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Abstract

There are several known undecidability problems for 3 × 3 integer matrices the
proof of which uses a reduction from the Post Correspondence Problem (PCP).
We establish new lower bounds in the numbers of matrices for the mortality, zero
in left upper corner, vector reachability, matrix reachability, scaler reachability
and freeness problems. Also, we give a short proof for a strengthened result due
to Bell and Potapov stating that the membership problem is undecidable for
finitely generated matrix semigroups R ⊆ Z

4×4 whether or not kI4 ∈ R for any
given diagonal matrix kI4 with |k| > 1. These bounds are obtained by using
Claus instances of the PCP.
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1 Introduction

There exist several simply defined decision problems for integer matrices which
are undecidable already for matrices of dimension 3. Most of the proofs of
these results apply, in one way or another, the coding technique introduced by
M.S. Paterson in [13], where he proved that it is undecidable for given 3 × 3
integer matrices, whether or not the zero matrix belongs to the matrix semigroup
generated by them. This problem is known as the mortality problem. Paterson’s
coding maps injectively a pair of words to 3 × 3 integer matrices. The proofs
of undecidability for our problems employ an undecidability problem on pairs
words originally defined and proved to be undecidable by E. Post in 1946 [14].

Problem 1 (Post Correspondence Problem (PCP)). Let Γ = {a, b} be a
binary alphabet. Given a set of n pairs of words over an alphabet Γ,

{(ui, vi) | ui, vi ∈ Γ∗, i = 1, 2, . . . , n}, (1.1)

does there exist a nonempty sequence i1, i2, . . . , ik of indices from {1, 2, . . . , n}
such that

ui1ui2 · · ·uik
= vi1vi2 · · · vik

? (1.2)

The PCP can also be expressed using morphisms of words. For an instance
(1.1) of the PCP, let Σ = {b1, b2, . . . , bn} be an alphabet and define two mor-
phisms h, g : Σ∗ → Γ∗ by

h(bi) = ui and g(bi) = vi

for each i = 1, 2, . . . , n. Now the original form of the PCP is equivalent to the
following problem.

Problem 2 (PCP). Given two morphisms h, g : Σ∗ → Γ∗, does there exist a
nonempty word w ∈ Σ+ such that

h(w) = g(w) ? (1.3)

A given pair (h, g) of morphisms is an instance of the PCP. A word w with
h(w) = g(w) is called a solution of the instance (h, g). The size of an instance
(h, g) is the cardinality of the domain alphabet, i.e., the size is equal to |Σ|,
when h, g : Σ∗ → Γ∗.

The following theorem was proved by E. Post in 1946 [14].

Theorem 1. The PCP is undecidable.

It is known that the PCP is undecidable when |Σ| = 7. This was proved by
Matiyasevich and Sénizergues in [12]. We shall recall the idea of the proof in
the next section in order to express the PCP in a more strict form.

Theorem 2. It is undecidable whether an instance (h, g) of the PCP, where
h, g : {b1, b2, . . . , b7}

∗
→ Γ∗, has a solution b1wb7 with w ∈ {b2, b3, . . . , b6}

∗.

We note that already Post’s original proof of undecidability in [14] gives
undecidability in the above strict form with fixed beginning letter and ending
letter of the solution, but for a larger number of letters. Using this form of the
PCP, a new undecidability bound for the problem called common element in
the semigroups was established in [8].

For a finite set {M1,M2, . . . ,Mk} of n × n matrices, we let

〈M1,M2, . . . ,Mk〉 = {Mi1Mi2 . . . Mim
| m ≥ 1 and 1 ≤ i1, i2, . . . , im ≤ k}
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denote the semigroup generated by them.
The following matrix problems and some of their special cases are studied

here.

Problem 3 (Membership problem). Given a semigroup S = 〈M1,M2, . . . ,

Mk〉 of n × n integer matrices and a matrix X. Determine whether or not
X ∈ S.

The membership problem is sometimes called matrix reachability problem.
Note that the mortality problem is a special case of the membership problem,
where X is the zero matrix.

Problem 4 (Vector reachability). Given a semigroup S = 〈M1,M2, . . . ,Mk〉
of n× n integer matrices and two vectors u,v ∈ Z

n. Determine whether or not
there exists a matrix X ∈ S such that u · X = v.

Problem 5 (Scalar reachability). Given a semigroup S = 〈M1,M2, . . . ,Mk〉
of n × n integer matrices, vectors u,v ∈ Z

n and a constant a ∈ Z. Determine
whether or not there exists a matrix N ∈ S such that vN · uT = a.

The scalar reachability problem is connect to the problems called zero in the
right upper corner and zero in the right upper corner. We define only the first
variant since for that we will obtain a new bound on the number of generating
matrices.

Problem 6 (Zero in the left upper corner). Given a semigroup S =
〈M1,M2, . . . ,Mk〉 of n × n integer matrices. Determine whether or not there
exists a matrix N ∈ S such that N11 = 0, i.e., the left upper corner element of
N is zero.

Recall that a semigroup S is said to be free if there exists a subset X of
S such that every element of S has a unique factorization over X, i.e., every
element s ∈ S can be uniquely expressed as a product s = x1x2 . . . xm of
elements xi ∈ X.

Problem 7 (Freeness). Given a semigroup S = 〈M1,M2, . . . ,Mk〉 of n × n

integer matrices. Determine whether or not S is free.

Using the undecidability result of Theorem 2, we can reduce the number
of matrices in the proofs for the above stated problems. In Section 7 we con-
sider the following problem which was shown to be undecidable by Bell and
Potapov [1] for dimension 4.

Problem 8 (Special diagonal membership). Given a semigroup S = 〈M1,

M2, . . . ,Mk〉 of n×n integer matrices and a diagonal matrix kIn for an integer
|k| > 1. Determine whether or not kIn ∈ S.

We give a short proof of this result and improve the bound needed for the
generators down to 12.

2 Proof of Theorem 2

A semi–Thue system T = (Σ, R) consists of an alphabet Σ and a relation R ⊆
Σ∗×Σ∗, the elements of which are called the rules of T . For two words u, v ∈ Σ∗,
we write u −→T v, if there are words u1 and u2 such that

u = u1xu2 and v = u1yu2 where (x, y) ∈ R.
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Let −→∗
T be the reflexive and transitive closure of the relation →. Therefore, we

have u −→∗
T v if and only if either u = v or there exists a finite sequence of words

u = v1, v2, . . . , vn = v such that vi −→T vi+1 for each i = 1, 2, . . . , n − 1.
In the individual word problem we are given a semi-Thue system T and a

fixed word w0 and we ask, for input words w, whether or not w −→∗
T w0 holds.

It is known that there exist a 3-rule semi-Thue system and a fixed w0 such that
the individual word problem is undecidable, see [12].

The following result is due to Matiyasevich and Sénizergues in [12].

Theorem 3. There exists a 3-rule semi-Thue system with undecidable individ-
ual word problem.

The reduction from semi-Thue systems to the PCP is due to Claus [5].
Consider an instance (h, g) of the PCP, where h, g : Σ∗ → Γ∗ for Γ =

{a1, a2, . . . , am}. The morphism ϕ : Γ∗ → {a, b}
∗

defined by ϕ(ai) = abi+1a

is injective, and hence in the instance (ϕh, ϕg) the morphisms are from Σ∗ to
{a, b}∗ such that the images do not have a substring aba. Accordingly, the PCP
is undecidable for such instances.

Let Γ = {a, b}, and let

d = aba and A = ab2b∗a.

An instance (h, g) with h, g : Σ∗ → (abb∗a)∗ of the PCP is called a Claus in-
stance, if Σ = {b1, b2, . . . , bn} and

h(bi) ∈ (dA)∗ with h(bn) = dd,

g(bi) ∈ (Ad)∗ with g(b1) = d and g(bn) ∈ (Ad)+d.

The following lemma is straightforward, see, e.g., [5, 9].

Lemma 1. Let (h, g) be a Claus instance, where h, g : {b1, b2, . . . , bn}
∗
→ Γ∗.

Then the set of all nonempty solutions of (h, g) is

{

b1wbn | w ∈ {b2, . . . , bn−1}
∗
, h(b1wbn) = g(b1wbn)

}+
.

Theorem 4. If there is a semi-Thue system with n rules having an undecidable
individual word problem, then the PCP is undecidable for Claus instances of size
n + 4.

We shortly recall Claus’s construction. Let T = (Γ, R) be a semi–Thue
system, where Γ = {a, b} and the set of rules is R = {t1, t2, . . . , tk} with ti =
(ui, vi). We may suppose without restriction that the rules ti ∈ R are encoded
by ϕ so that ui, vi ∈ A∗. In the following we shall consider R also as an alphabet.
Let f = aa be a special word used as a marker. Note that aa is not an image
of ϕ.

Let w,w0 ∈ {a, b}
∗

be two given words, w being the input and w0 fixed.
Recall that d = aba, and define the desynchronizing morphisms `d, rd : {a, b}∗ →
(abb∗a)∗ by

`d(x) = dx and rd(x) = xd

for both x ∈ {a, b}. Next define the morphisms

h, g : ({a, b, c, e} ∪ R)∗ → {a, b}
∗
,

where c and e are now new letters, by

h(x) = `d(x), g(x) = rd(x), for x ∈ {a, b} ,

h(ti) = `d(vi), g(ti) = rd(ui), for ti ∈ R,

h(c) = `d(wf), g(c) = d,

h(e) = dd, g(e) = rd(fw0)d,

(2.1)
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Clearly (h, g) is a Claus instance with b1 = c and bn = e for a suitable n.
By Lemma 1, and the proofs given in [5, 9], the solutions (if they exist) of

(h, g) are necessarily of the form

cw1fw2f · · · fwme,

where each wi has the form

wi = xi0ti1xi1ti2 · · · tpi
xpi

(2.2)

for some words xij
not containing letters from R. Moreover, we have wi −→∗

T

wi+1 for i = 1, 2, . . . ,m−1. Note that it is possible that pi = 0, in which case wi

contains no letters from R.
By Lemma 1, the minimal solutions (i.e., those that are not catenation

of shorter solutions) of the instance (h, g) are of the form cwe, where w ∈
({a, b}∪R)∗. For a sake of completeness, we give a short proof for (h, g) defined
in (2.1).

It is clear that the number of c’s and number of e’s are equal in a solution
by the occurrences of `d(f) in the image of a solution. Assume contrary that
there is a solution cw′ew′′e such that cw′e is not a solution. We may assume
that w′ ∈ ({a, b, c} ∪ R), i.e., that w′ does not have letter e, in other words, we
remove any prefix of cw′e being already a solution. Now |h(cw′)| > |g(cw′)|,
h(cw′) ∈ (dA)+ and g(e) end with double d. Only d2 in h(cw′e) is at the end,
implying that h(cw′e) = g(cw′e), and this is contrary to our assumption.

For Claus instances we have the following consequence of Theorem 3. This
result also proves Theorem 2.

Theorem 5. The PCP is undecidable for Claus instances of size n = 7.

Note that, we always can find an equivalent instance of the PCP such that
the range alphabet Γ is binary, for example, by using a variant of the encoding ϕ.

When the construction in (2.1) is applied to the given semi-Thue system T of
Theorem 3 with undecidable individual problem, we obtain the following strong
version of Theorem 5 where there is only one variable word u1 as an input.
Indeed, in (2.1) only the image h(c) contains a word (w) that is not fixed by T

and the individual word problem.

Theorem 6. Let Γ = {a, b}. There exist a word v1 ∈ Γ∗ and six pairs
(u2, v2), (u3, v3), . . . , (u7, v7) ∈ Γ∗ ×Γ∗ such that it is undecidable whether for a
given word u1 ∈ Γ∗,

u1ui2ui3 . . . uim
u7 = v1vi2vi3 . . . vim

v7

for some indices i2, i3, . . . , im ∈ {2, 3, . . . , 6}. Moreover, the instance (h, g),
where h(bi) = ui and g(bi) = vi for i = 1, 2, . . . , 7, is a Claus instance.

Finally, we remark that the Claus’s construction also yields a nice corollary
for the generalized PCP (GPCP, for short).

Problem 9 (GPCP). Given a pair of morphisms (h, g), where h, g : Σ∗ → Γ∗,
and words p1, p2, s1, s2 ∈ Γ∗, and it is asked to determine whether or not there
exists a word w ∈ Σ∗ such that

p1h(w)s1 = p2g(w)s2?

As a general reference for the GPCP we give [9]. The following theorem
gives a new undecidability bound for the GPCP, the old bound being |Σ| = 7.
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Theorem 7. The GPCP is undecidable for instances having |Σ| = 5. Moreover,
there exists a fixed pair (h, g) of morphisms and fixed words p2, s1, s2 such that
it is undecidable for a word p whether or not a there exists a word w such that
ph(w)s1 = p2g(w)s2.

3 Zero in the left upper corner and the scalar

reachability

In this section we give new proofs for undecidability of the zero in the left upper
corner and for the scalar reachability problem. We begin with some definitions
needed throughout this paper. In the following let ε denote the empty word.

For any alphabet ∆ = {a1, a2, ..., an}, define a mapping σ : ∆∗ → N by

σ(ai1ai2 · · · aik
) =

k
∑

j=1

ijn
k−j and σ(ε) = 0. (3.1)

Notice that σ is injective, and

σ(uv) = n|v|σ(u) + σ(v). (3.2)

Define a monoid morphism γ : ∆∗ ×∆∗ → N
3×3, originally defined by Paterson

in [13], by

γ(u, v) =





n|u| 0 0
0 n|v| 0

σ(u) σ(v) 1



 . (3.3)

The following lemma is easy to prove, see e.g. [9].

Lemma 2. The function γ : ∆∗ × ∆∗ → N
n×n is an injective morphism satis-

fying
γ(u1u2, v1v2) = γ(u1, v1)γ1(u2, v2).

Actually the morphism γ is doubly injective meaning that if γ(u1, v1)31 =
γ(u2, v2)31, then u1 = u2, and if γ(u1, v1)32 = γ(u2, v2)32, then v1 = v2. Notice
that for the empty word ε, we have γ(ε, ε) = I3, the identity matrix.

Let now ∆ = {a1, a2, a3} and Γ = {a2, a3} be fixed alphabets. We use the
morphism γ : ∆∗ × ∆∗ → N

3×3 defined in (3.3) to represent pairs of words by
nonnegative integer matrices:

γ(u, v) =





3|u| 0 0
0 3|v| 0

σ(u) σ(v) 1



 . (3.4)

Consider the following special matrix A and its inverse A−1,

A =





1 0 1
1 1 0
0 0 1



 and A−1 =





1 0 −1
−1 1 1
0 0 1



 ,

and define γ′ : ∆∗ × ∆∗ → N
3×3 by

γ′(u, v) = Aγ(u, v)A−1 =





3|u| + σ(u) − σ(v) σ(v) −3|u| − σ(u) + σ(v) + 1
3|u| − 3|v| 3|v| −3|u| + 3|v|

σ(u) − σ(v) σ(v) −σ(u) + σ(v) + 1



 .
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Since the matrices γ′(u, v) and γ(u, v) are similar, γ′ is an injective morphism.
Indeed, γ′(u1, v1)γ

′(u2, v2) = γ′(u1u2, v1v2).
Furthermore, by above, for all words u, v ∈ ∆∗, we have

(γ′(u, v))11 = 3|u| + σ(u) − σ(v). (3.5)

It was proved in [7] that it is undecidable whether or not a finitely generated
semigroup S of 3 × 3 integer matrices contains a matrix M with M11 = 0.
In [7] the number of generating matrices was not directly mentioned, but the
construction there gives 14 generators. Applying a trick used in the proof of the
undecidability of mortality problem in [7], one can show that a better bound of
8 matrices can be achieved. We now improve this bound to 7, and strengthen
the claim according to Theorem 6.

Theorem 8. There is a semigroup S generated by six 3 × 3 integer matrices
M2,M3, . . . ,M7 such that it is undecidable for a matrix M1 ∈ Z

3×3 whether S
contains a matrix M with (M1M)11 = 0.

In particular, it is undecidable for matrix semigroups M generated by seven
3 × 3 integer matrices whether M contains a matrix M with M11 = 0.

Proof. Let (h, g) be a Claus instance of the PCP provided by Theorem 6 such
that h, g : Σ∗ → Γ∗ where Σ = {b1, b2, . . . , b7} and Γ = {a2, a3} (= {a, b}). Let
a1 be a new symbol, and denote ∆ = {a1, a2, a3}. Then the minimal solutions
of (h, g) are of the form b1wb7, where w does not contain the letters b1 and b7.
Define the matrices

M1 = γ′(h(b1), a1g(b1)) and Mi = γ′(h(bi), g(bi)) (3.6)

for 2 ≤ i ≤ 7, and let M = 〈M1,M2, . . . ,M7〉. Then S = 〈M2, . . . ,M7〉. Notice
that the matrices M2, . . . ,M7 are fixed for all instances in Theorem 6, and thus
only M1 varies.

Let N = Mj1Mj2 · · ·Mjn
∈ M for some w = bj1bj2 . . . bjn

. By (3.5) and
(3.2),

N11 = 3|u| + σ(u) − σ(v) = σ(a1u) − σ(v)

for u = h(w) ∈ Γ∗ and for a word v ∈ ∆∗. Therefore, since σ is injective,
N11 = 0 if and only if v = a1u. In order for a1 to be a prefix of v, we must have
j1 = 1, since a1 appear only in the matrix M1. Hence N = M1Mj2 · · ·Mjn

.
Finally, N11 = 0 if and only if v = a1g(w) = a1h(w) and w = b1bj2 · · · bjn

and h(w) = g(w). Since the solutions of (h, g) are of the form b1xb7, this
holds if and only there exists a minimal i with 2 ≤ i ≤ n such that i = 7,
w′ = bj2 · · · bji−1

∈ {b2, . . . , b6}
∗

and h(b1w
′b7) = g(b1w

′b7). Then obviously,

(M1Mj2 · · ·Mji−1
M7)11 = 0.

The claim now follows from Theorem 2.

In the above we were able to decrease the number of the matrices needed
in the proof by one. For the scalar reachability we can do better, since the old
bound is seven matrices, see [9]. Note that the claim follows for semigroups
generated by seven integer matrices by Theorem 8 by using vector vectors u =
v = (1, 0, . . . , 0).

Theorem 9. The scalar reachability problem is undecidable for semigroups S
generated by five integer matrices of dimension 3.
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Proof. Let (h, g) be a Claus instance, where h, g : {b1, . . . , b6}
∗
→ Γ∗. It is clear

that the PCP for Claus instance is undecidable also in the form where it is
asked whether not there exist w ∈ {b2, . . . , b6}

+
(i.e., w is non-empty) such that

h(b1wb7) = g(b1wb7). We need this stricter form in the following.

Let S be the semigroup attached to a Claus instance (h, g) as in the proof
of Theorem 8 according to which there is a matrix product having 0 in the left
upper corner if and only if for some 2 ≤ j2, . . . , ji−1 ≤ 6 with i > 2 (since w′

for (h, g) is non-empty),

(M1Mj2 · · ·Mji−1
M7)11 = 0.

This is equivalent to the condition

(1, 0, 0)M1Mj2 · · ·Mji−1
M7(1, 0, 0)

T = 0. (3.7)

Let then x = (1, 0, 0)Mb1 and y = M7(1, 0, 0)
T . Now (3.7) is equivalent to

xMj2 · · ·Mji−1
y = 0.

Therefore, zero in the left upper corner problem is equivalent to scalar reacha-
bility problem for semigroups generated by 5 matrices M2,M3, . . . ,M6, together
with the vectors x, y and scalar 0. This proves the claim.

Note that for the zero in the right upper corner, the bound of numbers of
matrices is 7. This is achieved by a direct reduction from the PCP, see [5] or [9].
This bound cannot be decreased by the above Claus instances.

4 The mortality problem and the matrix reach-

ability problem

Next prove that the mortality problem is undecidable for semigroups generated
by seven 3 × 3 integer matrices. The proof is a modification of the proof in [7]
where it was proved that the mortality problem is undecidable in 3× 3 case for
eight generators.

Theorem 10. There is a semigroup S generated by six 3 × 3 integer matrices
such that it is undecidable for a matrix A whether AM = 0 for some M ∈ S.

In particular, the mortality problem is undecidable for semigroups generated
by seven 3 × 3 integer matrices.

Proof. Let M be the semigroup of 3 × 3 integer matrices generated by the ma-
trices M1,M2, . . . ,M7 as defined in the proof of Theorem 8 for a Claus instance
(h, g) of the PCP. Again, the matrices M2, . . . ,M7 are fixed for all instances in
Theorem 6, and thus only M1 varies.

Let R be the semigroup generated by M1,M2, . . . ,M7 together with the
idempotent matrix B for which B11 = 1 and otherwise Bij = 0. Then, for any
matrix M ∈ M,

BMB =





M11 0 0
0 0 0
0 0 0



 .

Therefore, if there exists a matrix M ∈ M with M11 = 0, then 0 ∈ R. On
the other hand, assume that 0 ∈ R. Without restriction we can assume that
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0 = BN1BN2 · · ·NnB, for some n ≥ 1 and Ni ∈ M for all i = 1, 2, . . . , n. Since
B is idempotent, we have

0 =(BN1BN2 · · ·NtB)11 = (BN1B · BN2B · · ·BNnB)11

=(N1)11(N2)11 · · · (Nn)11,

and therefore (Ni)11 = 0 for some index i. We conclude that 0 ∈ R if and only
if N11 = 0 for some N ∈ M. Now N11 = 0 for a matrix N ∈ M if and only if

N = M1Mj1 · · ·Mji
M7

and h(b1bj1 · · · bji
b7) = g(b1bj1 · · · bji

b7) where 2 ≤ j1, . . . , ji ≤ 6. Therefore,
the zero matrix belongs to R if and only if it is in the semigroup S′ generated
by the following seven matrices: BM1,M2,M3, . . . ,M6,M7B. The first claim
follows by choosing S = 〈M2,M3, . . . ,M6,M7B〉 and A = BM1.

On the other hand, the case where the dimension of the matrices is two
remains problematic, see [15].

Problem 10 (Open). Is the mortality problem decidable for semigroups of
2 × 2 integer matrices?

Since the mortality problem is a special case of the membership problem, we
have

Corollary 1. The membership problem is undecidable for semigroups generated
by seven 3 × 3 integer matrix.

We shall return to the membership problem for diagonal matrices in Sec-
tion 7.

It is known that the mortality problem is undecidable for semigroups gener-
ated by two matrices of dimension nk, where n is the bound for the dimension
of undecidable cases of the mortality problem for k matrices; see [4] and [2].
Therefore, Theorem 10 has the following corollary.

Theorem 11. The mortality problem is undecidable for two matrices of dimen-
sion 21.

5 Vector reachability

In this section we study the vector reachability problem. In the special case of
this problem, the vector mortality problem the given vector is v = (0, . . . , 0).
We prove that this problem is undecidable for six 3 × 3 integer matrix. The
previous best bound was eight proved in [6].

Here we use the morphisms γ defined in (3.4), namely

γ(u, v) =





3|u| 0 0
0 3|v| 0

σ(u) σ(v) 1



 .

We define a special matrix

A =





1 −1 0
−1 1 0
0 0 0



 .
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Theorem 12. The vector reachability problem (and the vector mortality prob-
lem) is undecidable for semigroups generated by six 3 × 3 integer matrix.

Proof. Let (h, g) be a Claus instance of the PCP, where h, g : {b1, b2, . . . , b7}
∗
→

∆∗ for ∆ = {a1, a2, a3} (where again {a, b} = {a2, a3}). Let the first vector u
be defined by

u = (σ(h(b1)), σ(g(b1)), 1),

where σ is given in (3.1). Define the matrices

Mi = γ(h(bi), g(bi)),

for i = 2, 3, . . . , 7, and let S be the semigroup generated by the six matrices
M2, . . . ,M6,M7A. Note that

(σ(u1), σ(v1), 1)γ(u2, v2) = (σ(u1u2), σ(v1v2), 1),

for all u1, u2, v1, v2 ∈ ∆∗. It follows that for a word w = bj1 · · · bjk
∈ {b2, . . . , b6}

∗

uMj1 · · ·Mjk
M7A = (5.1)

(σ(h(b1wb7)) − σ(g(b1wb7)), σ(g(b1wb7)) − σ(h(b1wb7)), 0).

We prove that (h, g) has a solution if and only if there exists M ∈ S such that
u · M = (0, 0, 0).

The “ =⇒ ” direction is clear by (5.1). Conversely assume that there exists
a matrix M ∈ S such that uM = (0, 0, 0). Assume that M has the minimum
number factors in the factorization of M into generators of S, say

M = Mj11 · · ·Mj1k1
(M7A)Mj21 · · ·Mj2k2

(M7A) · · · (M7A)Mjm1
· · ·Mjmkm

.

Since the matrices Mi are invertible, and

A





p 0 0
0 s 0
r t 1



 A = (p + s)A,

and A2 = 2A, it is clear by the minimality of M that it is of the form

M = Mj11 · · ·Mj1k1
(M7A).

Now, let w = bj11 · · · bj1k1
∈ {b2, . . . , b6}

∗
. Then

uM = (σ(h(b1wb7)) − σ(g(b1wb7)), σ(g(b1wb7)) − σ(h(b1wb7)), 0) = (0, 0, 0).

By the injectivity of σ, h(b1wb7) = g(b1wb7). This proves our claim.

Often the vector reachability problem is stated in the following form: Given
a semigroup S of matrices and two vectors u and v, determine whether or not
there exists M ∈ S such that M · uT = vT . The above can be modified for this
version by transpositions.

6 Freeness problem

In this section we concentrate on the freeness property of matrix semigroups.
This problem is one of the most fundamental properties of semigroups.

Recall that a semigroup S is said to be free if there exists a subset X of S
such that every element of S has a unique factorization over X.

9



We prove that the freeness problem is undecidable for 3 × 3 matrices. This
result was first proved by Klarner, Birget and Satterfield [10] in 1990, but we
will present the proof developed by Cassaigne, Harju and Karhumäki [3]. Their
proof is shorter and also gives the bound 18 for the number of matrices.

The proof uses the same technique as the previous proofs, but instead of an
instance of PCP we will reduce an instance of mixed PCP to this problem.

Problem 11 (Mixed PCP). Given two morphisms h, g : Σ∗ → ∆∗ determine
whether there exists a word w = a1 . . . ak with ai ∈ Σ and k ≥ 1, such that

h1(a1)h2(a2) . . . hk(ak) = g1(a1)g2(a2) . . . gk(ak), (6.1)

where, for each i, hi and gi are in {h, g} and, for some j, hj 6= gj.

The word w satisfying the equation (6.1) is called a solution of the instance
(h, g) of the Mixed PCP.

The freeness problem is know to be undecidable for 18 matrices in the gen-
erator set. This follows from the fact that the Mixed PCP is undecidable for
instances of 9 letters. We obtain a decreased bound of 14 for number of matrices
by proving that the Mixed PCP is undecidable for the Claus instances of the
PCP, which gives the undecidability for instances of size 7.

Theorem 13. The Mixed PCP is undecidable for Claus instances of size 7.

Proof. Let (h, g) be a Claus instance of the PCP and assume that h, g : Σ∗ → Γ∗

for Γ = {a, b}. Recall that d = aba, and that h(x), g(x) ∈ (ab2b∗)∗ for all
letters a. By Lemma 1, the minimal solutions of (h, g) are necessarily of the
form b1wbn for some w ∈ {b2, . . . , bn−1}

∗
.

We show that the instance (h, g), as an instance of the PCP, has a solution
if and only if it has a solution as an instance of the Mixed PCP.

If (h, g) has a solution b1wbn as an instance of PCP, then this is also a
solution of the Mixed PCP, therefore the implication in one direction is trivial.
So assume that the pair (h, g) has a solution as an instance of the Mixed PCP
and let w = a1a2 · · · ak be a solution of minimal length. We claim that also
h(w) = g(w), i.e., w is a solution of instance (h, g) of PCP, and a1 = b1,
ak = bn.

In notation of (6.1), the minimality of w implies that h1 6= g1 and hk 6= gk,
and so by the definitions of h and g, a1 = b1 and ak = bn. We see also that
ai 6= b1 and ai 6= bn if each i = 2, . . . , k − 1, because otherwise there would be
a shorter solution than b1wbn. We may assume, by symmetry, that h1 = h and
g1 = g and we will show that hi = h and gi = g for all i = 1, . . . , k.

Assume that hi = h for i ≤ p and gi = g for i ≤ q. If h(a1a2 · · · ap) is a
prefix of g(a1a2 · · · aq) then g(a1a2 · · · aq) = h(a1a2 · · · ap)z, where, by the form
of g and h, the overflow z begins with a word from dA, since the images of h

end in the word from A. Therefore also hp+1 = h. Similarly, we deduce that
if g(a1a2 · · · aq) is a prefix of h(a1a2 · · · ap), then also gq+1 = g, and this proves
the claim.

We present a proof for the next theorem for the sake of completeness, the
proof is from [3].

Theorem 14. It is undecidable whether a semigroup S generated by fourteen
3 × 3 matrices of non-negative integer entries is free.

Proof. Let (h, g) be an instance of the Mixed PCP. We may assume that h and
g are morphism from Σ∗ into Σ∗, i.e., they are endomorphisms. Let

X = {γ(a, h(a)), γ(a, g(a)) | a ∈ Σ}

10



and let S be the semigroup generated by X.
Let M1, . . . ,Mp, N1, . . . , Nq be in X, where Mt = γ(ait

, hit
(ait

)) and Ns =
γ(bjs

, gjs
(bjs

)) with hit
, gjs

∈ {h, g} and ait
, bjs

∈ Σ, for t = 1, 2, . . . , p and
s = 1, 2, . . . , q. Then, by the definition of γ, we have:

M1 . . . Mp = N1 . . . Nq in S

if and only if

(M1 . . . Mp)3,1 = (N1 . . . Nq)3,1 and (M1 . . . Mp)3,2 = (N1 . . . Nq)3,2.

But this is equivalent to

ai1 . . . aip
= bj1 . . . bjq

and hi1(ai1) . . . hip
(aip

) = gj1(bj1) . . . gjq
(bjq

)

by the injectivity of σ.
Therefore, S is not free if and only if the instance (h, g) of the Mixed PCP has

a solution. Hence the freeness is an undecidable property for finitely generated
matrix semigroups of the required kind.

The next corollary is clear by extending the matrices in the above proof in
an obvious way.

Corollary 2. The freeness problem is undecidable for n × n upper triangular
matrices with non-negative integer entries for any n ≥ 3 .

7 Membership for the diagonal matrices

In this section we prove that the membership problem for a diagonal matrix is
undecidable for finitely generated semigroups of 4 × 4 integer matrices. This
result was original proved by Bell and Potapov in [1]. Their proof gives semi-
groups generated by 30 matrices. We use their clever coding of the PCP to this
problem but by using Claus instances of the PCP, we are able to reduce the
number of generators to 14. Also, our proof is shorter than the original proof,
since we employ free groups in our proof.

Consider

Gn = {0, 1, . . . , n − 1}

as an alphabet, and let Fn denote the free group generated by Gn. For the
inverse elements, instead of i−1 we use the notation ī for clarity. Let thus
Ḡn = {0̄, 1̄, . . . , n − 1} be the set of the inverses of the elements of Gn. Recall
that two words u and v over Gn ∪ Ḡn are equal in the free group Fn (i.e., u = v

in Fn) if and only if they have the same reduced word obtained by removing all
factors īi and īi from them. The empty word ε is the identity element of the
group Fn.

Our main tool here is the group morphism ϕ : F2 → G, where G is a group
of 2 × 2 integer matrices (generated by the images ϕ(0) and ϕ(1)). Let

ϕ(0) =

(

1 2
0 1

)

, ϕ(1) =

(

1 0
2 1

)

for which we have

ϕ(0̄) = ϕ(0)−1 =

(

1 −2
0 1

)

, and ϕ(1̄) = ϕ(1)−1 =

(

1 0
−2 1

)

.
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It was shown by Sanov, see e.g. Lyndon and Schupp [11], that the matrix
group generated by ϕ(0) and ϕ(1) is free, and hence the mapping ϕ is a group
isomorphism. First we study the free group F2 and then using the isomorphism
ϕ, we can use the useful properties in the matrix group.

Two words u, v ∈ (Gn ∪ G−1
n )∗ are conjugates if u = u1v1 and v = v1u1 for

some words u1 and v1. It is clear that if u and v are conjugates and u = ε in
Fn, then also v = ε in Fn.

To simplify the proofs, we begin with the free group F8, and then use a
group embedding of F8 to F2. Consider the set

X = {1, 2, . . . , 7, 7̄0, 0̄1̄} ∪ {0̄̄i0 | i = 2, . . . , 6} ⊂ F8.

Lemma 3. All elements x ∈ X+ which contain exactly one occurrence of the
generator 7̄0 such that x = ε in F8 are conjugates (in terms of X) of the elements

1i1 · · · ik7(7̄0)(0̄̄ik0) · · · (0̄̄i10)0̄1̄,

for some k ≥ 0 and 2 ≤ ij ≤ 6.

Proof. First consider any product of elements y of the Y = {0̄̄i0 | i = 2, . . . , 6}.

Then y = 0̄w0 in F8, where w ∈ {2̄, 3̄, . . . , 6̄}
+
. Also, each word of (Y ∪ {0̄1̄})+

contains in the reduced form at least one occurrence of 0̄. Therefore, in L =
(X \ {7̄0})+ there is no element x such that x = ε in F8, since each of these
words have at least one 0̄ in its reduced form.

Assume that x ∈ X+, x = ε in F8, and that x contains exactly one occurrence
of 7̄0. Then x = y1 · · · yk7̄0x1 · · ·xn for some yi, xj ∈ X \ {7̄0} for 1 ≤ i ≤ k

and 1 ≤ j ≤ n.
Since all conjugates of x reduce to ε, we may assume that the occurrence

of 0̄ cancelling the specified occurrence of 0 is on the right of it, i.e., xi = 0̄t̄i0
or xi = 0̄1̄ for some i ≥ 1. If i > 1, then ε = x1 · · ·xi−1 in F8 is in L; a
contradiction. Therefore, i = 1. Assume that x1 = 0̄t̄10. Then

y1 · · · yk7̄00̄t̄10x2 · · ·xn = y1 · · · yk7̄t̄10x2 · · ·xn = ε in F8.

Again, as in the above, we may assume that the occurrence of 0̄ cancelling
the specified 0 is on the right of it. Proceeding inductively, we obtain that
xi = 0̄t̄i0 for all 1 ≤ i ≤ m for some maximal index m < n. Now there remains
one occurrence of 0 which is then cancelled by xm+1 = 0̄1̄. Again, since the
conjugates reduce to ε, we may assume that m + 1 = n, and we have

y1 · · · yk7̄00̄t̄10 · · · 0̄t̄m00̄1̄ = y1 · · · yk1tm · · · t17 = ε in F8.

Note that this case contains also the case where x1 = 0̄1̄ when m = 0. In other
words y1 · · · yk = 1t1 · · · tm7 in F8. Recall that yj ∈ X \ {7̄0}, and in L all the
elements generated by at least one element from Y ∪ {0̄1̄} contain 0 or 0̄ in the
reduced form. Therefore, yj ∈ {1, 2, . . . , 7} for all j and m = k, y1 = 1, yk = 7,
implying that yj = tj for j = 2, . . . , k − 1.

Note that the claim of Lemma 3 holds also if we assume that in x there is
exactly on occurrence of the generator 0̄1̄. This can be seen from the proof of
Lemma 3, there is exactly one occurrence of 7̄0 if and only if there is exactly
one occurrence of 0̄1̄.

Next we define an embedding α : F8 → F2 by

α(i) = 1̄i01i, for i = 0, 1, . . . , 7.
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The set {α(i) | i = 0, 1, . . . , 7} generates a subgroup of 〈0, 1〉 which is free, since
all the subgroups of a free group are free; for details, see e.g. Lyndon and
Schupp [11]. Therefore F8 is isomorphic to the subgroup generated by the
elements α(i), for i = 0, 1, . . . , 7, and for Z = α(X) there is a y ∈ Z+ such that
y = ε in F2 having exactly one occurrence of α(7̄0) as a generator if and only if
y = α(x) where x is of the form of Lemma 3.

Now we are ready to define the matrices for our undecidability proof. Let
h, g : {b1, b2, . . . , b7}

∗
→ {0, 1}

∗
be a Claus instance of the PCP. Here {0, 1} is

alphabet, but we shall consider them also as the generators of the free group F2.
Recall that the matrices ϕ(0) and ϕ(1) generate a free group of 2×2 integer

matrices. For each i = 1, 2, . . . , 7 and j = 2, 3, . . . , 6, define the 4 × 4 integer
matrices in the block form by

Ai =

(

ϕ(h(bi)) 0
0 ϕ(α(i))

)

, Bj =

(

ϕ(g(bj)) 0
0 ϕ(α(0̄j̄0))

)

.

Define the special matrices

B7 =

(

ϕ(g(b7)) 0
0 ϕ(α(7̄0))

)

, B1 =

(

ϕ(g(b1) 0
0 ϕ(α(0̄1̄))

)

.

Theorem 15. There exist an element M = M1 · · ·Mn = I4, where Mj ∈
{Ai, Bi | 1 ≤ i ≤ 7} for 1 ≤ j ≤ n, and, for exactly one j, Mj = B7 if and only
if the Claus instance (h, g) has a solution.

Proof. Consider the lower diagonal block of M first. Clearly, it is of the form
ϕ(α(x1)) · · ·α(xn)) = ϕ(α(x1 · · ·xn)), where xj ∈ X for each j, and, for exactly
one j, xj = 7̄0. Now in order for this lower block to be equal to I2, necessarily,
α(x1 · · ·xn) = ε in F2. By Lemma 3, x1x2 · · ·xn has a conjugate (in terms of
X) of the form

1i1 · · · ik7(7̄0)(0̄̄ik0) · · · (0̄̄i10)0̄1̄,

for some k ≥ 0, 2 ≤ ij ≤ 6. Also, every conjugate of M is equal to I4. Therefore,
there is a conjugate of M of the form

A1Ai1 · · ·Aik
A7B7Bik

· · ·Bi1B1 = I4. (7.1)

Now the top block of this matrix is of the form

ϕ(h(b1)ϕ(h(bi1)) · · ·ϕ(h(bik
))ϕ(h(b7))ϕ(g(b7))ϕ(g(bik

)) · · ·ϕ(g(bi1))ϕ(g(b1)) = I2

implying that in 〈0, 1〉

h(b1)h(bi1) · · ·h(bik
)h(b7)g(b7) g(bik

) · · · g(bi1) g(b1) = ε,

which is equivalent to h(b1)h(bi1) · · ·h(bik
)h(b7) = g(b1)g(bi1) · · · g(bik

)g(b7),
i.e., b1bi1 · · · bik

b7 is a solution to the Claus instance (h, g).

Note that there is exactly one j that Mj = B7 if and only if there is exactly
one j such that Mj = B1 in Theorem 15.

Now we are ready to prove that main theorem of this section.

Theorem 16. Let k be an integer with |k| > 1. It is undecidable for the matrix
kI4 and a matrix semigroup R generated by twelve 4× 4 integer matrices where
|k| > 1, whether or not kI4 ∈ R.

Moreover, there is a semigroup S generated by eleven 4 × 4 such that it is
undecidable whether there for a matrix A, I4 = AM for some matrix M ∈ S.
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Proof. Let R = 〈Y 〉, where

Y = {Ai, Bi | i = 2, 3, . . . , 6} ∪ {kA7B7, B1A1} .

Now det(Ai) = det(B1A1) = 1 for all i = 2, 3, . . . , 6 and det(kA7B7) = k4.
Since for all matrices det(AB) = det(A) det(B), and det(kI4) = k4, we have
that kI4 ∈ R if and only if the decomposition of kI4 in terms of Y contains
exactly one occurrence of the matrix kA7B7. By the proof of Theorem 15 and
equation (7.1), kI4 ∈ R if and only if

k · A1Ai1 · · ·Aik
(A7B7)Bik

· · ·Bi1B1 = kI4,

and again, since B1 is invertible, if and only if

(B1A1)Ai1 · · ·Aik
(kA7B7)Bik

· · ·Bi1 = kI4,

where b1bi1 · · · bik
b7 is a solution of the Claus instance (h, g). The claim follows,

since |Y | = 12.
For the second claim, notice, once more, that when the Claus instance (h, g)

is created from the individual word problem of T from Theorem 3, then the
other matrices except for the matrix A = B1A1 are fixed. Let

Y ′ = {Ai, Bi | i = 2, 3, . . . , 6} ∪ {A7B7}

and let S = 〈Y ′〉. Assume that there is M ∈ S such that AM = I4. Now the
product AM contains exactly one occurrence of the matrix B1 and therefore,
by the remark after the proof of Theorem 15, it contains exactly one occurrence
of the matrix B7. Now the claim follows by Theorem 15, since |Y ′| = 11.

The decidability status of following problems remain open.

Problem 12 (Identity matrix). Given a finitely generated semigroup S of
n × n integer matrices, determine whether or not In ∈ S?

Problem 13 (Diagonal matrix). Given a finitely generated semigroup S of
n×n integer matrices, determine whether or not there exists any diagonal matrix
in S?
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Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 952-12-1720-0

ISSN 1239-1891


