
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Typeness for ω-Regular Automata∗

Orna Kupferman

School of Engineering and Computer Science

Hebrew University, Jerusalem 91904, Israel

orna@cs.huji.ac.il

Gila Morgenstern

School of Engineering and Computer Science

Hebrew University, Jerusalem 91904, Israel

gila@cs.huji.ac.il

Aniello Murano†

Dipartimento di Informatica ed Applicazioni

Università degli Studi di Salerno, 84081 Baronissi, Italy

murano@unisa.it

Received (received date)

Revised (revised date)
Communicated by Editor’s name

ABSTRACT

We introduce and study three notions of typeness for automata on infinite words.
For an acceptance-condition class γ (that is, γ is weak, Büchi, co-Büchi, Rabin, or
Streett), deterministic γ-typeness asks for the existence of an equivalent γ-automaton

on the same deterministic structure, nondeterministic γ-typeness asks for the existence
of an equivalent γ-automaton on the same structure, and γ-powerset-typeness asks for
the existence of an equivalent γ-automaton on the (deterministic) powerset structure –
one obtained by applying the subset construction. The notions are helpful in studying

the complexity and complication of translations between the various classes of automata.
For example, we prove that deterministic Büchi automata are co-Büchi type; it follows
that a translation from deterministic Büchi to deterministic co-Büchi automata, when
exists, involves no blow up. On the other hand, we prove that nondeterministic Büchi

automata are not co-Büchi type; it follows that a translation from a nondeterministic
Büchi to nondeterministic co-Büchi automata, when exists, should be more complicated
than just redefining the acceptance condition. As a third example, by proving that

nondeterministic co-Büchi automata are Büchi-powerset type, we show that a translation
of nondeterministic co-Büchi to deterministic Büchi automata, when exists, can be done
applying the subset construction. We give a complete picture of typeness for the weak,
Büchi, co-Büchi, Rabin, and Streett acceptance conditions, and discuss its usefulness.

Keywords: Automata on Infinite Words, Acceptance Conditions

1. Introduction

∗A preliminary version of this paper appears in the Proceedings of the 2nd International Sym-
posium on Automated Technology for Verification and Analysis, 2004.

†This work was done while the author was visiting the Hebrew University.

1

Finite automata on infinite objects were first introduced in the 60’s. Moti-

vated by decision problems in mathematics and logic, Büchi, McNaughton, and

Rabin developed a framework for reasoning about infinite word and infinite trees

[4, 14, 18]. The framework has proved to be very powerful. Automata, and their

tight relation to second-order monadic logics, were the key to the solution of several

fundamental decision problems in mathematics and logic [22]. Today, automata

on infinite objects are used for specification and verification of nonterminating

systems. In the automata-theoretic approach to verification, we reduce questions

about systems and their specifications to questions about automata. More specif-

ically, questions such as satisfiability of specifications and correctness of systems

with respect to their specifications are reduced to questions such as nonemptiness

and language containment [23, 10, 24]. The automata-theoretic approach sepa-

rates the logical and the combinatorial aspects of reasoning about systems. The

translation of specifications to automata handles the logic and shifts all the com-

binatorial difficulties to automata-theoretic problems. Recent industrial-strength

property-specification languages such as Sugar [2], ForSpec [1], and the recent stan-

dard PSL 1.01 [www.accellera.org] include regular expressions and/or automata,

making the automata-theoretic approach even more essential.

Since a run of an automaton on an infinite word does not have a final state,

acceptance is determined with respect to the set of states visited infinitely often

during the run. There are many ways to classify an automaton on infinite words.

One is the class of its acceptance condition. For example, in Büchi automata, some

of the states are designated as accepting states, and a run is accepting iff it visits

states from the accepting set infinitely often [4]. Dually, in co-Büchi automata,

a run is accepting iff it visits states from the accepting set only finitely often.

More general are Rabin automata. Here, the acceptance condition is a set α =

{〈G1, B1〉, . . . , 〈Gk, Bk〉} of pairs of sets of states, and a run is accepting if there is

a pair 〈Gi, Bi〉 for which the set of states visited infinitely often intersects Gi and is

disjoint to Bi. The condition α can also be viewed as a Streett condition, in which

case a run is accepting if for all pairs 〈Gi, Bi〉, if the set of states visited infinitely

often intersects Gi, then it also intersects Bi. The number k of pairs in α is referred

to as the index of the automaton. Another way to classify an automaton is by the

type of its branching mode. In a deterministic automaton, the transition function δ

maps a pair of a state and a letter into a single state. The intuition is that when the

automaton is in state q and it reads a letter σ, then the automaton moves to state

δ(q, σ), from which it should accept the suffix of the word. When the branching

mode is nondeterministic, δ maps q and σ into a set of states, and the automaton

should accept the suffix of the word from one of the states in the set.

The applications of automata theory in reasoning about systems have led to the

development of new classes of automata. In [17], Muller et al. introduced weak

automata. Weak automata can be viewed as a special case of Büchi or co-Büchi

automata in which every strongly connected component in the graph induced by

the structure of the automaton is either contained in the accepting set or is disjoint

from it. Since reasoning about specifications is often done by recursively reasoning

2

about their sub-specifications, known translations of temporal-logic specifications

to Büchi automata actually result in weak automata [17, 9, 7]. The special struc-

ture of weak automata is reflected in their attractive computational properties and

makes them very appealing. Essentially, while the formulation of acceptance by

a Büchi or a co-Büchi automaton involves alternation between least and greatest

fixed-points, no alternation is required for specifying acceptance by a weak automa-

ton [9]. Deterministic weak automata have recently being used to represent real

numbers. A real number x in base r is represented by a word in the form wi • wf
where wi is the integer part of x and wf is the float part of x, and both are words

over the alphabet {0, 1, ..., r − 1}. This way for instance, the real number 51
2 in

base r = 10 is represented by 0∗5 • 50ω or by 0∗5 • 49ω. In a similar way, a vector

v = 〈x1, x2, ..., xn〉 of real numbers is represented by a word of the form Wi •Wf

where Wi is in ({0, 1, ..., r−1}n)∗ and Wf is in ({0, 1, ..., r−1}n)ω. As real numbers

may have several representations, real vectors may have several representations too.

A real vector automaton is a Büchi automaton that either accepts all the represen-

tations of some vector v ∈ IRn or none of them. It is proved in [3] that an RVA is

a deterministic weak automaton.

It turns out that different classes of automata have different expressive power.

For example, unlike automata on finite words, where deterministic and nondeter-

ministic automata have the same expressive power, deterministic Büchi automata

are strictly less expressive than nondeterministic Büchi automata [11]. That is,

there exists a language L over infinite words such that L can be recognized by

a nondeterministic Büchi automaton but cannot be recognized by a deterministic

Büchi automaton. It also turns out that some classes of automata may be more

succinct than other classes. For example, translating a nondeterministic co-Büchi

automaton into a deterministic one is possible [16], but involves an exponential blow

up. As another example, translating a nondeterministic Rabin automaton with n

states and index k, into an equivalent nondeterministic Büchi automaton may result

in an automaton with O(k · n) states, and if we start with a Streett automaton,

the Büchi automaton may have n · 2O(k) states [21]. Note that expressiveness and

succinctness depend in both the branching type of the automaton as well as the

class of its acceptance condition.

There has been extensive research on expressiveness and succinctness of au-

tomata on infinite words [22]. In particular, since reasoning about deterministic

automata is simpler than reasoning about nondeterministic ones, questions like de-

ciding whether a nondeterministic automaton has an equivalent deterministic one,

and the blow-up involved in determinization are of particular interest. These ques-

tions get further motivation with the discovery that many natural specifications

correspond to the deterministic fragments: it is shown in [8] that an LTL formula

ψ has an equivalent alternation-free µ-calculus formula iff ψ can be recognized by a

deterministic Büchi automaton, and, as mentioned above, real vector automata are

deterministic weak automata.

For deterministic automata, where Büchi and co-Büchi automata are less expres-

sive than Rabin and Streett automata, researchers have come up with the notion

3

of a deterministic automaton being Büchi type, namely it has an equivalent Büchi

automaton on the same structure [6]. It is shown in [6] that Rabin automata are

Büchi type. Thus, if a deterministic Rabin automaton A recognizes a language that

can be recognized by a deterministic Büchi automaton, then A has an equivalent

deterministic Büchi automaton on the same structure. On the other hand, Streett

automata are not Büchi type: there is a deterministic Streett automaton A that

recognizes a language that can be recognized by a deterministic Büchi automaton,

but all the possibilities of defining a Büchi acceptance condition on the structure of

A result in an automaton recognizing a different language.

As discussed in [6], Büchi-typeness is a very useful notion. In particular, a

Büchi-type deterministic automaton can be translated to an equivalent deterministic

Büchi automaton with no blow up. In this work, we study typeness in general: we

consider both nondeterministic and deterministic automata, for the five classes γ of

acceptance conditions described above (γ is either Büchi, co-Büchi, Rabin, Streett,

or weak). We define and examine three notion of typeness:

1. Deterministic γ-typeness asks for which classes of deterministic automata,

the existence of some equivalent deterministic γ automaton implies the exis-

tence of an equivalent deterministic γ automaton on the same structure. For

example, we show that all deterministic automata are weak type.

2. Nondeterministic γ-typeness asks for which classes of nondeterministic au-

tomata, the existence of some equivalent nondeterministic γ automaton im-

plies the existence of an equivalent nondeterministic γ automaton on the same

structure. For example, we show that nondeterministic Büchi automata are

not co-Büchi type. This answers a question on translating Büchi to co-Büchi

automata that was left open in [8].

3. γ-powerset-typeness asks for which classes of nondeterministic automata, the

existence of some equivalent deterministic γ automaton implies the existence

of an equivalent deterministic γ automaton on the structure obtained by ap-

plying the subset construction to the original automaton. For example, while

deterministic Rabin automata are Büchi-type, nondeterministic Rabin au-

tomata are not Büchi powerset-type. The notion of powerset-typeness is im-

portant for the study of the blow-up involved in the translation of automata

to equivalent deterministic ones. While for some classes a 2O(n logn) lower

bound is known, powerset-typeness implies a 2n upper bound for other classes.

We also examine finite-typeness for nondeterministic Büchi automata – cases

where the limit language of the automaton when viewed as an automaton

on finite words is equivalent to that of the Büchi automaton, and we relate

finite-typeness with powerset-typeness.

Our results, along with previously known results, are described in Figures 2, 3,

and 5.

4

2. Preliminaries

Given an alphabet Σ, an infinite word over Σ is an infinite sequence w = σ0 ·

σ1 · σ2 · · · of letters in Σ. We denote the set of all infinite words over Σ by Σω.

A language L is a set of words from Σω. An automaton over infinite words is a

tuple A = 〈Σ, Q, δ,Q0, α〉, where Σ is the input alphabet, Q is a finite set of states,

δ : Q × Σ → 2Q is a transition function, Q0 ⊆ Q is a set of initial states, and α is

an acceptance condition which is a condition that defines a subset of Qω. We define

several acceptance conditions below. Intuitively, δ(q, σ) is the set of states that A

may move into when it is in the state q and it reads the letter σ. The automaton A

may have several initial states and the transition function may specify many possible

transitions for each state and letter, and hence we say that A is nondeterministic. In

the case where |Q0| = 1 and for every q ∈ Q and σ ∈ Σ, we have that |δ(q, σ)| = 1,

we say that A is deterministic.

Given an input infinite word w = σ0 · σ1 · σ2 · · · ∈ Σω, a run of A on w can

be viewed as a function r : IN → Q where r(0) ∈ Q0, i.e., the run starts in one of

the initial states, and for every i ≥ 0, we have that r(i + 1) ∈ δ(r(i), σi), i.e., the

run obeys the transition function. Note that while a deterministic automaton has a

single run on an input word w, a nondeterministic automaton may have several runs

on w or none at all. Each run r induces a set inf(r) of states that r visits infinitely

often. Formally, inf(r) = {q ∈ Q : for infinitely many i ∈ IN, we have r(i) = q}.

As Q is finite, it is guaranteed that inf(r) 6= ∅. The run r is accepting iff the set

inf(r) satisfies the acceptance condition α. A run that is not accepting is rejecting.

We consider the following acceptance conditions.

• A set S satisfies a Büchi acceptance condition α ⊆ Q if and only if S ∩α 6= ∅.

• A set S satisfies a co-Büchi acceptance condition α ⊆ Q if and only if S∩α = ∅.

• A set S satisfies a Rabin acceptance condition α = {〈G1, B1〉, . . . , 〈Gk, Bk〉} ⊆

2Q × 2Q if and only if there exists a pair 〈Gi, Bi〉 ∈ α for which S ∩ Gi 6= ∅

and S ∩Bi = ∅.

• A set S satisfies a Streett acceptance condition α = {〈G1, B1〉, . . . , 〈Gk, Bk〉} ⊆

2Q × 2Q if and only if for all pairs 〈Gi, Bi〉 ∈ α we have that S ∩ Gi = ∅ or

S ∩Bi 6= ∅.

Note that the Büchi acceptance condition is dual to the co-Büchi acceptance

condition: a set S satisfies a Büchi acceptance condition α iff S does not satisfy α

as a co-Büchi acceptance condition. Similarly, the Rabin acceptance condition is

dual to the Streett acceptance condition. The number k appearing in the Rabin and

Street conditions is called the index of the automaton. An automaton A accepts

an input word w iff there exists an accepting run of A on w. The language of A,

denoted L(A), is the set of all infinite words that A accepts.

The transition function δ induces a relation Rδ ⊆ Q × Q, where Rδ(q, q
′) iff

there is σ ∈ Σ with δ(q, σ) = q′. Accordingly, the automaton A induces a graph

GA = 〈Q,Rδ〉. For two states, q and q′ of A, we say that q′ is reachable from q if

5

there is a (possibly empty) path in GA from q to q′. A strongly connected component

(SCC, for short) in GA is a set C ⊆ Q such that for all states q and q′ in C, we have

that q is reachable from q′. The SCC C is non-trivial if the restriction of GA to C

contains a cycle; that is, either C has at least two states, or C has a state with a

self loop. A maximal strongly connected component (MSCC, for shorta) is an SCC

C that is maximal in the sense that we cannot add to C states and stay with an

SCC. Thus, for all C ′ ⊆ Q \ C, the set C ∪ C ′ is not an SCC. Note that a run of

an automaton A eventually get trapped in an MSCC of GA. We say that a Büchi

automaton A is weak if for each MSCC C of GA, either C ⊆ α (in which case we

say that C is an accepting component) or C ∩ α = ∅ (in which case we say that C

is a rejecting component). Note that a weak automaton can be viewed as both a

Büchi and a co-Büchi automaton. Indeed, a run of A visits α infinitely often iff it

gets trapped in an accepting component, which happens iff it visits states in Q \ α

only finitely often.

We denote the different types of automata by three letters acronyms in {D,N}×

{F, B, C, R, S, W}× {W,T}. The first letter stands for the branching mode of the

automaton (deterministic or nondeterministic); the second letter stands for the

acceptance-condition type (finite, Büchi, co-Büchi, Rabin, Streett, or weak). The

third letter stands for the objects on which the automata run (words or trees). For

Rabin and Streett automata, we sometimes also indicate the index of the automaton.

In this way, for example, NBW are nondeterministic Büchi word automata, and

DRW[1] are deterministic Rabin automata with index 1.

2.1. Expressiveness and Typeness

For two automata A and A′, we say that A and A′ are equivalent if L(A) =

L(A′). For an automaton type β (e.g., DBW) and an automaton A, we say that

A is β-realizable if there is a β-automaton equivalent to A. In Figure 1 below

we describe the known expressiveness hierarchy for automata on infinite words. As

described in the figure, DRW and DSW are as expressive as NRW, NSW, and NBW,

which recognize all ω-regular language [14]. On the other hand, DBW are strictly

less expressive than NBW, and so are DCW. In fact, since by dualizing a Büchi

automaton we get a co-Büchi automaton, the two internal ovals complement each

other. The intersection of DBW and DCW is DWW (note that while a DWW is

clearly both a DBW and DCW, the other direction is not trivial, and is proven in

[3]). Finally, NCW can be determinized (when applied to universal Büchi automata,

the translation in [16], of alternating Büchi automata into NBW, results in DBW.

By dualizing it, one gets a translation of NCW to DCW). In addition to the results

described in the figure, the index of DRW and DSW also induces a hierarchy, thus

DRW[k + 1] are strictly more expressive than DRW[k], and similarly for DSW [5].

Consider an automaton A = 〈Σ, Q, δ,Q0, α〉. We refer to 〈Q, δ,Q0〉 as the

structure of the automaton. The powerset structure induced by A is P(A) =

〈2Q, δP , {Q0}〉, where for all S ∈ 2Q and σ ∈ Σ, we have that δP(S, σ) =
⋃
s∈S δ(s, σ).

aThe notation SCC is sometimes used in the literature to denote maximal SCC. Here, we use
both MSCC (maximal SCC) and SCC (not necessarily maximal SCC).

6

DBWDWW
NCW

NWW
DCW

NBW, NRW, DRW, NSW, DSW

Figure 1: The expressiveness hierarchy for ω-regular automata.

Thus, the powerset structure is obtained by the usual subset construction [19].

For an acceptance-condition class γ (e.g., Büchi), we say that A is γ-type if A

has an equivalent γ automaton with the same structure as A. That is, there is an

automaton A′ = 〈Σ, Q, δ,Q0, α
′〉 such that α′ is an acceptance condition of class

γ and L(A′) = L(A). We say that A is γ-powerset-type if A has an equivalent γ

automaton with the same structure as the powerset structure of A. That is, there is

an automaton AP = 〈Σ, 2Q, δP , {Q0}, αP〉 such that αP is an acceptance condition

of class γ and L(AP) = L(A). Note that the automaton AP is deterministic.

3. Typeness for Deterministic Automata

In this section we consider the following problem: given two acceptance-condition

types β and γ, is it true that every DβW that is DγW-realizable, is also γ-type?

We then say that DβW are γ-type. In other words, DβW are γ-type if every deter-

ministic β-automaton that has an equivalent deterministic γ-automaton, also has

an equivalent deterministic γ-automaton on the same structure.

Our results are described in Figure 2 below. Some results are immediate. For

example, since the Büchi and the co-Büchi acceptance conditions are special cases

of Rabin and Streett conditions (a Büchi condition α is equivalent to the Rabin

condition {〈α, ∅〉} and to the Streett condition {〈Q,α〉}, and dually for co-Büchi),

it is clear that DBW and DCW are Rabin-type and Streett-type. Similarly, since

weak automata can be viewed as Büchi or co-Büchi automata, they can also be

viewed as a special case of Rabin and Streett automata. Thus, DWW are γ-type

for all the types γ we consider. Such cases, where a translation of the acceptance

condition exists, and is independent of the automaton, are indicated in the table

by ←֓ . Some results are known, or obtained easily by dualizing known results, and

the table contains the appropriate reference. Below we prove the new results.

Lemma 1 DβW are weak-type for all acceptance-condition types β.

Proof. In [3], the authors introduce the notion of a deterministic automaton

being inherently weak (the definition in [3] is for DBW, and is easily extended to

DβW for all acceptance-condition types β). A DβW is inherently weak if none of its

reachable MSCC contains both accepting and rejecting non-trivial SCCs. It is easy

to see that an inherently weak automaton has an equivalent DWW on the same

7

DWW DBW DCW DRW DSW

DWW YES YES YES YES
Lemma 1 Lemma 1 Lemma 1 Lemma 1

DBW YES YES YES NO
←֓ Lemma 2 [6] [6]

DCW YES YES NO YES
←֓ Lemma 2 dualizing [6] dualizing [6]

DRW YES YES YES NO
←֓ ←֓ ←֓ Lemma 3

DSW YES YES YES NO
←֓ ←֓ ←֓ Lemma 3

DRW[k] are not Rabin[k − 1]-type, DSW[k] are not Streett[k − 1]-type.
Lemma 4

Figure 2: Typeness for deterministic automata.

structure. Indeed, by definition, each of the MSCC of the automaton can be made

accepting or rejecting according to the classification of all its non-trivial SCCs.

Let A be a DWW-realizable DβW. Then, A is both DBW-realizable and DCW-

realizable. Assume by the way of contradiction that A is not weak type. Then, A is

not inherently weak, so there exists a reachable MSCC C of A such that C contains

both an accepting non-trivial SCC S and a rejecting non-trivial SCC R. Since A is

DBW-realizable, then, by [11], every SCC S′ ⊇ S is accepting. In particular, C is

accepting. Dually, Since A is DCW-realizable, then every SCC R′ ⊇ R is rejecting.

In particular, C is rejecting. It follows that C is both accepting and rejecting, and

we reach a contradiction. 2

We note that [3] prove that every DBW that accepts a language in Fσ ∩ Gδ is

inherently weak. The proof there, however, does not make a direct use of [11], and

is therefore much more complicated.

Lemma 2 DCW are Büchi-type, and DBW are co-Büchi-type.

Proof. Since a DCW can be viewed as a DRW, and DRW are Büchi type [6],

DCW are Büchi type too. Dually, DBW are co-Büchi-type. 2

Note that if a DCW A is DBW-realizable, then it is also DWW-realizable.

Indeed, by [3], DCW ∩ DBW = DWW. Hence, by Lemma 1, A has an equiva-

lent deterministic weak automaton on the same structure. Thus, Lemma 2 can

be strengthened: a DCW that is DBW-realizable (dually, a DBW that is DCW-

realizable) has an equivalent deterministic weak automaton on the same structure.

Lemma 3 DRW are not Streett-type, and DSW are not Rabin-type.

Proof. Since DSW can recognize all ω-regular languages, DSW being Rabin-

type means that every DSW has an equivalent DRW on the same structure. In [12],

Löding shows that a translation of a DSW to an equivalent DRW may involve an

exponential blow up, thus typeness obviously cannot hold. The argument for DRW

is dual. 2

8

In addition to the results in the table, we prove that the expressiveness hierarchy

known for the indices of DRW and DSW induces a typeness hierarchy:

Lemma 4 For all k ≥ 2, we have that DRW[k] are not Rabin[k − 1]-type, and

DSW[k] are not Streett[k − 1]-type.

Proof. Let Σk = {1, 2, . . . , k}. Consider the languages Lk of exactly all words

containing infinitely many i’s, for all 1 ≤ i ≤ k. Consider the DSW[k] Ak =

〈Σk,Σk, δ, {1}, αk〉, with δ(q, i) = i, for all q, i ∈ Σk, and αk = {〈Σk, {1}〉, 〈Σk, {2}〉,

. . ., 〈Σk, {k}〉}. Thus, whenever Ak reads a letter i, it moves to state i, and the

acceptance condition requires an accepting run to visit all states infinitely often. It is

easy to see that Ak recognizes Lk. Also, since Lk can be viewed as the intersection

of k DBWs Di, each for the language “infinitely many i’s,” we know that Lk is

DBW-recognizable, and hence also DSW[k − 1]-realizable. On the other hand, it

is impossible to define a Streett[k − 1] acceptance condition α′
k so that Ak with

condition α′
k recognizes Lk. To see this, note that for each letter i ∈ Σk, the DSW

Ak accepts (1 · 2 · · · k)ω and rejects (1 · 2 · · · i− 1 · i+ 1 · · · k)ω. For that, Ak must

contain, for each i ∈ Σk, a pair 〈Gi, Bi〉 such that Gi ∩Σk 6= ∅ and Bi = {i}. Thus,

Ak must contain at least k pairs, and we are done. It follows that DSW[k] are not

Streett[k − 1]-type. The argument for Rabin automata is dual, and considers the

complement of Ln. 2

4. Typeness for Nondeterministic Automata

In this section we consider the following problem: given two acceptance-condition

types β and γ, is it true that every NβW that is NγW-realizable, is also γ-type?

We then say that NβW are γ-type. In other words, NβW are γ-type if every non-

deterministic β-automaton that has an equivalent nondeterministic γ-automaton,

also has an equivalent nondeterministic γ-automaton on the same structure.

Our results are described in Figure 3 below. As in Section 3, some results follow

immediately from translations of the acceptance condition, and are indicated in the

table by ←֓ . The new results are proven in Lemmas 5, 6, and 7. When the results

follow from applying translations to results proven in the Lemmas, we indicate it

with ←֓ too.

NWW NBW NCW NRW NSW

NWW NO NO NO NO
Lemma 5 Lemma 6 Lemmas 5 and 6 ←֓ Lemmas 5 and 6 ←֓

NBW YES NO NO NO
←֓ Lemma 6 Lemma 6 ←֓ Lemma 6 ←֓

NCW YES NO NO NO
←֓ Lemma 5 Lemma 5 ←֓ Lemma 5 ←֓

NRW YES YES YES NO
←֓ ←֓ ←֓ Lemma 7

NSW YES YES YES NO
←֓ ←֓ ←֓ Lemma 7

Figure 3: Typeness for nondeterministic automata.

9

Lemma 5 NBW are neither co-Büchi- nor weak-type.

Proof. Consider the NBW A1 described in Figure 4. The NBW recognizes the

language a∗ · b · (a+ b)∗ (at least one b). This language is in NWW and NCW, yet

it is easy to see that there is no NCW (and hence also no NWW) recognizing L on

the same structure. 2

a

a, b

a, b

A1 : A2 :

q0 q1

q2

q3
b a

aba

b a

a

a q2 q3

q0

q1

a

a

a, b

b

b

b

Figure 4: NBWs for a∗ · b · (a+ b)∗.

We note that the automaton in Figure 4 is a single-run automaton: every word

accepted by it has a single accepting run. This is of particular interest in the context

of specification and verification, as the NBW described in [24] for LTL formulas are

single-run automata. Our example shows that even such automata are neither co-

Büchi- nor weak-type. It is shown in [8] that an LTL formula ψ has an equivalent

alternation-free µ-calculus formula ψ′ iff the language of ψ can be recognized by a

DBW Aψ. The construction of the formula ψ′ in [8] goes via Aψ, and therefore

it involve a doubly-exponential blow-up. The construction of ψ′ may also go via

an NCW Ãψ, for ¬ψ. While ψ′ is of length linear in the size of Ãψ, the best

known translation of LTL to NCW (when exists) actually constructs a DCW and is

doubly-exponential. It is conjectured in [8] that single-run NBW can be translated

to NCW with only a linear blow up, leading to an exponential translation of LTL

to alternation-free µ-calculus. In particular, the question of obtaining the NCW by

modifying the acceptance condition of the NBW is left open in [8]. Our result here

answers the question negatively.

We also note that NCW-typeness and weak-typeness do not coincide. Figure 4

also describes a different NBW, A2, for L. This NBW is NCW-type: an NCW with

the same structure but with the acceptance condition α = {q0, q1} accepts L. Yet,

it is not weak-type.

Lemma 6 NCW are neither Büchi- nor weak-type.

Proof. Consider the two-state DCW A for the language L of all words with

finitely many a’s. Since L is not DBW-realizable, and A is deterministic, A is not

Büchi-type. The language L is NWW-realizable. But again, since A is deterministic

and L is not DWW-realizable, it is not weak-type. 2

Lemma 7 NRW are not Streett-type, and NSW are not Rabin-type.

10

Proof. By Lemma 3, DRW are not Streett-type. Hence, there are DRW that

are DSW-realizable but do not have an equivalent DSW on the same structure.

Since DRW are a special case of NRW, it follows that NRW are not Streett-type.

The proof for NSW not being Rabin-type is similar. 2

By Lemma 4, DRW[k] are not Rabin[k−1]-type, and DSW[k] are not Streett[k−

1]-type, for all k ≥ 2. Thus, following the same considerations as in the proof of

Lemma 7, we get that NRW[k] are not Rabin[k − 1]-type, and NSW[k] are not

Streett[k − 1]-type.

5. Powerset-Typeness for Nondeterministic Automata

In this section we consider the following problem: given two acceptance-condition

types β and γ, is it true that every NβW that is DγW-realizable, is also γ-powerset-

type? We then say that NβW are γ-powerset-type. In other words, NβW are γ-

type if every nondeterministic β-automaton that has an equivalent deterministic

γ-automaton, also has an equivalent deterministic γ-automaton on the powerset

structure.

Our results are described in Figure 5 below. Since A = P(A) for a deterministic

automaton A, we know that NβW cannot be γ-powerset-type if DβW are not γ-

type. Thus, the negative cases in Figure 2 immediately induce negative cases here.

In particular, for all k ≥ 2, we have that NRW[k] are not Rabin[k−1]-powerset-type,

and NSW[k] are not Streett[k − 1]-powerset-type.

NWW NBW NCW NRW NSW

DWW YES YES YES YES YES
[13] [13] [13] [13] [13]

DBW YES NO YES NO NO
Lemma 8 Lemma 9 Lemma 8 Lemma 9 ←֓ Lemma 9 ←֓

DCW NO NO NO NO NO
Lemma 10 Lemma 10 ←֓ Lemma 10 ←֓ Lemma 10 ←֓ Lemma 10 ←֓

DRW NO NO NO NO NO
Lemma 10 Lemma 10 ←֓ Lemma 10 ←֓ Lemma 10 ←֓ Lemma 10 ←֓

DSW NO NO NO NO NO
Lemma 10 Lemma 10 ←֓ Lemma 10 ←֓ Lemma 10 ←֓ Lemma 10 ←֓

Figure 5: Powerset-typeness for nondeterministic automata.

Lemma 8 NWW and NCW are Büchi-powerset-type.

Proof. Consider an NCW A. Recall that A is DCW-realizable. Therefore, if

A is DBW-realizable, then it is also DWW-realizable. Hence, as NCW are weak-

powerset-type, there is a DWW, and thus also a DBW, equivalent to A with struc-

ture P(A). Thus, NCW are Büchi-powerset-type. Since NWW are a special case

of NCW, the result for NWW follows. 2

Lemma 9 NBW are not Büchi-powerset-type.

Proof. The NBW A in Figure 6 recognizes the language of all words with

infinitely many occurrences of the subword ab. The language can be recognized by

11

a DBW, yet no DBW for it can be defined on top of P(A). 2

A :

q2q1

a

b

a, b ab

a

b

{q1} {q1, q2}

P(A) :

Figure 6: An NBW for ((a+ b)∗ · a · b)ω that is not Büchi-powerset-type.

Lemma 10 NWW are neither co-Büchi-, Rabin-, nor Streett-powerset-type.

Proof. The NWW A in Figure 7 recognizes the language of all words with an

(a · b)ω tail. The language can be recognized by a DCW, and hence also by a DRW

and DSW. Yet, no DCW, DRW, or DSW for it can be defined on top of P(A). 2

q1 {q1}q3q2

a

b

a, b
a, b a, b

b

{q1, q2}

b

a

a

{q1, q2, q3}

P(A) :A :

Figure 7: An NBW for (a + b)∗ · (a · b)ω that is neither co-Büchi-, Rabin-, nor
Streett-powerset-type.

The definition of powerset-typeness requires the deterministic automaton to have

the powerset structure, but it does not restrict the definition of the set of accepting

states. For an automaton A = 〈Σ, Q, δ,Q0, α〉, let S(A) = 〈Σ, 2Q, δP , {Q0}, αP 〉 be

the automaton obtained from A by applying to it the subset construction. Thus,

the structure of S(A) is the powerset-structure of A, and a state is in αP if its

intersection with α is not empty. We refer to S(A) as the subset automaton of A.

Clearly, for an NFW A, we have that A and S(A) are equivalent [19]. We say that

an NBW A is Büchi-subset-type if A and S(A) are equivalent. Note that if A is

Büchi-subset-type, then it is also Büchi-powerset-type. As we shall see below, the

other direction does not necessarily hold.

Lemma 11 There is an NBW that is Büchi-powerset-type but not Büchi subset-

type.

Proof. The NBW A in Figure 8 recognizes the language of all words with

infinitely many b’s but no two successive b’s. The DBW obtained by augmenting the

powerset structure of A, also described in the figure, with the acceptance condition

αP = {{q1}} is equivalent to A. Thus, A is powerset type. On the other hand,

S(A) has αP = {{q1, q2}} and is not equivalent to A. 2

5.1. From NBW to NFW

12

a q2q1

a

b

a

a

b

{q1} {q1, q2}

P(A) :A :

Figure 8: An NBW for (a+ · b)ω that is Büchi-powerset-type but not finite-type.

Recall that DBW are strictly less expressive than NBW. A language L ⊆ Σω can

be recognized by a DBW iff there is a regular language R ⊆ Σ∗ such that L = limR;

that is, w ∈ L iff w has infinitely many prefixes in R [11]. An open problem is to

construct, given an NBW A for L, such that A is DBW-realizable, an NFW A′

for the corresponding R. An immediate 2O(n logn) upper bound follows from the

2O(n logn) determinization construction of [20] for A (since DRW are Büchi type,

the DRW constructed in [20] can be converted to a DBW on the same structure).

While the 2O(n logn) blow up in determinization is tight [15, 12], no super-linear

lower bound is known for the translation of A to A′. The challenges in this problem

are similar to these in the problem of translating an NBW that is NCW-realizable to

an equivalent NCW. While a 2O(n logn) upper bound is immediate, no super-linear

lower bound is known.

Consider an NBW A = 〈Σ, Q, δ,Q0, α〉. We say that A is finite-type if there is

an NFW A′ = 〈Σ, Q, δ,Q0, α
′〉 such that L(A) = limL(A′). Thus, A is finite-type

if there is an NFW with the same structure as A (but possibly with a different

set of accepting states) whose limit language is the language of A. Let Afin be

A viewed as an NFW. We say that A is strong-finite-type if L(A) = limL(Afin).

Thus, in strong-finite-typeness, we require the NFW to have both the structure and

the acceptance condition of A. Obviously, the transition from an NBW A that is

finite-type to an NFW whose limit is A is linear.

The notion of subset-typeness turns out to be related to finite-typeness:

Lemma 12 An NBW is Büchi-subset-type iff it is strong-finite-type.

Proof. Assume first that A is not Büchi subset-type. Since S(A) is a DBW,

then L(S(A)) = limL(S(A)fin). Since Afin is an NFW, then L(Afin) = L(S(A)fin).

It follows that L(S(A)) = limL(Afin). Since A is not Büchi subset-type, L(A) 6=

L(S(A)). It follows that L(A) 6= limL(Afin), thus A is not strong-finite-type.

Assume now that A is Büchi subset-type. For every NBW A, we have that

L(A) ⊆ limL(Afin). Indeed, an accepting run of A on a word w points to infinitely

many prefixes of w that are accepted by Afin . It is left to prove that limL(Afin) ⊆

L(A). Consider a word w ∈ limL(Afin). Thus, w has infinitely many prefixes in

L(Afin). Since Afin is an NFW, then L(Afin) = L(S(A)fin). It follows that w has

infinitely many prefixes in L(S(A)fin), or equivalently, that the run of S(A) on w

visits the set of accepting states infinitely often, implying that w ∈ L(S(A)). Since

A is Büchi-subset-type, w is also accepted by A, and we are done. 2

It is worth noting that not all NBW that are DWW-realizable are strong-finite-

type. Indeed, as proved in [13], an NBW that is DWW-realizable is also Büchi-

13

powerset-type. On the other hand, there are DBW that are DWW-realizable and

are not Büchi-subset-type, and hence also not strong-finite-type. To see this, take

the NBW A1 described in Figure 4, add an accepting state q that is reachable from

q2 with a transition labeled a, and also add a self-loop labeled b from q to itself.

The obtained NBW still accepts L(A1), but the subset construction results in an

automaton that accepts Σω.

Recall that both subset-typeness and strong-finite-typeness restrict the set of

accepting states. We could have then hoped that the notions of powerset-typeness

and finite-typeness, which both do not restrict the set of accepting states, would

also be related. As we now show, this is not the case.

Lemma 13 Büchi-powerset-type NBW are not finite-type.

Proof. As discussed in the proof of Lemma 11, the NBW A in Figure 8 is pow-

erset type. On the other hand, there is no way to augment Afin with an acceptance

condition α′ that results in an automaton A′ for which lim(L(A′)) = L(A). To see

this, note that either α′ is empty, in which case L(A′) is empty, or α′ is not empty,

in which case L(A′) contains a+, thus lim(L(A′)) contains aω, which is not in L(A)

2

.

6. Discussion

We studied three notions of typeness for automata on infinite words. The no-

tions are helpful in studying the complexity and complication of translations be-

tween the various classes of automata. Of special interest is the blow-up involved

in a translation of NBW to NCW, when exists. As discussed in Section 4, a poly-

nomial translation will enable an exponential translation of LTL to alternation-free

µ-calculus (for formulas that can be expressed in the alternation-free µ-calculus),

improving the doubly-exponential known upper bound. Current translations of

NBW to NCW actually construct a DCW with 2O(n logn) states (starting with an

NBW with n states), whereas even no super-linear lower bound is known.

A related notion has to do with the translation of an NBW to an NFW whose

limit language is equivalent to that of the NBW. We studied also this notion, and

characterized NBW that are finite-type, and for which a linear translation exists.

We hope to relate finite-typeness with co-Büchi typeness, aiming at developing more

techniques and understanding for approaching the NBW to NCW problem.

References

1. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver,
S. Mador-Haim, E. Singerman, A. Tiemeyer, M.Y. Vardi, and Y. Zbar. The For-
Spec temporal logic: A new temporal property-specification logic. In Proc. 8th
International Conference on Tools and Algorithms for the Construction and Analy-
sis of Systems, volume 2280 of Lecture Notes in Computer Science, pages 296–211,
Grenoble, France, April 2002. Springer-Verlag.

2. I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The
temporal logic sugar. In Proc. 13th International Conference on Computer Aided

14

Verification, volume 2102 of Lecture Notes in Computer Science, pages 363–367,
Paris, France, July 2001. Springer-Verlag.

3. B. Boigelot, S. Jodogne, and P. Wolper. On the use of weak automata for deciding
linear arithmetic with integer and real variables. In Proc. International Joint
Conference on Automated Reasoning (IJCAR), volume 2083 of Lecture Notes in
Computer Science, pages 611–625, Siena, June 2001. Springer-Verlag.

4. J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc.
Internat. Congr. Logic, Method. and Philos. Sci. 1960, pages 1–12, Stanford, 1962.
Stanford University Press.

5. M. Kaminski. A classification of ω-regular languages. Theoretical Computer Science,
36:217–229, 1985.

6. S.C. Krishnan, A. Puri, and R.K. Brayton. Deterministic ω-automata vis-a-vis
deterministic Büchi automata. In Algorithms and Computations, volume 834 of
Lecture Notes in Computer Science, pages 378–386. Springer-Verlag, 1994.

7. O. Kupferman and M.Y. Vardi. Relating linear and branching model checking. In
IFIP Working Conference on Programming Concepts and Methods, pages 304 – 326,
New York, June 1998. Chapman & Hall.

8. O. Kupferman and M.Y. Vardi. From linear time to branching time. ACM Trans.
on Computational Logic, 6(2):273–294, 2005.

9. O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM, 47(2):312–360, March 2000.

10. R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton
Univ. Press, 1994.

11. L.H. Landweber. Decision problems for ω–automata. Mathematical Systems Theory,
3:376–384, 1969.

12. C. Löding. Optimal bounds for the transformation of omega-automata. In Proc.
19th Conference on the Foundations of Software Technology and Theoretical Com-
puter Science, volume 1738 of Lecture Notes in Computer Science, pages 97–109,
December 1999.

13. O. Maler and L. Staiger. On syntactic congruences for ω-languages. Theoretical
Computer Science, 183(1):93–112, 1997.

14. R. McNaughton. Testing and generating infinite sequences by a finite automaton.
Information and Control, 9:521–530, 1966.

15. M. Michel. Complementation is more difficult with automata on infinite words.
CNET, Paris, 1988.

16. S. Miyano and T. Hayashi. Alternating finite automata on ω-words. Theoretical
Computer Science, 32:321–330, 1984.

17. D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the weak monadic
theory of the tree and its complexity. In Proc. 13th International Colloquium on
Automata, Languages and Programming, volume 226 of Lecture Notes in Computer
Science. Springer-Verlag, 1986.

18. M.O. Rabin. Decidability of second order theories and automata on infinite trees.
Transaction of the AMS, 141:1–35, 1969.

19. M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM
Journal of Research and Development, 3:115–125, 1959.

20. S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp. on
Foundations of Computer Science, pages 319–327, White Plains, October 1988.

15

21. S. Safra and M.Y. Vardi. On ω-automata and temporal logic. In Proc. 21st ACM
Symp. on Theory of Computing, pages 127–137, Seattle, May 1989.

22. W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer
Science, pages 165–191, 1990.

23. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. 1st Symp. on Logic in Computer Science, pages 332–344,
Cambridge, June 1986.

24. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1–37, November 1994.

16

