Words avoiding $\frac{7}{3}$-powers and the Thue-Morse morphism

Narad Rampersad
School of Computer Science
University of Waterloo
Waterloo, ON, N2L 3G1
CANADA
nrampersad@math.uwaterloo.ca

November 19, 2018

Abstract

In 1982, Séébold showed that the only overlap-free binary words that are the fixed points of non-identity morphisms are the Thue-Morse word and its complement. We strengthen Séébold's result by showing that the same result holds if the term 'overlapfree' is replaced with ' $\frac{7}{3}$-power-free'. Furthermore, the number $\frac{7}{3}$ is best possible.

1 Introduction

Let Σ be a finite, non-empty set called an alphabet. We denote the set of all finite words over the alphabet Σ by Σ^{*}. We also write Σ^{+}to denote the set $\Sigma^{*}-\{\epsilon\}$, where ϵ is the empty word. Let Σ_{k} denote the alphabet $\{0,1, \ldots, k-1\}$. Throughout this paper we will work exclusively with the binary alphabet Σ_{2}.

Let \mathbb{N} denote the set $\{0,1,2, \ldots\}$. An infinite word is a map from \mathbb{N} to Σ, and a bi-infinite word is a map from \mathbb{Z} to Σ. The set of all infinite words over the alphabet Σ is denoted Σ^{ω}. We also write Σ^{∞} to denote the set $\Sigma^{*} \cup \Sigma^{\omega}$.

A map $h: \Sigma^{*} \rightarrow \Delta^{*}$ is called a morphism if h satisfies $h(x y)=h(x) h(y)$ for all $x, y \in \Sigma^{*}$. A morphism may be defined simply by specifying its action on Σ. A morphism $h: \Sigma^{*} \rightarrow \Sigma^{*}$ such that $h(a)=a x$ for some $a \in \Sigma$ is said to be prolongable on a; we may then repeatedly iterate h to obtain the fixed point $h^{\omega}(a)=a x h(x) h^{2}(x) h^{3}(x) \cdots$.

An overlap is a word of the form axaxa, where $a \in \Sigma$ and $x \in \Sigma^{*}$. A word w^{\prime} is called a subword of $w \in \Sigma^{\infty}$ if there exist $u \in \Sigma^{*}$ and $v \in \Sigma^{\infty}$ such that $w=u w^{\prime} v$. We say a word w is overlap-free (or avoids overlaps) if no subword of w is an overlap.

Let μ be the Thue-Morse morphism; i.e., the morphism defined by $\mu(0)=01$ and $\mu(1)=10$. It is well-known [7, 13] that the Thue-Morse word, $\mu^{\omega}(0)$, is overlap-free. The
properties of overlap-free words have been studied extensively (see, for example, the survey by Séébold [10]). Séébold [9, 11] showed that $\mu^{\omega}(0)$ and $\mu^{\omega}(1)$ are the only infinite overlapfree binary words that can be obtained by iteration of a morphism. Another proof of this fact was later given by Berstel and Séébold [3]. We will show that this result can be strengthened somewhat. We will first need the notion of a fractional power, which was first introduced by Dejean (4].

Let α be a rational number such that $\alpha \geq 1$. An α-power is a word of the form $x^{n} x^{\prime}$, where $x, x^{\prime} \in \Sigma^{*}$, and x^{\prime} is a prefix of x with $n+\left|x^{\prime}\right| /|x|=\alpha$. We say a word w is α -power-free (or avoids α-powers) if no subword of w is an β-power for any rational $\beta \geq \alpha$; otherwise, we say w contains an α-power. Note that a word is overlap-free if and only if it is $(2+\epsilon)$-power-free for all $\epsilon>0$; for example, an overlap-free word is necessarily $\frac{7}{3}$-power-free.

In this paper we will be particularly concerned with $\frac{7}{3}$-powers. Several results previously known for overlap-free binary words have recently been shown to be true for $\frac{7}{3}$-power-free binary words as well. For example, Restivo and Salemi's factorization theorem for overlap-free binary words [8] was recently shown to be true for $\frac{7}{3}$-power-free binary words by Karhumäki and Shallit [6]. In 1964, Gottschalk and Hedlund [5] showed that the bi-infinite overlap-free binary words were simply shifts of the bi-infinite analogue of the Thue-Morse word, and in 2000, Shur [12] showed that a similar result holds for the bi-infinite $\frac{7}{3}$-power-free binary words. Furthermore, Shur showed that the number $\frac{7}{3}$ is best possible.

The goal of this paper is to generalize Séébold's result by showing that $\mu^{\omega}(0)$ and $\mu^{\omega}(1)$ are the only infinite $\frac{7}{3}$-power-free binary words that can be obtained by iteration of a morphism. At first glance, it may seem that this is an immediate consequence of Shur's result; however, this is not necessarily so, as there are infinite $\frac{7}{3}$-power-free binary words that cannot be extended to the left to form bi-infinite $\frac{7}{3}$-power-free binary words. For example, the infinite binary word $001001 \mu^{\omega}(1)$, which was shown by Allouche et al. [1] to be the lexicographically least infinite overlap-free binary word, cannot be extended to the left to form a $\frac{7}{3}$-power-free word: prepending a 0 creates the cube 000 , and prepending a 1 creates the $\frac{7}{3}$-power 1001001 .

2 Preliminary lemmata

We will need the following result due to Shur [12].
Theorem 1 (Shur). Let $w \in \Sigma_{2}^{*}$, and let $\alpha>2$ be a real number. Then w is α-power-free iff $\mu(w)$ is α-power-free.

We will also make frequent use of the following result due to Karhumäki and Shallit [6]. This theorem is a generalization of a similar factorization theorem for overlap-free words due to Restivo and Salemi [8].

Theorem 2 (Karhumäki and Shallit). Let $x \in \Sigma_{2}^{*}$ be a word avoiding α-powers, with $2<\alpha \leq \frac{7}{3}$. Then there exist u, v, y with $u, v \in\{\epsilon, 0,1,00,11\}$ and a word $y \in \Sigma_{2}^{*}$ avoiding α-powers, such that $x=u \mu(y) v$.

Next, we will establish a few lemmata. Lemma 3 is analogous to a similar lemma for overlap-free words given in Allouche and Shallit [2, Lemma 1.7.6]. (This result was also stated without formal proof by Berstel and Séébold [3].)

Lemma 3. Let $w \in \Sigma_{2}^{*}$ be a $\frac{7}{3}$-power-free word with $|w| \geq 52$. Then w contains $\mu^{3}(0)=$ 01101001 and $\mu^{3}(1)=10010110$ as subwords.

Proof. Since w is $\frac{7}{3}$-power-free, by Theorem 2 we can write

$$
\begin{equation*}
w=u \mu(y) v, \tag{1}
\end{equation*}
$$

where y is $\frac{7}{3}$-power-free and $|y| \geq 24$. Similarly, we can write

$$
\begin{equation*}
y=u^{\prime} \mu\left(y^{\prime}\right) v^{\prime} \tag{2}
\end{equation*}
$$

where y^{\prime} is $\frac{7}{3}$-power-free and $\left|y^{\prime}\right| \geq 10$. Again, we can write

$$
\begin{equation*}
y^{\prime}=u^{\prime \prime} \mu\left(y^{\prime \prime}\right) v^{\prime \prime} \tag{3}
\end{equation*}
$$

where $y^{\prime \prime}$ is $\frac{7}{3}$-power-free and $\left|y^{\prime \prime}\right| \geq 3$. From Equations (1)-(3), we get

$$
\begin{aligned}
w & =u \mu\left(u^{\prime} \mu\left(u^{\prime \prime} \mu\left(y^{\prime \prime}\right) v^{\prime \prime}\right) v^{\prime}\right) v \\
& =u \mu\left(u^{\prime}\right) \mu^{2}\left(u^{\prime \prime}\right) \mu^{3}\left(y^{\prime \prime}\right) \mu^{2}\left(v^{\prime \prime}\right) \mu\left(v^{\prime}\right) v
\end{aligned}
$$

where $u, u^{\prime}, u^{\prime \prime}, v, v^{\prime}, v^{\prime \prime} \in\{\epsilon, 0,1,00,11\}$. Since $y^{\prime \prime}$ is $\frac{7}{3}$-power-free and $\left|y^{\prime \prime}\right| \geq 3, y^{\prime \prime}$ contains both 0 and 1 , and so $\mu^{3}\left(y^{\prime \prime}\right)$, and consequently w, contains both $\mu^{3}(0)=01101001$ and $\mu^{3}(1)=10010110$ as subwords as required.

Lemma 4. Let w^{\prime} be a subword of $w \in \Sigma_{2}^{*}$, where w^{\prime} is either of the form abb $\mu\left(w^{\prime \prime}\right)$ or $\mu\left(w^{\prime \prime}\right) b b a$ for some $a, b \in \Sigma_{2}$ and $w^{\prime \prime} \in \Sigma_{2}^{*}$. Suppose also that $a \neq b$ and $\left|w^{\prime \prime}\right| \geq 2$. Then w contains a $\frac{7}{3}$-power.

Proof. Suppose $a b=10$ and $w^{\prime}=100 \mu\left(w^{\prime \prime}\right)$ (the other cases follow similarly). The word $\mu\left(w^{\prime \prime}\right)$ may not begin with a 0 as that would create the cube 000 . Hence we have $w^{\prime}=$ $10010 \mu\left(w^{\prime \prime \prime}\right)$ for some $w^{\prime \prime \prime} \in \Sigma_{2}^{*}$. If $\mu\left(w^{\prime \prime \prime}\right)$ begins with 01 , then w^{\prime} contains the $\frac{7}{3}$-power 1001001. If $\mu\left(w^{\prime \prime \prime}\right)$ begins with 10 , then w^{\prime} contains the $\frac{5}{2}$-power 01010. Hence, w contains a $\frac{7}{3}$-power.

Lemma 5. For $i, j \in \mathbb{N}$, let w be a $\frac{7}{3}$-power-free word over Σ_{2} such that $|w|=(7+2 j) 2^{i}-1$. Let a be an element of Σ_{2}. Then waw contains a $\frac{7}{3}$-power x, where $|x| \leq 7 \cdot 2^{i}$.

Proof. Suppose $a=1$ (the case $a=0$ follows similarly). The proof is by induction on i. For the base case we have $i=0$. Hence, $|w| \geq 6$ and $|w|$ is even. If w either begins or ends with 11 , then $w 1 w$ contains the cube 111, and the result follows. Suppose then that w neither begins nor ends with 11. By explicitly examining all 13 words of length six that avoid $\frac{7}{3}$-powers and neither begin nor end with 11 , we see that all such words of length at least six can be written in the form $p b b q$, where $p, q \in \Sigma_{2}^{+}$and $b \in \Sigma_{2}$. Hence, $w 1 w$ must
have at least one subword with prefix $b b$ and suffix $b b$. Moreover, since $|w|$ is even, there must exist such a subword where the prefix $b b$ and the suffix $b b$ each begin at positions of different parity in $w 1 w$. Let x be a smallest such subword such that $w 1 w$ neither begins nor ends with x. Suppose $b=0$ (the case $b=1$ follows similarly). Then $x=000, x=00100$, or x contains a subword 01010 or 10101. Hence, $w 1 w$ contains one of the subwords 000,01010 , 10101, or 1001001 as required.

Let us now assume that the lemma holds for all i^{\prime}, where $0<i^{\prime}<i$. Since w avoids $\frac{7}{3}$-powers, and since $|w| \geq 7$, by Theorem [2 we can write $w=u \mu\left(w^{\prime}\right) v$, where $u, v \in$ $\{\epsilon, 0,1,00,11\}$ and $w^{\prime} \in \Sigma_{2}^{*}$ is $\frac{7}{3}$-power-free. By applying a case analysis similar to that used in Cases (1)-(4) of the proof of Theorem 9 below, we can eliminate all but three cases: $(u, v) \in\{(\epsilon, \epsilon),(\epsilon, 0),(0, \epsilon)\}$.

Case 1: $(u, v)=(\epsilon, \epsilon)$. In this case $w=\mu\left(w^{\prime}\right)$. This is clearly not possible, since for $i>0$, $|w|=(7+2 j) 2^{i}-1$ is odd.

Case 2: $(u, v)=(\epsilon, 0)$. Then $w=\mu\left(w^{\prime}\right) 0$ and $w 1 w=\mu\left(w^{\prime}\right) 01 \mu\left(w^{\prime}\right) 0=\mu\left(w^{\prime} 0 w^{\prime}\right) 0$. If $|w|=$ $(7+2 j) 2^{i}-1$, we see that $\left|w^{\prime}\right|=(7+2 j) 2^{i-1}-1$. Hence, if $i^{\prime}=i-1$, we may apply the inductive assumption to $w^{\prime} 0 w^{\prime}$. We thus obtain that $w^{\prime} 0 w^{\prime}$ contains a $\frac{7}{3}$-power x^{\prime}, where $\left|x^{\prime}\right| \leq 7 \cdot 2^{i-1}$, and so $w 1 w$ must contain a $\frac{7}{3}$-power $x=\mu\left(x^{\prime}\right)$, where $|x| \leq 7 \cdot 2^{i}$.

Case 3: $(u, v)=(0, \epsilon)$. This case is handled similarly to the previous case, and we omit the details.

By induction then, we have that waw contains a $\frac{7}{3}$-power x, where $|x| \leq 7 \cdot 2^{i}$.
Lemma 6. For $i \in \mathbb{N}$, let w be a $\frac{7}{3}$-power-free word over Σ_{2} such that $|w|=5 \cdot 2^{i}-1$. Let a be an element of Σ_{2}. Then waw contains a $\frac{7}{3}$-power x, where $|x| \leq 5 \cdot 2^{i}$.

Proof. Suppose $a=1$ (the case $a=0$ follows similarly). The proof is by induction on i. For the base case we have $i=0$ and $|w|=4$. An easy computation suffices to verify that for all w with $|w|=4, w 1 w$ contains a $\frac{7}{3}$-power x, where $|x| \leq 5$ as required.

Let us now assume that the lemma holds for all i^{\prime}, where $0<i^{\prime}<i$. Since w avoids $\frac{7}{3}$-powers, and since $|w| \geq 7$, by Theorem 2 we can write $w=u \mu\left(w^{\prime}\right) v$, where $u, v \in$ $\{\epsilon, 0,1,00,11\}$ and $w^{\prime} \in \Sigma_{2}^{*}$ is $\frac{7}{3}$-power-free. By applying a case analysis similar to that used in Cases (1)-(4) of the proof of Theorem 9 below, we can eliminate all but three cases: $(u, v) \in\{(\epsilon, \epsilon),(\epsilon, 0),(0, \epsilon)\}$.

Case 1: $(u, v)=(\epsilon, \epsilon)$. In this case $w=\mu\left(w^{\prime}\right)$. This is clearly not possible, since for $i>0$, $|w|=5 \cdot 2^{i}-1$ is odd.

Case 2: $(u, v)=(\epsilon, 0)$. Then $w=\mu\left(w^{\prime}\right) 0$ and $w 1 w=\mu\left(w^{\prime}\right) 01 \mu\left(w^{\prime}\right) 0=\mu\left(w^{\prime} 0 w^{\prime}\right) 0$. If $|w|=$ $5 \cdot 2^{i}-1$, we see that $\left|w^{\prime}\right|=5 \cdot 2^{i-1}-1$. Hence, if $i^{\prime}=i-1$, we may apply the inductive assumption to $w^{\prime} 0 w^{\prime}$. We thus obtain that $w^{\prime} 0 w^{\prime}$ contains a $\frac{7}{3}$-power x^{\prime}, where $\left|x^{\prime}\right| \leq 5 \cdot 2^{i-1}$, and so $w 1 w$ must contain a $\frac{7}{3}$-power $x=\mu\left(x^{\prime}\right)$, where $|x| \leq 5 \cdot 2^{i}$.

Case 3: $(u, v)=(0, \epsilon)$. This case is handled similarly to the previous case, and we omit the details.

By induction then, we have that waw contains a $\frac{7}{3}$-power x, where $|x| \leq 5 \cdot 2^{i}$.
Lemma 7. For $i, j \in \mathbb{Z}^{+}$, let w and s be $\frac{7}{3}$-power-free words over Σ_{2} such that $|w|=2^{i+1}-1$ or $|w|=3 \cdot 2^{i}-1$, and $|s|=2^{j+1}-1$ or $|s|=3 \cdot 2^{j}-1$. Assume also that $|s| \geq|w|$. Let a be an element of Σ_{2}. Then sawawas contains a $\frac{7}{3}$-power.

Proof. Suppose $a=1$ (the case $a=0$ follows similarly). The proof is by induction on i. For the base case we have $i=1$ and either $|w|=3$ or $|w|=5$. An easy computation suffices to verify that for all w with $|w|=3$ or $|w|=5$, and all $a, b \in \Sigma_{2}^{2}, a 1 w 1 w 1 b$ contains a $\frac{7}{3}$-power.

Let us now assume that the lemma holds for all i^{\prime}, where $1<i^{\prime}<i$. Since w avoids $\frac{7}{3}$-powers, and since $|w| \geq 7$, by Theorem 2 we can write $w=u \mu\left(w^{\prime}\right) v$, where $u, v \in$ $\{\epsilon, 0,1,00,11\}$ and $w^{\prime} \in \Sigma_{2}^{*}$ is $\frac{7}{3}$-power-free. Similarly, we can write $s=u^{\prime} \mu\left(s^{\prime}\right) v^{\prime}$, where $u^{\prime}, v^{\prime} \in\{\epsilon, 0,1,00,11\}$ and $s^{\prime} \in \Sigma_{2}^{*}$ is $\frac{7}{3}$-power-free. By applying a case analysis similar to that used in Cases (1)-(4) of the proof of Theorem 9 below, we can eliminate all but three cases: $\left(u, v, u^{\prime}, v^{\prime}\right) \in\{(\epsilon, \epsilon, \epsilon, \epsilon),(\epsilon, 0,0, \epsilon),(0, \epsilon, \epsilon, 0)\}$.

Case 1: $\left(u, v, u^{\prime}, v^{\prime}\right)=(\epsilon, \epsilon, \epsilon, \epsilon)$. In this case $w=\mu\left(w^{\prime}\right)$. This is clearly not possible, since for $i>1$, both $|w|=2^{i+1}-1$ and $|w|=3 \cdot 2^{i}-1$ are odd.

Case 2: $\left(u, v, u^{\prime}, v^{\prime}\right)=(\epsilon, 0, \epsilon, 0)$. Then $w=\mu\left(w^{\prime}\right) 0, s=\mu\left(s^{\prime}\right) 0$, and

$$
s 1 w 1 w 1 s=\mu\left(s^{\prime}\right) 01 \mu\left(w^{\prime}\right) 01 \mu\left(w^{\prime}\right) 01 \mu\left(s^{\prime}\right) 0=\mu\left(s^{\prime} 0 w^{\prime} 0 w^{\prime} 0 s^{\prime}\right) 0
$$

If $|w|=2^{i+1}-1$ or $|w|=3 \cdot 2^{i}-1$, we see that $\left|w^{\prime}\right|=2^{i}-1$ or $|w|=3 \cdot 2^{i-1}-1$. Similarly, if $|s|=2^{j+1}-1$ or $|s|=3 \cdot 2^{j}-1$, we see that $\left|s^{\prime}\right|=2^{j}-1$ or $|s|=3 \cdot 2^{j-1}-1$. Hence, if $i^{\prime}=i-1$, we may apply the inductive assumption to $s^{\prime} 0 w^{\prime} 0 w^{\prime} 0 s^{\prime}$. We thus obtain that $s^{\prime} 0 w^{\prime} 0 w^{\prime} 0 s^{\prime}$ contains a $\frac{7}{3}$-power x^{\prime}, and so $s 1 w 1 w 1 s$ must contain a $\frac{7}{3}$-power $x=\mu\left(x^{\prime}\right)$.

Case 3: $\left(u, v, u^{\prime}, v^{\prime}\right)=(0, \epsilon, 0, \epsilon)$. This case is handled similarly to the previous case, and we omit the details.

By induction then, we have that sawawas contains a $\frac{7}{3}$-power.
Lemma 8. Let n be a positive integer. Then n can be written in the form $2^{i}-1,3 \cdot 2^{i}-1$, $5 \cdot 2^{i}-1$, or $(7+2 j) 2^{i}-1$ for some $i, j \in \mathbb{N}$.

Proof. If $n=1$ then $n=2^{1}-1$ as required. Suppose then that $n>1$. Then we may write $n-1=m 2^{i}$, where m is odd and $i \in \mathbb{N}$. But for any odd positive integer m, either $m \in\{1,3,5\}$, or m is of the form $7+2 j$ for some $j \in \mathbb{N}$, and the result follows.

3 Main theorem

Let $h: \Sigma^{*} \rightarrow \Sigma^{*}$ be a morphism. We say that h is non-erasing if, for all $a \in \Sigma, h(a) \neq \epsilon$. Let E be the morphism defined by $E(0)=1$ and $E(1)=0$. The following theorem is analogous to a result regarding overlap-free words due to Berstel and Séébold [3].

Theorem 9. Let $h: \Sigma_{2}^{*} \rightarrow \Sigma_{2}^{*}$ be a non-erasing morphism. If $h(01101001)$ is $\frac{7}{3}$-power-free, then there exists an integer $k \geq 0$ such that either $h=\mu^{k}$ or $h=E \circ \mu^{k}$.

Proof. Let $h(0)=x$ and $h(1)=x^{\prime}$ with $|x|,\left|x^{\prime}\right| \geq 1$. The proof is by induction on $|x|+\left|x^{\prime}\right|$. If $|x|<7$ and $\left|x^{\prime}\right|<7$, then a quick computation suffices to verify that if $h(01101001)$ is $\frac{7}{3}$-power-free, then either $h=\mu^{k}$ or $h=E \circ \mu^{k}$, where $k \in\{0,1,2\}$. Let us assume then, without loss of generality, that $|x| \geq\left|x^{\prime}\right|$ and $|x| \geq 7$. The word x must avoid $\frac{7}{3}$-powers, and so, by Theorem 2 we can write $x=u \mu(y) v$, where $u, v \in\{\epsilon, 0,1,00,11\}$ and $y \in \Sigma_{2}^{*}$. We will consider all 25 choices for (u, v).

Case 1: $(u, v) \in\{(0,00),(00,0),(00,00),(1,11),(11,1),(11,11)\}$. Suppose $(u, v)=(0,00)$. Then $h(00)=0 \mu(y) 000 \mu(y) 00$ contains the cube 000 , contrary to the assumptions of the theorem. The argument for the other choices for (u, v) follows similarly.

Case 2: $(u, v) \in\{(0,11),(00,1),(00,11),(1,00),(11,0),(11,00)\}$. For any of these choices for $(u, v), h(00)=u \mu(y) v u \mu(y) v$ contains a subword of the form $a b b \mu(y)$ or $\mu(y) b b a$ for some $a, b \in \Sigma_{2}$, where $a \neq b$. Since $|x| \geq 7,|y| \geq 2$, and so by Lemma \square we have that $h(00)$ contains a $\frac{7}{3}$-power, contrary to the assumptions of the theorem.

Case 3: $(u, v) \in\{(\epsilon, 0),(0, \epsilon),(\epsilon, 1),(1, \epsilon)\}$. Suppose $(u, v)=(0, \epsilon)$. Then $h(00)=0 \mu(y) 0 \mu(y)$. We have two subcases.

Case 3a: $\mu(y)$ begins with 01 or ends with 10 . Then by Lemmand $h(00)$ contains a $\frac{7}{3}$-power, contrary to the assumptions of the theorem.
Case 3b: $\mu(y)$ begins with 10 and ends with 01 . Then $h(00)=0 \mu\left(y^{\prime}\right) 01010 \mu\left(y^{\prime \prime}\right)$ contains the $\frac{5}{2}$-power 01010 , contrary to the assumptions of the theorem.

The argument for the other choices for (u, v) follows similarly.
Case 4: $(u, v) \in\{(\epsilon, 00),(0,0),(00, \epsilon),(\epsilon, 11),(1,1),(11, \epsilon)\}$. Suppose $(u, v)=(00, \epsilon)$. Then $h(00)=00 \mu(y) 00 \mu(y)$. The word $\mu(y)$ may not begin with a 0 as that would create the cube 000 . We have then that $h(00)=00 \mu(y) 0010 \mu\left(y^{\prime}\right)$ for some $y^{\prime} \in \Sigma_{2}^{*}$. By Lemma [4] $h(00)$ contains a $\frac{7}{3}$-power, contrary to the assumptions of the theorem. The argument for the other choices for (u, v) follows similarly.

Case 5: $(u, v) \in\{(0,1),(1,0)\}$. Suppose $(u, v)=(0,1)$. By Lemma 8 , the following three subcases suffice to cover all possibilities for $|y|$.

Case 5a: $|y|=(7+2 j) 2^{i}-1$ for some $i, j \in \mathbb{N}$. We have $h(00)=0 \mu(y) 10 \mu(y) 1=0 \mu(y 1 y) 1$. By Lemma 5, $y 1 y$ contains a $\frac{7}{3}$-power. The word $h(00)$ must then contain a $\frac{7}{3}$-power, contrary to the assumptions of the theorem.
Case 5b: $|y|=5 \cdot 2^{i}-1$ for some $i \in \mathbb{N}$. Again we have $h(00)=0 \mu(y) 10 \mu(y) 1=0 \mu(y 1 y) 1$. By Lemma [6, $y 1 y$ contains a $\frac{7}{3}$-power. The word $h(00)$ must then contain a $\frac{7}{3}$-power, contrary to the assumptions of the theorem.
Case 5c: $|y|=2^{i}-1$ or $|y|=3 \cdot 2^{i}-1$ for some $i \in \mathbb{N}$. We have two subcases.
Case 5c.i: $\left|x^{\prime}\right|<7$. We have $h(0110)=0 \mu(y) 1 x^{\prime} x^{\prime} 0 \mu(y) 1$. The only $x^{\prime} \in \Sigma_{2}^{*}$ where $\left|x^{\prime}\right|<7$ and $1 x^{\prime} x^{\prime} 0$ does not contain a $\frac{7}{3}$-power is

$$
x^{\prime} \in\{10,0110,1001,011010,100110,101001\} .
$$

However, each of these words either begins or ends with 10, and so we have that $h(0110)$ contains a subword of the form $100 \mu(y)$ or $\mu(y) 110$. Hence, by Lemma 4 we have that $h(0110)$ contains a $\frac{7}{3}$-power, contrary to the assumptions of the theorem.
Case 5c.ii: $\left|x^{\prime}\right| \geq 7$. By Theorem2, we can write $x^{\prime}=u^{\prime} \mu(z) v^{\prime}$, where $u^{\prime}, v^{\prime} \in\{\epsilon, 0,1,00,11\}$ and $z \in \Sigma_{2}^{*}$ is $\frac{7}{3}$-power-free. Applying the preceding case analysis to x^{\prime} allows us to eliminate all but three subcases.
Case 5c.ii.A: $\left(u^{\prime}, v^{\prime}\right)=(0,1)$. We have

$$
h(0110)=0 \mu(y) 10 \mu(z) 10 \mu(z) 10 \mu(y) 1=0 \mu(y 1 z 1 z 1 y) 1 .
$$

Moreover, by the same reasoning used in Case 5a and Case 5b, we have $|z|=2^{j}-1$ or $|z|=3 \cdot 2^{j}-1$ for some $j \in \mathbb{N}$, and so by Lemma $\mathbf{7}$ $y 1 z 1 z 1 y$ contains a $\frac{7}{3}$-power. The word $h(0110)$ must then contain a $\frac{7}{3}-$ power, contrary to the assumptions of the theorem.
Case 5c.ii.B: $\left(u^{\prime}, v^{\prime}\right)=(1,0)$. Then $h(01)=0 \mu(y) 11 \mu(z) 0$. The word $\mu(z)$ may not begin with a 1 as that would create the cube 111. We have then that $h(01)=0 \mu(y) 1101 \mu\left(z^{\prime}\right) 0$ for some $z^{\prime} \in \Sigma_{2}^{*}$. By Lemma U $^{2} h(01)$ contains a $\frac{7}{3}$-power, contrary to the assumptions of the theorem.
Case 5c.ii.C: $\left(u^{\prime}, v^{\prime}\right)=(\epsilon, \epsilon)$. Then $h(01)=0 \mu(y) 1 \mu(z)$. We have two subcases.

- $\mu(z)$ begins with 01 . Then $h(01)=0 \mu(y) 101 \mu\left(z^{\prime}\right)$ for some $z^{\prime} \in \Sigma_{2}^{*}$. The word $\mu(y)$ may not end in 10 as that would create the $\frac{5}{2}$-power 10101. Hence $h(01)=0 \mu\left(y^{\prime}\right) 01101 \mu\left(z^{\prime}\right)$ for some $y^{\prime} \in \Sigma_{2}^{*}$. If $\mu\left(z^{\prime}\right)$ begins with 10 , then $h(01)$ contains the $\frac{7}{3}$-power 0110110 . If $\mu\left(z^{\prime}\right)$ begins with 01 , then $h(01)$ contains the $\frac{5}{2}$-power 10101. Either situation contradicts the assumptions of the theorem.
- $\mu(z)$ begins with 10 . Then $h(01)=0 \mu(y) 110 \mu\left(z^{\prime}\right)$ for some $z^{\prime} \in \Sigma_{2}^{*}$. By Lemma [4 $h(01)$ contains a $\frac{7}{3}$-power, contrary to the assumptions of the theorem.

The argument for the other choice for (u, v) follows similarly.
Case 6: $(u, v)=(\epsilon, \epsilon)$. In this case we have $x=\mu(y)$.
All cases except $x=\mu(y)$ lead to a contradiction. The same reasoning applied to x^{\prime} gives $x^{\prime}=\mu\left(y^{\prime}\right)$ for some $y^{\prime} \in \Sigma_{2}^{*}$. Let the morphism h^{\prime} be defined by $h^{\prime}(0)=y$ and $h^{\prime}(1)=y^{\prime}$. Then $h=\mu \circ h^{\prime}$, and by Theorem [1, $h^{\prime}(01101001)$ is $\frac{7}{3}$-power-free. Moreover, $|y|<|x|$ and $\left|y^{\prime}\right|<\left|x^{\prime}\right|$. Also note that for the preceding case analysis it sufficed to consider the following words only: $h(00), h(01), h(10), h(11), h(0110), h(1001)$, and $h(01101001)$. However, 00, $01,10,11,0110$, and 1001 are all subwords of 01101001 . Hence, the induction hypothesis can be applied, and we have that either $h^{\prime}=\mu^{k}$ or $h^{\prime}=E \circ \mu^{k}$. Since $E \circ \mu=\mu \circ E$, the result follows.

We now establish the following corollary.
Corollary 10. Let $h: \Sigma_{2}^{*} \rightarrow \Sigma_{2}^{*}$ be a morphism such that $h(01) \neq \epsilon$. Then the following statements are equivalent.
(a) The morphism h is non-erasing, and $h(01101001)$ is $\frac{7}{3}$-power-free.
(b) There exists $k \geq 0$ such that $h=\mu^{k}$ or $h=E \circ \mu^{k}$.
(c) The morphism h maps any infinite $\frac{7}{3}$-power-free word to an infinite $\frac{7}{3}$-power-free word.
(d) There exists an infinite $\frac{7}{3}$-power-free word whose image under h is $\frac{7}{3}$-power-free.

Proof.
$(\mathrm{a}) \Longrightarrow(\mathrm{b})$ was proved in Theorem 9 ,
(b) \Longrightarrow (c) follows from Lemma 1 via König's Infinity Lemma.
$(c) \Longrightarrow(d)$: We need only exhibit an infinite $\frac{7}{3}$-power-free word: the Thue-Morse word, $\mu^{\omega}(0)$, is overlap-free and so is $\frac{7}{3}$-power-free.
$(\mathrm{d}) \Longrightarrow(\mathrm{a})$: Let \mathbf{w} be an infinite $\frac{7}{3}$-power-free word whose image under h is $\frac{7}{3}$-power-free. By Theorem 3, w must contain 01101001, and so $h(01101001)$ is $\frac{7}{3}$-power-free.

To see that h is non-erasing, note that if $h(0)=\epsilon$, then since $h(01) \neq \epsilon, h(1) \neq \epsilon$. But then $h(01101001)=h(1)^{4}$ is not $\frac{7}{3}$-power-free, contrary to what we have just shown. Similarly, $h(1) \neq \epsilon$, and so h is non-erasing.

Let $h: \Sigma_{2}^{*} \rightarrow \Sigma_{2}^{*}$ be a morphism. We say that h is the identity morphism if $h(0)=0$ and $h(1)=1$. The following corollary gives the main result.
Corollary 11. An infinite $\frac{7}{3}$-power-free binary word is a fixed point of a non-identity morphism if and only if it is equal to the Thue-Morse word, $\mu^{\omega}(0)$, or its complement, $\mu^{\omega}(1)$.
Proof. Let $h: \Sigma_{2}^{*} \rightarrow \Sigma_{2}^{*}$ be a non-identity morphism, and let us assume that h has a fixed point that avoids $\frac{7}{3}$-powers. Then h maps an infinite $\frac{7}{3}$-power-free word to an infinite $\frac{7}{3}$ -power-free word, and so, by Corollary 10, h is of the form μ^{k} or $E \circ \mu^{k}$ for some $k \geq 0$. Since h has a fixed point, it is not of the form $E \circ \mu^{k}$, and since h is not the identity morphism, $h=\mu^{k}$ for some $k \geq 1$. But the only fixed points of μ^{k} are $\mu^{\omega}(0)$ and $\mu^{\omega}(1)$, and the result follows.

4 The constant $\frac{7}{3}$ is best possible

It remains to show that the constant $\frac{7}{3}$ given in Corollary 11 is best possible; i.e., Corollary 11 would fail to be true if $\frac{7}{3}$ were replaced by any larger rational number. To show this, it suffices to exhibit an infinite binary word \mathbf{w} that avoids $\left(\frac{7}{3}+\epsilon\right)$-powers for all $\epsilon>0$, such that \mathbf{w} is the fixed point of a morphism $h: \Sigma_{2}^{*} \rightarrow \Sigma_{2}^{*}$, where h is not of the form μ^{k} for any $k \geq 0$.

For rational α, we say that a word w avoids α^{+}-powers if w avoids $(\alpha+\epsilon)$-powers for all $\epsilon>0$.

Let $h: \Sigma_{2}^{*} \rightarrow \Sigma_{2}^{*}$ be the morphism defined by

$$
\begin{aligned}
& h(0)=0110100110110010110 \\
& h(1)=1001011001001101001
\end{aligned}
$$

Since $|h(0)|=|h(1)|=19, h$ is not of the form μ^{k} for any $k \geq 0$. We will show that the fixed point $h^{\omega}(0)$ avoids $\frac{7}{3}^{+}$-powers by using a technique similar to that given by Karhumäki and Shallit [6]. We first state the following lemma, which may be easily verified computationally.

Lemma 12. (a) Suppose $h(a b)=t h(c) u$ for some letters $a, b, c \in \Sigma_{2}$ and words $t, u \in \Sigma_{2}^{*}$. Then this inclusion is trivial (that is, $t=\epsilon$ or $u=\epsilon$).
(b) Suppose there exist letters $a, b, c \in \Sigma_{2}$ and words $s, t, u, v \in \Sigma_{2}^{*}$ such that $h(a)=$ st, $h(b)=u v$, and $h(c)=s v$. Then either $a=c$ or $b=c$.
Theorem 13. The fixed point $h^{\omega}(0)$ avoids $\frac{7}{3}^{+}$-powers.
Proof. The proof is by contradiction. Let $w \in \Sigma_{2}^{*}$ avoid $\frac{7}{3}^{+}$-powers, and suppose that $h(w)$ contains a $\frac{7}{3}^{+}$-power. Then we may write $h(w)=x y y y^{\prime} z$ for some $x, z \in \Sigma_{2}^{*}$ and $y, y^{\prime} \in \Sigma_{2}^{+}$, where y^{\prime} is a prefix of y, and $\left|y^{\prime}\right| /|y|>\frac{1}{3}$. Let us assume further that w is a shortest such string, so that $0 \leq|x|,|z|<19$. We will consider two cases.

Case 1: $|y| \leq 38$. In this case we have $|w| \leq 6$. Checking all 20 words $w \in \Sigma_{2}^{6}$ that avoid $\frac{7}{3}^{+}$-powers, we see that, contrary to our assumption, $h(w)$ avoids $\frac{7}{3}^{+}$-powers in every case.

Case 2: $|y|>38$. Noting that if $h(w)$ contains a $\frac{7}{3}^{+}$-power, it must contain a square, we may apply a standard argument (see [6] for an example) to show that Lemma 12 implies that $h(w)$ can be written in the following form:

$$
h(w)=A_{1} A_{2} \ldots A_{j} A_{j+1} A_{j+2} \ldots A_{2 j} A_{2 j+1} A_{2 j+2} \ldots A_{n-1} A_{n}^{\prime} A_{n}^{\prime \prime}
$$

for some j, where

$$
\begin{aligned}
A_{i} & =h\left(a_{i}\right) \text { for } i=1,2, \ldots, n \text { and } a_{i} \in \Sigma_{2} \\
A_{n} & =A_{n}^{\prime} A_{n}^{\prime \prime} \\
y & =A_{1} A_{2} \ldots A_{j} \\
& =A_{j+1} A_{j+2} \ldots A_{2 j} \\
y^{\prime} & =A_{2 j+1} A_{2 j+2} \ldots A_{n-1} A_{n}^{\prime} \\
z & =A_{n}^{\prime \prime} .
\end{aligned}
$$

Since y^{\prime} is a prefix of y, and since $\left|y^{\prime}\right| /|y|>\frac{1}{3}, A_{n}^{\prime}$ must be a prefix of A_{k}, where $k=\left\lfloor\frac{j}{3}\right\rfloor+1$. However, noting that for any $a \in \Sigma_{2}$, any prefix of $h(a)$ suffices to uniquely determine a, we may conclude that $A_{k}=A_{n}$. Hence, we may write

$$
h(w)=A_{1} A_{2} \ldots A_{k-1} A_{k} \ldots A_{j} A_{j+1} A_{j+2} \ldots A_{j+k-1} A_{j+k} \ldots A_{2 j} A_{2 j+1} A_{2 j+2} \ldots A_{n-1} A_{n}
$$

where

$$
\begin{aligned}
y & =A_{1} A_{2} \ldots A_{k-1} A_{k} \ldots A_{j} \\
& =A_{j+1} A_{j+2} \ldots A_{j+k-1} A_{j+k} \ldots A_{2 j} \\
y^{\prime} z & =A_{2 j+1} A_{2 j+2} \ldots A_{n-1} A_{n} \\
& =A_{1} A_{2} \ldots A_{k-1} A_{k} .
\end{aligned}
$$

We thus have

$$
w=\left(a_{1} a_{2} \ldots a_{j}\right)^{2} a_{1} a_{2} \ldots a_{k}
$$

where $k=\left\lfloor\frac{j}{3}\right\rfloor+1$. Hence, w is a $\frac{7}{3}^{+}$-power, contrary to our assumption. The result now follows.

Theorem 13 thus implies that the constant $\frac{7}{3}$ given in Corollary 11 is best possible.

Acknowledgements

The author would like to thank Jeffrey Shallit for suggesting the problem, as well as for several other suggestions, such as the example $001001 \mu^{\omega}(1)$ given in the introduction, and for pointing out the applicability of the proof technique used in Section 4

References

[1] J.-P. Allouche, J. Currie, J. Shallit, "Extremal infinite overlap-free binary words", Electron. J. Combin. 5 (1998), \#R27.
[2] J.-P. Allouche, J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, 2003.
[3] J. Berstel, P. Séébold, "A characterization of overlap-free morphisms", Discrete Appl. Math. 46 (1993), 275-281.
[4] F. Dejean, "Sur un théorème de Thue", J. Comb. Theory Ser. A. 13 (1972), 90-99.
[5] W. Gottschalk, G. Hedlund, "A characterization of the Morse minimal set", Proc. Amer. Math. Soc. 15 (1964), 70-74.
[6] J. Karhumäki, J. Shallit, "Polynomial versus exponential growth in repetition-free binary words" (2003). Preprint available at http://www.arxiv.org/abs/math.CO/0304095
[7] M. Morse, G. Hedlund, "Unending chess, symbolic dynamics, and a problem in semigroups", Duke Math. J. 11 (1944), 1-7.
[8] A. Restivo, S. Salemi, "Overlap free words on two symbols". In M. Nivat, D. Perrin, eds., Automata on Infinite Words, Vol. 192 of Lecture Notes in Computer Science, pp. 198-206, Springer-Verlag, 1984.
[9] P. Séébold, "Morphismes itérés, mot de Morse et mot de Fibonacci", C. R. Acad. Sc. Paris 295 (1982), 439-441.
[10] P. Séébold, "Overlap-free sequences". In M. Nivat, D. Perrin, eds., Automata on Infinite Words, Vol. 192 of Lecture Notes in Computer Science, pp. 207-215, Springer-Verlag, 1984.
[11] P. Séébold, "Sequences generated by infinitely iterated morphisms", Discrete Appl. Math. 11 (1985) 255-264.
[12] A.M. Shur, "The structure of the set of cube-free \mathbb{Z}-words in a two-letter alphabet" (Russian), Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 201-224. English translation in Izv. Math. 64 (2000), 847-871.
[13] A. Thue, "Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen", Vidensk. I. Math. Nat. Kl. 1 (1912), 1-67.

