rule S{z,y) = P(z)Q(1,z,y), which means that process S, with Boolean arguments
z,y, can be fulfilled by first invoking a process P, with argument z, and after the
fulfillment of P{z), invoking a process @), with arguments 1,z,y. Note here that
x,y are unknown Boolean arguments at time of rule specification.

Parallel executions in CAN are modeled by minimum and maximum selection
operations. For example, we may have another rule S{z,y) — min(P(z), Q(1,z,y)),
which means that process execution S(z,y) can be fulfilled through the simultaneous
process invocations P(z) and Q(1, z,y) and is fulfilled when either P(z) or Q(1, z,y)
is fulfilled. Thus, the execution time of S(z,y) can be defined as the smaller of
those of P(z) and Q(y). An example of such parallel execution is parallel search in
a distributed database.

Similarly, a rule like S(z,y) = max(P(z), Q(1,z,y)) means that process S(z,y)
is fulfilled when both processes P(z) and Q(1,x,y) have been fulfilled. Thus the
execution time of S{(z, y) can be defined as the larger of those of P{z) and Q(1, z,y).
An example of such parallel execution is parallel mergesort.

Given a CAN A, with a starting process type with Boolean constant arguments,
a fundamental problem is

”What is the set of execution times generated by A (written as [[A]]) ¢”

It will be good if we can compute a finite representation that describes the set.
The main contribution of this work is to show, with a construction algorithm,
that for every CAN A, [[A]] is seminlear.* The result not only is of theorectical
interest, but may also have potential in real-world applications. With this result,
the highly recursive and dynamic (processes that can be dynamically instantiated
and terminated) systems in CAN theory are now subject to algorithmic analysis.
In the future, it can be interesting to see whether CAN theory can be used as a
new weapon in our arsenal of verification technologies and can complement other
well-established verification theories{2, 4, 5, 8, 13, 14, 29, 32, 33, 37, 48, 49, 53, 54]
for recursive and parallel software systerns.

We present this work as follows. In section 2, we compare our work with related
works. In section 3, we formally define the syntax and semantics of CAN. In sec-
tion 4, we derive an algorithm to compute the semilinear description of any given
CAN. Variations of CAN theory can also be used to deal with various practical
issues in system designs. In section 5, we consider CAN theory with divergence
semantics (i.e., the assumption that a process can fail). Finally, in sections 6 and

2 A set of integers is semilinear iff it can be represented as the union of a finite number of sets
like {a + ZKK” biji | V1 < i < n(j; € N)} for some n,a,b1,...,b, € N. Semilinear integer sets

are closed under intersection, union, and complement, and are subject to efficient manipulations.
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7, we discuss two other possibilities for analyzing the numerical representations of
high-level behaviors. The first one is called PCAN (Parallel CAN), which applies
rendezvous semantics to parallel operators while disallowing arbitrary concatena-
tions. The second one, called SCAN (Stratified CAN), allows finite alternation of
concatenation and parallel rendezvous.

2. Related Work

We view CAN theory as a new and promising verification technique which can
be used to complement, not compete with, the traditional verification theories and
enrich our arsenal of verification techniques. In the following, we first discuss the
relationship between our work and R. Parikh’s classic work[44]. Then we discuss
how our work can complement various well-established verification theories.

2.1. Relation with Parikh’s Work

The classic work of R.J. Parikh on context-free languages[44] can be reinter-
preted as a special case of our CAN. Assume we are given a language L with finite
alphabet ¥ in the sequence o105 . . . o, If there is a string w € L, then Parikh’s map-
ping of w, denoted as ¥[w], is a vector (¢1, ¢z, .., cn) such that for each 1 <4 <mn,
¢; is the number of ¢; occurrences in w. Also ¥[L] = {¥[w] | w € L}.

Parikh’s fundamental work shows that given a context-free language L, ¥[L]
is semilinear. We should point out that Parikh’s result concerns semilinearity of
integer vector sets. In our framework, we only care about the case with a unary
alphabet. Given w € L with a unary alphabet, we interpret w as a particular
computation of a process type and ¥w] as the computation time of process w.

While CAN is not context-free, Parikh’s work in the unary alphabet case syn-
tactically corresponds to the BPA? of classical process algebra and represents a
truly context-free fragment of CAN since it lacks a parallel operator. Thus we also
refer to Parikh’s subclass (with unary alphabet) of CAN as Basic CAN (BCAN). In
other words, BCAN is a subclass of CAN without max and min-rules. We envision
the possibility of extending Parikh’s work with parallel operators to enhance our
ability to specify and verify the timing aspects of nonregular real-time systems.

Compared with classical context-free language with general alphabets[15], our
work may enable the analysis of real-time concurrent systems that might have pre-
viously been thought to not be analyzable. For one thing, in the general case, the
emptiness problem of classical context-free language intersection is undecidable[25]
while in sections 4, 6, and 7, we shall see that under the CAN, PCAN, and SCAN
paradigms, this problem becomes decidable and may be used to analyze process
execution time compositions.

2.2. Comparison with Various Theories

In the computation of concurrent systems, there are two major factors that

bBPA stands for Basic Process Algebra, the fragment of process algebra without parallel
compositions.
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control the system behavior: communication and time passage[31, 43]. In the tra-
ditional theories of formal verification[2, 5, 8, 13, 14, 32, 53], for example, temporal
logics, process algebra, and first-order logics, universal communication operators,
e.g. broadcasting, are very often adopted, and many good theoretical and appli-
cation results have been reported[3, 7]. Still, very little has been done to exploit
specification structures and engineering disciplines to alleviate the burden of veri-
fication. In contrast, in a CAN system description, the system is defined as a nu-
merical process, which in turn may be recursively constructed from other numerical
processes. These processes are called numerical because from the outside, we can
only observe their full execution times. Thus, to some extent, the CAN paradigm
matches the concept of abstraction and information-hiding in a uniform way. The
communication among child numerical processes is restricted to the construction of
their parent while the communication inside child numerical processes is kept invis-
ible to the parent. We believe that the CAN theory deserves further investigation
and may lead to new techniques for the analysis of dynamic and recursive systems.
In the following, we compare with specific related work in the literature.

2.2.1. Parametric analysis of dense systems

In this analytical framework, we have a (timed or hybrid) automaton and a spec-
ification formula with unknown parameters. The values of parameters do not change
with time. A valuation of parameters that makes the specification satisfied is called
a solution. The framework aims to compute the characterization of solutions. In
[4], Alur, Henzinger, and Vardi showed that for timed automata with three or more
timing parameter variables, the emptiness problem of solution space is undecidable.
In [3], Alur, Henzinger, and Ho presented a symbolic model-checking procedure
for linear hybrid systems, based on manipulation algorithms of convex polyhedra.
The procedure does not guarantee termination since reachability problem of linear
hybrid systems is undecidable.

Wang discovered that if the parameter variables are restricted to the specifica-
tion formulas in pareametric timed CTL, the semilinear expressions to characterize
solution spaces can be constructed with an algorithm[48]. The technique is based
on Kleene closure algorithm for calculating the semilinear expressions for timing
distances between regions of timed automaton. In 1997, Wang also extended his
algorithm to handle frameworks with static parameters (which are not compared
with clocks) in timed automata[49]. In 2001, Wang and Yen again extended the
algorithm for an integrated framework for both controller synthesis and parametric
analysis[54].

In 2003, Wang and Yen investigated the solution characterization complexities
of timed automaton with restrictions on parameters[55]. A parameter is called an
upper bound (lower bound) parameter if it is used as an upper bound (or lower bound
respectively) to compare with a clock in timed automaton. A timed automaton is
an upper bound (lower bound) automaton if all its parameter variables are upper
bounds (or lower bounds respectively). A timed automaton is bipartite if none of
its parameter variables is both an upper bound and a lower bound. It is shown in
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[65] that the solution characterizations of upper bound timed automaton are semi-
linear and of double exponential complexity, those of lower bound timed automaton
are semilinear and of single exponential complexity, and those of bipartite timed
automaton are incomputable.

However, such analytical techniques do not allow us to naturally model the ex-
ecution times of general recursive software since timed and hybrid automata are
not recursive. CAN theories can potentially enrich these results and help extend
those works to recursive and dynamic software systems. For example, it is imagin-
able that we can introduce atomic wait-statements into these frameworks such that
the waiting time is characterized by CAN theory. This paradigm is actually quite
compatible with our SCAN theory which we describe in section 7.

2.2.2. Parametric Analysis of Counter Systems

A counter is a mathematical device that can be incremented, decremented, and
tested against zero. The states of counter machines record the vectors of counter
values. Conceptually, such counters can be used to encode the push-down stacks
in recursive procedure-calls. The characterizations of counter machine state-spaces
are incomputable since two-counter machine halting problem is undecidable[27, 34].
But Ibarra et al have shown that when only one non-reversal-bounded push-down
stack is used, the emptiness, reachability, non-safety, and invariance problems can all
be solved with algorithms[35]. Various adaptations of this technique can be applied
to systems with various mathematical storage devices. For example, a recent work
by Dang et al characterizes the numbers of times some transitions are executed in
a finite-state system[56].

2.2.3. Logics and Arithmetics

People have also used various fragments of first-order and higher-order logics
for the formal description and analysis of timing behaviors of real-time systems|[10,
36]. Great expressiveness for non-regular behaviors comes with such logics. Con-
sequently, computability for solution space characterizations is impossible with
such non-regular behaviors. Many semi-decision procedures and theorem-provers
have been developed to help automating the analysis of systems modeled in such
logics[19, 42].

A well-discussed class of first-order arithmetics is Presburger arithmetic, which
characterizes semilinear sets of integers. A Presburger arithmetic formula is com-
posed of linear constraints like a;z1 +. ..+ a,z, < ¢, Boolean operators, and quan-
tifications on integer variables. It falls in the well-known WS1S (Weak Second-order
logic with 1 Successor) and is known to subject to algorithmic analysis[6, 23, 24, 26,
30, 38, 46, 51]. Many tools use finite-state automaton to represent and manipulate
semilinear sets of integer vectors. Algorithm for concatenation, unions, intersec-
tions, complements, and Kleene’s closure have also been presented. Efficient library
routines for the manipulations of Presburger arithmetics can be found in Omega
library[45]. Project MONA has also developed various tools to analyze models in
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WS1S based on automaton manipulation{30].

However, there is no immediate syntax structures in WS1S and Presburger arith-
metics for general software recursions for concurrent software. In comparison, there
is no restriction on recursion depth and child processes can be created and ended
dynamically in our CAN theory. It may be interesting to see how our techniques
to transform CAN formulas to ones without max() and min() operators will serve
as inspiration for people to enrich the syntax of Presburger arithmetic without
sacrificing its algorithmic analyzability.

2.2.4. Process Algebra

CAN is similar in its syntactical structure to classical process algebra theory[5, 8,
33]. Thus, it is possible to treat CAN as a new semantic definition of process algebra
(as long as we know the execution times of atomic events). However, in classical
process algebra, parallel composition is defined based on interleaving semantics, and
there is really nothing similar to our parallel operator, min() and max(), with a kind
of true-concurrency flavor. Qur parallel composition semantics for CAN provides a
new viewpoint toward the execution-time analysis of complex real-time concurrent
systems, in which time-progress in concurrent components overlaps rather than
interleaves.

There also have been numerous works to extend process algebra with real-time
clocks. ACSR is an extenstion for the specification of resource-contentions in real-
time sytems[17]. The main analysis method in ACSR is state-space exploration, for
finite-state systems, and simulation, for general systems. Baeten and Middelburg
have extended BPA and ACP with discrete and dense time clocks[11]. Decidabilities
of timed extensions of BPPs® have also been discussed[9, 39).

Our work does not compete with the classical and timed process algebrae. For
example, the classical and timed ones usually have extensive capability to describe
synchronizations among processes. But they usually have very few algorithmic
supports in analyzing general parallel recursions. On the other hand, our CAN
theory simplifies the capabilities in synchronizations in exchange for the algorithmic
analysis of general parallel recursions. Moreover, our parallel compositions support
the estimation of minimum and maximum execution times of parallel processes. But
in classical and timed extensions of process algebrae, there is no direct counterparts
in this regard. Thus it is interesting to see how our techniques can be used to
enhance the analysis power of process algebra tools.

2.2.5. Constraint-Solving

Traditionally, engineers have also used various constraint systems to charac-
terize synthesis and optimization tasks in the industry. Many classic techniques,
e.g. Gaussian elimination, Simplex methods[16, 28, 40], and double description
method[22] can then be applied on linear systems for engineering solutions to in-

°BPP stands for Basic Parallel Processes, the fragment of process algebra with sequential
concatenations restricted to the form of P — aQ, where a is an atomic event
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dustry projects. For non-linear systems, techniques like factorizing, root solving,
and cylindrical algebraic decomposition can be employed[12, 18].

In such a framework, there is no straightforward support for recursion and par-
allelism. One way to model real-time systems is to use uninterpreted function sym-
bols, e.g., as event occurrence times[36]. But constraint systems with uninterpreted
function symbols in general result in verification undecidability[20, 52]. In contrast,
CAN allows for a natural presentation of procedural structures with composition
rules for concatenation, concurrency, and recursion and has algorithm to construct
the corresponding semantics in semilinear expressions.

2.2.6. Worst-case Execution Time Analysis

Finally, the research on WCET (Worst-Case Execution Time) analysis has the
same goal as our CAN theory. For instance, in [1], Audsley et al discuss how to
calculate the WCET for a set of periodic and sporadic tasks with a fixed priority
preemptive scheduler.

Meyer and Wong-Toi have also worked on the WCET of acyclic process prece-
dence graphs, in which conjunctive precedence relations among processes are specified[41].
The WCET is analyzed for fixed priority dynamic schedulers.

In [21], techniques for detailed analysis of execution times of program implemen-
tations. Thus, the cycle times of machine instructions and hardware features like
cache lookahead and interrupt handling all have to be taken into consideration.

In contrast to WCET research, our CAN theories not only deduce the upper
bounds of execution times but also construct the characterizations of all execution
times. Moreover, previous WCET research focuses on non-recursive systems. In
this regard, our theories can also potentially complement WCET research.

3. CAN

3.1. Syntax

Let NV be the set of nonnegative integers. Given a set H, we let |H| be the size
of H. Given a sequence H, we let |H| be the length of H.

Given a rule 0 like "P(X) - ...... ”, where X is a sequence of Boolean argu-
ments, we shall let 1hs(d) = P(X), i.e., the left-hand-side of rule 8 is P(X).

A CAN A is a tuple (II,n, Py(Xs), ©), where II is a finite set of process names,
n : II = N defines the number of arguments received by each process, Py(Xo) is
the starting process and initial Boolean argument values, and © is a set of process
construction rules. For each P € II, n(P) is called the arity of process type P. The
rules in © are in one of the following four forms:

P(X) = (o) P(X) = P(X1)P(X>);

P(X) — max(P(X1),P(X3)); P(X) — min(P(X1), P (X2));
Here X, X1, and X are finite sequences of Boolean arguments, which can be either
Boolean variables or Boolean constants. Specifically, we shall call such a sequence
an argument sequence and such a Boolean variable an argument variable. Intuitively,
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these Boolean arguments are like the input arguments to functional programming
procedure-calls (e.g. Prolog). When the arguments are constants, the execution of
the procedure-call may use the constants as input parameters. When some argu-
ments are variables, the execution of the procedure-call derives the restriction on
the argument variables.

Semicolons are used as separators between rule presentations and are not part
of the rules. c is an integer constant in A/, and P, P, P, are process types in II.
When 7(P) = 0, we may also abbreviate P() as P.

The intuition behind each rule is as follows.

e Rule P(X) — (c) means that process P(X) (i.e., process P with arguments

X) can be executed with ¢ time units.

e Rule P(X) = P1(X1)P>(X2) means that process P(X) can be executed by
first executing a process P;(X;) and then after the completion of P ({X;),
immediately executing a process Py (X3).

e Rule P(X) — max(P;(X1), P»(X2)) means that process P(X) can be exe-
cuted by executing in parallel a process P;1(X;) and a process Py(X5), and
that execution is completed when both P;(X;) and P2{X>) are completed.

¢ Rule P(X) — min(P; (X1), P»(X2)) means that process P(X) can be executed
by executing in parallel a process P1{X;) and a process P»{X>), and that
execution is completed when either P;(X;) or P>(X5) is completed.

We require that in any given CAN (II, n, Py (Xo), ©), for each P € II, if P(X) is
used in O, then |X| = n(P). That is, for each process invocation, its number of
arguments must be consistent with its process’ arity.

Although the syntax of our composition rules is restricted to exactly two child
processes, we note that this is purely for convenience of presentation. In practice,
we may want to extend the syntax to incorporate rules with more or fewer than two
child processes. For example, as shown in section 4, sometimes, we write rules with
one child process like P — (). The definitions and proofs provided in the paper can
be modified to accommodate such extension without any difficulty.

Example 1 : Suppose we have a CAN with process types S, P,Q, starting process
S with arguments 1,1, and the following seven process construction rules:

S(z,0) = (3); S(z,y) = 5(z,0)5(0,y);

S(z,y) = P{z)Q(1,z,y); S(z,y) - min(Q{z,y,1), S{y,0));

S(z,y) » max(P(z), S(0,y));  Plz) = (4);

Q(z,y,1) = (6);
The first rule says that an S{z,0) process (S process with arguments z,0) can take
3 time units to complete. The next four rules say that an S{z,y) process can be the
concatenation of an S{x,0) process and an S(0,y) process, or can be the concatena-
tion of a P(z) process and a Q(1,x,y) process, or can be the parallel execution of a
Q(z,y,1) process and an S{y,0) process (fulfilled when either Q{z,y,1) or the child
S{y,0) is fulfilled), or be the parallel execution of a P{x) process and an S(0,y)
process (fulfilled when both P(z) and the child S(0,y) are fulfilled). a

8.2. Formal Semantics
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A path is a directed graph in which all nodes form a single line. The length of
a path is the number of arcs (edges) in the line. A tree is a directed acyclic graph
such that there is a special node called root, and that from the root to every other
node in the tree, there is exactly one directed path. A node with no outgoing arcs
is external and is called a leaf. A node with outgoing arcs is called internal. The
height of a tree is the length of the longest path in the tree.

Suppose we are given a CAN A = (I, 5, Ps(Xo),©). An interpretation T for A
is a mapping from {z | z is an argument variable in A} U {0,1} to {0,1} such that
Z(0) = 0 and Z(1) = 1. Given an interpretation Z and an argument sequence X,
Z(X) is an argument constant sequence obtained from X by substituting Z(z) for
every argument variable z € X.

The following concept formalizes the mechanism used to copy input argument
values to the formal arguments in process declarations. Given interpretations Z,Z’
for A and argument sequences X, X' for process type P, pmatchp xy_,(xy(Z,Z') in-
tuitively defines the relation that in a process invocation of P with actual arguments
(X) in the caller and formal argument places (X') in the callee,

e 7 represents an interpretation of actual argument values consistent with the

argument values in X from which we copy to X'; and

e 7' represents an interpretation of formal argument values consistent with the

values copied to arguments in X'.

The relation is formally defined in the following way. Suppose X = z1,...,z,
and X' = z),...,3;,. pmatchp xy,(xy(Z,7') is true iff X is consistent with X'
element by element; i.e., for all 1 < i < n, Z'(z}) = Z(x;). This definition of
pmatch() allows us flexibility to variable-sharing among child process invocations.
For example, we may call process P with actual arguments (1, 0) through the rule
P(z,y) — max(Pi(z,2), Px(z,y)). In this situation, z and y will be instantiated
to 1 and 0, respectively, while z can be instantiated to either 0 or 1. Either of the
instantiations satisfies the requirement of pmatch(). Intuitively, this means that z
is a variable used for communication between child processes P; and Ps.

In the following, we modify the derivation trees of context-free languages to

formally define the semantics of CAN.
Definition 1 : Ezecution trees Given a CAN A = (II,n, Py(X0),0), a P' € 1I,
and an argument sequence X', an execution tree T = (V, E,r,u,v) for P'(X') is
a nonempty finite labeled tree such that V is the set of nodes in T, E is the set
of arcs in T, Py(Xy) is the root of T, u is a partial mapping from V to ©, and v
is a partial mapping from V to the set of interpretations for A. In addition, the
following three requirements are satisfied.

o For each internal node v € V with left and right children u, and uz, respec-
tively, in T, p(v) is in the form of P(X) — max(P1(X1), P2(X5)), P(X) —
min(Py(X1), P2(X2)), or P{(X) — Pi(X;1)Py(X5) such that 1hs(u(u1)) is in
the form of Pi(X]) with pmatchPl(Xl)%(XD(V(v),u(ul)); and lhs(u(us)) is
in the form of Po(X3) with Pmatchp2<X2)_><X$)(l/('U),V(UQ)).

e For each leaf v € V, u(v) is in the form of P(X) — (c¢).

* lhs(u(r)) = P'{(X")). O
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Fig. 1. Two execution trees

Note that we require execution trees to be finite labeled trees in the above.
This prevents us from handling the chaotic behaviors of nonterminating recursions
or undeclared procedure-calls. In section 5, we present a formal treatment of this
issue. Also, since each internal node is labeled with a rule, the number of subtrees
of the node is implicitly determined by the corresponding rule. For convenience of
illustrating execution trees in the rest of the manuscript, given a rule § € © and an
interpretation Z, we let #7 be the instantiated rule obtained from @ by substituting
Z(z) for every argument variable z in 6.

Example 2 : For the CAN given in example 1, we may have the two execution trees
shown in figure 1. In each node v, we only label 1hs(u(v)*™), the left-hand-side
process type with instantiated arguments, and the operator of p(v) (parenthesized
numbers for constants, + for sequential, min for minimum, max for mazimum).
The labels of a node, its rule operator, and its children together record the instanti-
ated construction of the relevant processes. a

Each execution tree actually represents a computation of the root process sym-
bol. Given an execution tree T' = (V, E,r, p, v) with root r, we define its ezecution
time [[T]] inductively on the structure of T

o If u(r) = P(X) — (c) for some ¢ € N, then [[T]] = c.

o If r has two subtrees 77,7, then one of the following three conditions is
true: (1) p(r) is a sequential rule and [[T]] = [[T1]] + [[T2]]); (2) u(r) is a
min-rule and [[T]] = min([[T1]], [[T2]]); and (3) p(r) is a max-rule and [[T]] =
max([[T1]], [[T2]])-

For convenience, from now on, internal nodes labeled with addition (sequentional)
rules, minimum rules, and maximum rules will respectively be called addition nodes,
min-nodes, and max-nodes.

Example 3 : It is obvious that each execution tree has an execution time. For the
two trees shown in figure 1, the execution times are 13 and 16 respectively. m]
Now the semantics of CAN are defined as the set of execution times of the
starting process invocation.
Definition 2 : Semantics of CAN Given a CAN A = (I, 5, Py(Xo), O), for each
P € 11 and argument sequence X such that | X| = n(P), we let
[P(X)]a ={[[T1] | T is an execution tree for P(X) in A}
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Process P(X) is said to have an execution if [[P(Y)]]a # 0. The semantics of A,
denoted as [[A]], is defined as [Po(Xo)]]a- a

4. Deriving Semilinear Representations of CAN

The algorithm used to generate the semilinear description is presented and
proved in three steps. First in section 4.1, we show that CAN is equivalent to
CAN without arguments. In section 4.2, we explain our idea for eliminating max-
rules and we rigorously establish that CAN is equivalent to CAN without max-rules.
In section 4.3, we explain our idea for eliminating min-rules based on knowledge
about which process types have unbounded execution times, we then present an
algorithm that can tell if the execution time set of a CAN is of finite size. We then
rigorously establish that CAN is equivalent to CAN without min-rules.

4.1. Removing Arguments

For a fixed number of Boolean argument positions, we can compute all the
Boolean argument value combinations.

Given a CAN A = (Il,n, Py(Xo), ©), we generate A = (II,7, S, ©) such that
M= {S}U{PX|Pell;x € {0,1}"P)}, VPX ¢ [I((PX) = 0), and

6= {Po — P(‘;[(XO) |Z is a Boolean valuation to arguments in A. } 1)

P(X) — (c) € ©;T is a Boolean 2)
valuation to arguments in A. (
P{X) = P1{X1)P:(X2) € ©;

Z is a Boolean valuation (3)
to arguments in A.

P(X) —» max(P1(X1), P2(X2)) € ©;
U PI(X) ma,x(PII(Xl),PZI(XZ)) T is a Boolean valuation (4)
to arguments in A.
P(X) — min(P;(X1), P2(X32)) € ©;
T is a Boolean valuation (5)
to arguments in A.

The union component in line (1) represents the consideration of all possible instan-
tiations to argument variables in Xo. The union components in lines (2) through
(5) represent instantiations of all rules in A. The requirement enforced by pmatch()
is now fulfilled through enumeration of all possible interpretations. The following
lemma shows that [[A]] = [[A]].

Lemma 1 Given a CAN A = (Il,n,Py(Xo),0), for every ezecution tree
T = (V,E,r,u,v) for A, there is an isomorphic evecution tree T = (V,E, ¢, i, 1)
for A such that for every nmode v in T and its corresponding node v in T, if
p(v) = P(X) = Pi(X1)P2(X3) (or if P(X) — max(P(X1), P2(X2)) or P(X) —
min(P, (X)), P(X5))), then p@) = ~ P'X) o prXoprx)
(or PYX) 5 max(PYX), prX2)y op pr(X) _ min(PYXD | prX2)y ) respectively.
Proof. The isomorphism between the structures of A and A is straightforward
from the definition of the © and fi(). Specifically, the definition of /() incorporates
the requirements of both p() and v(). O

v {Pr0 5

U PIX) Plz(XI)P2I(X2)

U PL(X) —>m1n(P;‘r(X1),P2I(X2))

4.2. Removing max-rules
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Fig. 2. Illustration of how to eliminate max-rules

From now on, we shall assume that all CANs given to us have no arguments.
We first give an intuitive explanation of our reduction from CANs with max-rules
to CANs without them. Then we present the formal definitions and lemmas.

The idea for eliminating max-rules is as follows. Given a max-rule like P —
max(P;, P;), we want to find out in what situation, the rule can be replaced by the
following two rules: P — P; and P — P,. Or equivalently, we want to find out
in what situation, rule P — max(P;, P;) helps generate the same set of execution
times as rules P — P; and P — P, do. Note that the set of execution times
that can be constructed with rule P — max(P;, P;) is always contained in the
set of execution times that can be constructed with the two replacements. The
reason can be seen in figure 2. Consider the execution tree shown in figure 2(a).
Before replacement, the execution time of only one child subtree in figure 2(a) will
definitely be included in the semantics of P. But after replacement, we have the
two execution trees in figure 2(b) and (c). Therefore, the execution times of both
child subtrees in figure 2(a) will be included in the semantics of P.

Thus the applicability of the replacement depends on the following question:
”Under what condition, does the set of execution times that can be constructed
with rule P — max(Py, P») always contain the set of execution times that can be
constructed with the two replacements ?” One sufficient condition for replacement
is that [[7T1]] is no smaller than the minimum execution time of P, and [[T%]] is no
smaller than the minimum execution time of P; either. Assume that T{" and TJ" are
execution trees for P, and P;, respectively, with minimum execution times. In this
situation, the execution tree in figure 2(b) is equivalent to the one in figure 2(d) as
far as execution time is concerned. (The same is true for figure 2(c) to figure 2(e).)
This verifies our intuition that max-rules can be removed. However, the key element
in the transformation is the computation of the minimum execution time, if any, of
each process type.

4.2.1. Finding the Minimum Execution Times

The following procedure returns the minimum execution times in mp for all
Pell

int mp for each P € II;
min_time(A4) /* A = (Il,n, Py, 0) */ {
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for each P € I1, let mp := o0;

repeat until no more changes are possible, @)
for each 6 € O,
if 4 is like P — (c), let mp := min{(mp, c); (2)

else if 6 is like P — P P, let mp := min(mp,mp, + mp,);

else if 6 is like P — max(Py, P2), let mp := min(mp, max(mp, ,mp,));

else if 6 is like P — min(P;, P2), let mp := min(mp, mp,,mp,);
return mp for all P € II,;

}

In each iteration of the repeat-cycle at statement (1), we try to reduce the mps’
values by applying the rules to the mps’ values.

Given a CAN A and a process type P in A, we let min|[[P]]4 be the minimum
execution time of process P in A. Conveniently, when [[P]]4 = 0, we let min[[P]]4 =
oo. Now we have to prove that procedure min_time() eventually returns with mp =
min([[P]]4 for all P € II. This can be done with the help of the following lemma.
Lemma 2 Given a CAN A, a process type P, and h € N, at the end of the h-th
iteration of the repeat-cycle at statement (1) in min_time(), mp is no greater than
any execution time of the execution tree for P with height < h.

Proof. Note that mp is always assigned expressions like "min(mp,...).” This
means that the value of mp will never increase in the repeat-cycle. The proof
can be done by induction on h. In the induction step, according to the inductive
hypothesis, we know that the lemma is true for the child subtrees of T. Thus
the lemma is true at h + 1 according to the semantics of the three rule types of
P— PP,P—> ma,x(Pl,Pz), and P —» min(Pl,Pz). O

A little more observation on the lemma can be made. The proof of Lemma
2 holds even if the repeat loop were an infinite loop, and therefore holds for all
trees of finite heights. Furthermore, when some mp is changed, it is decreased to
a natural number. Because this can only happen finitely many times, and because
no change can possibly occur once an iteration results in no change, the procedure
must terminate with mp’s recording the minimum execution times.

4.2.2. Transformation into CANs without max-rules

Now with the knowledge of min[[P]]4, we can explain how to eliminate max-
rules. We use the special symbol ¢< to denote any integer no smaller than ¢. For
example, 5< represents any integer no smaller than 5. We can define the relations
of addition with bound ¢ over elements in {0,...,c —1,c¢<} as follows:

i+(0)j={ ity it <enicSAj#CS
c otherwise.
For example, 3+ 4 = 5< and 3 +¢%) 1 = 4. Intuitively, d < ¢< iff d < c. Let
M4 = max{min[[P]]4|P € II;min{[P]]4 # cc}. We can replace max-rules with the
following technique of bounded execution time composition pattern enumeration.

1. For each process type P, we replace it with ezpanded process types
plol pll . pIMa-1] pIME) where for each 0 < ¢ < M4, Pl means pro-
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cess type P with execution time of exactly ¢; and PIME] represents process
type P with execution time no less than M 4.

2. For each rule like P — max(@, R);, we replace it with enumeration rules of
the following four groups:

Plel - Qlel, for all min[[R]jsa <c< My
Pl — Rl for all min[[@]]la <c< My
PME) 5 QME] min[[R]j4 # oo
PME] 5 RIME] min[[Q]]a # oo

Rules like Pl — QI with ¢ < min|[R]] 4; are not included since they do not
generate an execution time that can be constructed with P — max(Q, R). An
enumeration rule like Pl — QL or PIME] Q[M§< | generates an execution
time in the original semantics when ¢ > min[[R]]4. Intuitively, the replace-
ment enumerates all possible composition patterns with execution times less
than M 4. When the execution time is no less than M4, the composition pat-
tern behaves as if no max-rules exist. Of course, the replacement can be done
only if there exist execution trees of () and R.

3. For the other rule types, we enumerate all the composition patterns with
expanded process types. For example, for a rule like P — QR, we enumerate
rules Pld — QllRle2] for all ¢ = ¢; +(M4) ¢,. Also, for a rule like P —
min(Q@, R), we enumerate rules Plel  min(Qle1), Rle2]) for all ¢ = min(ey, c3)
with ¢,c1,¢2 € {0,1,...,MA - 1,M§<}

Given a CAN A = (I, 5, Py, ©) (note that Py has no arguments, and that () is
omitted), we shall derive A = (11,7, Py, ®) such that there is no max-rule in ® and
[[A]] = [[4]]- The new CAN A = (II, 7, Py, ©) is defined as follows:

DY nu{Pl | Pelie N;0<i< Ms}U{PMI) | Pet},
where 7] maps everything to zero, and
(PPl |Pell,ie N,0<i< M}
(P — PMS]| P e}
{PlFl » (¢) | P = (c) € ©}
{PIMZ] 55 () | P = (¢) € ©,6> Ma}
{Pll - QUIR | P 5 QR € ©,i = j +M4) k}
{Pt - min(Q[, R¥) | P - min(Q, R) € ©,i < k}
{P1 — min(Q[¥, Rl) | P - min(Q, R) € ©,i < k}
{Pll - QI | P = max(Q,R) € ©,i > min[[R]]a}
u {Pl - R | P - max(Q, R) € ©,i > min[[Q]]a}
Lemma 3 Given an CAN A, [[A]] = [[A]] with A defined as in the above.

Proof. (=) We want to show by induction that for every P € Il and ¢t € N, if
t € [[P]]a, then t € [[P]] 5. In the base case, we have an execution like P — (¢) in
A. If ¢ > My, then we have P — PMS] and PIMS] (¢) in ©. Otherwise, we
have P — P!l and P, — (c) in ©. Thus the base case is proven.

[©]]
=9
iy
ccccccc
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Fig. 3. Tree constructions for A

iV

Fig. 4. Tree structure transformations

Now assume that this direction of the lemma is true for all execution trees in
A of height < h. Given an execution tree in A of height h + 1, there are two
cases to consider. First, suppose that the root is constructed from a sequential rule
P — @R, and that the two subtrees have execution times J and K, respectively.
According to the inductive hypothesis, we know that there are two execution trees
in A shown as in figure 3(a) for some j,k € {0,...,Ma — 1, M}, Note that ME
is actually a flag which means any value no less than M 4. Thus the values of j and
k (or any execution time) must be either in [0, M4 — 1] or marked as M. When
J > My, j = MS; otherwise, j = J. Similarly when K > My, k = M; otherwise,
k = K. From these two trees, we can construct the tree shown in figure 3(b) for
some i = j +¢M4) k and prove the case. The case where the root corresponds to a
max- or a min-rule can be proven similarly.
(<=) We want to show by induction that for every P € Il and t € N, if t € [[P]] 3,
then ¢ € [[P]]la. Note that in A, process types without superscripts, like P, only
appear on the left-hand-sides of the rules. Assume that the tree in A for P with
execution time ¢ is 7. The construction proceeds in the following two steps. First,
we remove the root node from T'. Second, we relabel the internal nodes with rules
in © according to the two transformations depicted in figure 4. Figure 4(a) is for
max-rules like P — max(Q@, R) while figure 4(b) is for rules like either P —+ QR
or P — min(P, Q). Note that in figure 4(a), we use the drawing of a triangle with
a circled R at the top and with min[[R]]4 inside the triangle as the execution tree
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Fig. 5. Illustration of how to eliminate min-rules

of R with the minimum execution time for R. We perform this transformation for
each original node (labeled with process types with superscripts) in the original
execution tree T. The result after transformation is an execution tree for A and
can be shown by induction on the structure with the same execution time as 7. O

4.8. Removing min-rules

Following lemma 3, from now on, we shall assume without loss of generality that
all given CANs have neither arguments nor max-rules. As in the last section, we
first give an intuitive explanation of our reduction from CANs with min-rules to
CANs without. Then we present formal definitions and lemmas with proofs.

The idea of eliminating min-rules is very much similar to the idea of eliminating
max-rules proposed in the last section. Given a min-rule like P — min(P;, P),
we want to find out in what situation, the rule can be replaced by the following
two rules: P — P, and P — P,. Or equivalently, we want to find out in what
situation, rule P — min(Py, P;) helps generate the same set of execution times as
rules P — P; and P — P, do. Also note that the set of execution times that can be
constructed with rule P — min(Py, P2) is always contained in the set of execution
times that can be constructed with the two replacements. The reason can be seen
from figure 5. Consider the execution tree in figure 5(a). Before replacement, the
execution time of only one child subtree in figure 5(a) will definitely be included
in the semantics of P. But after replacement, we have the two execution trees
in figure 5(b) and (c). Therefore, the execution times of both child subtrees in
figure 5(a) will be included in the semantics of P.

Thus the application of the replacement operation depends on the following
question:  ”Under what condition, does the set of ezecution times that can be
constructed with rule P — min(Py, P;) always contain the set of execution times
that can be constructed with the two replacements ?” One sufficient condition for
this replacement operation is that

e no matter how large [[T1]] is, we can always find an execution tree T for P,

such that [[T1]] is no greater than [[T{]]; and

e no matter how large [[T3]] is, we can always find an execution tree TM for P,

such that [[T»]] is no greater than [[T{M]] either.
In this situation, the execution tree shown in figure 5(b) is equivalent to the one
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shown in figure 5(d) as far as execution time is concerned. (The same is true for
figure 5(c) to figure 5(e).) But what happens when [[Pi]] or [[P:]] are of infinite
sizes 7 This situation can be broken down to the following four cases.

e If both |[[P1]]] = oo and |[[R]]] = oo, then the above-mentioned sufficient
condition is naturally satisfied.

e Suppose |[[P1]]] = oo while |[P2]]] # oo. Then there is no restriction on
propagating the execution times of P, to those of P. However, the execution
times of P; that can be propagated using this rule to those of P are bounded
by the maximum execution time of P;.

o The case in which |[[P1]]]| # oo while |[[P2]]| = oo is similar to the last case.

e Suppose both |[P1]]| # oo and |[[P]]| # co. Then the execution times that
can be propagated using this rule to those of P are bounded by the smaller
of the maximum execution times of P, and Ps.

According to analysis of the four cases, we find that it is important to know

e if a process type can generate an infinite number of execution times, and

e how long the maximum execution time of a process is if it is finite.

The following four sections are organized as follows. First, in section 4.3.1, we
define and prove the necessary and sufficient condition for a process type to have
infinitely many execution times. In section 4.3.2, we present and analyze the com-
plexity of a bottom-up procedure used to decide which process types have infinitely
many execution times. In section 4.3.3, we present an algorithm for calculating
the finite maximums of process execution times. Finally in section 4.3.4, we wrap
everything up and transform CAN into BCAN.

4.3.1. Finite Sizes of CAN Execution Time Sets

We define the following structures in an execution tree.

Definition 3 Bone trees Given an execution tree T = (V,E,r,u,v) for P € 11
in A = (II,n, Py, 0), a bone tree B = (V,E,r,p,v) of T is a substructure in T
satisfying the following four conditons: (1) V. C V; (2) E = {(v,v) | (v,0') €
E;v,v' € V}; (3) ifv €V and p(v) is a rule like P — QR, then ezactly one of v’s
children is in V; (4) if v € V and p(v) is a rule like P — min(Q, R), then v’s two
children are both in V. ]

The following condition of a bone tree is sufficient and necessary for the execution
time set of a process type to be of infinite size.

Definition 4 Unboundedness condition Given P € II in A = (Il,n, Py, ©), we say
that P satisfies the unboundedness condition iff there is an ezecution tree T of P
and a bone tree B in T such that along all paths from root to leaves in B, there is a
path segment vy, Vi1, ...,v;, with i < j, with the following two restrictions. (1) v;
and v; are labeled with rules with the same left-hand-side. (2) There isani <k < j
such that vy is labeled with a sequential concatenation rule and the child of vy, not
in the path, roots an execution tree of nonzero execution time. )

For convenience of discussion, we use the term repetition segment to refer to the
path segment from v; to v; along a bone tree path. v;, v;, and vy, are, respectively,
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(b) Extending an execution tree
(a) A bonetree

Fig. 6. Bonetree and extending an execution tree

called the starting, stopping, and significant nodes along the repetition segment. A
child node of v not in the bone tree is called a pendant of the bone tree.

We first want to establish the completeness and soundness of the unboundedness
condition using lemma 4.
Lemma 4 Given a CAN A = (I, n, Py, 0) and P € 11, |[[P]]a] = oo iff P satisfies
the unboundedness condition.
Proof. (=) Let L4 be the largest constant used in definition A. Since |[[P]]4|
is infinite, there must be an execution tree T for P heavier than 2L ,. Now we
shall constructively identify a bone tree B in T which satisfies the unboundedness
condition. Construction is accomplished by procedure bone() shown below.

bone(T') /* The root, left, and right subtrees are r, Ty, and T respectively. */ {
if r is a leaf, return T}
else if r is labeled with an addition rule,
if [T1]] > [[T2]], return tree(r, bone(T})); else return tree(r, bone(T3));
else if r is labeled with a min-rule,
return tree(r,bone(T}), bone(T3));

For example, both of the execution trees shown in figure 1 generate the same
bone tree depicted in figure 6(a) through procedure bone(). Now we want to show
that B indeed satisfies the unboundedness condition.

We say a node is heavy if it is labeled with an addition rule, and if both of its
subtrees have nonzero execution times. Other nodes are said to be light. We want
to prove that along each path in B, there are at least |II| + 1 heavy nodes. Note
that the execution time of a subtree 7" is divided into two nonzero execution times
of the corresponding child subtrees only when the root of 7" is a heavy node. Also,
at each heavy node in the execution of procedure bone(), we choose to include only
the heavier child subtree. Thus, it is clear that after passing each heavy node, the
execution time of the subtree is reduced to a value no less than half of the execution
time of its parent tree. Also, if we branch through a min-node, the execution time
of the child subtrees cannot be smaller than the execution time of its parent tree.
Since [[T]] > 2™ L 4, along any path of B, there will be at least |II|+1 heavy nodes.
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Finally, of the |II| + 1 heavy nodes along a path in B, two are labeled with rules
having the same left-hand-side. Thus, this direction is proven.
(«<=) If there is such an execution tree T satisfying the unboundedness condition,
we shall show that from T, we can construct another execution tree T' such that
[T']} > [[T]] and T"' satisfies the unboundedness conditon. Along every root-leaf
path in B, we identify nodes v; and v; as described in the unboundedness condition.
Note that the execution time of the subtree rooted at v; is greater than the execu-
tion time of the subtree rooted at v; due to the existence of a pendant along the
repetition segment. Then we replace the subtree rooted at v; with the one rooted
at v;. The replacement operation for one pair is shown in figure 6(b). We perform
such a replacement operation for each root-leaf path in B. After replacement, the
execution time of the tree rooted at v} is raised to the execution time of the tree
originally rooted at v;. Since the path contributes to the weight of the whole tree,
it can be shown that the resulting new tree 7" is heavier than [[T]] and satisfies the
unboundedness condition. O

4.3.2. Infiniteness of the Execution Time Set

With lemma 4, we can now develop an algorithm to compute the set of processes
satisfying the unboundedness condition. The algorithm is embodied in the following
bottom-up procedure, unbounded().

unbounded(A) /* A = (II,n,S,0) */ {

let T = {(P, {(0, P)}) | min[[P]ls # oo}; 1)
repeat until no more changes to I' are possible, { (2)
for each P — min(P;, P;) € © and each (P, A1), (P2, A2) €T,
add (P,{(c,P') | (¢, P') € A1 UA2;¢=0V P' # P}) to T} (3)
for each P -+ PP, € ® and each (P, A1) €T, oo 4)
if min[[P]]a =0, add (P, {(c, P') | (¢, P’) € A1;c=0V P’ # P}) to T} (5)
else if 0 < min[[P]]a # oo, add (P, {(1,P') | (c, P’) € A1; P' # P}) to T (6)
for each P - PLP, € © and each (P2, A2) €T, ..o (7)
if min[[P1]]a =0, add (P, {(c, P') | (¢, P') € A2;c =0V P’ # P}) to I (8)
else if 0 < min[[P,]]a # oo, add (P, {(1, P') | (¢, P') € As; P' £ P}) to T 9)
}
return {P | (P,0) € T}; (10)

}

The algorithm works on set I, whose elements are of the form (P, A), where A is,
in turn, a set with elements like (¢, P'). An element (P, A) represents an execution
tree pattern with the following pattern:

e its root is labeled with a rule whose left-hand-side is P; and

e each element (c, P’} € A represents an obligation to find a repetition seg-

ment, with a stopping node labeled with a rule whose left-hand-side is P’,
in a bottom-up manner. When ¢ = 0, this means that P is still below the
significant node (v) along the repetition segment. When ¢ = 1, it means that
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P is no lower than the significant node. An obligation is considered fulfilled
when P’ = P and ¢ = 1. A fulfilled obligation can be removed from A.
Note specifically that the obligations are represented as a set instead of as a multi-
set. That means that two obligations with the same pattern (¢, P’') can be fulfilled
at the same time in a bottom-up manner when P’ = P and c = 1.

One important observation used in the definition of the unboundedness condition
is that the exact execution time of a child tree rooted at a pendant is not important
as long as we know that it is greater than 0. This observation affects our design of
an element structure like (¢, P') in A. Each obligation starts from the bottom at
line (1) with P’ = P and ¢ = 0 if min[[P]]4 # oo, i.e., there is an execution that
begins at P. After initialization at statement (1), we iterate through the cycle for
each combination of child subtree patterns when creating an execution tree pattern.
This loop at statement (2) is very typical of bottom-up procedures. At the end of
the h’th iteration, all execution trees of height h + 1 have been considered.

At each iteration of the loop at statement (2), the execution tree pattern com-
position process is broken down into three cases. The first case is for min-rules,
and obligations from both child subtrees are copied directly to the obligations of
the parent execution tree unless we find that the obligation has been fulfilled.

The second and third cases are for sequential rules with bone repetition paths
extending, respectively, from their left and right child subtrees to the parents. Ac-
coding to the definition of bone trees, for nodes labeled with sequential rules, only
one child will be included in the bone tree. The second case at statement (4) is for
the case where the left child subtree is included in the bone tree, while the third case
at statement (7) is for the case where the right child subtree is. Let us examine the
second case at statement (4) in more detail. The existence of the left child subtree
is justified by the existence of an element (P;,A;) € I'. The rule can generate a
meaningful execution time only when min[[P;]]4 # oco. Statement (5) tests whether
the root of the new tree is not a significant node and copies the obligations of the
child to those of the parent if the new root is not a significant node. Statement (6)
tests whether the root of the new tree is a significant node, updates the obligations
with ¢ = 1, and records them with the new parent.

Note that at statements (3), (5), (6), (8), and (9), an obligation is passed to the
parent only when it has not been fulfilled (i.e., c =0V P’ # P).

Now we analyze the complexity of procedure unbounded(). First we want to
know how complex I' is. The elemments of A are like (¢, P'). There are 2|II| possibil-
ities. Each element in T is like (P, A). Thus, the number of possible elements in T’
is |T1[22™ = ||4/™. For convenience, we let Hr = [II|22/"| = [I1|4/™. This means
that the loop at statement (2) can be executed at most Hr times since we only add
elements to I' and never remove one.

The complexity of each iteration of the loop at statement (2) is dominated by
the first case, in which we consider every pair of elements in I'. There are HZ such
pairs. To scan A; and A2, we need to make |II| comparisons. Thus, each iteration
of the loop at statement (2) has complexity O(HZ|TI|). Thus, the complexity of the
loop at statement (2) is O(Hp HZ|H|) = O(|T1|*16!™). This is the complexity of the
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whole algorithm since statements (1) and (10) do not cost much.

4.3.3. Finite Maximum of Process Execution Times

Given a process type P in CAN A, we let max[[P]]4 be the maximum execution
time of process P in A. Conveniently, if |[[P]}a| = oo, we let max[[P]]4 = oo.

With the algorithm given in the last section, we can now decide whether
max[[P]]4 = oo for a given P. With this knowledge, we can further replace rules like
P — min(Py, P;) with P — Py, P = P, if max[[P;]]4 = co and max[[P2]]4 = 0.

Now the remaining issue is how to compute the max[[P]]4 of all P with
max[[P]]a # co. This can be done with the following procedure, bound(A).

bound(A4) /* A= (Il,n,S,0) */ {
for each P € II, if max[[P]]4 = oo, then Mp = o0, else Mp = —o0;
loop for 211 L 4|TT| 4 1 times, {
For each rule P — (c) € ©, Mp := max(Mp,c);
For each rule P + QR € O, Mp := max(Mp, Mg + MRg);
For each rule P — min(Q, R) € ©, Mp = max(Mp, min(Mq, MR));
}
}

It is seen from the proof of lemma 4 that for a P with max[[P]]a # oo,
max([[P]]a < 2™ L,. (Remember that in the first line of the proof for lemma, 4,
L4 is the notation for the biggest constant used in A.) Thus, within 2L 4|TI| 4 1
iterations, a fixed point will be reached, and the maximum execution times of all
processes can be found. At the end of the execution of the procedure bound(A4), for
each P € II with max[[P]]4 # oo, max[[P]]4 = Mp.

4.3.4. Semilinear Expressions of CAN

As explained at the beginning of section 4.3, the idea for eliminating min-rules
follows the same paradigm given in section 4.2. Here we use symbol N4 for the time
bound 2™ L 4 used in the proof of lemma 4. N4 plays the role of M4 described in
section 4.2. Intuitively, for execution times beyond N4, if any, the rules behave as
there is no min-rules.

1. For each process type P, we replace it with the expanded process types
plol pll . pINa-1] pINF] where for each 0 < ¢ < N4, Pl means pro-
cess type P with execution time exactly equal to i; and PV P represents the
process type P with execution time no less than N 4.

2. For each rule like P — min(Q, R), we replace it with enumeration rules like

Pl — QUi V(max[[R]]4 # oo At < max[[R]]4) V max[[R]]4 = oo;
PINS] o QINE], Vmax[[R]]a = 0

Rules like Pl - Q4 with 4 > max[[R]], are not included since they do not
generate an execution time that can be constructed with P — min(Q, R). An
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enumeration rule like Pl — QU] generates an execution time in the original
semantics when i < max[[R]]4. Intuitively, the replacement operation enu-
merates all possible composition patterns with execution times less than N4.
When the execution time is no less than V4, the composition pattern behaves
as if no min-rules exist. Of course, the replacement operation can be done
only if there exist execution trees of @) and R.

3. For the other rule types, we enumerate all composition patterns with expanded
process types.

We can now reduce a CAN with no arguments and no max-rules to BCAN A =
(11,1, P, ©) with 1 = {Po} U{P¥ | PeM,i € {0,...,Na—1,N5}} and
{Po = P |0 < i < Na;max[[Py]]a # oo}

<
U {P = P! | max[[Py]]a = oo}
< def U {P[°]<<—>(c)|P—>(c);€®;c<NA;}
©= | u {PNS 5 ()| P— (c);€ ©;¢> Ny}
U {P - QUIRM | P - QR € ;i =j+{Na) g}
U {Pll 5 Q| P - min(Q,R) € 0;i < max[[R]]a}

U {Pl — Rl | P — min(Q,R) € 0;i < max[[Q]]a} }
Theorem 1 Suppose we have a CAN A = (Il,n, S,0), without arguments and
without maz—rules, and a BCAN A constructed according to the just-mentioned
reduction. Then [[A]] = [[A4]).

Proof. True according to the construction of A and the results given in the last
three subsubsections. |

5. CAN with Divergence Semantics

In real-world system designs, we usually have to make sure disasters do not
happen even when some process fails to execute. We can also modify CAN theory
to accommodate this possibility. We adopt divergence semantics such that when a
process fails to execute, it never terminates, or equivalently, its execution time is
0o. This extension to CAN theory can be made quite naturally by adding the rule
P(X) — oo, for all P € II and the argument variable sequence X, to component
© in a CAN. The rule P(X) — oo means that process invocation P(X) never
terminates and, thus, fails. Laws for arithmetic operations involving integers and
oo also need to be naturally defined. Specifically, for all ¢,d € N U {c0}, we want:

e 0o+c=d+ 00 =00+ o0 = . The intuitive interpretation is that the

sequential concatenation of a process execution with another failed process
execution results in a failed process execution.

e max(00,¢) = max(d, ) = max(co,00) = co. Intuitively, this means that the

parallel execution represented by max() fails if one of its child processes fails.

e min(oo, ¢) = min(c,00) = c. Intuitively, this means that the parallel execution

represented by min() succeeds if one of its child processes succeeds.

With the above divergence semantics, the transformation from general CAN to
BCAN discussed in section 4 can still be applied with a minor modification to take
care of additions and comparisons between integers and co. More interestingly, the
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transformation to CAN without min-rules can be made much simpler and more
efficient. Since co € [[P1]]a and oo € [[P2]]a now for all Py, Py, P — min(Py, P»)
can be unconditionally replaced by the two rules P —+ P, and P — P;.
With the above divergence semantics, the BCAN transformed from

A = (11,7, Py, ©) by eliminating all min-rules is A = (II, 7, Py, ®) with

 des {00 € ©;6 is not a min-rule.}

0= §] {P—)Pl,P—>P2IP-—)min(Pl,Pg)E@}

U {P—>o|Pell}

Lemma 5 Suppose we have a CAN A = (Il, 5, S, ©) with.divergence semantics,
without arguments and without maz-rules, and « BCAN A constructed according to
the just-mentioned reduction. Then [[A]] = [[4]].

6. Parallel CAN (PCAN) with a Rendezvous

We can also adopt a rendezvous semantics for the parallel compositions in CAN.
That is, we can design a parallel rule like P{(X) — P;(X1)||P2(X>) such that pro-
cess P(X) has an execution tree if P;(X;) and P»(X>) have executions with the
same execution time. With this alternative semantics, we can define Parallel CAN
(PCAN) with the following syntax rules:

P— (Cl); P - (Cl)Pl (Cg); P— P1”P2;

Here ¢;, c2 are natural numbers. The semantics of PCAN can also be defined using
execution trees. Not all execution trees are legal because an internal node labeled
with a parallel rule may have two subtrees with unequal execution times. We shall
only briefly describe the semantics of PCAN. Given a rule like P — (¢1)Pi(c2),
process P is executed by doing some preprocessing of ¢; time units, then invoking
Py, and finally after the fulfillment of P, and then doing some postprocessing of
¢z time units. Given a rule like P — Py||P;, process P is executed by invoking Py
and P, simultaneously and is fulfilled by the simultaneous fulfillment of P, and P,
respectively.

We shall only give a sketch of the semilinear expression construction of the
semantics of PCAN. Details about the construction can be found in [50]. The
execution of a PCAN may be viewed as consisting of repetitive spawning child
processes. The execution state of a PCAN can be viewed as a set whose elements are
like (¢, P) such that the size of the set represents the number of distinct patterns of
concurrent processes, ¢t means the execution time accumulated from the beginning
of the root process invocation, and P € II U {Ll} is the process to be invoked
next. Here | means no more processes are to be invoked, i.e., the fulfillment of a
parallel branch. Such an execution state is called a snapshot. The initial snapshot
is {(0, Po)}. An accepting snapshot is {(t, L)} for some t € N'. Note that we define
a snapshot as a set instead of as a multiset. This means that all the descendant
processes of the same pattern (¢, P) terminate with the same execution time.

Numerically, the execution time of (¢;) P (c2) is the same as that of tail procedure-
call (¢1 + ¢2)P1. We can define the relation NE-next(B, (¢, P),d, 8, B') from a snap-
shot B to a possible numerically equivalent next snapshot B’ by executing rule
on process P and incrementing d to the current accumulated execution time ¢ as
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Fig. 7. subpiece of a normalized snapshot graph

shown below.

NE-next(B, (t, P),d, 8, B') /* Numerically equivalent next snapshot relation */ {
if #is P — (d),
if B =(B—{(t,P)}) U {(t+d, L)}, return true, else return false;
else if 8 is P — (¢1)Q(c2),
if B =(B—{(t,P)}) U{(t+ c1 + c2,Q)}, return true, else return false; . (1)
elseif § is P — Q||R and d = 0,
if B' = (B - {(t,P)}) u{(t,Q), (t, R)}, return true, else return false,
else return false.

}

A snapshot {(t1,P1), ..., (tn, Pn)} is normalized iff (31 <i<n,t; =0)A (V1 <
i < n,t; < 2L4). Given a snapshot B = {(¢1,P),..., (tn, Pn)}, we let normal(B)
be the normalized image of B, i.e., normal(B) = {(t —minj<i<n ti, P) | (¢, P) € B}.
Definition 5 : normalized snapshot graph The normalized snapshot graph of a
PCAN is a directed graph (U, W, 7) such that U is the set of normalized snapshots,
W C U x U is the set of arcs, and 7 is a mapping from W to finite natural number
sets. Formally speaking, given two B, B' € U,

e (B,B') € U iff NE-next(B, (t, P),d,6, B) Anormal(B) = B’ for some 0 < t <

2L4,P€I1,0 <d<2Ly4,0 € O, and snapshot B;
e 7(B, B') is the set of time-progress amounts from B to B’. Precisely, 7(B, B') =
{d| 0 < d < 2L 4; 3#3IP3B,NE-next(B, (t, P),d,0, B)Anormal(B) = B'}. O

Example 4 : Figure 7 shows a subpiece of a normalized snapshot graph for a
PCAN uwith siz rules: P — Q||R;Q — P(3); R — (2)R(4);Q = (3);R — (3);R —
(0). On each arc, the amount of time-progress is labeled. The subgraph characterizes
some rule compositions with ezecution times 6 + 3h with h € N. [}

Furthermore, the following lemma shows that normalized snapshot graphs are
both sufficient and necessary for the analysis of PCAN execution time sets.
Lemma 6 Given a PCAN A= (IL,n, S,0), for anyt € N, t € [P]]a iff there is a
path from {(0, P)} to {(0, L)} in the normalized snapshot graph of A such that the
summation of time-progress amounts, one from the set label 7() of each arc along
the path, is t.
Proof. Sketch: An execution time ¢t € [[P]] 4 iff we can iteratively apply NE-next()
to {(0,P)} and finally end up with {(¢,1)}. This sequence of rule-applications
generates a snapshot sequence. For every such snapshot sequence, we can construct
an equivalent snapshot sequence with the same execution time by always choosing
the element (¢', P') with the smallest #' in each iteration. Then the normalized
snapshots along this equivalent sequence constitute the path for the proof. O
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The following lemma further shows that the normalized snapshot graph of any
given PCAN is of finite size.
Lemma 7 Given a PCAN A = (Il,n, S, ©), its normalized snapshot graph has at
most 2IT+DCLA+1) podes,

Then we can use the PCAN _time() procedure, in the following, to calculate the
semilinear expressions of [[P]]4.

set of integers Svu;
PCAN_time(A, P) {
construct the normalized snapshot graph (U, W, ) of A
for each (By,B;) € W, Sp, B, := 7(B1, B2);
for each (B;, Bs) ¢ W with B; # Bs, let Sg, g, := 0;
for each By € U, let Sg,B, := Sp,8, U {0};
for each B € U, for each B;,Bs € U, let
SpyB, = SB,B, U {i1 + jiz + i3 | i1 € Sp,B;i2 € SpB;i3 € Spp,;j €N} (1)
return S¢(o,P)}{(0,1)};

The algorithm is in the style of Kleene’s closure algorithm. It is actually a
modification of the bypass algorithms in [47, 48, 49]. Statement (1) means that we
can go from B; to By by first going from B; to B, then cycling through B any
number of times, and finally going from B to By. The procedure iterates through
all possible intermediate snapshots in the construction of a path from B; to Bs.

Theorem 2 Given PCAN A = (11,7, S,0) and P € II, [[P]]a = PCAN_time(A, P).

7. Stratified CAN (SCAN)

SCAN is designed to be a superclass of PCAN and CAN. It shows that we
can mix the features of many CAN variations for the analysis of practical systems.
In an SCAN A, conceptually, we have a sequence of PCANs and CANs A; =
(Hl,’l’h, Pl’o, @1), e An = (Hn,’r]n,Pn’o, @n) such that

e for each 1 <i < n, A; is either a CAN or a PCAN;

e forany 1<i<j<m,if II;NII; # 0, then II; NII; = {P)o}, and Pjo does

not appear on the left-hand-side of any rules in ©;.
Formally speaking, SCAN A = (Ulgisn 11;, UlSiSn i, P10, Ulsisn 0,).
Theorem 3 SCAN is semilinear.

Proof. The basic idea is that BCAN and semilinear expressions are equivalent.
Details are in [50]. Thus we can evaluate from A, to A; in sequence. Each time we
get the semilinear expression of A4;, we translate it to a BCAN A} and replace 4;
with A}. Eventually, the semilinear expression of A; will be constructed. |

8. Conclusion

Our major contribution is the construction algorithm of semilinear expressions
of CAN systems. By viewing the min() and max() operations as parallel compo-
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sitions in concurrent systems, CAN becomes an extension to classical context-free
languages and process algebra with a new semantics. It will be interesting to see
how the CAN theory can be used to enhance the analyzability of classic modeling
languages, like timed automaton, process algebra, WS1S, ..., etc.
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