Shrinking Restarting Automata*

Tomasz Jurdzinski' and Friedrich Otto?

! Institute of Computer Science, University of Wroctaw
51-151 Wroclaw, Poland

tju@ii.uni.wroc.pl
2 Fachbereich Mathematik/Informatik, Universitiit Kassel

34109 Kassel, Germany
otto@theory.informatik.uni-kassel.de

Abstract. Restarting automata are a restricted model of computation
that was introduced by Jancar et. al. to model the so-called analysis
by reduction. A computation of a restarting automaton consists of a se-
quence of cycles such that in each cycle the automaton performs exactly
one rewrite step, which replaces a small part of the tape content by an-
other, even shorter word. Thus, each language accepted by a restarting
automaton belongs to the complexity class CSLNNP. Here we consider a
natural generalization of this model, called shrinking restarting automa-
ton, where we do no longer insist on the requirement that each rewrite
step decreases the length of the tape content. Instead we require that
there exists a weight function such that each rewrite step decreases the
weight of the tape content with respect to that function. The language
accepted by such an automaton still belongs to the complexity class
CSLN NP. While it is still unknown whether the two most general types
of one-way restarting automata, the RWW-automaton and the RRWW-
automaton, differ in their expressive power, we will see that the classes
of languages accepted by the shrinking RWW-automaton and the shrink-
ing RRWW-automaton coincide. As a consequence of our proof, it turns
out that there exists a reduction by morphisms from the language class
L(RRWW) to the class L(RWW). Further, we will see that the shrinking
restarting automaton is a rather robust model of computation. Finally, we
will relate shrinking RRWW-automata to finite-change automata. This
will lead to some new insights into the relationships between the classes
of languages characterized by (shrinking) restarting automata and some
well-known time and space complexity classes.

1 Introduction

The restarting automaton was introduced by Janéar et. al. as a formal tool to
model the analysis by reduction, which is a technique used in linguistics to an-
alyze sentences of natural languages [9]. This technique consists in a stepwise

* This work was supported by a grant from the Deutsche Forschungsgemeinschaft. It
was performed while T. Jurdzifski was visiting the University of Kassel.



2 T. Jurdziniski and F. Otto

simplification of a given sentence in such a way that the correctness or incor-
rectness of the sentence is not affected. It is applied primarily in languages that
have a free word order. Already several programs used in Czech and German
(corpus) linguistics are based on the idea of restarting automata [19, 21].

A (one-way) restarting automaton, RRWW-automaton for short, is a device
M that consists of a finite-state control, a flexible tape containing a word delim-
ited by sentinels, and a read/write window of a fixed size. This window moves
from left to right along the tape until the control decides (nondeterministically)
that the content of the window should be rewritten by some shorter string. In
fact, the new string may contain auxiliary symbols that do not belong to the
input alphabet. After a rewrite, M can continue to move its window to the right
until it either halts and accepts, or halts and rejects, or restarts, that is, it places
its window over the left end of the tape, and reenters the initial state. Thus, each
computation of M can be described through a sequence of cycles.

Accordingly, an RRWW-automaton M can be defined by a finite set of meta-
instructions of the form (Ej,u — v, E>) and (E,Accept), where E; and E,
are regular expressions, called the constraints of the meta-instruction, and w,
v are strings over the tape alphabet of M satisfying the condition |u| > |u|.
In each cycle M nondeterministically chooses a meta-instruction to be applied
next. If the chosen meta-instruction is of the form (E;,u — v, E»), then M halts
and rejects, if the current tape content does not admit a factorization of the
form zuy with ¢ € L(E;) and y € L(FE»); if, however, the tape content does
admit one or more factorizations of this form, then one such factorization is
chosen nondeterministically, and the tape content is transformed into zvy. If the
chosen meta-instruction is of the form (E;, Accept), then M halts and accepts if
the current tape content belongs to the language L(E;); otherwise it halts and
rejects. Thus, it is easily seen that M can be simulated by a nondeterministic
single-tape Turing machine that runs in quadratic time using only linear space,
that is, the language L(M) accepted by M belongs to the complexity class
CSL N NP.

By requiring that a restarting automaton must always perform a restart step
immediately after executing a rewrite operation, we obtain the so-called RWW-
automaton. Within any cycle such an automaton cannot scan the suffix of the
tape content that is to the right of the position where the rewrite operation is
performed. This restriction can be expressed by meta-instructions of the form
(E1,u — v), which can be applied successfully if the tape content admits a fac-
torization of the form zuy satisfying € L(E;), that is, no restriction is placed
on the corresponding suffix y. Although the definition of the RWW-automaton
is clearly much more restricted than that of the RRWW-automaton, it is a long-
standing open problem whether the class of languages L(RWW) accepted by
RWW-automata is a proper subclass of the class of languages £L(RRWW) ac-
cepted by RRWW-automata.

Many well-known classes of formal languages admit characterizations in
terms of restricted variants of the restarting automaton. For example, the
class of Church-Rosser languages CRL of McNaughton et al. [15] coincides with



Shrinking Restarting Automata 3

the class of languages that are accepted by the deterministic variant of the
RWW- and the RRWW-automaton [17,18], the class of context-free languages
CFL is characterized by the monotone variants of the RWW- and the RRWW-
automaton [10], and the class of deterministic context-free languages DCFL is
characterized by several different variants of monotone deterministic RWW- and
RRWW-automata [10]. In addition, the class of growing context-sensitive lan-
guages GCSL considered by Dahlhaus and Warmuth [8] coincides with the class
of languages that are accepted by the weakly monotone variant of the RWW-
and the RRWW-automaton [11]. Observe that in all these particular cases the
considered variant of the RWW-automaton is just as powerful as the correspond-
ing variant of the RRWW-automaton. On the other hand, it is known that for
some types of restarting automata without auxiliary symbols, the RWW-variant
is strictly less powerful than the RRWW-variant [10]. For a recent survey on
restarting automata see [20].

In the present paper we consider a generalization of the restarting automaton,
called shrinking restarting automaton. A shrinking restarting automaton M is
defined just as a restarting automaton with the one exception that it is no longer
required that each rewrite step © — v of M must be length-reducing. Instead
there must exist a weight function w that assigns a positive integer w(a) to each
letter a of M’s tape alpabet I' such that, for each rewrite step u — v of M,
w(u) > w(v) holds. Here the function w is extended to a morphism w : I'™* — N
as usual. Obviously, a shrinking restarting automaton can still be simulated by a
nondeterministic single-tape Turing machine in quadratic time and linear space.
Observe that similar generalizations have been considered for other types of
automata [7], for grammar systems [6], and for string-rewriting systems [3].

The shrinking restarting automaton was introduced in [12], where it was
shown that monotone (as well as left-monotone) shrinking restarting automata
still characterize the class of context-free languages, and that deterministic
shrinking RRWW-automata that are left-monotone are not more expressive than
left-monotone deterministic RWW-automata.

Here we study the expressive power of the (nondeterministic) shrinking
restarting automaton in general, where we only consider those variants that
admit auxiliary symbols in addition to the input alphabet. After restating the
basic definitions in Section 2, we establish our first main result in Section 3,
which states that the shrinking RWW-automaton is just as expressive as the
shrinking RRWW-automaton. As a corollary of our proof, we obtain a reduction
by injective morphisms from the language class L(RRWW) to the language class
L(RWW). This in itself is a major improvement of the reduction from £(RRWW)
to L(RWW) presented in [11]. It clearly indicates that these classes may be very
difficult to separate if they are indeed different.

In Section 4 we investigate further generalizations of the shrinking restarting
automaton. First we study the case that the restart operation does not neces-
sarily reset the finite-state control to the initial state, but that this operation
is combined with a change of state just like any other operation. Secondly we
consider the case that the automaton may perform up to ¢ rewrite operations in



4 T. Jurdziniski and F. Otto

each cycle for some constant ¢ > 1. We will see in both cases that the expressive
power of the shrinking RWW-automaton is not enhanced by these additional ca-
pabilities. This confirms our impression that the shrinking restarting automaton
is a rather robust model.

Finally, in Section 5 we establish our second main result by giving a char-
acterization of the class of languages accepted by shrinking RWW-automata in
terms of the class of finite-change automata as introduced by von Braunmiihl
and Verbeek [4]. This characterization implies that this class of languages is ac-
tually contained in the class of deterministic context-sensitive languages DCSL,
thus improving on the best previously known upper bound for £L(RRWW), and
that it contains the class Q of quasi-realtime languages [2], which coincides with
the complexity class NTIME(lin) (the class of languages that are accepted by
nondeterministic multi-tape Turing machines in linear time). In the concluding
section we summarize our results and state some open problems.

2 Definitions

Throughout the paper € will denote the empty word, and N, will denote the set
of all positive integers.

A (one-way) restarting automaton, RRWW-automaton for short, is a one-
tape machine that is described by an 8-tuple M = (Q, X, I'¢,$, qo, k,0), where
@ is a finite set of states, X' is a finite input alphabet, I" is a finite tape alphabet
containing X, ¢,$ ¢ I' are symbols that serve as markers for the left and right
border of the work space, respectively, go € @ is the initial state, k& > 1 is the
size of the read/write window, and

§:Q xPCH - P((Q x ({MVR} UPC=*=1)) U {Restart, Accept})

is the transition relation. Here P(S) denotes the powerset of the set S, PC*) is
the set of possible contents of the read/write window of M, where

PCY = (¢- T YU U<t -$)u(c-I<2-8) (i>0),

and

n k—1
rsm.— U ' and Ppcst-b .= U pC,
1=0

=0

The transition relation contains four different types of transition steps:

1. A move-right step is of the form (¢',MVR) € d(q,u), where ¢,q' € @ and
uwe PCH u #£$. If M isin state ¢ and sees the string u in its read/write
window, then this move-right step causes M to shift the read/write window
one position to the right and to enter state ¢'. However, if the content u of
the read/write window is only the symbol $, then no shift to the right is
possible.



Shrinking Restarting Automata 5

2. A rewrite step is of the form (¢',v) € &(q,u), where ¢,¢' € Q, u € PC®,
u#$,and v € PCS*~Y such that [v] < |u|. Tt causes M to replace the con-
tent u of the read /write window by the string v, thereby shortening the tape,
and to enter state ¢'. Further, the read/write window is placed immediately
to the right of the string v. However, some additional restrictions apply in
that the border markers ¢ and $ must not disappear from the tape nor that
new occurrences of these markers are created. Further, the read/write win-
dow must not move across the right border marker $, that is, if the string
u ends in $, then so does the string v, and after performing the rewrite
operation, the read/write window is placed on the $-symbol.

3. A restart step is of the form Restart € 6(g,u), where ¢ € Q and u € PCF.
It causes M to place the read/write window over the left end of the tape, so
that the first symbol it sees is the left border marker ¢, and to reenter the
initial state gq-

4. An accept step is of the form Accept € 8(g,u), where ¢ € Q and u € PC®.
It causes M to halt and accept.

If §(q,u) = 0 for some ¢ € Q and u € PC*), then M necessarily halts, and
we say that M rejects in this situation.

There is one additional restriction that the transition relation must satisfy.
This restriction says that within any computation of M, rewrite steps and restart
steps alternate, with a rewrite step coming first.

A configuration of M can be described by a string agB, where ¢ € @), and
either « = e and B € {¢} - I'™*-{$} or @ € {¢} - I and B € I'* - {$}; here
q represents the current state, o is the current content of the tape, and it is
understood that the head scans the first & symbols of § or all of 8 when |3] < k.
A restarting configuration is of the form gocw$, where w € I'*; if w € X*, then
gocw$ is an initial configuration. Thus, initial configurations are a particular
type of restarting configurations.

A phase of a computation of M, called a cycle, begins with a restarting config-
uration, the head moves along the tape performing MVR and Rewrite operations
until a Restart operation is performed and thus a new restarting configuration
is reached. If no further Restart operation is performed, then the computation
necessarily halts after finitely many steps — such a phase is called a tail. The
above restriction on the transition relation implies that M performs ezactly one
Rewrite operation during each cycle — thus each new phase starts on a shorter
word than the previous one, and that it executes at most one Rewrite operation
during a tail computation.

An input word w € X* is accepted by M, if there is a computation which,
starting with the initial configuration goew$, finishes by executing an Accept
instruction. By L(M) we denote the language consisting of all words accepted
by M; we say that M accepts (recognizes) the language L(M).

In general, an RRWW-automaton is nondeterministic, that is, for some pairs
(¢,u), there may be more than one applicable transition step. If that is not the



6 T. Jurdziniski and F. Otto

case, then the automaton is deterministic. We use the notation det- to denote
classes of deterministic restarting automata.

Also some restricted classes of restarting automata have been studied. An
RWW-qutomaton is an RRWW-automaton that is required to execute a restart
step immediately after performing a rewrite step. An RRW-automaton is an
RRWW-automaton which does not use any auxiliary symbols, that is, its tape
alphabet coincides with its input alphabet. Finally, an RR-automaton is an RRW-
automaton whose rewrite instructions can be viewed as deletions, that is, if
(¢',v) € d(q,u), then v is a scattered subword of u. Obviously, the restrictions
on the rewrite operation can be combined with the restriction on the restart
operation, which leads to the RW-automaton and the R-automaton.

Finally, we come to the main topic of this paper, the shrinking restarting
automaton. A shrinking restarting automaton M = (Q, X, T,¢,$,qo, k, ) is de-
fined in the same way as a ‘standard’ restarting automaton with one exception.
Namely, it is not required that a rewrite operation reduces the length of the
tape. Instead, there must exist a weight function w : I' — N; such that, for
each rewrite step (¢',v) € d(q,u) of M, w(u) > w(v) holds. Thus, it is not
necessary that |u| > |v| holds, but rather that the weight decreases from u
to v. Here w is extended to a morphism w : I'* — N by taking w(e) := 0 and
w(wa) := w(w) + w(a) for all w € I'* and a € I'. Obviously, the length function
w > |w| is a particular weight function.

To be precise the weight function should also be defined for the delimiters
¢ and $, which are not elements of I". However, as the restarting automaton is
not allowed to remove ¢ or $§ from the tape nor to create new occurrences of
these symbols, their weight does not influence the difference w(u) — w(v) for any
rewrite step (¢',v) € d(q,u). Therefore, in order to simplify the notation, we do
not assign weights to ¢ and $.

If an automaton M is shrinking with respect to a weight function w, we say
that w is a weight function compatible with M. In order to distinguish the ‘stan-
dard’ variant of the restarting automaton from the shrinking restarting automa-
ton, we sometimes denote the former as length-reducing restarting automaton.

Notation. For any class A of automata, £(A) will denote the class of languages
that can be accepted by automata from A. The class of shrinking RRWW-
automata is denoted by sRRWW, and similarly the class of shrinking RWW-
automata is denoted by sRWW.

Let w : I' = Ny be a weight function, where I is a finite alphabet, and let
¢ and A be two new symbols not contained in I'. Then r, : I'™* —» (I'U {{$})*
denotes the morphism that is induced by defining 7,,(a) := a{*(®~1 for each
a € I'. Thus, for each word u € I'*, |r,,(u)| = w(u), that is, the length of the word
r,(u) coincides with the weight of u. Further, for i € N, we take r; to denote
the morphism r; : (FU{{$})* = (I'U{$, A})* that is defined by r;(a) := aAL
for all a € 'U{¢{}. Thus, for each word u € (I"'U{{})*, |ri(u)] =i |u|. Observe
that r,, as well as r; (¢ > 1) are encodings, that is, injective morphisms.



Shrinking Restarting Automata 7

3 sRWW-Automata versus sRRWW-Automata

In this section we will see that the families of languages accepted by sSRWW- and
sRRWW-automata coincide. Moreover, we present a reduction by morphisms
from the language class L(RRWW) to the language class L(RWW).

We begin our investigation by establishing a reduction from shrinking to
length-reducing restarting automata.

Lemma 1.

(a) If M is an SRRWW-automaton, and if w is a weight function that is com-
patible with M, then r,(L(M)) € L(RRWW).

(b) If M is an sSRWW-automaton, and if w is a weight function that is compatible
with M, then r,(L(M)) € L(RWW).

Proof. We concentrate on sSRRWW-automata, as the proof for sSRWW-automata
is completely analogous.

Let M = (Q, X, I,¢,$,qo0,k,d) be an sSRRWW-automaton accepting the lan-
guage L C X* and let w : I' = N} be a weight function that is compati-
ble with M. We define an RRWW-automaton M’ that recognizes the language
r,(L) as follows. For each meta-instruction (Ey,u — v, Es) of M, M’ has a
meta-instruction of the form (r, (E1),r, (u) = r,(v),r,(E2)), where the regular
expression r,,(E;) is obtained from the regular expression E; (i = 1,2) by replac-
ing each letter a € I' by its image r, (a). Similarly, for each meta-instruction of
the form (E, Accept) of M, there is a corresponding meta-instruction of the form
(r,(E), Accept) for M'. It follows easily that M’ accepts the language r,, (L), and
that it is length-reducing, proving that r, (L) € L(RRWW). |

Next we come to the technical main result of this section relating SRRWW-
automata to sSRWW-automata.

Lemma 2. Let M be an sSRRWW-automaton that accepts a language L C X*,
and let w be a weight function compatible with M. Then there exists an sSRWW.-
automaton M' such that L(M') = L(M), and M' is compatible with a weight
function W' that satisfies the equality w'(a) = 54-w(a) for each input letter a € X.

We postpone the proof of Lemma 2 to Section 3.1. The next theorem, which
is our first main result, is an immediate consequence of that lemma.

Theorem 1. L(sRWW) = L(sRRWW).

In addition, we obtain the following reduction from the language class
L(RRWW) to the class L(RWW).

Theorem 2. For each language L € L(RRWW), r54(L) € L(RWW).

Proof. Let M be an RRWW-automaton that accepts the language L C X*.
Then M can be interpreted as a shrinking RRWW-automaton that is compatible
with the weight function that associates the weight 1 to each symbol. Thus, by



8 T. Jurdziniski and F. Otto

Lemma 2, there exists an sSRWW-automaton M’ such that L(M') = L, and M’
is compatible with a weight function w' that assigns the weight 54 to each input
symbol a € ¥. Now Lemma 1 (b) implies that r, (L) € L(RWW). As r, maps
each symbol a € X onto the word a{}®3, while rs, maps a onto the word a/A%3, it
is clear that with 7,/ (L) also r54(L) is accepted by some RWW-automaton. 0O

Thus, Theorem 2 shows that the language class £L(RRWW) reduces to the
language class £(RWW) via injective morphisms. This is a remarkable improve-
ment over the reduction from L(RRWW) to £L(RWW) presented in [11], which,
although being computable in linear-time, is not via morphisms. In fact, the
reduction of [11] (see Theorem 3 below) even maps regular languages to non-
context-free languages, indicating that it is not well-behaved from a language
theoretical point of view.

3.1 Proof of Lemma 2

First, we recall the reduction from £L(RRWW) to £(RWW) from [11] mentioned
above.

Theorem 3. Let L be a language over X, let a,/\,c ¢ X be three additional
symbols, and let the mapping ¢ : X* — (X U {a, A, c})* be defined by

— el Bl

p(e) : -73(x)

for all x € X*. If L € L(RRWW), then the language (L) := {¢(z) | z € L}
belongs to LIRWW).

Let M be an sRRWW-automaton with input alphabet X' that accepts the
language L C X*, and let w be a weight function that is compatible with M.
From Lemma 1 (a) we see that r,(L) € L(RRWW), and Theorem 3 implies that
(1, (L)) is accepted by some RWW-automaton M,. Further, as ¢ and r, are
both injective mappings, it follows that ¢(r,(x)) # ¢(r.(y)) for all z,y € X*,
z # y. Thus, we have the following equivalence for all x € X*:

z € L if and only if ¢o(r,(z)) € o(ry(L)). (1)

In order to prove Lemma 2 we will now construct an sSRWW-automaton that,
given a word x € X* as input, first transforms z into the word z := ¢(r, (z)),
and then simulates the computation of the (length-reducing) RWW-automaton
M, on the input z. Thus, this sSRWW-automaton will accept on input z if and
only if z belongs to the language ¢(r,, (L)), that is by (1), if and only if z belongs
to the language L.

Our method of transforming z into ¢(r, (z)) is nondeterministic. Thus, for
a given z, there are several different words z that can be produced, only one
of them the intended result ¢(r, ()). Unfortunately we cannot possibly verify
the correctness of the word z produced without destroying it, but we can at
least guarantee that z = (r,(x)) if 2z belongs at all to the set ¢(r,(L)). As



Shrinking Restarting Automata 9

the RWW-automaton M, accepts only inputs from this set, it follows that this
property is sufficient for our purposes.

We first give a high level description of the algorithm that is realized by the
intended sSRWW-automaton M'. Afterwards we will discuss the details of the
implementation.

Let £ € X* be the given input. Our algorithm proceeds in three stages, which
will be illustrated by an example below:

1. The word z is rewritten deterministically from left to right into y :=
ro(r,(z)), using a new alphabet Ag of auxiliary letters. These letters are
interpreted as describing two ‘tracks,” the first of which now contains the
word y = ro(r,(x)), while the second track is empty (we use the symbol L
to denote ‘empty’ content).

2. Now the content of the second track is rewritten into a”-r3(r, (x)) - c?, where
p = |r3(r,(z))|. This is achieved by performing the following steps that all
preserve the length of the tape:

(a) y' := r3(a’) is written as a prefix of the content of the second track

for some word z' that is a supersequence of r,(x) (that is, r,(z) is a
scattered subsequence of z').

(b) The second track, containing a word of the form gy’ L™ for some inte-
ger m, is rewritten into a word of the form y'y"” 1P, where y" := r3(z")
for a scattered subsequence z' of z', and p := m — |y"”| > 0. In order to

mark the border between ' and 4", a new subalphabet is used for y".

(c) The current content of the second track, y'y"” LP, is rewritten determin-
istically from left to right into z := al¥'ly’c?.

3. The computation of the RWW-automaton M, on input z is simulated on
the second track of the tape. The automaton M’ accepts if and only if this
computation of M, is accepting.

Example
Let M = (Q, X, T,¢,$,4q0,k,6) be an sSRRWW-automaton with ¥ = {b,d}, and
let w be a weight function compatible with M such that w(b) = 1 and w(d) = 2.
Given the input word bd, in Stages 1-2(c) M' can execute the transformations
displayed in Figure 1.

Here we have omitted some extra information that is stored in symbols, and
that is needed to ‘coordinate’ the computation (see the implementation details
given below). O

Next we describe the realization of the above algorithm by the sRWW-
automaton M’ in some detail.

Stage 1 can be realized by a sequence of cycles such that, in each of them,
M' rewrites the leftmost symbol a € X that is still on the tape into the word
r9(rw (a)). In order to make this rewrite step weight-reducing (and to distuinguish
the symbols from X' from those of Ag), we encode the word r9(r,, (a)) as ro(r,(a)),



10 T. Jurdziniski and F. Otto

Input bd

Stage 1 bAAANAAAANAANAADNAANAANANANANAGSAAANANAANANA
I I T A

Stage 2(a) b AAANANANAANAANANIAANANANANANANANANSANNNANNNANN

b
bAAAdAANOAANL L 1L 1L 1L L1111 111111

Stage 2(b) b AAAANAANAANAANANIdAANAANANANAANANSANNNANNNANN
bAAAdAAOAADAANAIAASAAL L 1L 1 1 1111

ST ] () I VAN AN ANV ANW ANWANWANW AN RVANVANYANYANVANVANVANVANR ¢ JVANWANVANVANVANVANVANWAN
aaaaaaaaabANIdAANOANCcccccecceceece

Fig. 1. Stages 1 to 2(c) of the computation of M’ on input bd

where @ is a marked copy of a from the set ¥ := {a@ | a € X'}. However, to
simplify the notation, we will assume below that the tape content at the end of
Stage 1 is simply the word rg(r,(x)).

For Stage 2(a), let A := X U {$, A}, where {, A & I' are the new symbols
used in the definition of the morphisms r,, and r; (i € N;.), respectively. We will
rewrite the actual tape content from left to right into appropriate symbols from
A x {L}. Intuitively this corresponds to the process of adding the second track.
Simultaneously, we rewrite the prefix of the content of the second track from left
to right into the word r3(z'), where 2’ € (¥ U{{})* is a supersequence of 7, (x)
chosen nondeterministically. Each rewrite step on the first track transforms 9
symbols, while each rewrite step on the second track replaces 3 symbols. In
order to guarantee that z' is a supersequence of r,(z), we use constraints for
the meta-instructions of M’ which will ensure that the following conditions are
met:

— at least one rewrite step is performed on the second track between any two
consecutive rewrite steps on the first track,

— a rewrite step aA% — (a, L)(A, 1) (a € X U{{}) on the first track is
enabled only if the symbol a is equal to the rightmost symbol from X' U {{}
on the second track at that moment.

This ‘coordination’ of the rewrite steps on the first track with the rewrite
steps on the second track will be achieved through some additional information
that is stored in symbols as a third coordinate. So let 7" := A x {1} x {0,1}
and 7 := A x A x {0,1}. Further, for i € {0,1}, let 7; := A x {L} x {i}. The
following meta-instructions describe Stage 2(a) in full detail, where 4, j € {0,1}:

— the meta-instructions starting Stage 2(a), performing the first rewrite step
on both tracks simultaneously:



Shrinking Restarting Automata 11

(¢,aA® = (a,a,0)(A,A,0)%(A,L,0)%) for all a € X,
— the meta-instructions for performing rewrite steps on the first track:
(€T* - (a, b, i) (A, i) (A, D) - T - Ti_s, bAS —
(b, L,i)(A, L,i)®) for alla € A and b € X U {{},
— the meta-instructions for performing rewrite steps on the second track:
(€™ - (D, 4,0), (a, L, ) (D, L, §) (A, L, j) =
(a,b,1 =) (A, A1 —9) (A, A1 —4)) forallae Aand be XU {{}.

Observe that the value of the third coordinate alternates in consecutive
rewrite steps on each track. Further, a rewrite step on the first track is only
possible in case that the rightmost rewrite step on the second track was done
for the same symbol from ¥ U {{}. Note that rewrite steps on the second track
are only possible to the left of the most recent rewrite step on the first track.
Moreover, the third coordinate of the rightmost symbol rewritten on the second
track must agree with the third coordinate of the current rewrite step on the
first track. These constraints guarantee that the aforementioned conditions are
satisfied. In addition, they ensure that the word z’, the encoding r3(z') of which
is written on the second track, is a supersequence of r, (z).

In Stage 2(b) we apply the techniques developed in [13] for realizing the in-
tended copying. As the ideas behind them are similar to those used in Stage 2(a),
we skip the details.

Stage 2(c) is a straightforward deterministic computation. The rewriting is
simply done from left to right, replacing 3 symbols per cycle. Finally, Stage 3 is
just the simulation of the automaton M, on the content of the second track.

As each of these stages starts by rewriting the leftmost symbols on the tape
into symbols that do not occur in previous stages, it is ensured that the stages
are applied in the appropriate order. Finally, the fact that L(M') = L follows
from the following proposition.

Proposition 1. The automaton M’ accepts x € X* if and only if ¢ € L.

Proof. From the above description of M' we see immediately that M’ has an
accepting computation for each word z € L. On the other hand, if an input
z € X* is accepted by M', then all of the following conditions are met:

= |yl =9-Iru(2)];
— |¥'| >3- |ru(x)], as y' = r3(z') for a supersequence of z' of r,,(z);
— |y < |¥'|, as y" = r3(z") for a scattered subsequence z" of z';

— Y|+ 1y +p=ly| =9-|ru(x)|, as none of the steps in Stage 2 changes the
length of the tape content.

Further, M' accepts in Stage 3 if and only if M, accepts on input alv'l.y'"cp,
which in turn happens if and only if |y'| = |y"| = p and y" = r3(r,(&)) for some



12 T. Jurdzinski and F. Otto

Z € L. As r3 is injective, it follows that z" = r,(Z). Now 2" is a subsequence
of ', and 2’ is a supersequence of 7, (z) such that

3-1'| = W' =1y"[=3-]a"| =p=3-Iru(2)],

which implies that " = &' = r,(x) holds. As r, is injective, this yields & = z,
which in turn shows that € L. Thus, L(M') = L. O

It remains to show that M’ is weight-reducing with respect to a weight func-
tion w' satisfying w'(a) = 54 - w(a) for each letter a € X. For defining w' we
consider the various stages of M’ in turn:

— Stage 1: A symbol a € X of weight 54 - w(a) is replaced by 9 - w(a) symbols.
We choose weight 5 for each of these symbols. In this way the overall weight
is reduced from 54 - w(a) to 45 - w(a) by each of these rewrite steps.

— Stage 2(a): During this phase each symbol on the tape is rewritten at most
twice, while no symbols are inserted or removed from the tape. Each time we
rewrite a symbol, we replace it by a symbol from a new subalphabet. Thus,
if we assign weight 4 and 3 to these new symbols, respectively, then each of
these rewrite steps is weight-reducing.

— Stage 2(b): During this phase each symbol on the tape is rewritten at most
once. Again we use a new subalphabet for the rewrite steps, the letters of
which are assigned the weight 2. Again each rewrite step is then weight-
reducing.

— Stage 2(c): During this phase each symbol on the tape is rewritten exactly
once, again using a new subalphabet. By assigning weight 1 to the elements
of this subalphabet, we ensure that these rewrite steps are weight-reducing,
too.

— Stage 3: Here the RWW-automaton M, is being simulated, which only has
length-reducing rewrite steps. As it only works with letters of weight 1, its
computation is also weight-reducing.

This completes the proof of Lemma, 2.

4 Further Generalizations of Restarting Automata

Here we consider two further generalizations of the restarting automaton. One of
the essential restrictions of the standard model (and also of the shrinking model)
is the fact that whenever a restarting automaton executes a restart operation,
then its finite-state control is reset to the initial state. Hence, in its finite-state
control the automaton cannot store any information from one cycle to the next,
that is, all such information must be stored on the tape. But here the second
essential restriction comes it, which states that a restarting automaton must
perform exactly one rewrite step in each cycle. In particular, this implies that,
in each cycle, only one short factor of the tape content can be changed, and
therewith used for storing information for future cycles.



Shrinking Restarting Automata 13

Here we generalize from both these restrictions. First we consider restarting
automata for which the restart operation is combined with a state transition just
as all the other operations. This yields the so-called non-forgetting restarting
automaton. Then we turn to the restarting automaton with multiple rewrites
which performs ¢ rewrite transitions in each cycle for some constant ¢ € N, .

4.1 Non-Forgetting sSRRWW-Automata

We say that a (length-reducing or shrinking) restarting automaton M =
(Q,2,I,¢,8,q, k,0) is non-forgetting if all its restart transitions are of the form
(¢', Restart) € §(q,u), where ¢,¢' € Q and u € PC*) . This restart transition
causes M to place its read/write window over the left end of the tape and to
enter state ¢'. In particular, this allows M to carry some information from one
cycle to the next.

Non-forgetting restarting automata have been introduced by Messerschmidt
and Stamer in [16], where they show that non-forgetting deterministic R-
automata already accept languages that are not even growing context-sensitive.
For example, there exists an automaton of this form for the copy language
Leopy := {w#w | w € {a,b}*}, which is not growing context-sensitive [5,14].
As L(det-R) is a proper subclass of the class CRL of Church-Rosser languages,
which in turn is a proper subclass of GCSL, this shows that at least for restart-
ing automata without auxiliary symbols the non-forgetting variant is much more
expressive than the standard variant.

While it is still open whether the same is true for (length-reducing) restarting
automata with auxiliary symbols, we will show below that for shrinking RRWW-
automata this generalization does not increase the expressive power.

Theorem 4. For each non-forgetting sSRRWW-automaton, there exists an
sRWW-automaton that accepts the same language.

Proof. Let M = (Q, X, I,¢,$,q0,k,d) be a non-forgetting sSRRWW-automaton
accepting a language L C X*. We construct an sRRWW-automaton M’ that
simulates the computations of M in a cycle-by-cycle fashion. As L(sRRWW) =
L(sRWW) by Theorem 1, this proves the intended result.

To simplify the discussion we assume without loss of generality that each
rewrite transition of M has the form u — y for some word y & {e, ¢, $}. If a cycle
of a computation of M ends by executing the restart instruction (¢, Restart) €
d(g,u), then the state ¢’ is called the end-state of that cycle.

The simulation of each cycle of M will require up to 3 cycles of M'. The idea
of the simulation consists in encoding information about the end-state of a cycle
of a computation of M in which the rewrite transition u — v is executed in an
encoded version of the word v. To this end the auxiliary alphabet must be ex-
tended appropriately. However, there is a technical problem, as after simulating
several cycles of M, the tape content of M' may contain encodings of several
end-states of M, among which it must distinguish the one that corresponds to



14 T. Jurdziniski and F. Otto

the cycle of M just prior to the one that is currently being simulated. To over-
come this problem we will remove the extra information that is redundant, just
keeping the encodings of the end-states of the two most recent cycles of the
computation of M that is being simulated.

To this end, let I := I'U (I" x @ x {0,1}) be the tape alphabet of M.
A symbol from Ij := I' x Q@ x {0} will be interpreted as the encoding of the
end-state of the current cycle of M, while a symbol from I := I" x @ x {1} will
be interpreted as the encoding of the end-state of the previous cycle of M.

Depending on the number of symbols from I,UIT on its tape, M’ will execute
the following types of cycles:

1. If the tape content w belongs to X*, then M’ is just in the process of simu-
lating the first cycle of a computation of M on input w. Assume that during
this cycle, M performs the rewrite transition u — vay, where a € I'\ {¢, $},
and that g is the end-state of this cycle. Then M’ simulates this rewrite step
by executing the rewrite transition u — v(a,q,1)y.

2. If the tape content is of the form wa'z for some words w,z € I'* and
a' = (a,q,1) € I, then M’ is allowed to simulate the next cycle of the
computation of M, assuming that the previous cycle of M ended with the

tape content waz and end-state q.

Assume that in this cycle, M performs the rewrite transition x — vby, where
b € I'\{¢,$}, and that g is the end-state of this cycle. If, in the corresponding
rewrite configuration (simulating the rewrite transition x — wvby of M),
the window of M’ does not contain the symbol a’, then M’ simulates the
current rewrite step by x — v(b, g, 0)y, and if the window of M’ contains the
symbol o', then M' executes the rewrite step zg(a,q,1)z; — v(b,q,1)y for
the appropriate factorization x = zqazx; of x.

3. If the tape content is of the form wa'y for a symbol a' = (a,q,1) € I'1 and
some words w,y satisfying wy € I'* - I'y - I'*, then M’ simply performs a
rewrite step that replaces the symbol a’ by the symbol a. In this way the
information about the end-state of the last but one cycle of M is deleted,
before the simulation of the next cycle of M starts.

4. If the tape content is of the form wa'y for a symbol a' = (a,q,0) € I'y and
some words w,y € I'*, then M’ replaces the symbol a’ by the symbol (a, g, 1).
In this way the information about the last cycle of M stored on the tape
of M' is modified to be interpreted as information on the last but one cycle
of M. Thus, the simulation of the next cycle of M can be started.

Finally, assume that M accepts the tape content v € I'* in a tail computation
following a cycle with end-state ¢. Then M' will accept all words of the form
ug(a, ¢, 1)u; in tail computations, where u = ugau; .

As M' is nondeterministic, it can guess the end-state of the previous cycle
of M and which of the above cases occurs in each cycle. If at some point it
realizes that its guess is incorrect, it halts and rejects. Otherwise, it correctly



Shrinking Restarting Automata 15

simulates the computation of M until it reaches a halting configuration. Thus,
M’ can simulate each accepting computation of M, and it is easily seen that each
accepting computation of M' corresponds to an accepting computation of M. In
particular, this shows that L(M') = L.

It remains to show that M’ is shrinking. Let w be a weight function that
is compatible with M, and let w' : I' — N; be defined by taking w'(a) :=
3 - w(a) for each a € I'. Then with respect to the weight function «’, each
rewrite step of M reduces the weight of the tape content by at least 3. Now we
extend the function w' to elements of I'y U I'y by taking w'((a,q,0)) := w'(a) +2
and w'((a,q,1)) := w'(a) + 1 for each a € I' and ¢ € Q. Then the SRRWW-
automaton M’ is compatible with this weight function w’'. Indeed, if M’ applies
the simulation of a rewrite transition of the automaton M (see cases 1 and 2
above), then the overall weight of the tape content is reduced with respect to w’,
as each rewrite step of M decreases the overall weight of the tape content by at
least 3, while the symbol from Iy U I7 that is introduced by the corresponding
step of M’ increases the overall weight of the resulting tape content by at most 2.
In the other cases, either a symbol (a,q,0) € I} is replaced by (a,q,1) € I or
a symbol (a,q,1) € I is replaced by a € I'. Each of these rewrite steps reduces
the overall weight by 1. This completes the proof of Theorem 4. O

4.2 sRRWW-Automata with Multiple Rewrites

A (shrinking) restarting automaton M with multiple rewrites is a (shrinking)
restarting automaton that performs up to ¢ rewrite operations in each cycle for
some constant ¢ € Ny . Observe that by definition each rewrite operation of a
(length-reducing) restarting automaton reduces the length of the tape content,
and that each rewrite operation of a shrinking restarting automaton reduces the
overall weight of the tape content with respect to a compatible weight function.

It is easily seen that there exists a deterministic R-automaton with multi-
ple rewrites (actually two rewrites per cycle suffice) that accepts the language
Lopy- Hence, for this type of restarting automaton the generalization to multiple
rewrites per cycle increases the expressive power considerably.

It is not known whether this is also true for (length-reducing) restarting
automata with auxiliary symbols, but we can at least show that for shrink-
ing restarting automata with auxiliary symbols the generalization to multiple
rewrites does not increase the expressive power.

Theorem 5. For each SRRWW-automaton with multiple rewrites, there exists
an SRWW-automaton that accepts the same language.

Proof. From Theorem 1 we know that the class of languages £(sRWW) coincides
with the class of languages that are recognized by sRRWW-automata. Thus, it
suffices to give a simulation of an sSRRWW-automaton M = (Q, X, I',¢, $,qo, k, 0)
with ¢ > 1 rewrites per cycle by an sRRWW-automaton M'. Without loss of
generality we can assume that each rewrite step of M is of the form v — y for
some word y ¢ {¢,¢,$}.



16 T. Jurdziniski and F. Otto

First we assume that M performs exactly ¢ rewrite steps in each cycle. The
case that some cycles contain less than ¢ rewrite steps will be discussed later.
The automaton M’ simulates each cycle of M by 2c¢ cycles. At the beginning and
at the end of such a simulation the tape content of M’ will be identical to the
corresponding tape content of M, while M’ will use some new auxiliary symbols
during the simulation process.

During the first ¢ cycles of such a simulation M’ simulates the ¢ rewrite
steps of M from left to right, one at a time. However, each symbol a € I" that
is written by M during the i-th rewrite step is encoded by M’ by the symbol
(a,q,1), where ¢ is the state of M after performing this rewrite step. In the next
¢ cycles M' replaces the factors from (I' x @ x {1,...,c})* by the appropriate
factors from I'T, again from left to right, one at a time.

Let I; ;=T x Q x {i} (1 <i < ¢). Thus, each time the tape content contains
symbols from I1,...,I; for some i < ¢, the automaton M' should simulate the
(7 + 1)-st rewrite step of the current cycle of M. On the other hand, each time
the tape content contains symbols from I73,..., I, for some i > 0, M’ has to
replace a factor from I';" by the appropriate factor from I't.

Finally assume that during the current cycle, M only performs ¢’ rewrite
steps for some ¢' < ¢. Then M' uses essentially the technique described above
for the case ¢/. However, during each of the first ¢’ rewrite steps, M’ encodes the
additional information in the symbols written that it is currently simulating a
cycle of M that contains only ¢’ rewrite steps. Of course, M’ does not know this
fact at the beginning of the simulation, so that it has to guess the value of ¢,
and in case the guess is not correct, it will realize this and reject.

One can easily verify that M' accepts the same language as M. Further,
using a technique similar to the one used in the proof of Theorem 4, one can
prove that M’ is shrinking. O

Combining Theorems 4 and 5 we obtain the following result.

Corollary 1. The class L(sSRWW) of languages recognized by sSRWW-automata
coincides with the class of languages that are recognized by mnon-forgetting
sSRRWW-automata with multiple rewrites.

5 Restarting Automata versus Finite-Change Automata

In this section we derive a characterization of the language class L(sRRWW) in
terms of a restricted type of Turing machines considered by von Braunmiihl and
Verbeek [4]. Based on this characterization we will obtain some new relationships
between the language classes accepted by (shrinking) RRWW-automata and some
classical time and space complexity classes.

In [4] von Braunmiihl and Verbeek introduced a model of the Turing machine
that they called finite-change automaton. A finite-change automaton is a non-
deterministic single-tape Turing machine A that is parameterized by a function
f : N — N satisfying f(n) > n for all n € N and a constant £ € N;. Given
an input of length n (as the initial inscription of its tape), A must not visit



Shrinking Restarting Automata 17

more than f(n) cells, and it must not change the content of any cell more than k
times during any accepting computation on the given input. By kC(f) we denote
the class of finite-change automata meeting these restrictions, and by FC(f) we
denote the union

FC(f) := {J kC().

k>0

For the special case of the identity function f(n) = n, we denote the correspond-
ing classes of finite-change automata by £C and FC, respectively.

In order to enable the finite-change automaton to recognize the left end and
the right end of the given input, we assume here that the initial tape content for
a given input x € X* is of the form ¢z$, where ¢ and $ are special markers not
contained in X¥. Hence, the length of the initial tape inscription is n := |z| + 2.
Another option would be to use particularly marked symbols for the first and
the last letter of the input word. That these approaches are equivalent follows
from the following technical result of [4].

Lemma 3. Let f : N — N be a function satisfying f(n)
Then L(FC(f(n))) = L(FC(c- f(n))) for each constant ¢ >

> n for each n € N.
1.

The following proposition expresses an easy observation.
Proposition 2. £(RR) C £(1C).

Proof. Let M be an RR-automaton, that is, in each rewrite step M only deletes
some symbols from the current content of its read/write window. A one-change
automaton A can simulate the computations of M cycle by cycle as follows. If
there are only input symbols on the tape between the end markers ¢ and $, then
A simulates the first cycle of a computation of M, starting at the ¢-symbol. After
finding those positions on the tape that contain the symbols that M deletes in
the first cycle of the current computation, A simply replaces each of them by
the special ‘erase symbol’ E. Thereafter A moves its head back to the ¢-symbol
and starts the simulation of the next cycle of M. If there are occurrences of
the symbol E on its tape, A just ignores all occurrences of this special symbol,
determining those positions on the tape that contain the input symbols that
M deletes in the current cycle. Again A replaces each of these symbols by the
symbol E. It follows that £(RR) C £(1C). O

Using a more sophisticated simulation we obtain the following result.
Lemma 4. L(sRRWW) C L(FC).

Proof. Let M be an sRRWW-automaton accepting a language L C X*. By
Lemma 1 (a), there exist an injective morphism r, and a (length-reducing)
RRWW-automaton M' with input alphabet X' U {{} such that, for each word
z € X* z € Lif and only if r,(z) € L(M’'). According to [13], Theorems 1
and 2, there exist an injective morphism ¢ and an RR-automaton M such that,
for all words ' € (XU {{¢})*, ' € L(M') if and only if p(z') € L(M"). Thus,



18 T. Jurdziniski and F. Otto

we see that, for all words x € X*, x € L if and only if ¢'(x) € L(M"), where ¢’
is the morphism obtained by the composition of r,, and .

Based of the observations above, we construct a finite-change automaton A
that proceeds as follows:

1. First the image ¢'(z) of the input word z is written onto the part of the
tape immediately to the right of the given input.

2. Then the computation of the RR-automaton M" on ¢'(x) is simulated.

Obviously, A accepts the language L. Further, this simulation requires at
most space (¢ + 1) - n, where ¢ := max{ |¢'(a)| | a € X }. During the first part
of the computation the content of each cell is changed at most once. During the
second part of the computation the content of each cell is again changed at most
once (see Proposition 2).

Hence, A is a two-change automaton for the language L that uses only linear
space. From Lemma 3 it follows that L = L(A) € £L(FC). |

Thus, each shrinking RRWW-automaton can be simulated by a finite-change
automaton. Interestingly also the converse of the inclusion above holds.

Lemma 5. £(FC) C L(sRRWW).

Proof. Let A € FC be a finite-change automaton which changes each tape cell
at most j times in the course of an accepting computation, where j € Ny is
a constant. Notice that in an accepting computation A can only visit the cells
containing the original input word and the cells located directly to the left and
to the right of the input word. Recall that we assume that the input is given
in the form ¢x$, where ¢ and $ are special markers not contained in the input
alphabet.

By a simple modification we can convert A into a finite-change automaton A’
such that L(A) = L(A"), and A’ meets the following restrictions during accepting
computations:

— A’ only visits the cells containing the input ¢z$;
— A’ changes each cell at most j times;

— each step of A" which changes the content of a cell leaves the head of A’
stationary, that is, rewrite operations and head movements are performed
by different steps;

— the working alphabet I' of A’ consists of j + 1 disjoint subalphabets
Ib, ..., I, where I is the input alphabet, and the i-th change of the content
of a cell produces an element of I'; for all i =1,...,7.

Now we present a simulation of the finite-change automaton A’ by an
sRRWW-automaton M.

If @ is the set of states of A’, then we take A :=T"U (I" x @ x {0,1}) to be
the tape alphabet of M. Recall that Iy C I' is the input alphabet of A’, and



Shrinking Restarting Automata 19

therewith of M. The automaton M works according to the following description,
employing ideas similar to those used in the simulation presented in the proof
of Theorem 4:

1. If there are no auxiliary symbols on the tape, M simulates that part of
a computation of A’ that starts with an initial configuration and that ends
when A’ changes the content of a tape cell for the first time, or that ends with
A’ accepting or rejecting without changing the content of any tape cell. In
the latter case M also accepts or rejects, respectively, in a tail computation.
In the former case assume that A’ changes the content of a tape cell by
executing the instruction d(q,a) = (¢',b), that is, A’ replaces an occurrence
of the symbol a € Iy by an occurrence of the symbol b € It and changes
its state from ¢ to ¢'. M determines this tape cell, and then M rewrites the
symbol a into the symbol (b, ¢',0). There is a slight problem due to the fact
that M is a one-way device, while A’ can move its head both to the left and
to the right. However, in each step M can simply guess the corresponding
crossing sequence of A’ and verify the correctness of its guess, using the
standard method of simulating a two-way finite-state acceptor by a one-way
finite-state acceptor.

2. If the tape content is of the form wa’z for some words w, z € I'* and a symbol
a' = (a,q,0) € I' x @ x {0}, then M simulates that part of a computation
of A’ on waz that starts in state q at the position of the symbol a' and
that ends when A’ changes the content of the next tape cell, or that ends
with A" accepting or rejecting, if no more tape cells are changed. Note that
during this part of its computation A’ behaves exactly like a nondeterministic
two-way finite-state acceptor. As M can only move its window from left to
right, it cannot simulate this part of the computation of A’ in a step by step
fashion. However, M can nondeterministically guess the crossing sequences
of A’ on all consecutive positions of the tape, which will describe this part
of the computation of A’ completely. In this way M is able to determine the
position and the type of the next change operation applied by A’. Assume
that this operation replaces an occurrence of the symbol b by an occurrence
of the symbol ¢, and that A’ enters state ¢' after executing this operation.
Then M replaces the content of the tape cell corresponding to the symbol
b by the symbol b’ = (¢,q’,1). Should the positions of the symbols b and o’
coincide, which means in particular that b = a, then M replaces the symbol
a' byb.

3. If the tape content is of the form wa'y for a symbol a’ = (a, ¢,0) € I'xQ x{0}
and some words w, y satisfying wy € I'* - (I' x @ x {1}) - ['*, then M simply
rewrites the symbol a' into the symbol a.

4. If the tape content is of the form wa'z for some words w,z € I'* and a
symbol o’ = (a,q,1) € I' x Q x {1}, then M replaces the symbol a' by the
symbol (a,q,0) € I' x @ x {0}.

Note that the third coordinate of the symbols from I' x @ x {0,1} is used to
distinguish between the positions of the last and the last but one change opera-



20 T. Jurdzinski and F. Otto

tion of A’ in the current computation. One can easily verify that each accepting
computation of M corresponds to an accepting computation of A’. Further, for
each accepting computation of A’, there exists an accepting computation of M.
Thus, we conclude that L(M) = L(A") = L(A) holds.

Finally it remains to show that M is shrinking. For doing so we define a weight
function w by taking w(a) :==3(j +1 —s) and w((a,q,7)) :=3(G+1—s)+i+1
for each a € I's, s = 0,...,5, % € {0,1}, and ¢ € Q. Note that each rewrite
operation of M satisfies one of the following conditions:

— it replaces an element of I'; by an element of I'sy; x @ x {0,1} for some
s < j (in steps 1, 2);

— it replaces an element of I's x @ x {1} by the corresponding element of
I'; x Q x {0} for some s < j (in step 4);

— it replaces an element of I'; x @ x {0} by an element of I's11 x @ x {1} for
some s < j (in step 2);

— it replaces an element of I's x @ x {0} by the corresponding element of I
for some s < j (in step 3).

Each of these rewrite steps is weight-reducing with respect to w. Hence, M
is indeed an SRRWW-automaton for the language L(A). O

As a consequence of Lemma 4 and Lemma 5, we obtain the following char-
acterization.

Theorem 6. L(FC) = L(sRRWW).

This characterization allows us to establish some new relationships between
(shrinking) restarting automata on the one hand and some more classical lan-
guage classes on the other hand. Let CSL and DCSL denote the class of context-
sensitive languages and the class of deterministic context-sensitive languages, re-
spectively, and let CSLy;, be the class of all linear-time bounded context-sensitive
languages. A language L belongs to this class, if there exists a context-sensitive
grammar G = (N, T, S, P) that generates L and a constant ¢ > 1 such that, for
all n € N, each word of length n in L has a derivation in G of length at most
¢ - n [1]. Finally, by Q we denote the class of quasi-realtime languages. This is
the class of languages that are accepted by nondeterministic multi-tape Turing
machines in realtime, that is, Q = NTIME(n).

Proposition 3. [1,2,5] GCSL € CSL;, € Q =J,>; NTIME(c - n).

From Theorems 2 and 3 of [4] the inclusions Q C L(FC) C DCSL follow.
Together with the above characterization of the class £L(sRRWW) this yields our
second main result.

Corollary 2. Q C L(sRRWW) C DCSL.

Hence, we obtain the relationships depicted in Figure 2, where wmon-RRWW
denotes the class of weakly monotone RRWW-automata [11]. This improves

on the previously known results, as it was open whether the language classes
L(RRWW) and DCSL are at all comparable under inclusion.



Shrinking Restarting Automata 21

CSL
A2
) DCSL )
ST
L(FC) = L(sR(R)WW)
1\? e
Q L(RRWW)
1 12
CSLn L(RWW)
[ 1
GCSL = L(wmon-RRWW)

Fig. 2. An unmarked arrow indicates that the inclusion is proper, while a question mark
indicates that it is an open problem whether the corresponding inclusion is proper. For
those classes that are not connected via directed paths in the diagram it is open whether
any inclusions hold.

6 Concluding Remarks

We have investigated the expressive power of the shrinking restarting automaton,
which is a rather straightforward generalization of the restarting automaton. We
have seen that this generalization yields a very robust model of computation,
without increasing the asymptotic upper time and space bounds for the mem-
bership problem in comparison to the standard model. Indeed, the model with
combined restart and rewrite operations (the shrinking RWW-automaton) is as
powerful as the general shrinking RRWW-automaton, and even the additional
capabilities of changing the internal state in a restart transition (as opposed to
resetting the state to the initial state) and to perform multiple rewrite operations
in each cycle do not increase the expressive power of this model.

Finally, we obtained a characterization of the shrinking RRWW-automaton
in terms of a certain type of nondeterministic single-tape Turing machines, the
so-called finite-change automaton. This characterization implies that the set of
languages recognized by shrinking restarting automata is included in the lan-
guage class DCSL, and that it includes all languages recognized in linear time
by multi-tape nondeterministic Turing machines.

However, it remains open whether the shrinking RRWW-automaton is at all
more powerful than the standard RRWW-automaton. Further, although we have
obtained a new simplified reduction from the language class L(RRWW) to the
language class L(RWW), we still have no clue whether or not these two classes
coincide. Finally, it is not known whether any of the inclusions Q C L(sRRWW)
and L(sRRWW) C DCSL is proper.



22

T. Jurdziniski and F. Otto

Here we have only studied shrinking restarting automata with auxiliary let-

ters. An obvious direction for future research is the study of the expressive power
and the properties of shrinking restarting automata without auxiliary symbols.

Acknowledgements. The authors want to thank F. Mrdz and M. Plitek for
many fruitful discussions regarding restarting automata and for pointing them
to the work of von Braunmiihl and Verbeek.

References

10.

11.

12.

13.

14.

15.

. R.V. Book, Time-bounded grammars and their languages. Journal of Computer

and System Sciences, 5 (1971) 397-429.

. R.V. Book and S. Greibach, Quasi-realtime languages. Mathematical Systems The-

ory, 4 (1970) 97-111.

R.V. Book and F. Otto, String-Rewriting Systems. Springer, New York, 1993.

B. von Braunmiihl and R. Verbeek, Finite-change automata. In K. Weihrauch
(ed.), 4th GI Conference, Proc, Lecture Notes in Computer Science 67, Springer,
Berlin, 1979, 91-100.

G. Buntrock, Wachsende kontext-sensitive Sprachen. Habilitationsschrift, Fakul-
tat fiir Mathematik und Informatik, Universitdt Wiirzburg, 1996.

G. Buntrock and K. Lory$, On growing context-sensitive languages. In W. Kuich
(ed.), Automata, Languages and Programming, Proc. ICALP’92, Lecture Notes in
Computer Science 623, Springer, Berlin, 77-88.

G. Buntrock and F. Otto, Growing context-sensitive languages and Church-Rosser
languages. Information and Computation, 141 (1998) 1-36.

E. Dahlhaus and M. Warmuth, Membership for growing context-sensitive gram-
mars is polynomial. Journal of Computer and System Sciences, 33 (1986) 456—-472.
P. Jancéar, F. Mrédz, M. Pliatek and J. Vogel, Restarting automata. In H. Reichel
(ed.), FCT’95, Proc., Lecture Notes in Computer Science 965, Springer, Berlin,
1995, 283-292.

P. Jancar, F. Mraz, M. Platek and J. Vogel, On monotonic automata with a restart
operation. Journal of Automata, Languages and Combinatorics, 4 (1999) 287-311.
T. Jurdzidski, K. Lory$, G. Niemann and F. Otto, Some results on RRW- and
RRWW-automata and their relationship to the class of growing context-sensitive
languages. Mathematische Schriften Kassel 14/01, Universitat Kassel, 2001. Also:
Journal of Automata, Languages and Combinatorics, to appear.

T. Jurdzinski and F. Otto, On left-monotone restarting automata. Mathematische
Schriften Kassel 17/03, Universitat Kassel, 2003.

T. Jurdzinski, F. Otto, F. Mraz and M. Platek, On the complexity of 2-monotone
restarting automata. Mathematische Schriften Kassel 4/04, Universitdt Kassel,
2004. An extended abstract appeared in C.S. Calude, E. Calude and M.J. Din-
neen (eds.), Developments in Language Theory, Proc. DLT 2004, Lecture Notes in
Computer Science 3340, Springer, Berlin, 2004, 237-248.

C. Lautemann, One pushdown and a small tape. In K. Wagner (ed.), Dirk Siefkes
zum 50. Geburtstag, Technische Universitat Berlin and Universitdt Augsburg, 1988,
42-47.

R. McNaughton, P. Narendran and F. Otto, Church-Rosser Thue systems and
formal languages. Journal of the Association for Computing Machinery, 35 (1988)
324-344.



16

17.

18.

19.

20.

21.

Shrinking Restarting Automata 23

H. Messerschmidt and H. Stamer, Restart-Automaten mit mehreren Restart-
Zustanden. In H. Bordihn (ed.), Workshop “Formale Methoden in der Linguis-
tik” und 14. Theorietag “Automaten und Formale Sprachen”, Proc., Institut fir
Informatik, Universitat Potsdam, 2004, 111-116.

G. Niemann and F. Otto, Restarting automata, Church-Rosser languages, and
representations of r.e. languages. In G. Rozenberg and W. Thomas (eds.), De-
velopments in Language Theory - Foundations, Applications, and Perspectives,
Proc. DLT 1999, World Scientific, Singapore, 2000, 103-114.

G. Niemann and F. Otto, Further results on restarting automata. In M. Ito and
T. Imaoka (eds.), Words, Languages and Combinatorics I1I, Proc., World Scientific,
Singapore, 2003, 352-369.

K. Oliva, K. Kvétoni and R. Ondruska, The computational complexity of rule-
based part-of-speech tagging. In V. Matousek and P. Mautner (eds.), T'SD 2003,
Proc., Lecture Notes in Computer Science 2807, Springer, Berlin, 2003, 82-89.

F. Otto, Restarting automata and their relations to the Chomsky hierarchy. In
Z. Esik and Z. Fulop (eds.), Developments in Language Theory, Proc. DLT’2003,
Lecture Notes in Computer Science 2710, Springer, Berlin, 2003, 55-74.

M. Platek, M. Lopatkovd and K. Oliva, Restarting automata: Motivations and
applications. In M. Holzer (ed.), Workshop “Petrinets” und 13. Theorietag “Au-
tomaten und Formale Sprachen”, Institut fiir Informatik, Technische Universitat
Miinchen, Garching, 2003, 90-96.



