ON THE EFFECT OF VARIABLE IDENTIFICATION ON THE ESSENTIAL ARITY OF FUNCTIONS

MIGUEL COUCEIRO AND ERKKO LEHTONEN

Abstract

We show that every function of several variables on a finite set of k elements with $n>k$ essential variables has a variable identification minor with at least $n-k$ essential variables. This is a generalization of a theorem of Salomaa on the essential variables of Boolean functions. We also strengthen Salomaa's theorem by characterizing all the Boolean functions f having a variable identification minor that has just one essential variable less than f.

1. Introduction

Theory of essential variables of functions has been developed by several authors [2, 6, 11, 13]. In this paper, we discuss the problem how the number of essential variables is affected by identification of variables (diagonalization). Salomaa [11] proved the following two theorems: one deals with operations on arbitrary finite sets, while the other deals specifically with Boolean functions. We denote the number of essential variables of f by ess f.

Theorem 1. Let A be a finite set with k elements. For every $n \leq k$, there exists an n-ary operation f on A such that ess $f=n$ and every identification of variables produces a constant function.

Thus, in general, essential variables can be preserved when variables are identified only in the case that $n>k$.

Theorem 2. For every Boolean function f with ess $f \geq 2$, there is a function g obtained from f by identification of variables such that ess $g \geq \operatorname{ess} f-2$.

Identification of variables together with permutation of variables and cylindrification induces a quasi-order on operations whose relevance has been made apparent by several authors [3, 7, 8, 9, 10, 12, 14. In the case of Boolean functions, this quasi-order was studied in [4] where Theorem 2 was fundamental in deriving certain bounds on the essential arity of functions.

In this paper, we will generalize Theorem 2 to operations on arbitrary finite sets in Theorem 3. We will also strengthen Theorem 2 on Boolean functions in Theorem 6 by determining the Boolean functions f for which there exists a function g obtained from f by identification of variables such that ess $g=\operatorname{ess} f-1$.

2. Variable identification minors

Let A and B be arbitrary nonempty sets. A B-valued function of several variables on A is a mapping $f: A^{n} \rightarrow B$ for some positive integer n, called the arity of f.

[^0]A-valued functions on A are called operations on A. Operations on $\{0,1\}$ are called Boolean functions.

We say that the i-th variable is essential in f, or f depends on x_{i}, if there are elements $a_{1}, \ldots, a_{n}, b \in A$ such that

$$
f\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right) \neq f\left(a_{1}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{n}\right)
$$

The number of essential variables in f is called the essential arity of f, and it is denoted by ess f. Thus the only functions with essential arity zero are the constant functions.

For an n-ary function f, we say that an m-ary function g is obtained from f by simple variable substitution if there is a mapping $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}$ such that

$$
g\left(x_{1}, \ldots, x_{m}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

In the particular case that $n=m$ and σ is a permutation of $\{1, \ldots, n\}$, we say that g is obtained from f by permutation of variables. For indices $i, j \in\{1, \ldots, n\}$, $i \neq j$, if x_{i} and x_{j} are essential in f, then the function $f_{i \leftarrow j}$ obtained from f by the simple variable substitution

$$
f_{i \leftarrow j}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, x_{j}, x_{i+1}, \ldots, x_{n}\right)
$$

is called a variable identification minor of f, obtained by identifying x_{i} with x_{j}. Note that ess $f_{i \leftarrow j}<$ ess f, because x_{i} is not essential in $f_{i \leftarrow j}$ even though it is essential in f.

We define a quasiorder on the set of all B-valued functions of several variables on A as follows: $f \leq g$ if and only if f is obtained from g by simple variable substitution. If $f \leq g$ and $g \leq f$, we denote $f \equiv g$. If $f \leq g$ but $g \not \leq f$, we denote $f<g$. It can be easily observed that if $f \leq g$ then ess $f \leq \operatorname{ess} g$, with equality if and only if $f \equiv g$.

For a B-valued function f of several variables on A, we denote the maximum essential arity of a variable identification minor of f by

$$
\operatorname{ess}^{<} f=\max _{g<f} \operatorname{ess} g
$$

and we define the arity gap of f by gap $f=\operatorname{ess} f-\operatorname{ess}^{<} f$.

3. Generalization of Theorem 2

Theorem 3. Let A be a finite set of $k \geq 2$ elements, and let B be a set with at least two elements. Every B-valued function of several variables on A with $n>k$ essential variables has a variable identification minor with at least $n-k$ essential variables.

In the proof of Theorem 3, we will make use of the following theorem due to Salomaa [11, Theorem 1], which is a strengthening of Yablonski's [13] "fundamental lemma".

Theorem 4. Let the function $f: M_{1} \times \cdots \times M_{n} \rightarrow N$ depend essentially on all of its n variables, $n \geq 2$. Then there is an index j and an element $c \in M_{j}$ such that the function

$$
f\left(x_{1}, \ldots, x_{j-1}, c, x_{j+1}, \ldots, x_{n}\right)
$$

depends essentially on all of its $n-1$ variables.
We also need the following auxiliary lemma.

Lemma 5. Let f be an n-ary function with ess $f=n>k$. Then there are indices $1 \leq i<j \leq k+1$ such that at least one of the variables x_{1}, \ldots, x_{k+1} is essential in $f_{i \leftarrow j}$.
Proof. Since x_{1} is essential in f, there are elements $a_{1}, \ldots, a_{n}, b \in A$ such that

$$
f\left(a_{1}, a_{2}, \ldots, a_{n}\right) \neq f\left(b, a_{2}, \ldots, a_{n}\right)
$$

Thus there are indices $1 \leq i<j \leq k+1$ such that $a_{i}=a_{j}$. If $i \neq 1$, then it is clear that x_{1} is essential in $f_{i \leftarrow j}$. If there are no such i and j with $i \neq 1$, then $i=1<j$ and we have that $b=a_{l}$ for some $1<l \leq k+1, l \neq j$. For $m=1, \ldots, n$, let $c_{m}=a_{m}$ if $m \notin\{1, j, l\}$ and let $c_{m}=a_{1}$ if $m \in\{1, j, l\}$. Then $f\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is distinct from at least one of $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $f\left(b, a_{2}, \ldots, a_{n}\right)$. If $f\left(c_{1}, c_{2}, \ldots, c_{n}\right) \neq$ $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, then x_{l} is essential in $f_{1 \leftarrow j}$. If $f\left(c_{1}, c_{2}, \ldots, c_{n}\right) \neq f\left(b, a_{2}, \ldots, a_{n}\right)$, then x_{l} is essential in $f_{1 \leftarrow l}$.

Proof of Theorem 3, By Theorem (4) there exist $k+1$ constants $c_{1}, \ldots, c_{k+1} \in A$ such that, after a suitable permutation of variables, the function

$$
f\left(c_{1}, \ldots, c_{k+1}, x_{k+2}, \ldots, x_{n}\right)
$$

depends on all of its $n-k-1$ variables. There are indices $1 \leq i<j \leq k+1$ such that $c_{i}=c_{j}$, and by Lemma 5 there are indices $1 \leq l<m \leq k+1$ such that at least one of the variables x_{1}, \ldots, x_{k+1} is essential in $f_{l \leftarrow m}$. With a suitable permutation of variables, we may assume that $i=1, j=2,1 \leq l \leq 3, m=l+1$.

If one of the variables x_{1}, \ldots, x_{k+1} is essential in $f_{1 \leftarrow 2}$, then we are done. Otherwise we have that for all $a_{k+2}, \ldots, a_{n} \in A$,

$$
f\left(c_{1}, c_{1}, c_{3}, c_{4}, \ldots, c_{k+1}, a_{k+2}, \ldots, a_{n}\right)=f\left(c_{3}, c_{3}, c_{3}, c_{4}, \ldots, c_{k+1}, a_{k+2}, \ldots, a_{n}\right)
$$

Thus the variables x_{k+2}, \ldots, x_{n} are essential in $f_{2 \leftarrow 3}$. If one of the variables x_{1}, \ldots, x_{k+1} is essential in $f_{2 \leftarrow 3}$, then we are done. Otherwise we have that for all $a_{k+2}, \ldots, a_{n} \in A$,

$$
f\left(c_{3}, c_{3}, c_{3}, c_{4}, \ldots, c_{k+1}, a_{k+2}, \ldots, a_{n}\right)=f\left(c_{3}, c_{4}, c_{4}, c_{4}, \ldots, c_{k+1}, a_{k+2}, \ldots, a_{n}\right)
$$

and so the variables x_{k+2}, \ldots, x_{n} are essential in $f_{3 \leftarrow 4}$ and also at least one of x_{1}, \ldots, x_{k+1} is essential in $f_{3 \leftarrow 4}$.

We would like to remark that our proof is considerably simpler than Salomaa's original proof of Theorem 2.

4. Strengthening of Theorem 2

It is well-known that every Boolean function is represented by a unique multilinear polynomial over the two-element field. Such a representation is called the Zhegalkin polynomial of f. It is clear that a variable is essential in f if and only if it occurs in the Zhegalkin polynomial of f. We denote by $\operatorname{deg} \mathfrak{p}$ the degree of polynomial \mathfrak{p}. If \mathfrak{p} is the Zhegalkin polynomial of f, then we denote the Zhegalkin polynomial of $f_{i \leftarrow j}$ by $\mathfrak{p}_{i \leftarrow j}$. Note that the only polynomials of degree 0 are the constant polynomials.
Theorem 6. Let f be a Boolean function with at least 2 essential variables. Then the arity gap of f is 2 if and only if the Zhegalkin polynomial of f is of one of the following special forms:

$$
\cdot x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{n}}+c
$$

- $x_{i} x_{j}+x_{i}+c$,
- $x_{i} x_{j}+x_{i} x_{k}+x_{j} x_{k}+c$,
- $x_{i} x_{j}+x_{i} x_{k}+x_{j} x_{k}+x_{i}+x_{j}+c$,
where $c \in\{0,1\}$. Otherwise the arity gap of f is 1 .
We prove first an auxiliary lemma that takes care of the functions of essential arity at least 4 whose Zhegalkin polynomial has degree 2 .
Lemma 7. If f is a Boolean function with at least four essential variables and the Zhegalkin polynomial of f has degree two, then the arity gap of f is one.
Proof. Denote the Zhegalkin polynomial of f by \mathfrak{p}. We need to consider several cases and subcases.

Case 1. Assume first that \mathfrak{p} is of the form

$$
\mathfrak{p}=x_{i} x_{j}+x_{i} x_{k}+x_{j} x_{k}+x_{i} \mathfrak{a}_{i}+x_{j} \mathfrak{a}_{j}+x_{k} \mathfrak{a}_{k}+\mathfrak{a}
$$

where $\mathfrak{a}_{i}, \mathfrak{a}_{j}, \mathfrak{a}_{k}$ are polynomials of degree at most 1 and \mathfrak{a} is a polynomial of degree at most 2 such that there are no occurrences of variables x_{i}, x_{j}, x_{k} in $\mathfrak{a}_{i}, \mathfrak{a}_{j}, \mathfrak{a}_{k}, \mathfrak{a}$.

Subcase 1.1. Assume that $\operatorname{deg} \mathfrak{a}_{i}=\operatorname{deg} \mathfrak{a}_{j}=\operatorname{deg} \mathfrak{a}_{k}=0$. Then \mathfrak{a} contains a variable x_{l} distinct from x_{i}, x_{j}, x_{k}, and we can write $\mathfrak{a}=x_{l} \mathfrak{a}^{\prime}+\mathfrak{a}^{\prime \prime}$, where \mathfrak{a}^{\prime} and $\mathfrak{a}^{\prime \prime}$ do not contain x_{l}. Then $f_{l \leftarrow i}$ is represented by the polynomial

$$
\mathfrak{p}_{l \leftarrow i}=x_{i} x_{j}+x_{i} x_{k}+x_{j} x_{k}+x_{i} \mathfrak{a}^{\prime}+\mathfrak{a}^{\prime \prime}
$$

where all essential variables of f except for x_{l} occur, because no terms cancel, and hence $\operatorname{gap} f=1$.

Subcase 1.2. Assume that at least one of $\mathfrak{a}_{i}, \mathfrak{a}_{j}, \mathfrak{a}_{k}$ has degree 1 , say $\operatorname{deg} \mathfrak{a}_{i}=1$. Then \mathfrak{a}_{i} contains a variable x_{l} distinct from x_{i}, x_{j}, x_{k}, and so $\mathfrak{a}_{i}=x_{l}+\mathfrak{a}_{i}^{\prime}$, where $\mathfrak{a}_{i}^{\prime}$ has degree at most 1 and does not contain x_{l}. Consider

$$
\mathfrak{p}_{j \leftarrow k}=x_{k}\left(1+\mathfrak{a}_{j}+\mathfrak{a}_{k}\right)+x_{i} \mathfrak{a}_{i}+\mathfrak{a} .
$$

If all essential variables of f except for x_{j} occur in $\mathfrak{p}_{j \leftarrow k}$, then $\operatorname{gap} f=1$ and we are done. Otherwise we need to analyze three different subcases.

Subcase 1.2.1. Assume that variable x_{k} occurs in $\mathfrak{p}_{j \leftarrow k}$ but there is a variable x_{l} that occurs in $\mathfrak{a}_{\mathfrak{j}}$ and \mathfrak{a}_{k} but not in \mathfrak{a}_{i} nor in \mathfrak{a} such that x_{l} does not occur in $\mathfrak{p}_{j \leftarrow k}$ (due to some cancelling terms in \mathfrak{a}_{j} and \mathfrak{a}_{k}). Write $\mathfrak{a}_{j}=x_{l}+\mathfrak{a}_{j}^{\prime}$, $\mathfrak{a}_{k}=x_{l}+\mathfrak{a}_{k}^{\prime}$, and consider

$$
\begin{aligned}
\mathfrak{p}_{j \leftarrow l} & =x_{i} x_{l}+x_{i} x_{k}+x_{l} x_{k}+x_{i} \mathfrak{a}_{i}+x_{l}+x_{l} \mathfrak{a}_{j}^{\prime}+x_{k} x_{l}+x_{k} \mathfrak{a}_{k}^{\prime}+\mathfrak{a} \\
& =x_{i} x_{l}+x_{i} x_{k}+x_{i} \mathfrak{a}_{i}+x_{l}+x_{l} \mathfrak{a}_{j}^{\prime}+x_{k} \mathfrak{a}_{k}^{\prime}+\mathfrak{a}
\end{aligned}
$$

Every essential variable of f except for x_{j} occurs in $\mathfrak{p}_{j \leftarrow l}$, and hence gap $f=1$.
Subcase 1.2.2. Assume that x_{k} does not occur in $\mathfrak{p}_{j \leftarrow k}$. In this case $\mathfrak{a}_{j}=\mathfrak{a}_{k}+1$. Consider

$$
\mathfrak{p}_{j \leftarrow i}=x_{i}\left(1+\mathfrak{a}_{i}+\mathfrak{a}_{j}\right)+x_{k} \mathfrak{a}_{k}+\mathfrak{a} .
$$

If any term of \mathfrak{a}_{j} is cancelled by a term of \mathfrak{a}_{i}, it still remains as a term of \mathfrak{a}_{k}, and hence all variables occurring in $\mathfrak{a}_{i}, \mathfrak{a}_{j}, \mathfrak{a}_{k}$ occur in $\mathfrak{p}_{j \leftarrow i}$. If both x_{i} and x_{k} also occur in $\mathfrak{p}_{j \leftarrow i}$, then all essential variables of f except for x_{j} occur in $\mathfrak{p}_{j \leftarrow i}$, and so $\operatorname{gap} f=1$.

If x_{k} does not occur in $\mathfrak{p}_{j \leftarrow i}$, then $\mathfrak{a}_{k}=0$ and so $\mathfrak{a}_{j}=1$. Then

$$
\mathfrak{p}_{l \leftarrow i}=x_{i} x_{j}+x_{i} x_{k}+x_{j} x_{k}+x_{i}+x_{i} \mathfrak{a}_{i}^{\prime}+x_{j}+\mathfrak{a}
$$

and every essential variable of f except for x_{l} occurs in $\mathfrak{p}_{l \leftarrow i}$. Thus gap $f=1$.

If x_{i} does not occur in $\mathfrak{p}_{j \leftarrow i}$, then $\mathfrak{a}_{j}=\mathfrak{a}_{i}+1$, and hence $\mathfrak{a}_{i}=\mathfrak{a}_{k}$. Consider then

$$
\mathfrak{p}_{i \leftarrow k}=x_{k}\left(1+\mathfrak{a}_{i}+\mathfrak{a}_{k}\right)+x_{j} \mathfrak{a}_{j}+\mathfrak{a}=x_{k}+x_{j} \mathfrak{a}_{j}+\mathfrak{a} .
$$

Again all essential variables of f except for x_{i} occur in $\mathfrak{p}_{i \leftarrow k}$, and so gap $f=1$.
Subcase 1.2.3. Assume that both x_{i} and x_{k} occur in $\mathfrak{p}_{j \leftarrow k}$ but there is a variable x_{l} occurring in \mathfrak{a}_{i} and in \mathfrak{a}_{j} but not in \mathfrak{a}_{k} nor in \mathfrak{a} such that x_{l} does not occur in $\mathfrak{p}_{j \leftarrow k}$ (due to some cancelling terms in \mathfrak{a}_{i} and \mathfrak{a}_{j}). Write $\mathfrak{a}_{i}=x_{l}+\mathfrak{a}_{i}^{\prime}, \mathfrak{a}_{j}=x_{l}+\mathfrak{a}_{j}^{\prime}$, and consider

$$
\begin{aligned}
\mathfrak{p}_{j \leftarrow l} & =x_{i} x_{l}+x_{i} x_{k}+x_{l} x_{k}+x_{i} x_{l}+x_{i} \mathfrak{a}_{i}^{\prime}+x_{l}+x_{l} \mathfrak{a}_{j}^{\prime}+x_{k} \mathfrak{a}_{k}+\mathfrak{a} \\
& =x_{i} x_{k}+x_{l} x_{k}+x_{i} \mathfrak{a}_{i}^{\prime}+x_{l}+x_{l} \mathfrak{a}_{j}^{\prime}+x_{k} \mathfrak{a}_{k}+\mathfrak{a} .
\end{aligned}
$$

Every essential variable of f except for x_{j} occurs in $\mathfrak{p}_{j \leftarrow l}$, and so gap $f=1$.
Case 2. Assume then that \mathfrak{p} is of the form

$$
\mathfrak{p}=x_{i} x_{j}+x_{i} x_{k} \mathfrak{a}_{i k}+x_{i} \mathfrak{a}_{i}+x_{j} \mathfrak{a}_{j}+x_{k} \mathfrak{a}_{k}+\mathfrak{a}
$$

where $\mathfrak{a}_{i k}$ is a polynomial of degree $0 ; \mathfrak{a}_{i}, \mathfrak{a}_{j}, \mathfrak{a}_{k}$ are polynomials of degree at most 1 ; and \mathfrak{a} is a polynomial of degree at most 2 such that variables x_{i}, x_{j}, x_{k} do not occur in $\mathfrak{a}_{i k}, \mathfrak{a}_{i}, \mathfrak{a}_{j}, \mathfrak{a}_{k}, \mathfrak{a}$. Note that $\mathfrak{a}_{i k}$ and \mathfrak{a}_{k} cannot both be 0 , for otherwise x_{k} would not occur in \mathfrak{p}. Consider

$$
\mathfrak{p}_{j \leftarrow i}=x_{i}\left(1+\mathfrak{a}_{i}+\mathfrak{a}_{j}\right)+x_{i} x_{k} \mathfrak{a}_{i k}+x_{k} \mathfrak{a}_{k}+\mathfrak{a} .
$$

By the above observation that $\mathfrak{a}_{i k}$ and \mathfrak{a}_{k} are not both $0, x_{k}$ occurs in $\mathfrak{p}_{j \leftarrow i}$. If all essential variables of f except for x_{j} occur in $\mathfrak{p}_{j \leftarrow i}$, then gap $f=1$ and we are done. Otherwise we distinguish between two cases.

Subcase 2.1. Assume that x_{i} does not occur in $\mathfrak{p}_{j \leftarrow i}$. In this case $\mathfrak{a}_{j}=\mathfrak{a}_{i}+1$, $\mathfrak{a}_{i k}=0$, and $\mathfrak{a}_{k} \neq 0$. Consider

$$
\begin{aligned}
\mathfrak{p}_{i \leftarrow k} & =x_{j} x_{k}+x_{k} \mathfrak{a}_{i k}+x_{k} \mathfrak{a}_{i}+x_{j} \mathfrak{a}_{j}+x_{k} \mathfrak{a}_{k}+\mathfrak{a} \\
& =x_{j} x_{k}+x_{k}\left(\mathfrak{a}_{i}+\mathfrak{a}_{k}\right)+x_{j}+x_{j} \mathfrak{a}_{i}+\mathfrak{a} .
\end{aligned}
$$

Both x_{j} and x_{k} occur in $\mathfrak{p}_{i \leftarrow k}$, because the term $x_{j} x_{k}$ cannot be cancelled. If any term of \mathfrak{a}_{i} is cancelled by a term of \mathfrak{a}_{k}, it still remains in $x_{j} \mathfrak{a}_{i}$. Thus, all essential variables of f except for x_{i} occur in $\mathfrak{p}_{i \leftarrow k}$, and hence gap $f=1$.

Subcase 2.2. Assume that x_{i} occurs in $\mathfrak{p}_{j \leftarrow i}$ but there is a variable x_{l} occurring in \mathfrak{a}_{i} and \mathfrak{a}_{j} but not in $\mathfrak{a}_{i k}, \mathfrak{a}_{k}$, nor in \mathfrak{a} such that x_{l} does not occur in $\mathfrak{p}_{j \leftarrow i}$ (due to some cancelling terms in \mathfrak{a}_{i} and \mathfrak{a}_{j}). Consider

$$
\mathfrak{p}_{k \leftarrow l}=x_{i} x_{j}+x_{i} x_{l} \mathfrak{a}_{i k}+x_{i} \mathfrak{a}_{i}+x_{j} \mathfrak{a}_{j}+x_{l} \mathfrak{a}_{k}+\mathfrak{a} .
$$

If $\mathfrak{a}_{i k}=1$, then the terms $x_{i} x_{l}$ in $x_{i} \mathfrak{a}_{i}$ and in $x_{i} x_{l} \mathfrak{a}_{i k}$ cancel each other. These are the only terms that may be cancelled out. Nevertheless, x_{l} occurs also in \mathfrak{a}_{j}, and so all essential variables of f except for x_{k} occur in $\mathfrak{p}_{k \leftarrow l}$. Therefore gap $f=1$ also in this case.

Proof of Theorem 6. Denote the Zhegalkin polynomial of f by \mathfrak{p}. It is straightforward to verify that if \mathfrak{p} has one of the special forms listed in the statement of the theorem, then f does not have a variable identification minor of essential arity ess $f-1$ but it has one of essential arity ess $f-2$. For the converse implication, we will prove by induction on ess f that if \mathfrak{p} is not of any of the special forms, then there is a variable identification minor g of f such that ess $g=\operatorname{ess} f-1$, i.e., f has arity gap 1 .

If ess $f=2$ and \mathfrak{p} is not of any of the special forms, then $\mathfrak{p}=x_{i} x_{j}+c$ or $\mathfrak{p}=x_{i} x_{j}+x_{i}+x_{j}+c$ where $c \in\{0,1\}$, and in both cases $\mathfrak{p}_{j \leftarrow i}=x_{i}+c$. In this case gap $f=1$.

If ess $f=3$, then \mathfrak{p} has one of the following forms

$$
\begin{aligned}
& x_{i} x_{j} x_{k}+x_{i} x_{j}+x_{i} x_{k}+x_{j} x_{k}+a_{i} x_{i}+a_{j} x_{j}+a_{k} x_{k}+c, \\
& x_{i} x_{j} x_{k}+x_{i} x_{k}+x_{j} x_{k}+a_{i} x_{i}+a_{j} x_{j}+a_{k} x_{k}+c, \\
& x_{i} x_{j} x_{k}+x_{i} x_{j}+a_{i} x_{i}+a_{j} x_{j}+a_{k} x_{k}+c, \\
& x_{i} x_{j}+x_{i} x_{k}+x_{j} x_{k}+x_{k}+c \\
& x_{i} x_{j}+x_{i} x_{k}+x_{j} x_{k}+x_{i}+x_{j}+x_{k}+c, \\
& x_{i} x_{j}+x_{i} x_{k}+a_{i} x_{i}+a_{j} x_{j}+a_{k} x_{k}+c, \\
& x_{i} x_{k}+a_{i} x_{i}+a_{j} x_{j}+a_{k} x_{k}+c,
\end{aligned}
$$

where $a_{i}, a_{j}, a_{k}, c \in\{0,1\}$. It is easy to verify that in each case $\mathfrak{p}_{j \leftarrow i}$ contains the term $x_{i} x_{k}$, and hence both x_{i} and x_{k} are essential in $f_{j \leftarrow i}$, and so gap $f=1$.

For the sake of induction, assume then that the claim holds for $2 \leq \operatorname{ess} f<n$, $n \geq 4$. Consider the case that ess $f=n$. Since the case where $\operatorname{deg} \mathfrak{p}=1$ is ruled out by the assumption that \mathfrak{p} does not have any of the special forms and the case where $\operatorname{deg} \mathfrak{p}=2$ is settled by Lemma 7 we can assume that $\operatorname{deg} \mathfrak{p} \geq 3$. Choose a variable x_{m} from a term of the highest possible degree in \mathfrak{p}, and write

$$
\mathfrak{p}=x_{m} \mathfrak{q}+\mathfrak{r}
$$

where the polynomials \mathfrak{q} and \mathfrak{r} do not contain x_{k}. We clearly have that $\operatorname{deg} \mathfrak{q}=$ $\operatorname{deg} \mathfrak{p}-1$, and \mathfrak{q} and \mathfrak{r} represent functions with less than n essential variables. Of course, every essential variable of f except for x_{m} occurs in \mathfrak{q} or \mathfrak{r}. We have three different cases to consider, depending on the comparability under inclusion of the sets of variables occurring in \mathfrak{q} and \mathfrak{r}.

Case 1. Assume that there is a variable x_{i} that occurs in \mathfrak{q} but does not occur in \mathfrak{r}, and there is a variable x_{j} that occurs in \mathfrak{r} but does not occur in \mathfrak{q}. Write

$$
\mathfrak{q}=x_{i} \mathfrak{q}^{\prime}+\mathfrak{q}^{\prime \prime}, \quad \mathfrak{r}=x_{j} \mathfrak{r}^{\prime}+\mathfrak{r}^{\prime \prime}
$$

where $\mathfrak{q}^{\prime}, \mathfrak{q}^{\prime \prime}, \mathfrak{r}^{\prime}, \mathfrak{r}^{\prime \prime}$ do not contain x_{i}, x_{j}. Then

$$
\mathfrak{p}=x_{m} x_{i} \mathfrak{q}^{\prime}+x_{m} \mathfrak{q}^{\prime \prime}+x_{j} \mathfrak{r}^{\prime}+\mathfrak{r}^{\prime \prime}
$$

and we have that

$$
\mathfrak{p}_{j \leftarrow i}=x_{m} x_{i} \mathfrak{q}^{\prime}+x_{m} \mathfrak{q}^{\prime \prime}+x_{i} \mathfrak{r}^{\prime}+\mathfrak{r}^{\prime \prime}
$$

where no terms can cancel. Hence all essential variables of f except for x_{j} are essential in $f_{j \leftarrow i}$ and so gap $f=1$.

Case 2. Assume that every variable occurring in \mathfrak{r} occurs in \mathfrak{q}. In this case \mathfrak{q} represents a function q of essential arity ess $f-1$, containing all essential variables of f except for x_{m}. We also have that $\operatorname{deg} \mathfrak{q}=\operatorname{deg} \mathfrak{p}-1 \geq 2$.

Subcase 2.1. If ess $f \geq 5$, then ess $q \geq 4$, and we can apply the inductive hypothesis, which tells us that there are variables x_{i} and x_{j} such that ess $q_{i \leftarrow j}=$ ess $q-1$. Hence $f_{i \leftarrow j}$ is represented by the polynomial $\mathfrak{p}_{i \leftarrow j}=x_{m} \mathfrak{q}_{i \leftarrow j}+\mathfrak{r}_{i \leftarrow j}$, and all essential variables of f except for x_{i} occur in $\mathfrak{p}_{i \leftarrow j}$, since no terms can cancel between $x_{m} \mathfrak{q}_{i \leftarrow j}$ and $\mathfrak{r}_{i \leftarrow j}$. Thus gap $f=1$.

Subcase 2.2. If ess $f=4$, then ess $q=3$, and we can apply the inductive hypothesis as above unless $\mathfrak{q}=x_{i} x_{j}+x_{i} x_{k}+x_{j} x_{k}+c$ or $\mathfrak{q}=x_{i} x_{j}+x_{i} x_{k}+x_{j} x_{k}+$
$x_{i}+x_{j}+c$. If this is the case, consider first the case where \mathfrak{q} contains a variable $x_{l} \in\left\{x_{i}, x_{j}, x_{k}\right\}$ that does not occur in \mathfrak{r}. Consider then

$$
\mathfrak{p}_{m \leftarrow l}=x_{l} \mathfrak{q}+\mathfrak{r}
$$

Then $x_{l} \mathfrak{q}$ contains the term $x_{i} x_{j} x_{k}$, which cannot be cancelled. Namely, all other terms of $x_{l} \mathfrak{q}$ have degree at most 2 , and since there are at most two variables occurring in \mathfrak{r}, the terms of \mathfrak{r} also have degree at most 2 . Thus, all variables of f except for x_{m} occur in $\mathfrak{p}_{m \leftarrow l}$, and so the arity gap of f is 1 .

Consider then the case that \mathfrak{q} and \mathfrak{r} contain the same variables, i.e., x_{i}, x_{j}, x_{k}. If $\operatorname{deg} \mathfrak{r} \leq 2$, then it is easily seen that $\mathfrak{p}_{m \leftarrow i}$ contains the term $x_{i} x_{j} x_{k}$, and all essential variables of f except for x_{m} are essential in $f_{m \leftarrow i}$. Otherwise, we can apply the inductive hypothesis on the function r represented by \mathfrak{r} and we obtain variables x_{α} and x_{β} such that ess $r_{\alpha \leftarrow \beta}=$ ess $r-1$. It can be easily verified that no identification of variables brings \mathfrak{q} into the zero polynomial, so x_{m} and two other variables will occur in $\mathfrak{p}_{\alpha \leftarrow \beta}=x_{m} \mathfrak{q}_{\alpha \leftarrow \beta}+\mathfrak{r}_{\alpha \leftarrow \beta}$. We have that gap $f=1$ also in this case.

Case 3. Assume that every variable occurring in \mathfrak{q} occurs in \mathfrak{r} but there is a variable x_{l} that occurs in \mathfrak{r} but does not occur in \mathfrak{q}. If $\operatorname{deg} \mathfrak{r}=1$, then $\mathfrak{r}=x_{l}+\mathfrak{r}^{\prime}$ where \mathfrak{r}^{\prime} does not contain x_{l}. Then $\mathfrak{p}_{m \leftarrow l}=x_{l} \mathfrak{q}+x_{l}+\mathfrak{r}^{\prime}$, where the only term that may cancel out is x_{l}, and this happens if \mathfrak{q} has a constant term 1 . Nevertheless, x_{l} occurs in $\mathfrak{r}_{m \leftarrow l}$ because $\operatorname{deg} \mathfrak{q} \geq 2$. Of course, all other essential variables of f except for x_{m} also occur in $\mathfrak{p}_{m \leftarrow l}$, so gap $f=1$. We may thus assume that $\operatorname{deg} \mathfrak{r} \geq 2$.

Subcase 3.1. Assume first that ess $f=4$ (in which case \mathfrak{r} contains three variables and \mathfrak{q} contains at most two variables) and $\mathfrak{r}=x_{i} x_{j}+x_{i} x_{k}+x_{j} x_{k}+c$ or $\mathfrak{r}=$ $x_{i} x_{j}+x_{i} x_{k}+x_{j} x_{k}+x_{i}+x_{j}+c$. Since we assume that $\operatorname{deg} \mathfrak{p} \geq 3$, we have that $\operatorname{deg} \mathfrak{q} \geq 2$ and hence \mathfrak{q} contains at least two variables. Thus exactly two variables occur in \mathfrak{q} and so also $\operatorname{deg} \mathfrak{q}=2$. Then $\mathfrak{q}=x_{\alpha} x_{\beta}+b_{1} x_{\alpha}+b_{2} x_{\beta}+d$ where $\alpha, \beta \in\{i, j, k\}$ and $b_{1}, b_{2}, d \in\{0,1\}$. Let $\gamma \in\{i, j, k\} \backslash\{\alpha, \beta\}$. Then $\mathfrak{p}_{m \leftarrow \gamma}$ contains the term $x_{i} x_{j} x_{k}$, and hence all essential variables of f except for x_{m} occur in $\mathfrak{p}_{m \leftarrow \gamma}$, and so $\operatorname{gap} f=1$.

Subcase 3.2. Assume then that ess $f>4$ or ess $f=4$ but \mathfrak{r} does not have any of the special forms. In this case we can apply the inductive hypothesis on the function r represented by \mathfrak{r}. Let x_{i} and x_{j} be such that ess $r_{j \leftarrow i}=\operatorname{ess} r-1$. If $\mathfrak{q}_{j \leftarrow i} \neq 0$, then x_{m} and all other essential variables of f except for x_{j} occur in $\mathfrak{p}_{j \leftarrow i}$, and we are done - the arity gap of f is 1 . We may thus assume that $\mathfrak{q}_{j \leftarrow i}=0$. Write \mathfrak{q} and \mathfrak{r} in the form

$$
\begin{aligned}
\mathfrak{q} & =x_{i} x_{j} \mathfrak{a}_{1}+x_{i} \mathfrak{a}_{2}+x_{j} \mathfrak{a}_{3}+\mathfrak{a}_{4}, \\
\mathfrak{r} & =x_{i} x_{j} \mathfrak{b}_{1}+x_{i} \mathfrak{b}_{2}+x_{j} \mathfrak{b}_{3}+\mathfrak{b}_{4},
\end{aligned}
$$

where the polynomials $\mathfrak{a}_{1}, \mathfrak{a}_{2}, \mathfrak{a}_{3}, \mathfrak{a}_{4}, \mathfrak{b}_{1}, \mathfrak{b}_{2}, \mathfrak{b}_{3}, \mathfrak{b}_{4}$ do not contain x_{i}, x_{j}. Define the polynomials $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{7}$ as follows (cf. the proof of Theorem 4 in Salomaa [11]):
\mathfrak{q}_{1} consists of the terms common to $\mathfrak{a}_{1}, \mathfrak{a}_{2}$, and \mathfrak{a}_{3}.
$\mathfrak{q}_{i}, i=2,3$, consists of those terms common to \mathfrak{a}_{1} and \mathfrak{a}_{i} which are not in \mathfrak{q}_{1}.
\mathfrak{q}_{4} consists of those terms common to \mathfrak{a}_{2} and \mathfrak{a}_{3} which are not in \mathfrak{q}_{1}.
$\mathfrak{q}_{4+i}, i=1,2,3$, consists of the remaining terms in \mathfrak{a}_{i}.
Define the polynomials and $\mathfrak{r}_{1}, \ldots, \mathfrak{r}_{7}$ similarly in terms of the \mathfrak{b}_{i} 's. Note that for any $i \neq j, \mathfrak{q}_{i}$ and \mathfrak{q}_{j} do not have any terms in common, and similarly \mathfrak{r}_{i} and \mathfrak{r}_{j}
do not have any terms in common. Hence,

$$
\begin{aligned}
\mathfrak{q} & =x_{i} x_{j}\left(\mathfrak{q}_{1}+\mathfrak{q}_{2}+\mathfrak{q}_{3}+\mathfrak{q}_{5}\right)+x_{i}\left(\mathfrak{q}_{1}+\mathfrak{q}_{2}+\mathfrak{q}_{4}+\mathfrak{q}_{6}\right)+x_{j}\left(\mathfrak{q}_{1}+\mathfrak{q}_{3}+\mathfrak{q}_{4}+\mathfrak{q}_{7}\right)+\mathfrak{a}_{4}, \\
\mathfrak{r} & =x_{i} x_{j}\left(\mathfrak{r}_{1}+\mathfrak{r}_{2}+\mathfrak{r}_{3}+\mathfrak{r}_{5}\right)+x_{i}\left(\mathfrak{r}_{1}+\mathfrak{r}_{2}+\mathfrak{r}_{4}+\mathfrak{r}_{6}\right)+x_{j}\left(\mathfrak{r}_{1}+\mathfrak{r}_{3}+\mathfrak{r}_{4}+\mathfrak{r}_{7}\right)+\mathfrak{b}_{4} .
\end{aligned}
$$

Identification of x_{i} with x_{j} yields

$$
\begin{aligned}
\mathfrak{q}_{j \leftarrow i} & =x_{i}\left(\mathfrak{q}_{1}+\mathfrak{q}_{5}+\mathfrak{q}_{6}+\mathfrak{q}_{7}\right)+\mathfrak{a}_{4}, \\
\mathfrak{r}_{j \leftarrow i} & =x_{i}\left(\mathfrak{r}_{1}+\mathfrak{r}_{5}+\mathfrak{r}_{6}+\mathfrak{r}_{7}\right)+\mathfrak{b}_{4} .
\end{aligned}
$$

Since we are assuming that $\mathfrak{q}_{j \leftarrow i}=0$, we have that $\mathfrak{q}_{1}=\mathfrak{q}_{5}=\mathfrak{q}_{6}=\mathfrak{q}_{7}=\mathfrak{a}_{4}=0$. On the other hand, $\mathfrak{q} \neq 0$, so $\mathfrak{q}_{2}, \mathfrak{q}_{3}, \mathfrak{q}_{4}$ are not all zero. Thus

$$
\mathfrak{q}=x_{i} x_{j}\left(\mathfrak{q}_{2}+\mathfrak{q}_{3}\right)+x_{i}\left(\mathfrak{q}_{2}+\mathfrak{q}_{4}\right)+x_{j}\left(\mathfrak{q}_{3}+\mathfrak{q}_{4}\right)
$$

All essential variables of f except for x_{j} are contained in $\mathfrak{r}_{j \leftarrow i}$.
Subcase 3.2.1. Assume that there is a variable x_{t} occurring in \mathfrak{b}_{4} that does not occur in $\mathfrak{r}_{1}, \mathfrak{r}_{5}, \mathfrak{r}_{6}, \mathfrak{r}_{7}$. Consider

$$
\mathfrak{p}_{m \leftarrow t}=x_{t} \mathfrak{q}+\mathfrak{r}=x_{l} \mathfrak{q}+x_{i} x_{j} \mathfrak{b}_{1}+x_{i} \mathfrak{b}_{2}+x_{j} \mathfrak{b}_{3}+\mathfrak{b}_{4} .
$$

Cancelling may only happen between a term of $x_{t} \mathfrak{q}$ and a term of \mathfrak{r}. No term of \mathfrak{b}_{4} can be cancelled, because every term of $x_{t} \mathfrak{q}$ contains x_{i} or x_{j} but the terms of \mathfrak{b}_{4} do not contain either. The variables that do not occur in \mathfrak{b}_{4} occur in some terms of $\mathfrak{b}_{1}, \mathfrak{b}_{2}, \mathfrak{b}_{3}$ that do not contain x_{t}. Thus, all essential variables of f except for x_{m} occur in $\mathfrak{p}_{m \leftarrow t}$, and so in this case f has arity gap 1 .

Subcase 3.2.2. Assume that all variables of \mathfrak{r} except for x_{i}, x_{j} occur already in $\mathfrak{r}_{1}+\mathfrak{r}_{5}+\mathfrak{r}_{6}+\mathfrak{r}_{7}$. Consider

$$
\begin{gather*}
\mathfrak{p}_{m \leftarrow i}=x_{i} x_{j}\left(\mathfrak{q}_{2}+\mathfrak{q}_{4}+\mathfrak{r}_{1}+\mathfrak{r}_{2}+\mathfrak{r}_{3}+\mathfrak{r}_{5}\right)+ \\
x_{i}\left(\mathfrak{q}_{2}+\mathfrak{q}_{4}+\mathfrak{r}_{1}+\mathfrak{r}_{2}+\mathfrak{r}_{4}+\mathfrak{r}_{6}\right)+ \tag{1}\\
x_{j}\left(\mathfrak{r}_{1}+\mathfrak{r}_{3}+\mathfrak{r}_{4}+\mathfrak{r}_{7}\right)+\mathfrak{b}_{4} .
\end{gather*}
$$

Subcase 3.2.2.1. Assume first that x_{i} does not occur in $\mathfrak{p}_{m \leftarrow i}$ in (1). Then

$$
\begin{array}{r}
\mathfrak{q}_{2}+\mathfrak{q}_{4}+\mathfrak{r}_{1}+\mathfrak{r}_{2}+\mathfrak{r}_{3}+\mathfrak{r}_{5}=0 \\
\mathfrak{q}_{2}+\mathfrak{q}_{4}+\mathfrak{r}_{1}+\mathfrak{r}_{2}+\mathfrak{r}_{4}+\mathfrak{r}_{6}=0,
\end{array}
$$

and since the \mathfrak{r}_{i} 's do not have terms in common, we have that

$$
\mathfrak{r}_{1}+\mathfrak{r}_{2}=\mathfrak{q}_{2}+\mathfrak{q}_{4}, \quad \mathfrak{r}_{3}=\mathfrak{r}_{4}=\mathfrak{r}_{5}=\mathfrak{r}_{6}=0
$$

Then all variables of \mathfrak{r} except for x_{i}, x_{j} occur already in $\mathfrak{r}_{1}+\mathfrak{r}_{7}$. Consider

$$
\begin{gather*}
\mathfrak{p}_{m \leftarrow j}=x_{i} x_{j}\left(\mathfrak{q}_{3}+\mathfrak{q}_{4}+\mathfrak{r}_{1}+\mathfrak{r}_{2}+\mathfrak{r}_{3}+\mathfrak{r}_{5}\right)+ \\
x_{i}\left(\mathfrak{r}_{1}+\mathfrak{r}_{2}+\mathfrak{r}_{4}+\mathfrak{r}_{6}\right)+ \\
x_{j}\left(\mathfrak{q}_{3}+\mathfrak{q}_{4}+\mathfrak{r}_{1}+\mathfrak{r}_{3}+\mathfrak{r}_{4}+\mathfrak{r}_{7}\right)+\mathfrak{b}_{4} \\
=x_{i} x_{j}\left(\mathfrak{q}_{2}+\mathfrak{q}_{3}\right)+ \tag{2}\\
x_{i}\left(\mathfrak{r}_{1}+\mathfrak{r}_{2}\right)+ \\
x_{j}\left(\mathfrak{q}_{2}+\mathfrak{q}_{3}+\mathfrak{r}_{2}+\mathfrak{r}_{7}\right)+\mathfrak{b}_{4} .
\end{gather*}
$$

All variables of \mathfrak{r}_{1} are there on the fifth line of (2). If a term of \mathfrak{r}_{7} is cancelled by a term of $\mathfrak{q}_{2}+\mathfrak{q}_{3}$ on the sixth line, it still remains on the fourth line, so all variables of \mathfrak{r}_{7} are also there. We still need to verify that the variables x_{i} and x_{j}
are not cancelled out from (2). If $\mathfrak{q}_{2}+\mathfrak{q}_{3} \neq 0$ then we are done. Assume then that $\mathfrak{q}_{2}+\mathfrak{q}_{3}=0$, in which case $\mathfrak{q}_{4} \neq 0$. Since

$$
\mathfrak{r}_{1}+\mathfrak{r}_{2}+\mathfrak{r}_{4}+\mathfrak{r}_{6}=\mathfrak{r}_{1}+\mathfrak{r}_{2}=\mathfrak{q}_{2}+\mathfrak{q}_{4}=\mathfrak{q}_{4} \neq 0
$$

we have x_{i} in (2). Since

$$
\mathfrak{q}_{3}+\mathfrak{q}_{4}+\mathfrak{r}_{1}+\mathfrak{r}_{3}+\mathfrak{r}_{4}+\mathfrak{r}_{7}=\mathfrak{q}_{4}+\mathfrak{r}_{1}+\mathfrak{r}_{7}
$$

and $\mathfrak{r}_{1}+\mathfrak{r}_{7}$ contain all variables of \mathfrak{r} except for x_{i}, x_{j}, but \mathfrak{q}_{4} does not, $\mathfrak{q}_{4}+\mathfrak{r}_{1}+\mathfrak{r}_{7} \neq 0$, so we also have x_{j} in (2). Thus, the arity gap of f equals 1 in this case.

Subcase 3.2.2.2. Assume then that x_{i} occurs in $\mathfrak{p}_{m \leftarrow i}$ in (11). Nothing cancels out on the third line of (11), and therefore the variables of \mathfrak{r}_{1} and \mathfrak{r}_{7} occur in $\mathfrak{p}_{m \leftarrow i}$. Terms of \mathfrak{r}_{5} may be cancelled out by terms of $\mathfrak{q}_{2}+\mathfrak{q}_{4}$ on the first line of (1) but such terms will remain on the second line. Thus the variables of \mathfrak{r}_{5} occur in $\mathfrak{p}_{m \leftarrow i}$. A similar argument shows that the variables of \mathfrak{r}_{6} also occur in $\mathfrak{p}_{m \leftarrow i}$. In order for f to have arity gap 1 , we still need to verify that x_{j} occurs in $\mathfrak{p}_{m \leftarrow i}$. If $\mathfrak{q}_{2}+\mathfrak{q}_{4}+\mathfrak{r}_{1}+\mathfrak{r}_{2}+\mathfrak{r}_{3}+\mathfrak{r}_{5} \neq 0$, then we are done. We may thus assume that

$$
\begin{equation*}
\mathfrak{q}_{2}+\mathfrak{q}_{4}+\mathfrak{r}_{1}+\mathfrak{r}_{2}+\mathfrak{r}_{3}+\mathfrak{r}_{5}=0 \tag{3}
\end{equation*}
$$

By the assumption that x_{i} occurs in $\mathfrak{p}_{m \leftarrow i}$, the second line of (11) does not vanish, i.e.,

$$
0 \neq \mathfrak{q}_{2}+\mathfrak{q}_{4}+\mathfrak{r}_{1}+\mathfrak{r}_{2}+\mathfrak{r}_{4}+\mathfrak{r}_{6}=\mathfrak{r}_{3}+\mathfrak{r}_{4}+\mathfrak{r}_{5}+\mathfrak{r}_{6}
$$

If the third line of (11) does not vanish either, i.e., $\mathfrak{r}_{1}+\mathfrak{r}_{3}+\mathfrak{r}_{4}+\mathfrak{r}_{7} \neq 0$, then we have both x_{i} and x_{j} and we are done. We may thus assume that $\mathfrak{r}_{1}+\mathfrak{r}_{3}+\mathfrak{r}_{4}+\mathfrak{r}_{7}=0$, i.e., $\mathfrak{r}_{1}=\mathfrak{r}_{3}=\mathfrak{r}_{4}=\mathfrak{r}_{7}=0$. Then all variables of \mathfrak{r} except for x_{i}, x_{j} occur already in $\mathfrak{r}_{5}+\mathfrak{r}_{6}$. Equation (3) implies that $\mathfrak{r}_{2}+\mathfrak{r}_{5}=\mathfrak{q}_{2}+\mathfrak{q}_{4}$. Consider

$$
\begin{gather*}
\mathfrak{p}_{m \leftarrow j}=x_{i} x_{j}\left(\mathfrak{q}_{3}+\mathfrak{q}_{4}+\mathfrak{r}_{1}+\mathfrak{r}_{2}+\mathfrak{r}_{3}+\mathfrak{r}_{5}\right)+ \\
x_{i}\left(\mathfrak{r}_{1}+\mathfrak{r}_{2}+\mathfrak{r}_{4}+\mathfrak{r}_{6}\right)+ \\
x_{j}\left(\mathfrak{q}_{3}+\mathfrak{q}_{4}+\mathfrak{r}_{1}+\mathfrak{r}_{3}+\mathfrak{r}_{4}+\mathfrak{r}_{7}\right)+\mathfrak{b}_{4} \\
=x_{i} x_{j}\left(\mathfrak{q}_{2}+\mathfrak{q}_{3}\right)+ \tag{4}\\
x_{i}\left(\mathfrak{q}_{2}+\mathfrak{q}_{4}+\mathfrak{r}_{5}+\mathfrak{r}_{6}\right)+ \\
x_{j}\left(\mathfrak{q}_{3}+\mathfrak{q}_{4}\right)+\mathfrak{b}_{4} .
\end{gather*}
$$

Assume first that $\mathfrak{q}_{2}+\mathfrak{q}_{3}=0$, in which case $\mathfrak{q}_{4} \neq 0$. If a term of $\mathfrak{r}_{5}+\mathfrak{r}_{6}$ is cancelled by a term of \mathfrak{q}_{4} on the second line of (4), it will still remain on the third line. Therefore we have in $\mathfrak{p}_{m \leftarrow j}$ all variables of \mathfrak{r} except for x_{i} and x_{j}. Since $\mathfrak{r}_{5}+\mathfrak{r}_{6}$ contains all variables of \mathfrak{r} except for x_{i}, x_{j} but $\mathfrak{q}_{2}+\mathfrak{q}_{4}=\mathfrak{q}_{4}$ does not, the second line of (4) does not vanish, and so we have x_{i}. We also have x_{j} because $\mathfrak{q}_{3}+\mathfrak{q}_{4}=\mathfrak{q}_{4} \neq 0$ on the third line. In this case f has arity gap 1 .

Assume then that $\mathfrak{q}_{2}+\mathfrak{q}_{3} \neq 0$. Then the first line of (4) does not vanish and both x_{i} and x_{j} occur in $\mathfrak{p}_{m \leftarrow j}$. If any term of $\mathfrak{r}_{5}+\mathfrak{r}_{6}$ is cancelled by a term of \mathfrak{q}_{2} on the second line of (4), it still remains on the first line, and if it is cancelled by a term of \mathfrak{q}_{4}, it remains on the third line. Thus all variables of \mathfrak{r} occur in $\mathfrak{p}_{m \leftarrow j}$, and f has arity gap 1 again. This completes the proof of Theorem6.

5. Concluding remarks

We do not know whether the upper bound on arity gap given by Theorem 3 is sharp. For base sets A with $k \geq 3$ elements, we do not know whether there exists an operation f on A with ess $f \geq k+1$ and gap $f \geq 3$. We know that for all $k \geq 2$,
there are operations on a k-element set A with arity gap 2. Consider for instance the quasi-linear functions of Burle [1]. A function f is quasi-linear if it has the form

$$
f=g\left(h_{1}\left(x_{1}\right) \oplus h_{2}\left(x_{2}\right) \oplus \cdots \oplus h_{n}\left(x_{n}\right)\right)
$$

where $h_{1}, \ldots, h_{n}: A \rightarrow\{0,1\}, g:\{0,1\} \rightarrow A$ are arbitrary mappings and \oplus denotes addition modulo 2 . It is easy to verify that if those h_{i} 's that are nonconstant coincide (and g is not a constant map), then f has arity gap 2.

In general, if there is an operation f on a k-element set A with with gap $f=m$, then there are operations of arity gap m on all sets B of at least k elements. Namely, it is easy to see that any operation g on B of the form

$$
g=\phi\left(f\left(\gamma\left(x_{1}\right), \gamma\left(x_{2}\right), \ldots, \gamma\left(x_{n}\right)\right)\right),
$$

where $\gamma: B \rightarrow A$ is surjective and $\phi: A \rightarrow B$ is injective, satisfies ess $g=\operatorname{ess} f$ and $\operatorname{gap} g=\operatorname{gap} f$.

References

[1] G. A. Burle, The classes of k-valued logics containing all one-variable functions, Diskretnyi Analiz 10 (1967) 3-7 (in Russian).
[2] K. N. Čimev, Separable Sets of Arguments of Functions, Studies 180/1986, Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, 1986.
[3] M. Couceiro, On the lattice of equational classes of Boolean functions and its closed intervals, Technical report A367, University of Tampere, 2006.
[4] M. Couceiro, M. Pouzet, On a quasi-ordering on Boolean functions, arXiv:math.CO/ 0601218, 2006.
[5] R. O. Davies, Two theorems on essential variables, J. London Math. Soc. 41 (1966) 333-335.
[6] A. Ehrenfeucht, J. Kahn, R. Maddux, J. Mycielski, On the dependence of functions on their variables, J. Combin. Theory Ser. A 33 (1982) 106-108.
[7] O. Ekin, S. Foldes, P. L. Hammer, L. Hellerstein, Equational characterizations of Boolean function classes, Discrete Math. 211 (2000) 27-51.
[8] A. Feigelson, L. Hellerstein, The forbidden projections of unate functions, Discrete Appl. Math. 77 (1997) 221-236.
[9] E. Lehtonen, Descending chains and antichains of the unary, linear, and monotone subfunction relations, Order 23 (2006) 129-142.
[10] N. Pippenger, Galois theory for minors of finite functions, Discrete Math. 254 (2002) 405419.
[11] A. Salomat, On essential variables of functions, especially in the algebra of logic, Ann. Acad. Sci. Fenn. Ser. A I. Math. 339 (1963) 3-11.
[12] C. Wang, Boolean minors, Discrete Math. 141 (1991) 237-258.
[13] S. V. Yablonski, Functional constructions in a k-valued logic, Tr. Mat. Inst. Steklova 51 (1958) 5-142 (in Russian).
[14] I. E. Zverovich, Characterizations of closed classes of Boolean functions in terms of forbidden subfunctions and Post classes, Discrete Appl. Math. 149 (2005) 200-218.

Department of Mathematics, Statistics and Philosophy, University of Tampere, FI33014 Tampereen yliopisto, Finland

E-mail address: miguel.couceiro@uta.fi
Institute of Mathematics, Tampere University of Technology, P.O. Box 553, FI-33101 Tampere, Finland

E-mail address: erkko.lehtonen@tut.fi

[^0]: Date: July 25, 2021.

