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Abstract

In 1982, Séébold showed that the only overlap-free binary words that are the fixed

points of non-identity morphisms are the Thue-Morse word and its complement. We

strengthen Séébold’s result by showing that the same result holds if the term ‘overlap-

free’ is replaced with ‘7
3
-power-free’. Furthermore, the number 7

3
is best possible.

1 Introduction

Let Σ be a finite, non-empty set called an alphabet. We denote the set of all finite words
over the alphabet Σ by Σ∗. We also write Σ+ to denote the set Σ∗ − {ǫ}, where ǫ is the
empty word. Let Σk denote the alphabet {0, 1, . . . , k − 1}. Throughout this paper we will
work exclusively with the binary alphabet Σ2.

Let N denote the set {0, 1, 2, . . .}. An infinite word is a map from N to Σ, and a bi-infinite
word is a map from Z to Σ. The set of all infinite words over the alphabet Σ is denoted Σω.
We also write Σ∞ to denote the set Σ∗ ∪ Σω.

A map h : Σ∗ → ∆∗ is called a morphism if h satisfies h(xy) = h(x)h(y) for all x, y ∈ Σ∗.
A morphism may be defined simply by specifying its action on Σ. A morphism h : Σ∗ → Σ∗

such that h(a) = ax for some a ∈ Σ is said to be prolongable on a; we may then repeatedly
iterate h to obtain the fixed point hω(a) = axh(x)h2(x)h3(x) · · ·.

An overlap is a word of the form axaxa, where a ∈ Σ and x ∈ Σ∗. A word w′ is called a
subword of w ∈ Σ∞ if there exist u ∈ Σ∗ and v ∈ Σ∞ such that w = uw′v. We say a word
w is overlap-free (or avoids overlaps) if no subword of w is an overlap.

Let µ be the Thue-Morse morphism; i.e., the morphism defined by µ(0) = 01 and
µ(1) = 10. It is well-known [7, 13] that the Thue-Morse word, µω(0), is overlap-free. The
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properties of overlap-free words have been studied extensively (see, for example, the survey
by Séébold [10]). Séébold [9, 11] showed that µω(0) and µω(1) are the only infinite overlap-
free binary words that can be obtained by iteration of a morphism. Another proof of this fact
was later given by Berstel and Séébold [3]. We will show that this result can be strengthened
somewhat. We will first need the notion of a fractional power, which was first introduced by
Dejean [4].

Let α be a rational number such that α ≥ 1. An α-power is a word of the form xnx′,
where x, x′ ∈ Σ∗, and x′ is a prefix of x with n + |x′|/|x| = α. We say a word w is α-
power-free (or avoids α-powers) if no subword of w is an β-power for any rational β ≥ α;
otherwise, we say w contains an α-power. Note that a word is overlap-free if and only if it is
(2+ ǫ)-power-free for all ǫ > 0; for example, an overlap-free word is necessarily 7

3
-power-free.

In this paper we will be particularly concerned with 7

3
-powers. Several results previously

known for overlap-free binary words have recently been shown to be true for 7

3
-power-free bi-

nary words as well. For example, Restivo and Salemi’s factorization theorem for overlap-free
binary words [8] was recently shown to be true for 7

3
-power-free binary words by Karhumäki

and Shallit [6]. In 1964, Gottschalk and Hedlund [5] showed that the bi-infinite overlap-free
binary words were simply shifts of the bi-infinite analogue of the Thue-Morse word, and
in 2000, Shur [12] showed that a similar result holds for the bi-infinite 7

3
-power-free binary

words. Furthermore, Shur showed that the number 7

3
is best possible.

The goal of this paper is to generalize Séébold’s result by showing that µω(0) and µω(1) are
the only infinite 7

3
-power-free binary words that can be obtained by iteration of a morphism.

At first glance, it may seem that this is an immediate consequence of Shur’s result; however,
this is not necessarily so, as there are infinite 7

3
-power-free binary words that cannot be

extended to the left to form bi-infinite 7

3
-power-free binary words. For example, the infinite

binary word 001001µω(1), which was shown by Allouche et al. [1] to be the lexicographically
least infinite overlap-free binary word, cannot be extended to the left to form a 7

3
-power-free

word: prepending a 0 creates the cube 000, and prepending a 1 creates the 7

3
-power 1001001.

2 Preliminary lemmata

We will need the following result due to Shur [12].

Theorem 1 (Shur). Let w ∈ Σ∗

2, and let α > 2 be a real number. Then w is α-power-free
iff µ(w) is α-power-free.

We will also make frequent use of the following result due to Karhumäki and Shallit [6].
This theorem is a generalization of a similar factorization theorem for overlap-free words due
to Restivo and Salemi [8].

Theorem 2 (Karhumäki and Shallit). Let x ∈ Σ∗

2 be a word avoiding α-powers, with
2 < α ≤ 7

3
. Then there exist u, v, y with u, v ∈ {ǫ, 0, 1, 00, 11} and a word y ∈ Σ∗

2 avoiding
α-powers, such that x = uµ(y)v.
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Next, we will establish a few lemmata. Lemma 3 is analogous to a similar lemma for
overlap-free words given in Allouche and Shallit [2, Lemma 1.7.6]. (This result was also
stated without formal proof by Berstel and Séébold [3].)

Lemma 3. Let w ∈ Σ∗

2 be a 7

3
-power-free word with |w| ≥ 52. Then w contains µ3(0) =

01101001 and µ3(1) = 10010110 as subwords.

Proof. Since w is 7

3
-power-free, by Theorem 2 we can write

w = uµ(y)v, (1)

where y is 7

3
-power-free and |y| ≥ 24. Similarly, we can write

y = u′µ(y′)v′, (2)

where y′ is 7

3
-power-free and |y′| ≥ 10. Again, we can write

y′ = u′′µ(y′′)v′′, (3)

where y′′ is 7

3
-power-free and |y′′| ≥ 3. From Equations (1)–(3), we get

w = uµ(u′µ(u′′µ(y′′)v′′)v′)v

= uµ(u′)µ2(u′′)µ3(y′′)µ2(v′′)µ(v′)v,

where u, u′, u′′, v, v′, v′′ ∈ {ǫ, 0, 1, 00, 11}. Since y′′ is 7

3
-power-free and |y′′| ≥ 3, y′′ contains

both 0 and 1, and so µ3(y′′), and consequently w, contains both µ3(0) = 01101001 and
µ3(1) = 10010110 as subwords as required.

Lemma 4. Let w′ be a subword of w ∈ Σ∗

2, where w′ is either of the form abbµ(w′′) or
µ(w′′)bba for some a, b ∈ Σ2 and w′′ ∈ Σ∗

2. Suppose also that a 6= b and |w′′| ≥ 2. Then w
contains a 7

3
-power.

Proof. Suppose ab = 10 and w′ = 100µ(w′′) (the other cases follow similarly). The word
µ(w′′) may not begin with a 0 as that would create the cube 000. Hence we have w′ =
10010µ(w′′′) for some w′′′ ∈ Σ∗

2. If µ(w′′′) begins with 01, then w′ contains the 7

3
-power

1001001. If µ(w′′′) begins with 10, then w′ contains the 5

2
-power 01010. Hence, w contains

a 7

3
-power.

Lemma 5. For i, j ∈ N, let w be a 7

3
-power-free word over Σ2 such that |w| = (7+2j)2i−1.

Let a be an element of Σ2. Then waw contains a 7

3
-power x, where |x| ≤ 7 · 2i.

Proof. Suppose a = 1 (the case a = 0 follows similarly). The proof is by induction on i.
For the base case we have i = 0. Hence, |w| ≥ 6 and |w| is even. If w either begins or
ends with 11, then w1w contains the cube 111, and the result follows. Suppose then that
w neither begins nor ends with 11. By explicitly examining all 13 words of length six that
avoid 7

3
-powers and neither begin nor end with 11, we see that all such words of length at

least six can be written in the form pbbq, where p, q ∈ Σ+

2 and b ∈ Σ2. Hence, w1w must
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have at least one subword with prefix bb and suffix bb. Moreover, since |w| is even, there
must exist such a subword where the prefix bb and the suffix bb each begin at positions of
different parity in w1w. Let x be a smallest such subword such that w1w neither begins nor
ends with x. Suppose b = 0 (the case b = 1 follows similarly). Then x = 000, x = 00100, or
x contains a subword 01010 or 10101. Hence, w1w contains one of the subwords 000, 01010,
10101, or 1001001 as required.

Let us now assume that the lemma holds for all i′, where 0 < i′ < i. Since w avoids
7

3
-powers, and since |w| ≥ 7, by Theorem 2 we can write w = uµ(w′)v, where u, v ∈

{ǫ, 0, 1, 00, 11} and w′ ∈ Σ∗

2 is 7

3
-power-free. By applying a case analysis similar to that

used in Cases (1)–(4) of the proof of Theorem 9 below, we can eliminate all but three cases:
(u, v) ∈ {(ǫ, ǫ), (ǫ, 0), (0, ǫ)}.

Case 1: (u, v) = (ǫ, ǫ). In this case w = µ(w′). This is clearly not possible, since for i > 0,
|w| = (7 + 2j)2i − 1 is odd.

Case 2: (u, v) = (ǫ, 0). Then w = µ(w′)0 and w1w = µ(w′)01µ(w′)0 = µ(w′0w′)0. If |w| =
(7 + 2j)2i − 1, we see that |w′| = (7 + 2j)2i−1 − 1. Hence, if i′ = i− 1, we may apply
the inductive assumption to w′0w′. We thus obtain that w′0w′ contains a 7

3
-power x′,

where |x′| ≤ 7 · 2i−1, and so w1w must contain a 7

3
-power x = µ(x′), where |x| ≤ 7 · 2i.

Case 3: (u, v) = (0, ǫ). This case is handled similarly to the previous case, and we omit the
details.

By induction then, we have that waw contains a 7

3
-power x, where |x| ≤ 7 · 2i.

Lemma 6. For i ∈ N, let w be a 7

3
-power-free word over Σ2 such that |w| = 5 · 2i − 1. Let

a be an element of Σ2. Then waw contains a 7

3
-power x, where |x| ≤ 5 · 2i.

Proof. Suppose a = 1 (the case a = 0 follows similarly). The proof is by induction on i. For
the base case we have i = 0 and |w| = 4. An easy computation suffices to verify that for all
w with |w| = 4, w1w contains a 7

3
-power x, where |x| ≤ 5 as required.

Let us now assume that the lemma holds for all i′, where 0 < i′ < i. Since w avoids
7

3
-powers, and since |w| ≥ 7, by Theorem 2 we can write w = uµ(w′)v, where u, v ∈

{ǫ, 0, 1, 00, 11} and w′ ∈ Σ∗

2 is 7

3
-power-free. By applying a case analysis similar to that

used in Cases (1)–(4) of the proof of Theorem 9 below, we can eliminate all but three cases:
(u, v) ∈ {(ǫ, ǫ), (ǫ, 0), (0, ǫ)}.

Case 1: (u, v) = (ǫ, ǫ). In this case w = µ(w′). This is clearly not possible, since for i > 0,
|w| = 5 · 2i − 1 is odd.

Case 2: (u, v) = (ǫ, 0). Then w = µ(w′)0 and w1w = µ(w′)01µ(w′)0 = µ(w′0w′)0. If |w| =
5 · 2i − 1, we see that |w′| = 5 · 2i−1 − 1. Hence, if i′ = i − 1, we may apply the
inductive assumption to w′0w′. We thus obtain that w′0w′ contains a 7

3
-power x′,

where |x′| ≤ 5 · 2i−1, and so w1w must contain a 7

3
-power x = µ(x′), where |x| ≤ 5 · 2i.
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Case 3: (u, v) = (0, ǫ). This case is handled similarly to the previous case, and we omit the
details.

By induction then, we have that waw contains a 7

3
-power x, where |x| ≤ 5 · 2i.

Lemma 7. For i, j ∈ Z
+, let w and s be 7

3
-power-free words over Σ2 such that |w| = 2i+1−1

or |w| = 3 · 2i − 1, and |s| = 2j+1 − 1 or |s| = 3 · 2j − 1. Assume also that |s| ≥ |w|. Let a
be an element of Σ2. Then sawawas contains a 7

3
-power.

Proof. Suppose a = 1 (the case a = 0 follows similarly). The proof is by induction on i. For
the base case we have i = 1 and either |w| = 3 or |w| = 5. An easy computation suffices to
verify that for all w with |w| = 3 or |w| = 5, and all a, b ∈ Σ2

2, a1w1w1b contains a
7

3
-power.

Let us now assume that the lemma holds for all i′, where 1 < i′ < i. Since w avoids
7

3
-powers, and since |w| ≥ 7, by Theorem 2 we can write w = uµ(w′)v, where u, v ∈

{ǫ, 0, 1, 00, 11} and w′ ∈ Σ∗

2 is 7

3
-power-free. Similarly, we can write s = u′µ(s′)v′, where

u′, v′ ∈ {ǫ, 0, 1, 00, 11} and s′ ∈ Σ∗

2 is 7

3
-power-free. By applying a case analysis similar to

that used in Cases (1)–(4) of the proof of Theorem 9 below, we can eliminate all but three
cases: (u, v, u′, v′) ∈ {(ǫ, ǫ, ǫ, ǫ), (ǫ, 0, 0, ǫ), (0, ǫ, ǫ, 0)}.

Case 1: (u, v, u′, v′) = (ǫ, ǫ, ǫ, ǫ). In this case w = µ(w′). This is clearly not possible, since for
i > 1, both |w| = 2i+1 − 1 and |w| = 3 · 2i − 1 are odd.

Case 2: (u, v, u′, v′) = (ǫ, 0, ǫ, 0). Then w = µ(w′)0, s = µ(s′)0, and

s1w1w1s = µ(s′)01µ(w′)01µ(w′)01µ(s′)0 = µ(s′0w′0w′0s′)0.

If |w| = 2i+1 − 1 or |w| = 3 · 2i − 1, we see that |w′| = 2i − 1 or |w| = 3 · 2i−1 − 1.
Similarly, if |s| = 2j+1−1 or |s| = 3 ·2j−1, we see that |s′| = 2j−1 or |s| = 3 ·2j−1−1.
Hence, if i′ = i − 1, we may apply the inductive assumption to s′0w′0w′0s′. We thus
obtain that s′0w′0w′0s′ contains a 7

3
-power x′, and so s1w1w1smust contain a 7

3
-power

x = µ(x′).

Case 3: (u, v, u′, v′) = (0, ǫ, 0, ǫ). This case is handled similarly to the previous case, and we
omit the details.

By induction then, we have that sawawas contains a 7

3
-power.

Lemma 8. Let n be a positive integer. Then n can be written in the form 2i − 1, 3 · 2i − 1,
5 · 2i − 1, or (7 + 2j)2i − 1 for some i, j ∈ N.

Proof. If n = 1 then n = 21 − 1 as required. Suppose then that n > 1. Then we may
write n − 1 = m2i, where m is odd and i ∈ N. But for any odd positive integer m, either
m ∈ {1, 3, 5}, or m is of the form 7 + 2j for some j ∈ N, and the result follows.
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3 Main theorem

Let h : Σ∗ → Σ∗ be a morphism. We say that h is non-erasing if, for all a ∈ Σ, h(a) 6= ǫ. Let
E be the morphism defined by E(0) = 1 and E(1) = 0. The following theorem is analogous
to a result regarding overlap-free words due to Berstel and Séébold [3].

Theorem 9. Let h : Σ∗

2 → Σ∗

2 be a non-erasing morphism. If h(01101001) is 7

3
-power-free,

then there exists an integer k ≥ 0 such that either h = µk or h = E ◦ µk.

Proof. Let h(0) = x and h(1) = x′ with |x|, |x′| ≥ 1. The proof is by induction on |x|+ |x′|.
If |x| < 7 and |x′| < 7, then a quick computation suffices to verify that if h(01101001) is
7

3
-power-free, then either h = µk or h = E ◦ µk, where k ∈ {0, 1, 2}. Let us assume then,

without loss of generality, that |x| ≥ |x′| and |x| ≥ 7. The word x must avoid 7

3
-powers, and

so, by Theorem 2, we can write x = uµ(y)v, where u, v ∈ {ǫ, 0, 1, 00, 11} and y ∈ Σ∗

2. We
will consider all 25 choices for (u, v).

Case 1: (u, v) ∈ {(0, 00), (00, 0), (00, 00), (1, 11), (11, 1), (11, 11)}. Suppose (u, v) = (0, 00).
Then h(00) = 0µ(y)000µ(y)00 contains the cube 000, contrary to the assumptions
of the theorem. The argument for the other choices for (u, v) follows similarly.

Case 2: (u, v) ∈ {(0, 11), (00, 1), (00, 11), (1, 00), (11, 0), (11, 00)}. For any of these choices for
(u, v), h(00) = uµ(y)vuµ(y)v contains a subword of the form abbµ(y) or µ(y)bba for
some a, b ∈ Σ2, where a 6= b. Since |x| ≥ 7, |y| ≥ 2, and so by Lemma 4 we have that
h(00) contains a 7

3
-power, contrary to the assumptions of the theorem.

Case 3: (u, v) ∈ {(ǫ, 0), (0, ǫ), (ǫ, 1), (1, ǫ)}. Suppose (u, v) = (0, ǫ). Then h(00) = 0µ(y)0µ(y).
We have two subcases.

Case 3a: µ(y) begins with 01 or ends with 10. Then by Lemma 4, h(00) contains a 7

3
-power,

contrary to the assumptions of the theorem.

Case 3b: µ(y) begins with 10 and ends with 01. Then h(00) = 0µ(y′)01010µ(y′′) contains
the 5

2
-power 01010, contrary to the assumptions of the theorem.

The argument for the other choices for (u, v) follows similarly.

Case 4: (u, v) ∈ {(ǫ, 00), (0, 0), (00, ǫ), (ǫ, 11), (1, 1), (11, ǫ)}. Suppose (u, v) = (00, ǫ). Then
h(00) = 00µ(y)00µ(y). The word µ(y) may not begin with a 0 as that would create the
cube 000. We have then that h(00) = 00µ(y)0010µ(y′) for some y′ ∈ Σ∗

2. By Lemma 4,
h(00) contains a 7

3
-power, contrary to the assumptions of the theorem. The argument

for the other choices for (u, v) follows similarly.

Case 5: (u, v) ∈ {(0, 1), (1, 0)}. Suppose (u, v) = (0, 1). By Lemma 8, the following three
subcases suffice to cover all possibilities for |y|.
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Case 5a: |y| = (7+2j)2i−1 for some i, j ∈ N. We have h(00) = 0µ(y)10µ(y)1 = 0µ(y1y)1.
By Lemma 5, y1y contains a 7

3
-power. The word h(00) must then contain a

7

3
-power, contrary to the assumptions of the theorem.

Case 5b: |y| = 5 · 2i − 1 for some i ∈ N. Again we have h(00) = 0µ(y)10µ(y)1 = 0µ(y1y)1.
By Lemma 6, y1y contains a 7

3
-power. The word h(00) must then contain a

7

3
-power, contrary to the assumptions of the theorem.

Case 5c: |y| = 2i − 1 or |y| = 3 · 2i − 1 for some i ∈ N. We have two subcases.

Case 5c.i: |x′| < 7. We have h(0110) = 0µ(y)1x′x′0µ(y)1. The only x′ ∈ Σ∗

2 where
|x′| < 7 and 1x′x′0 does not contain a 7

3
-power is

x′ ∈ {10, 0110, 1001, 011010, 100110, 101001}.

However, each of these words either begins or ends with 10, and so we have
that h(0110) contains a subword of the form 100µ(y) or µ(y)110. Hence, by
Lemma 4 we have that h(0110) contains a 7

3
-power, contrary to the assump-

tions of the theorem.

Case 5c.ii: |x′| ≥ 7. By Theorem 2, we can write x′ = u′µ(z)v′, where u′, v′ ∈ {ǫ, 0, 1, 00, 11}
and z ∈ Σ∗

2 is
7

3
-power-free. Applying the preceding case analysis to x′ allows

us to eliminate all but three subcases.

Case 5c.ii.A: (u′, v′) = (0, 1). We have

h(0110) = 0µ(y)10µ(z)10µ(z)10µ(y)1 = 0µ(y1z1z1y)1.

Moreover, by the same reasoning used in Case 5a and Case 5b, we have
|z| = 2j − 1 or |z| = 3 · 2j − 1 for some j ∈ N, and so by Lemma 7,
y1z1z1y contains a 7

3
-power. The word h(0110) must then contain a 7

3
-

power, contrary to the assumptions of the theorem.

Case 5c.ii.B: (u′, v′) = (1, 0). Then h(01) = 0µ(y)11µ(z)0. The word µ(z) may not
begin with a 1 as that would create the cube 111. We have then that
h(01) = 0µ(y)1101µ(z′)0 for some z′ ∈ Σ∗

2. By Lemma 4, h(01) contains
a 7

3
-power, contrary to the assumptions of the theorem.

Case 5c.ii.C: (u′, v′) = (ǫ, ǫ). Then h(01) = 0µ(y)1µ(z). We have two subcases.

• µ(z) begins with 01. Then h(01) = 0µ(y)101µ(z′) for some z′ ∈ Σ∗

2.
The word µ(y) may not end in 10 as that would create the 5

2
-power

10101. Hence h(01) = 0µ(y′)01101µ(z′) for some y′ ∈ Σ∗

2. If µ(z′)
begins with 10, then h(01) contains the 7

3
-power 0110110. If µ(z′)

begins with 01, then h(01) contains the 5

2
-power 10101. Either situation

contradicts the assumptions of the theorem.

• µ(z) begins with 10. Then h(01) = 0µ(y)110µ(z′) for some z′ ∈ Σ∗

2.
By Lemma 4, h(01) contains a 7

3
-power, contrary to the assumptions

of the theorem.
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The argument for the other choice for (u, v) follows similarly.

Case 6: (u, v) = (ǫ, ǫ). In this case we have x = µ(y).

All cases except x = µ(y) lead to a contradiction. The same reasoning applied to x′ gives
x′ = µ(y′) for some y′ ∈ Σ∗

2. Let the morphism h′ be defined by h′(0) = y and h′(1) = y′.
Then h = µ ◦ h′, and by Theorem 1, h′(01101001) is 7

3
-power-free. Moreover, |y| < |x| and

|y′| < |x′|. Also note that for the preceding case analysis it sufficed to consider the following
words only: h(00), h(01), h(10), h(11), h(0110), h(1001), and h(01101001). However, 00,
01, 10, 11, 0110, and 1001 are all subwords of 01101001. Hence, the induction hypothesis
can be applied, and we have that either h′ = µk or h′ = E ◦ µk. Since E ◦ µ = µ ◦ E, the
result follows.

We now establish the following corollary.

Corollary 10. Let h : Σ∗

2 → Σ∗

2 be a morphism such that h(01) 6= ǫ. Then the following
statements are equivalent.

(a) The morphism h is non-erasing, and h(01101001) is 7

3
-power-free.

(b) There exists k ≥ 0 such that h = µk or h = E ◦ µk.

(c) The morphism h maps any infinite 7

3
-power-free word to an infinite 7

3
-power-free word.

(d) There exists an infinite 7

3
-power-free word whose image under h is 7

3
-power-free.

Proof.
(a) =⇒ (b) was proved in Theorem 9.
(b) =⇒ (c) follows from Lemma 1 via König’s Infinity Lemma.
(c) =⇒ (d): We need only exhibit an infinite 7

3
-power-free word: the Thue-Morse word,

µω(0), is overlap-free and so is 7

3
-power-free.

(d) =⇒ (a): Let w be an infinite 7

3
-power-free word whose image under h is 7

3
-power-free.

By Theorem 3, w must contain 01101001, and so h(01101001) is 7

3
-power-free.

To see that h is non-erasing, note that if h(0) = ǫ, then since h(01) 6= ǫ, h(1) 6= ǫ.
But then h(01101001) = h(1)4 is not 7

3
-power-free, contrary to what we have just shown.

Similarly, h(1) 6= ǫ, and so h is non-erasing.

Let h : Σ∗

2 → Σ∗

2 be a morphism. We say that h is the identity morphism if h(0) = 0 and
h(1) = 1. The following corollary gives the main result.

Corollary 11. An infinite 7

3
-power-free binary word is a fixed point of a non-identity mor-

phism if and only if it is equal to the Thue-Morse word, µω(0), or its complement, µω(1).

Proof. Let h : Σ∗

2 → Σ∗

2 be a non-identity morphism, and let us assume that h has a fixed
point that avoids 7

3
-powers. Then h maps an infinite 7

3
-power-free word to an infinite 7

3
-

power-free word, and so, by Corollary 10, h is of the form µk or E ◦µk for some k ≥ 0. Since
h has a fixed point, it is not of the form E ◦ µk, and since h is not the identity morphism,
h = µk for some k ≥ 1. But the only fixed points of µk are µω(0) and µω(1), and the result
follows.
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4 The constant 7
3 is best possible

It remains to show that the constant 7

3
given in Corollary 11 is best possible; i.e., Corollary 11

would fail to be true if 7

3
were replaced by any larger rational number. To show this, it suffices

to exhibit an infinite binary word w that avoids (7
3
+ ǫ)-powers for all ǫ > 0, such that w is

the fixed point of a morphism h : Σ∗

2 → Σ∗

2, where h is not of the form µk for any k ≥ 0.
For rational α, we say that a word w avoids α+-powers if w avoids (α+ ǫ)-powers for all

ǫ > 0.
Let h : Σ∗

2 → Σ∗

2 be the morphism defined by

h(0) = 0110100110110010110

h(1) = 1001011001001101001.

Since |h(0)| = |h(1)| = 19, h is not of the form µk for any k ≥ 0. We will show that the fixed

point hω(0) avoids 7

3

+
-powers by using a technique similar to that given by Karhumäki and

Shallit [6]. We first state the following lemma, which may be easily verified computationally.

Lemma 12. (a) Suppose h(ab) = th(c)u for some letters a, b, c ∈ Σ2 and words t, u ∈ Σ∗

2.
Then this inclusion is trivial (that is, t = ǫ or u = ǫ).

(b) Suppose there exist letters a, b, c ∈ Σ2 and words s, t, u, v ∈ Σ∗

2 such that h(a) = st,
h(b) = uv, and h(c) = sv. Then either a = c or b = c.

Theorem 13. The fixed point hω(0) avoids 7

3

+
-powers.

Proof. The proof is by contradiction. Let w ∈ Σ∗

2 avoid 7

3

+
-powers, and suppose that h(w)

contains a 7

3

+
-power. Then we may write h(w) = xyyy′z for some x, z ∈ Σ∗

2 and y, y′ ∈ Σ+

2 ,
where y′ is a prefix of y, and |y′|/|y| > 1

3
. Let us assume further that w is a shortest such

string, so that 0 ≤ |x|, |z| < 19. We will consider two cases.
Case 1: |y| ≤ 38. In this case we have |w| ≤ 6. Checking all 20 words w ∈ Σ6

2 that avoid
7

3

+
-powers, we see that, contrary to our assumption, h(w) avoids 7

3

+
-powers in every case.

Case 2: |y| > 38. Noting that if h(w) contains a 7

3

+
-power, it must contain a square,

we may apply a standard argument (see [6] for an example) to show that Lemma 12 implies
that h(w) can be written in the following form:

h(w) = A1A2 . . . AjAj+1Aj+2 . . . A2jA2j+1A2j+2 . . . An−1A
′

nA
′′

n,

for some j, where

Ai = h(ai) for i = 1, 2, . . . , n and ai ∈ Σ2

An = A′

nA
′′

n

y = A1A2 . . . Aj

= Aj+1Aj+2 . . . A2j

y′ = A2j+1A2j+2 . . . An−1A
′

n

z = A′′

n.

9



Since y′ is a prefix of y, and since |y′|/|y| > 1

3
, A′

n must be a prefix ofAk, where k = ⌊ j

3
⌋+1.

However, noting that for any a ∈ Σ2, any prefix of h(a) suffices to uniquely determine a, we
may conclude that Ak = An. Hence, we may write

h(w) = A1A2 . . . Ak−1Ak . . . AjAj+1Aj+2 . . . Aj+k−1Aj+k . . . A2jA2j+1A2j+2 . . . An−1An,

where

y = A1A2 . . . Ak−1Ak . . . Aj

= Aj+1Aj+2 . . . Aj+k−1Aj+k . . . A2j

y′z = A2j+1A2j+2 . . . An−1An

= A1A2 . . . Ak−1Ak.

We thus have
w = (a1a2 . . . aj)

2a1a2 . . . ak,

where k = ⌊ j

3
⌋ + 1. Hence, w is a 7

3

+
-power, contrary to our assumption. The result now

follows.

Theorem 13 thus implies that the constant 7

3
given in Corollary 11 is best possible.
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