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Abstract

In this paper we consider the state complexity of an operation on formal languages, root(L).
This naturally entails the discussion of the monoid of transformations of a finite set. We obtain
good upper and lower bounds on the state complexity of root(L) over alphabets of all sizes.

1 Introduction

A deterministic finite automaton, or DFA, is a 5-tuple A = (Q,Σ, δ, q0, F ), where Q is a finite
non-empty set of states, Σ is the finite input alphabet, δ : Q × Σ → Q is the transition function,
q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. We assume that δ is defined on all
elements of its domain. The domain of δ can be extended in the obvious way to Q×Σ∗, where Σ∗

is the free monoid over the alphabet Σ. For a DFA A, the set L(A) = {w ∈ Σ∗ : δ(q0, w) ∈ F} is
said to be the language recognized by A.

The state complexity of a regular language L ⊆ Σ∗, denoted sc(L), is defined as the size (the number
of states) of the smallest DFA recognizing L. The state complexity of various operations on regular
languages, such as union, concatenation, and Kleene closure, has been studied extensively; see, for
example, [14, 15].

In this paper we examine a less familiar operation, namely root(L), which is given by

root(L) = {w ∈ Σ∗ : ∃n ≥ 1 such that wn ∈ L}.

Note that this operation is not the same as the ROOT(L) operation studied by Horváth, Leupold,
and Lischke [7]. The study of the root(L) operation requires us to examine the connections between
finite automata and algebra.

For a finite set Q, a function f : Q → Q is called a transformation. The set of all transformations of
Q is denoted QQ. For transformations f, g ∈ QQ, their composition is written fg, and is given by
(fg)(q) = g(f(q)), for all q ∈ Q. Together, the set QQ and the composition operator form a monoid.

Transformations and their monoids have been studied in some detail by Dénes (whose work is
summarized in [3]), and Salomaa [11, 12]. Dénes investigates several algebraic and combinatorial
properties of transformations, while much of Salomaa’s work is concerned with subsets that gener-
ate the full monoid of transformations.

http://arxiv.org/abs/math/0306416v2


Let L be a language and A = (Q,Σ, δ, q0, F ) a DFA such that L = L(A). For w ∈ Σ∗, define
δw(q) = δ(q, w), for all q ∈ Q. Then δw is a transformation of Q. If we denote the empty word by
ǫ, then δǫ is the identity transformation.

Theorem 1.1. For a language L and a DFA A = (Q,Σ, δ, q0, F ) with L = L(A), define the DFA
A′ = (QQ,Σ, δ′, q′0, F

′) where q′0 = δǫ, F
′ = {f : ∃n ≥ 1 such that fn(q0) ∈ F}, and δ′ is given by

δ′(f, a) = fδa, for all f ∈ QQ and a ∈ Σ.

Then root(L) = L(A′).

Proof. An easy induction on |w|, w ∈ Σ∗, proves that δ′(q′0, w) = δw. Then

x ∈ root(L) ⇔ ∃n ≥ 1 : xn ∈ L

⇔ δx(q0) ∈ F ′

⇔ δ′(q′0, x) ∈ F ′.

In addition to giving us a construction for a DFA recognizing root(L), the above result shows
that this operation preserves regularity, that is, if L is regular, then root(L) is regular. Zhang
[16] used a similar technique to characterize regularity-preserving operations. To recognize the
image of a language under an operation, Zhang constructs a new automaton with states based on
Boolean matrices. These matrices represent the transformations of states in the original automaton.

The result of Theorem 1.1 also allows us to give our first bound on the state complexity of root(L).

Corollary 1.2. For regular language L, if sc(L) = n then sc(root(L)) ≤ nn.

Proof. This is immediate from the construction given in Theorem 1.1.

In the remainder of this paper we improve on this upper bound, and give a non-trivial lower bound
for the worst-case blow-up of the state complexity of root(L), for alphabets of all sizes. These
upper and lower bounds demonstrate that a simple, intuitive operation that preserves regularity
can increase the state complexity of a language from n to nearly nn, even over binary alphabets.

Our main results are given in Corollary 3.21, Corollary 3.24, and Theorem 3.27.

2 Unary languages

In the case of unary regular languages, it turns out that the state complexity of the root of a
language is bounded by the state complexity of the original language.

Proposition 2.1. If L is a unary regular language, then sc(root(L)) ≤ sc(L). This bound is tight.

The idea of the following proof is that given a particular DFA recognizing L, we can modify it by
adding states to the set of final states. The resulting DFA will recognize the language root(L).
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Proof. Let Σ = {a} be the alphabet of L. Since L is regular and unary, there exists a DFA A
recognizing L, such that A = ({q0, . . . , qn−1}, {a}, δ, q0, F ), where

δ(qi, a) = qi+1, for all 0 ≤ i < n− 1,

and

δ(qn−1, a) = qj, for some 0 ≤ j ≤ n− 1.

We call the states q0, . . . , qj−1 the tail, and the states qj, . . . , qn−1 the loop.

Notice that root(L) = {as ∈ Σ∗ : s | t, at ∈ L}. For all strings at ∈ L, we have some k ≥ 0 and
some b ≤ n − 1 such that t = kl + b, where l = n − j is the number of states in the loop. Let
s = lm+ c for some m ≥ 0 and some 0 ≤ c < l. Then

s | t ⇔ ∃r : lk + b = r(lm+ c)

⇔ ∃r : lk − rlm = rc− b

⇔ ∃r : gcd(l,−lm) | rc− b (by Theorem 4.3.1 of [1])

⇔ ∃r : l | rc− b

⇔ ∃r, v : rc− b = lv

⇔ ∃r, v : rc− lv = b

⇔ gcd(l, c) | b. (by Theorem 4.3.1 of [1])

It follows that the set of divisors of the numbers of the form kl + b, k ≥ 0, b ≤ n− 1 is as follows:

{lm+ c ∈ Z : m ≥ 0, gcd(l, c) | b}.

These divisors can be recognized by changing the corresponding states into final states. Therefore,
sc(root(L)) ≤ sc(L).

To show that this bound is tight, for n ≥ 2 consider the language Ln = {an−2}. Under the Myhill-
Nerode equivalence relation [6], no two strings in the set {ǫ, a, a2, . . . , an−1} are equivalent. All
other strings in Σ∗ are equivalent to an−1. This gives sc(Ln) = n. Furthermore, since an−2 is
the longest word in root(Ln), δ(q0, a

n−2) cannot be a state in the loop. It follows that we require
exactly n − 1 states in the tail plus a single, non-final state in the loop. Hence sc(root(Ln)) = n.
Therefore the bound is tight.

3 Languages on larger alphabets

For a regular language L ⊆ Σ∗, if A is the minimal DFA such that L = L(A), then as we saw in
Section 1, based on the set of all transformations of the states of A, we can construct an automaton
A′ as in Theorem 1.1, to recognize root(L). Though this new DFA, A′, has all transformations of
Q as its states, it is easy to see that the only reachable states are those that are a composition of
the transformations δa1 , . . . , δam , where a1, . . . , am ∈ Σ. This set of elements, δa1 , . . . , δam , and all
of their compositions form the transformation monoid of A. We use this fact to improve on the
upper bound of the state complexity of root(L).
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Corollary 3.1. For a regular language L, let A be the smallest DFA recognizing L. Then if M is
the transformation monoid of A, we have that sc(root(L)) ≤ |M |.

Proof. In Theorem 1.1, the only reachable states in the construction of A′ are those that belong to
the transformation monoid of A.

Define Zn = {1, 2, . . . , n}. Now define Tn = ZZn
n , the set of transformations of Zn, and Sn ⊆ Tn as

the set of permutations of Zn. For γ ∈ Tn we write

γ =

(

1 2 · · · n

γ(1) γ(2) · · · γ(n)

)

.

Definition 3.2. If M ⊆ Tn is the set of all compositions of the transformations f1, . . . , fm ∈ Tn,
then we say that {f1, . . . , fm} generates M .

Definition 3.3. For γ ∈ Tn, define the image of γ by img(γ) = {y ∈ Zn : y = γ(z) for some z ∈
Zn}.

Definition 3.4. For γ ∈ Tn, define the rank of γ as the number of distinct elements in the image
of γ, and denote it by rank(γ).

The relationship between the state complexity of a language and the transformation monoid natu-
rally leads to the question of how large a submonoid of Tn can be generated by m elements, where
m is a positive integer. In connection with the study of Landau’s function (for a survey see [9, 10]),
Szalay [13] showed that, for m = 1, the largest submonoid of Tn has size

exp

{
√

n

(

log n+ log log n− 1 +
log log n− 2 + o(1)

log n

)

}

.

In the case where m ≥ 3, the results are well known.

Lemma 3.5. For n ≥ 3, suppose H ⊆ Tn such that H generates Tn. Then |H| ≥ 3. Furthermore,
|H| = 3 if and only if H can be written as H = {α, β, γ}, where {α, β} generates Sn and rank(γ) =
n− 1.

For a proof of this lemma, see Dénes [2]. This gives us the result that the largest submonoid
generated by three elements has the full size nn.

Contrary to the case for m = 1 and m ≥ 3, it seems that only recently there has been any interest
in determining the largest submonoid on two generators. Significant progress has been made in
this area by Holzer and König [4, 5], and, independently, by Krawetz, Lawrence, and Shallit [8].
The results of Holzer and König are summarized here.

For coprime integers k, l ≥ 2, where k + l = n, let α = (1 2 · · · k)(k + 1 k + 2 · · · n) be a
permutation of Zn composed of two cycles, one of length k, the other of length l. Define Uk,l to be
the set of all transformations γ ∈ Tn where exactly one of the following is true:

1. γ = αm for some positive integer m;
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2. For some i ∈ {1, · · · , k} and some j ∈ {k + 1, · · · , n} we have that γ(i) = γ(k) and for some
m ∈ {k + 1, · · · , n} we have that m 6∈ img(γ).

Let π1 = (1 2 · · · k) be an element of Sn−1, and let π2 ∈ Sn−1 be a permutation such that π1 and
π2 generate Sn−1. Now define β ∈ Tn by

β =

(

1 2 · · · n− 1 n

π2(1) π2(2) · · · π2(n− 1) π2(1)

)

.

Lemma 3.6 (Holzer and König). The set Uk,l is a submonoid of Tn and is generated by {α, β}.

It is worth noting that in their definition of Uk,l, Holzer and König allow k = 1 and l = 1. They
show implicitly, however, that the size of the monoid in these degenerate cases is too small to be
of any consequence here.

Theorem 3.7 (Holzer and König). For n ≥ 7, there exist coprime integers k,l such that n = k+l

and

|Uk,l| ≥ nn

(

1−
√
2

(

2

e

)
n
2

e
1

12 −
√
8

1√
n
e

1

12

)

.

In addition to a lower bound on the size of the largest two-generated monoid, Theorem 3.7 gives us
the existence of a sequence of two-generated monoids whose size approaches nn as n tends toward
infinity. Similar results were obtained independently by Krawetz, Lawrence, and Shallit [8].

More recently, Holzer and König [5] proved the following result regarding the maximality of monoids
of the form Uk,l.

Theorem 3.8 (Holzer and König). For all prime numbers n ≥ 7, there exist coprime integers
k,l ≥ 2 such that k + l = n and Uk,l is the largest two-generated submonoid of Tn.

They also stated the following conjecture.

Conjecture 3.9 (Holzer and König). For any n ≥ 7, there exist coprime integers k,l ≥ 2 such
that k + l = n and Uk,l is the largest two-generated submonoid of Tn.

Since the connection between the state complexity of root(L) and the transformation monoid of
L has been established in Corollary 3.1, we can take advantage of the results of Theorem 3.7 and
Theorem 3.8 if we can construct a language based on a monoid. By associating an alphabet with
the generators of a monoid, we can define a transition function for a DFA. The definition of the
DFA is then completed by choosing a start state and a set of final states. This construction is given
more formally below.

Let n,m be integers with n,m ≥ 1. For a set of transformations X = {α1, . . . , αm}, let M ⊆ Tn

denote the monoid generated by X. Then a DFA based on X is a DFA M = (Zn,Σ, δ, z0, F ), where
|Σ| ≥ m, z0 ∈ Zn, F ⊆ Zn, and δ is given by

δa = Ψ(a), for all a ∈ Σ,

for some map Ψ : Σ → X ∪ {δǫ} that is surjective on X.
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Proposition 3.10. Let M = (Zn,Σ, δ, z0, F ) be a DFA. Then M is the transformation monoid of
M if and only if M is based X, for some X ⊆ Tn that generates the monoid M .

Proof. For a DFA M based on X, the fact that M is the transformation monoid of M is immediate
from the construction. For any DFA M that has M as its transformation monoid, we have that
the set {δa ∈ Tn : a ∈ Σ} generates M . Then we can simply take Ψ given by Ψ(a) = δa, for all
a ∈ Σ.

In particular, let AΨ,X = (Zn,Σ, δ, z0, F ) denote the DFA based on X when z0 = 1, F = {1}, and
Ψ is bijective on an m-element subset of Σ, with all other elements of Σ mapped to δǫ. If Ψ1 and
Ψ2 are maps over the same domain, then AΨ1,X is isomorphic to AΨ2,X , up to a renaming of the
states and alphabet symbols. For this reason, we will often denote this DFA simply by AΣ,X .

Example 3.11. Let Y = {α, β}, where

α =

(

1 2 3 4 5
2 1 4 5 3

)

, and β =

(

1 2 3 4 5
2 3 4 1 2

)

.

Define Φ by Φ(a) = α and Φ(b) = β. Then Figure 3.12 depicts the DFA AΦ,Y .

1 2

4 3 5

a,b

a,b
b

a

b

a

b

a

Figure 3.12: The automaton AΦ,Y .

For n ≥ 5, define Xn ⊆ Tn to be a subset of transformations, and let Mn denote the monoid
generated byXn. In particular, defineXk,l = {α, β}, where α and β are as in Lemma 3.6. ThenXk,l

generates Uk,l. We now state our main result concerning the state complexity of root(L(AΣ,Xn)).

Theorem 3.13. If Uk,l ⊆ Mn, for some coprime integers k ≥ 2 and l ≥ 3, with k+ l = n, then the
minimal DFA recognizing root(L(AΣ,Xn)) has |Mn| −

(

n
2

)

states.

Before we are ready to prove this theorem, we must state a few more definitions and lemmas.

Definition 3.14. Let ρ ∈ Tn. For any i, j, k, if ρ(i) = k = ρ(j) implies that i = j, then we say
that k is unique.

Definition 3.15. Let ρ ∈ Tn have rank 2, with img(ρ) = {i, j}. Then by the complement of ρ, we
mean the transformation ρ ∈ Tn, where

ρ(k) =

{

i, if ρ(k) = j;

j, if ρ(k) = i.

6



For example, if ρ =

(

1 2 3 · · · n− 1 n

3 3 2 · · · 2 2

)

, then ρ =

(

1 2 3 · · · n− 1 n

2 2 3 · · · 3 3

)

.

It is easy to see that, in general, ρ and ρ have the same rank, and ρ = ρ.

For an automaton M = (Zn,Σ, δ, z0, F ), define the DFA M∗ = (Mn,Σ, δ
′, δǫ, F

′), where δǫ is the
identity element of Tn, δ

′(η, a) = ηδa for all η ∈ Mn, for all a ∈ Σ, and F ′ = {η ∈ Tn : η(z0) = z0}.
Then L(M∗) = root(L(M)).

For η, θ ∈ Mn, with η 6= θ, note that η and θ are equivalent states if and only if for all ρ ∈ Σ∗ we
have that

δ′(η, ρ) ∈ F ′ ⇔ δ′(θ, ρ) ∈ F ′.

However, since δ′(η, ρ) = ηδρ, this is equivalent to saying that η and θ are equivalent states in M

if and only if for all ρ ∈ Mn, we have

ηρ ∈ F ′ ⇔ θρ ∈ F ′.

Lemma 3.16. Let Y ⊆ Tn generate Mn, and let M = (Zn,Σ, δ, z0, F ) be an automaton based on
Y such that z0 ∈ F . Let η, θ ∈ Mn, with η 6= θ and rank(η) = 2. If η(z0) is unique in the image
of η, and η = θ, then η and θ are equivalent states in M∗.

Proof. We have

η =

(

1 2 · · · z0 − 1 z0 z0 + 1 · · · n

j j · · · j i j · · · j

)

,

and

θ =

(

1 2 · · · z0 − 1 z0 z0 + 1 · · · n

i i · · · i j i · · · i

)

,

for some i 6= j.

If η(z0) ∈ F , then η ∈ F ′. If θ(z0) ∈ F , then θ ∈ F ′. Otherwise, θ(z0) ∈ Zn\{z0}. Since
θ(z) = η(z0) ∈ F for all z ∈ Zn\{z0}, we have that θ2(z0) ∈ F , and hence θ ∈ F ′. Similarly,
θ(z0) ∈ F implies that η, θ ∈ F ′. Furthermore, if img(η) ∩ F = ∅, then img(ηn) ∩ F = ∅, for all n,
and hence ηn(z0) 6∈ F so that η 6∈ F ′. Since img(η) = img(θ), this gives θ 6∈ F ′. Therefore η ∈ F ′

if and only if θ ∈ F ′.

Let ρ ∈ Mn. Since η and θ have rank 2, we must have that ηρ and θρ have rank ≤ 2. If ηρ has
rank 2, then ρ(i) 6= ρ(j), so that ηρ = θρ. Hence ηρ ∈ F ′ if and only if θρ ∈ F ′. The argument is
the same for the case where θρ has rank 2. Now, if ηρ has rank 1, then we must have ρ = ρ′σρ′′,
where σ(s) = σ(t) for some s and t, and where ρ′ is a permutation such that either ηρ′(z0) = s

and ηρ′(z) = t, for all z 6= z0, or ηρ′(z0) = t and ηρ′(z) = s, for all z 6= z0. Without loss of
generality, assume the former. Then clearly θρ′(z0) = t and θρ′(z) = s, for all z 6= z0. It follows
that ηρ′σ = θρ′σ, so that ηρ = θρ.

Therefore η and θ are equivalent states.
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Lemma 3.17. Let Y ⊆ Tn generate Mn, and let M = (Zn,Σ, δ, z0, F ) be an automaton based
on Y , such that z0 6∈ F . Let η, θ ∈ Mn, with η(z0) unique in the image of η, rank(η) = 2, and
img(η) = img(θ). If θ(z0) = η(z0), and if θ(z) = η(z0) implies that z ∈ F , then η and θ are
equivalent states in M∗.

Proof. If η(z0) ∈ F , then η ∈ F ′. Since θ(z0) = η(z0), it follows that θ ∈ F ′. Now suppose that
η(z0) 6∈ F . If η ∈ F ′, then since rank(η) = 2, we must have that η2(z0) ∈ F . Now θ(z0) 6∈ F ,
so θ(θ(z0)) 6= η(z0). But since rank(θ) = 2, and img(θ) = img(η), it follows that θ2(z0) = η2(z0).
Hence θ ∈ F ′. If η 6∈ F ′, then η(z0) = z0 or img(η)∩F = ∅. In either case, this implies that θ 6∈ F ′.
Therefore η ∈ F ′ if and only if θ ∈ F ′.

Let ρ ∈ Mn. Then, following an argument similar to the one used in the proof of Lemma 3.16, we
have that ηρ ∈ F ′ if and only if θρ ∈ F ′. Therefore η and θ are equivalent states.

Now that we have a characterization of equivalent states in the general case for M∗, we turn our
attention toward the specific case, for A∗

Σ,Xn
.

Lemma 3.18. Let η, θ ∈ Mn, with η 6= θ. If rank(η) = 1, then η and θ are not equivalent states
in A∗

Σ,Xn
.

Proof. Since η has rank 1, we have that img(η) = {z1} for some z1. If η(1) 6= θ(1), then take
ρ ∈ Uk,l such that ρ(z1) = 2, and ρ(z) = 1, for all z 6= z1. Then img(ηρ) = {2}, so that ηρ 6∈ F ′.
But θρ(1) = 1, so that θρ ∈ F ′. Hence η and θ are not equivalent. If η(1) = θ(1), then rank(θ) 6= 1
so that for some z2 6= 1 we have θ(z2) 6= z1. Take ρ ∈ Uk,l such that ρ(θ(z2)) = 1, and ρ(z) = z2,
for all z 6= θ(z2). Then img(ηρ) = {z2}, so that ηρ 6∈ F ′. But (θρ)2(1) = 1, so that θρ ∈ F ′. Hence
η and θ are not equivalent.

Lemma 3.19. For η, θ ∈ Mn, with η 6= θ, let η have rank 2. Then η and θ are equivalent states
in A∗

Σ,Xn
if and only if η(1) is unique in the image of η, and η = θ.

Proof. Let img(η) = {i, j} for some i, j. Without loss of generality, assume that η(1) = i.

Since 1 ∈ F , Lemma 3.16 applies and gives the result in the forward direction. For the other
direction, we have two cases.

Case 1. i is not unique in the image of η.

Case 1.a. i = η(1) 6= θ(1).

Since i is not unique, η(z) = i, for some z 6= 1. Choose ρ ∈ Uk,l such that
ρ(i) = z, and ρ(θ(1)) = 1. Then ηρ(1) = ηρ(z) = z so that (ηρ)n(1) = z, for
all n ≥ 0. This gives us ηρ 6∈ F ′. But θρ(1) = 1, so that θρ ∈ F ′.

Case 1.b. i = η(1) = θ(1).

Case 1.b.i. img(η) = img(θ).

Since img(η) = img(θ) and η 6= θ, then for some z 6= 1, we must
have either i = η(z) 6= θ(z) = j, or j = η(z) 6= θ(z) = i. Without
loss of generality, assume the former. Then choose ρ ∈ Uk,l such

8



that ρ(i) = z, and ρ(j) = 1. Then (ηρ)n(1) = z, for all n ≥ 0, and
(θρ)2(1) = 1. This gives us ηρ 6∈ F ′ and θρ ∈ F ′.

Case 1.b.ii. img(η) 6= img(θ).

If rank(θ) = 1 then by Lemma 3.18, η and θ are not equivalent.
Otherwise there exists some z1 ∈ Zn such that θ(z1) 6∈ img(η). Take
ρ ∈ Uk,l such that ρ(θ(z1)) = 1, and ρ(z) = 2, for all z 6= θ(z1). Then
ηρ 6= θρ and rank(ηρ) = 1, and so by Lemma 3.18, ηρ and θρ are not
equivalent. Hence η and θ are not equivalent.

Case 2. i is unique in the image of η, and η 6= θ.

If rank(θ) = 1 then by Lemma 3.18, η and θ are not equivalent. If img(η) = img(θ),
then since η 6= θ, we have that θ(1) is not unique. So we can reverse the roles of η and
θ and apply case 1 to get the desired result. Assume then, that img(η) 6= img(θ), and
rank(θ) ≥ 2. Then the fact that η and θ are not equivalent follows just as in case 1.b.ii.

Therefore, η, and θ are equivalent states if and only if η(1) is unique in the image of η, and
η = θ.

Lemma 3.20. Let η, θ ∈ Mn, with η 6= θ, if η, θ have rank ≥ 3, then η and θ are not equivalent
states in A∗

Σ,Xn
.

Proof. Since η 6= θ, there exists some z1 ∈ Zn such that η(z1) 6= θ(z1). Let z2 = η(z1). Take
ρ ∈ Uk,l such that ρ(z2) = 1, and ρ(z) = 2, for all z 6= z2. Since rank(η) ≥ 3, we have rank(ηρ) = 2.
If ηρ(1) is not unique, then by Lemma 3.19, ηρ and θρ are not equivalent. Hence η and θ are not
equivalent. If ηρ(1) is unique, then it must be that z1 = 1. Furthermore, since rank(θ) ≥ 3, we
cannot have θ(z) = z2 for all z 6= 1, so we cannot have θρ(z) = 1 for all z 6= 1. Therefore θρ 6= ηρ.
Then by Lemma 3.19, ηρ and θρ are not equivalent. Hence η and θ are not equivalent.

We are now ready to prove Theorem 3.13.

Proof (Theorem 3.13). Lemma 3.18 – 3.20 cover all possible cases for η, θ ∈ Mn, η 6= θ. Therefore,
two states are equivalent if and only if they satisfy the hypothesis of Lemma 3.16. There are

(

n
2

)

such
equivalence classes in Uk,l ⊆ Mn, each containing exactly 2 elements. All other elements of Mn are
in equivalence classes by themselves. It follows that the minimal DFA recognizing root(L(AΣ,Xn))
has |Mn| −

(

n
2

)

states.

Now that we have established a close relationship between sc(root(L)) and the transformation
monoid of the the minimal automaton recognizing L, we can take advantage of results concerning
the size of the largest monoids to give bounds on the worst-case blow-up of the state complexity of
root(L). The following corollary gives a lower bound for alphabets of size two. It also proves the
existence of a sequence of regular binary languages with state complexity n whose root has a state
complexity that approaches nn as n increases without bound.

We now state our first main result.

9



Corollary 3.21. For n ≥ 7, there exists a regular language L over an alphabet of size 2, with
sc(L) ≤ n, such that

sc(root(L)) ≥ nn

(

1−
√
2

(

2

e

)
n
2

e
1

12 −
√
8

1√
n
e

1

12

)

−
(

n

2

)

.

Proof. The result follows from a combination of Theorem 3.7 and Theorem 3.13.

Our results from Theorem 3.13 do not apply when l = 2. Unfortunately, Theorem 3.8 does not
exclude this possibility. To guarantee that this fact is of no consequence, we must show that not
only is the monoid Un−2,2 never the largest, but that it is at least

(

n
2

)

smaller than the largest
monoid. The following lemma deals with this.

Lemma 3.22. For n ≥ 7, we have that

|U2,n−2| − |Un−2,2| ≥
(

n

2

)

.

Due to space constraints, the proof of this lemma has been relegated to the appendix.

The choice of start and final states in the construction of the DFA AΣ,Xn is the best possible. The
following theorem will show that for any other DFA with the same transition function, a different as-
signment of start and final states will not increase the state complexity of the language it recognizes.

Theorem 3.23. Let Y ⊆ Tn generate Mn, and let M = (Zn,Σ, δ, z0, G) be an automaton based on
Y . Then sc(root(L(M))) ≤ sc(root(L(AΣ,Xn)).

Proof. If z0 ∈ G, then Lemma 3.16 applies. It follows that there are at least
(

n
2

)

pairs of equivalent
states in M∗. If z0 6∈ G, then Lemma 3.17 applies, and again we have at least

(

n
2

)

pairs of equivalent
states in M∗. In either case, this gives

sc(root(L(M))) ≤ |Mn| −
(

n

2

)

≤ sc(root(L(AΣ,Xn)).

We now state our second main result.

Corollary 3.24. For prime numbers n ≥ 7, there exist positive, coprime integers k ≥ 2, l ≥ 3,
with k + l = n, such that if L is a language over an alphabet of size 2, with sc(L) ≤ n, then
sc(root(L)) ≤ |Uk,l| −

(

n
2

)

. Furthermore, this bound is tight.

Proof. Let U ′ denote the largest two-generated submonoid of Tn. Then by Theorem 3.8 and Lemma
3.22, we have that U ′ = Uk′,l′ for some coprime integers k′ ≥ 2, l′ ≥ 3 with k′ + l′ = n.

Let M be the smallest DFA recognizing L, and let M be the transformation monoid of M. If
M is of the form Uk,l, with k ≥ 2, l ≥ 3, then |Uk,l| ≤ |U ′|. It follows from Theorem 3.23 that
sc(root(L)) ≤ |Uk,l| −

(

n
2

)

≤ |U ′| −
(

n
2

)

. If M is of the form Uk,l, with k = n − 2, l = 2, then by

10



Corollary 3.1 and Lemma 3.22 we have sc(root(L)) ≤ |Un−2,2| ≤ |U2,n−2| −
(

n
2

)

≤ |U ′| −
(

n
2

)

.

Let V denote the largest two-generated submonoid of Tn that is not of the form Uk,l for some
coprime integers k ≥ 2, l ≥ 3 with k + l = n. Then for all integers n > 81, a simple observation of
Holzer and König’s proof of Theorem 3.8 shows that |U ′| − |V | ≥

(

n
2

)

. For all integers 7 ≤ n ≤ 81,
the fact that |U ′| − |V | ≥

(

n
2

)

has been verified computationally. It follows from Corollary 3.1 that
if M is not of the form Uk,l, we have

sc(root(L)) ≤ |M | ≤ |V | ≤ |Uk,l| −
(

n

2

)

.

The fact that the bound is tight is an immediate consequence of Theorem 3.13.

If Conjecture 3.9 is true, then for all n ≥ 7, where n is not prime, the construction of AΣ,Xk,l

yields a language that is within
(

n
2

)

of the maximum blow-up. We conjecture that this construction
achieves the maximum.

Conjecture 3.25. For and integer n ≥ 7, there exist positive, coprime integers k ≥ 2, l ≥ 3,
with k + l = n, such that if L is a language over an alphabet of size 2, with sc(L) ≤ n, then
sc(root(L)) ≤ |Uk,l| −

(

n
2

)

. This bound is tight.

The results concerning the largest monoid on ≥ 3 generators are definite and much simpler. For
this reason, on alphabets of size ≥ 3 we are able to give a much better bound.

Lemma 3.26. For n ≥ 1, if M ⊆ Tn is a monoid such that |M | > nn −
(

n
2

)

, then M = Tn.

Proof. For 1 ≤ n ≤ 3, the result can easily be verified computationally, so assume that n ≥ 4.

There are
(

n
2

)

transpositions in Tn. Since |M | > |Tn| −
(

n
2

)

, it follows that M contains at least one
transposition. There are (n− 1)! permutations of Zn that have one cycle of length n. Since n ≥ 4,
we have that (n − 1)! ≥

(

n
2

)

. Again, considering the size of M , it follows that M contains at least
one permutation that is a full n-cycle. It follows that Sn ⊆ M .

Furthermore, there are
(

n
2

)

· n! transformations of Zn that have rank n − 1, so it follows that M

contains at least one transformation of rank n−1. Then by Lemma 3.5, we have that M = Tn.

We now state our third main result.

Theorem 3.27. Let Σ be an alphabet of size m ≥ 3. For n ≥ 1, if L is a language over Σ with
sc(L) ≤ n, then sc(root(L)) ≤ nn −

(

n
2

)

. Furthermore, this bound is tight.

Proof. Define M to be the transformation monoid of the smallest DFA recognizing L. If |M | ≤
nn −

(

n
2

)

, then certainly sc(root(L)) ≤ nn −
(

n
2

)

. So suppose that |M | > nn −
(

n
2

)

. Then it follows
from Lemma 3.26 that M = Tn.

For 1 ≤ n ≤ 6, it has been verified computationally that if the transformation monoid of the
minimal DFA recognizing L is Tn, then sc(root(L)) = nn −

(

n
2

)

. For n ≥ 7, if the transformation
monoid is Tn, then clearly Uk,l ⊆ Tn for some suitable k, l so that Theorem 3.13 applies, and hence

11



sc(root(L)) = nn −
(

n
2

)

.

To show that the bound is tight, it suffices to show that for any n there exists a language L over
Σ such that the transformation monoid of the minimal DFA recognizing L is Tn. Let X be a set of
transformations such that |X| = min(n, 3) and X generates Tn. For n ∈ {1, 2}, the fact that such
an X exists is easy to check. For n ≥ 3, the existence of X follows from Lemma 3.5. Then the
language L(AΣ,X), gives the desired result.
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Appendix: Omitted Proofs

Proof (Lemma 3.22). As stated in [5], for k + l = n, we have the following formula

|Uk,l| = kl +
n
∑

i=1

((

n

i

)

−
(

k

i− l

))({

n

i

}

−
i
∑

r=1

{

k

r

}{

l

i− r

})

i!,

where
{

n
i

}

is a Stirling number of the second kind, the number of ways to partition a set of n
elements into i non-empty sets. This gives

|Uk,l| − |Ul,k| =
n
∑

i=1

((

l

i− k

)

−
(

k

i− l

))({

n

i

}

−
i
∑

r=1

{

k

r

}{

l

i− r

})

i!. (∗)

Since
{

n
k

}

= 0 whenever k > n or k < 1, for k = 2, and l = n− 2, we have

i
∑

r=1

{

2

r

}{

n− 2

i− r

}

=

{

n− 2

i− 2

}

+

{

n− 2

i− 1

}

.

Also, notice that
(

n−2

i−2

)

−
(

2

i−n+2

)

is positive when 2 ≥ i ≥ n − 1, and zero otherwise, so that (∗)
becomes

|U2,n−2| − |Un−2,2| ≥
n−1
∑

i=2

({

n

i

}

−
{

n− 2

i− 2

}

−
{

n− 2

i− 1

})

i!.

And finally, using the identity
{

n
k

}

=
{

n−1

k−1

}

+ k
{

n−1

k

}

, we see that

{

n

i

}

=

{

n− 2

i− 2

}

+ (2i− 1)

{

n− 2

i− 1

}

+ (i− 1)

{

n− 2

i

}

,

so that we get

|U2,n−2| − |Un−2,2| ≥
n−1
∑

i=2

(

(2i − 2)

{

n− 2

i− 1

}

+ (i− 1)

{

n− 2

i

})

i! ≥
n−1
∑

i=2

i! ≥
(

n

2

)

.
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