

Edinburgh Research Explorer

A Logical Characterization of Robustness, Mutants and Species
in Colonies of Agents

Citation for published version:
Mardare, R, Cavaliere, M & Sedwards, S 2008, 'A Logical Characterization of Robustness, Mutants and
Species in Colonies of Agents', International Journal of Foundations of Computer Science, vol. 19, no. 5,
pp. 1199-1221. https://doi.org/10.1142/S0129054108006236

Digital Object Identifier (DOI):
10.1142/S0129054108006236

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
International Journal of Foundations of Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 29. Mar. 2024

https://doi.org/10.1142/S0129054108006236
https://doi.org/10.1142/S0129054108006236
https://www.research.ed.ac.uk/en/publications/bba2eea2-d3d4-4920-a74a-0d36dbc2f71d

Technical Report CoSBi 23/2007

A Logical Characterization of Robustness,
Mutants and Species in Colonies of Agents

Matteo Cavaliere

The Microsoft Research-University of Trento Centre for Computational and Systems Biology,
Trento, Italy

cavaliere@cosbi.eu

Radu Mardare

The Microsoft Research-University of Trento Centre for Computational and Systems Biology,
Trento, Italy

mardare@cosbi.eu

Sean Sedwards

The Microsoft Research-University of Trento Centre for Computational and Systems Biology,
Trento, Italy

sedwards@cosbi.eu

This is the preliminary version of a paper that will appear in
International Journal of Foundations of Computer Science, 19 (5), 2008

A Logical Characterization of Robustness, Mutants and
Species in Colonies of Agents

Matteo Cavaliere, Radu Mardare, Sean Sedwards
The Microsoft Research-University of Trento, Italy

September 30, 2009

We study a modeling framework and computational paradigm called Colonies of Synchronizing Agents
(CSAs), which abstracts intracellular and intercellular mechanisms of biological tissues. The model is based on
a multiset of agents (cells) in a common environment. Each agent has a local contents, stored in the form of a
multiset of atomic objects, updated by multiset rewriting rules which may act on individual agents (intracellular
action) or synchronize the contents of pairs of agents (intercellular action).

In this paper we investigate dynamic properties of CSAs, by means of temporal logic, and we give a logical
characterization of some notions inspired by evolutionary biology such as robustness, mutants and species.
We reveal the relation that exists between the concept of robustness for CSAs and the bisimulation relation on
colonies. We also present some decidability results for particular cases of robustness.

1 Motivations
Inspired by biological tissues and populations of cells, in our previous work [6, 5] it has been intro-
duced and investigated an abstract distributed model of computation called Colonies of Synchronizing
Agents (in short, CSAs). The intention is to create a framework to model, analyze and simulate
complex biological systems in the context of formal language theory and multiset rewriting.

The model is based on a population of agents (e.g., corresponding to cells or molecules) in a
common environment, able to modify their contents and to synchronize with other agents in the same
environment. Each agent has a contents represented by a multiset of atomic objects (e.g., correspond-
ing to chemical compounds or the characteristics of individual molecules) with some of the objects
classified as terminals (e.g., corresponding to properties or chemicals visible to an external observer).
An agent’s contents may be modified independently of other agents by means of multiset rewriting
rules (called internal rules)1 which can mimic chemistry or other types of intracellular mechanisms.

1In [6] internal rules are called evolution rules, adopting a standard terminology from the P systems area. We prefer
here a more general term.

1

Moreover, the agents can influence each other by synchronously changing their contents using pair-
wise synchronization rules. This models, in a deliberately abstract way, the various signalling mecha-
nisms and intercellular mechanisms present in biological systems. The rules are global, so all agents
obey the same rules: the only feature which may distinguish the agents is their contents. Evolutions
of CSAs are defined as sequences of transitions obtained by applying the rules to the agents. These
transitions thus mark the passage of the system from one configuration to another.

In this paper we investigate dynamic properties of CSAs by applying tools from classical fields
of computer science, such as formal language, automata theory and temporal logic. In particular, we
investigate the robustness of properties of CSAs by considering the ability of a CSA to generate a
particular core set of result despite the failure (i.e., removal/modification) of some of the agents or
rules. In a previous work, [6, 5], the core result was defined as a specific configuration in which
the colony must halt. In this paper we extend the idea by proposing a more general approach: we
introduce a temporal logic (an extension of CTL logic [19, 1]) as a language for specifying properties
of CSAs and we define robustness for such properties. CTL is expressive enough to encode both static
and dynamic properties and has the advantage of being widely studied and used for model checking
analysis by means of software tools, e.g. [21]. We show how robustness can be mapped into model
checking and eventually solved by using model checkers.

An other essential element in the definition of robustness is the transformation imposed to the
colony. For instance, in [6, 5] the robustness is considered against deletion of agents or of rules of a
colony. Formally, these transformations are binary relation on colonies, called refinement relations.
In this paper we analyze the notion of robustness against any definable refinement relation. In partic-
ular, we can define in terms of robustness several concepts inspired by evolutionary biology, such as
mutants and species of CSAs.

2 Formal Language Preliminaries
This Section is a brief introduction to some basic notions of formal language theory needed in the
paper. Further information regarding formal language and automata theory is available from the
many monographs in this area, starting with [11, 4] and ending with the handbook [18].

Given the set A we denote by |A| its cardinality, by P(A) its powerset (the set of all subsets of
A), and by ∅ the empty set. We denote by N the set of natural numbers.

An alphabet V is a finite set of symbols. By V ∗ we denote the set of all strings over V . By V +

we denote the set of all strings over V excluding the empty string. The empty string is denoted by λ.
The length of a string v is denoted by |v|. The concatenation of two strings u, v ∈ V ∗ is written uv.
The number of occurrences of the symbol a in the string w is denoted by |w|a.

Each subset of V ∗ is called a language.
The operations (with languages) of union and intersection are denoted ∪ and ∩, respectively.

Concatenation of the languages L1, L2 is L1L2 = {xy | x ∈ L1, y ∈ L2}.
A generative grammar is a finite device generating in a well-specified sense the strings of a lan-

guage. Chomsky grammars are particular cases of rewriting systems where the operation used in

2

processing the strings is the rewriting (replacement of a substring of the processed string by another
substring). A (Chomsky) grammar is a quadruple G = (N, T, S, P) where N and T are disjoint
alphabets, N being a set of non-terminals and T a set of terminals, S is the axiom and P is a finite
set of productions (rewriting rules). A production is usually written in the form r : u 7→ v with
u ∈ (N ∪ T)∗ with u containing at least a non-terminal (so, it cannot be the empty string).

For x, y ∈ (N ∪ T)∗ we write x 7→ y iff x = x1ux2, y = x1vx2 for some x1, x2 ∈ (N ∪ T)∗ and
u 7→ v ∈ P . One says that x directly derives y. The language generated by G denoted by L(G) is
defined by L(G) = {x ∈ T ∗ | S 7→∗ x}, where 7→∗ denotes the reflexive and transitive closure of
7→. We also use 7→+ for denoting the transitive closure of 7→. So the language L(G) consists of all
terminal strings that can be obtained starting from S by applying iteratively the productions in P .

A grammar is called regular if each production is of the form a 7→ v with a ∈ N and v ∈
T ∪TN ∪{λ}. A grammar is called context-free if each production is of the form a 7→ v with a ∈ N .

Languages generated by context-free and regular grammars are called context-free and regular
languages, respectively. We denote by CF and REG the families of context-free and regular lan-
guages, respectively. Regular languages are those accepted by finite state automata.

In general, when we want to specify a terminal alphabet we add a subscript to the name of the
family; e.g., REGA is the family of all regular languages over the alphabet A.

For a language L ⊆ V ∗, the set length(L) = {|x| |x ∈ L}} is called the length set of L, denoted
by NL.

If FL is an arbitrary family of languages then we denote by NFL the family of length sets of
languages in FL (i.e., it is a family of sets of natural numbers). For instance, NREG is the family of
length sets of regular languages.

The Parikh vector associated with a string x ∈ V ∗ with respect to the alphabet V = {a1, a2, . . . , an}
is PsV (x) = (|x|a1 , |x|a2 , . . . , |x|an). For L ⊆ V ∗ we define PsV (L) = {PsV (x)|x ∈ L}. This is
called the Parikh image of the language L. The null vector is denoted by 0.

If FL is an arbitrary family of languages then we denote by PsFL the family of Parikh images
of languages in FL (i.e., it is a family of sets of vectors of natural numbers).

For instance, PsREG is the family of Parikh images of regular languages in REG.
For instance, V = {a, b, c} is an alphabet, x = aaabbbcaa = a3b3ca2 is a string over V , L =

{anbn | n ≥ 1} is a language over V . We have |x| = 9, |x|a = 5, length(L) = {2n | n ≥ 1}.
The Parikh vector of x with respect to V is PsV (x) = (5, 3, 1) and for the language L we have
PsV (L) = {(n, n, 0) | n ≥ 1}.

A multiset is a set where each element may have a multiplicity. Formally, a multiset over a set
V is a map M : V 7→ N, where M(a) denotes the multiplicity (i.e., number of occurrences) of the
symbol a ∈ V in the multiset M . Note that the set V can be infinite.

For instance M = {a, b, b, b}, also written as {(a, 1), (b, 3)}, is a multiset with M(a) = 1 and
M(b) = 3.

For multisets M and M ′ over V , we say that M is included in M ′ (M ⊆ M ′) if M(a) ≤ M ′(a)
for all a ∈ V . Every multiset includes the empty multiset, defined as M where M(a) = 0 for all
a ∈ V .

The sum of multisets M and M ′ over V is written as the multiset (M + M ′), defined by (M +

3

M ′)(a) = M(a) + M ′(a) for all a ∈ V . The difference between M and M ′ is written as (M −M ′)
and defined by (M −M ′)(a) = max{0,M(a)−M ′(a)} for all a ∈ V . We also say that (M + M ′)
is obtained by adding M to M ′ (or vice versa) while (M −M ′) is obtained by removing M ′ from M .

For example, given the multisetsM = {a, b, b, b} andM ′ = {b, b}, we can say thatM ′ is included
in M , that (M +M ′) = {a, b, b, b, b, b} and that (M −M ′) = {a, b}.

The support of a multiset M is defined as the set supp(M) = {a ∈ V |M(a) > 0}. A multiset
with finite support is usually presented as a set of pairs (x,M(x)), for x ∈ supp(M).

The cardinality of a multiset M is denoted by card(M) and it indicates the number of objects in
the multiset. It is defined in the following way. card(M) is infinite if M has infinite support. If M
has finite support then card(M) =

∑
ai∈supp(M)M(ai), i.e., all the occurrences of the elements in the

support are counted.
We denote by M(V) the set of all possible multisets over V and by Mk(V) the set of all multisets

over V having cardinality k.
For the case that the alphabet V is finite we can use a compact string notation to denote multisets:

if M = {(a1,M(a1)), (a2,M(a2)), . . . , (an,M(an))} then the string w = a
M(a1)
1 a

M(a2)
2 · · · aM(an)

n

(and all its permutations) precisely identify the symbols in M and their multiplicities. Hence, given a
string w ∈ V ∗, we can say that it identifies the multiset {(a, |w|a) | a ∈ V }. For instance, the string
bab represents the multiset {b, a, b} = {(a, 1), (b, 2)} which has cardinality 3. The empty multiset is
represented by the empty string, λ.

3 Colonies of Synchronizing Agents
In this section we recall the definitions of colonies of synchronizing agents and of some related con-
cepts as introduced in [5].
A Colony of Synchronizing Agents (a CSA) of degree m is a construct π = (A, T, C,R).
• A is a finite alphabet of symbols (its elements are called objects). T ⊆ A is the set of terminal
objects.
• An agent over A is a multiset over the alphabet A (an agent can be represented by a string w ∈ A∗,
since A is finite). C is the configuration of π and is a multiset of agents, with card(C) = m. 2

• R is a finite set of rules over A. We have internal rules of type u 7→ v, with u ∈ A+ and v ∈ A∗,
and synchronization rules of the type 〈u, v〉 7→ 〈u′, v′〉 with u, v ∈ A+ and u′, v′ ∈ A∗.

We denote by Π the class of all colonies of synchronizing agents.
An occurrence γ of an internal rule r : u 7→ v can be applied to an agent w by taking a multiset u

from w (hence, u ⊆ w) and assigning it to γ (i.e., assigning the occurrences of the objects in u to γ).
The application of an occurrence of rule r to the agent w consists of removing from w the multiset u
and then adding the multiset v to the resulting multiset.

An occurrence γ of a synchronization rule r : 〈u, v〉 7→ 〈u′, v′〉 can be applied to the pair of agents
w and w′ by: (i) taking from w a multiset u (hence, u ⊆ w) and assigning it to γ; (ii) taking from

2Formally, C is a multiset of degree m over the set of all possible agents over A. Hence, C ∈Mm(M(A)).

4

w′ a multiset v (hence, v ⊆ w′) and assigning it to γ. The application of an occurrence of rule r to
the agents w and w′ consists of: (i) removing the multiset u from w and then adding the multiset u′

to the resulting multiset; (ii) removing the multiset v from w′ and then adding the multiset v′ to the
resulting multiset.

We assume the existence of a global clock which marks the passage of units of time for all agents
present in the colony.

The configuration of the CSA, π, consists of the agents present in the colony at a given time. A
single asynchronous transition (in short, asyn-transition) 3 of π modifies the configuration C of π.
The modification is done in exactly one time unit and is obtained by applying the rules in the set R to
the agents present in C in an asynchronous way. This means that, for each agent w and each pair of
agents w′ and w′′ present in C, the occurrences of the objects of w,w′ and w′′ are either assigned to
occurrences of the rules, with the occurrences of the objects and the occurrences of the rules chosen
in a non-deterministic way, or left unassigned. A single occurrence of an object may only be assigned
to a single occurrence of a rule. In other words, in an asyn-transition any number of occurrences of
rules (zero, one, or more) can be applied to the agents in the configuration C.

An asyn-transition applied to π = (A, T, C,R) produces a new CSA π′ = (A, T, C ′, R). We
indicate that π′ derives from π as the result of an asyn-transition by π 7→ π′, and we call π′ a future
state of π.

A sequence (possibly infinite) e = 〈π0, π1, · · · , πi, πi+1, · · · 〉 of CSAs such that πj 7→ πj+1 for
all j ≥ 0, is called an asyn-evolution of π0. An asyn-evolution e of π0 is said to be halting if it
halts, that is if it is finite and the configuration of the last CSA of e is a halting configuration, (i.e.,
a configuration containing only agents for which no occurrences of rules from R can be applied). In
this case the last CSA of the sequence is called halted CSA.

An asyn-evolution of a CSA π0 is called complete if it is either halting or infinite. Let Easyn(π0)
be the set of all asyn-complete evolutions of π0. Given an arbitrary asyn-complete evolution of π0,
e = 〈π0, π1, · · · , πi, πi+1 · · · 〉 ∈ Easyn(π0), a j-suffix evolution of e, defined for some j ≥ 0 and
denoted by ej , is the sequence4 ej = 〈πj, πj+1, · · · 〉.

An asyn-evolution of π0 that is halting is called an asyn-computation of π0. The result/output of
an asyn-computation of π0, 〈π0, π1, · · · , πh〉 is the set of vectors of natural numbers associated with
the agents present in the configuration of the halting CSA πh. Precisely, there is one vector, for each
agent w, which describes the multiplicities of terminal objects present in w. More formally, the result
of an asyn-computation of π0, 〈π0, π1, · · · πh〉 with πh = (A, T, Ch, R), is the set of vectors of natural
numbers {PsT (w) | w is an agent present in Ch}.

Because of the non-determinism in applying the rules, several possible asyn-computations of π0

may exist. Taking the union of all the results for all possible asyn-computations of π0, we get the set
of vectors generated by π0, denoted by PsasynT (π0).

We may also consider the total number of objects comprising the agent (the agent’s magnitude),
without considering the internal composition. In this case the result of an asyn-computation of π0,

3We specify asyn-transitions to distinguish them from the synchronous maximal parallel transitions often adopted in
models coming from P systems and cellular automata.

4Observe that ej is an asyn-complete evolution of πj .

5

(a) Internal rule r1 applied to C (b) Synchronization rule r2 applied to C

Figure 1: Alternative application of rules r1 and r2 to configuration C from Example 3.1.

〈π0, · · · πh〉 is the set of the lengths of the agents present in the configuration of πh. More formally,
in this case the result of an asyn-computation of π0, 〈π0, · · · πh〉 with πh = (A, T, Ch, R), is the set of
numbers {|w| | w is an agent present in Ch}. Again, taking the union of all the results for all possible
asyn-computations of π0, we get the set of numbers generated by π0, denoted Nasyn(π0).

Example 3.1 A CSA π with degree 3 is defined in the following way.
π = (A, T, C,R) withA = {a, b, c}, T = {a},C = {(abcba, 1), (abbcc, 1), (bab, 1)}= {abcba, abbcc, bab}.
The rules R = {r1 : abca 7→ ba, r2 : 〈abc, cc〉 7→ 〈aa, cb〉}.
The application of an occurrence of internal rule r1 to the agent abcba in the configuration C

is shown diagrammatically in Figure 1(a). The CSA obtained as a result of this asyn-transition is
π′ = (A, T, C ′, R) with C ′ = {(bab, 1), (abbcc, 1), (bab, 1)} = {bab, abbcc, bab}.

The application of an occurrence of the synchronization rule r2 to the pair of agents abcba and
abbcc in the configuration C is shown diagrammatically in Figure 1(b). The CSA obtained as a
result of this asyn-transition is π′ = (A, T, C ′, R) with C ′ = {(aaba, 1), (abbcb, 1), (bab, 1)} =
{aaba, abbcb, bab}.

A more complex example of part of an asynchronous evolution is presented in Figure 2(a): π1 =
(A, T, C,R) with C1 = {(ac, 2), (a, 1)} and rules R = {ac 7→ aa, a 7→ b, 〈aa, aa〉 7→ 〈ab, ab〉,
〈ab, d〉 7→ 〈bb, d〉, b 7→ d}. A possible evolution can be 〈π1, π2, π3, π4, π5, π6, · · · 〉, where πi =
(A, T, Ci, R) withC2 = {(aa, 1), (ac, 1), (b, 1)},C3 = {(aa, 1), (ac, 1), (d, 1)},C4 = {(aa, 2), (d, 1)},
C5 = {(ab, 2), (d, 1)}, C6 = {(bb, 1), (ab, 1), (d, 1)} etc.

In the next Example we show how the output/result of a CSA is obtained.

Example 3.2 Consider a CSA π = (A, T, C,R) with A = {a, b, c, d, e, f}, T = {e, f}, C =
{(ab, 1), (bc, 1), (bd, 1), (a, 1)}. The rules in R are
{r1 : 〈ab, bc〉 7→ 〈eff, eff〉, r2 : 〈ab, bd〉 7→ 〈eff, eff〉}.

6

(a) Asynchronous evolutions of π1 of (b) The two possible asynchronous
Example 3.1 computations of π of Example 3.2

Figure 2: Asynchronous evolutions and computations.

There are only two possible asynchronous computations of π and these are represented diagram-
matically in Figure 2(b).

We have that PsasynT (π) = {(1, 2), 0}.
The first asyn-computation has a halting configuration with the agent (in two copies) eff whose

associated Parikh vector (with respect to T) is (1, 2) and the agents bd and a, whose associated Parikh
vectors (with respect to T) are null vectors 0 (these agents do not contain any terminal object from
T). Then the result of this asyn-computation is the set of vectors {(1, 2)} ∪ {(1, 2)} ∪ {0} ∪ {0} =
{(1, 2), 0} with each vector describing the multiplicities of the terminal objects in the agents in the
halting configuration.

The second halting asyn-computation has a halting configuration with the agent (in two copies)
eff whose associated Parikh vector (with respect to T) is (1, 2) and the agents bc and a, whose
associated Parikh vectors (with respect to T) are null vectors. Then, also in this case, the result of the
asyn-computation is the set of vectors {(1, 2), 0}.

Taking the union of the results for the (two) possible asyn-computations of π we get PsasynT (π) =
{(1, 2), 0} ∪ {(1, 2), 0} = {(1, 2), 0}.

We can also collect the result in terms of magnitude (size) of the agents, thus collecting Nasyn(π).
In this case we obtain Nasyn(π) = {3, 2, 1}. In fact, both asyn-computations halts with agents of size

7

3, 2 and 1 (counting their objects). Then for both asyn-computations the result is the set of numbers
{3, 3, 2, 1} = {3, 2, 1} with each number being the magnitude of an agent in the halting configuration.

Taking the union of the results for the (two) possible asyn-computations of π we obtainNasyn(π) =
{3, 2, 1} ∪ {3, 2, 1} = {3, 2, 1}.

4 Dynamic properties of CSAs
In this Section we investigate dynamic properties of CSAs and we define the notion of robustness.
This notion will allow us to characterize the notions of species of colonies and mutants for species
that are inspired by evolutionary biology.

4.1 A specification language for properties of colonies
In this subsection we introduce a language that allows us to formally specify properties of CSAs used
to define robustness conditions. The language developed is a version of computational tree logic
(CTL temporal logic). Temporal logics are the most used logics in model-checking analysis: efficient
algorithms and tools having already been developed for them, e.g. NuSMV [21]. They are devised
with operators for expressing and quantifying on possible evolutions or configurations of systems. For
instance, for an arbitrary system it is possible to specify properties such as ‘for any possible evolution,
φ is fulfilled’, ‘there exists an evolution such that φ is not true’, ‘in the next state φ will be satisfied’,
‘eventually φ will be satisfied’ and ‘φ happens until ψ is satisfied’, where φ and ψ properties of the
system. An introduction to the basic notions and results of temporal logics can be found in [1, 19].

Hereafter, we show how to use these operators to formally specify and verify complex properties
of CSAs, such as ‘the agent will always eventually reach a certain configuration’, or ‘rule r is not
applicable until rule r′ is used’, etc. The specification language is constructed, starting from a given
set of properties called atomic properties, by combining them with boolean and temporal operators.
For example, if φ is a property, then its logical negation, ¬φ, is also a property which will be satisfied
by any CSA that does not have the property φ. Similarly we can consider disjunction, conjunctions
or other boolean combination of properties.

The temporal properties are more powerful, expressing properties of future states of a colony. As
the asyn-evolution of a colony is nondeterministic, the future of such a system is usually branching,
e.g., at any step of the evolution a colony can have more than one possible future. Consequently, for
expressing properties of future states it is necessary to combine quantifiers over possible evolutions
of a CSA with quantifiers over possible states of an evolution, such as in “there is an evolution e of
π where eventually φ will be satisfied”. The language LS introduced in the next definition contains
configuration formulas that will be evaluated against CSAs, and evolution formulas to be evaluated
against evolutions of CSAs.

Definition 4.1 (Syntax) Let S be a set of atomic properties. The language LS , constructed for S,
contains configuration formulas and evolution formulas which are defined, inductively, as follows:

8

• any atomic property s ∈ S is a configuration formula of LS;

• if φ, ψ are configuration formulas of LS , then ¬φ and φ ∧ ψ are configuration formulas of LS;

• if φ is an evolution formula of LS then Eφ is a configuration formula of LS;

• if φ, ψ are configuration formulas of LS then φUψ is an evolution formulas of LS .

These atomic operators can be combined in order to derive more complex operators.

1. ⊥ = φ ∧ (¬φ) 2. > = ¬⊥ 3. φ ∨ ψ = ¬((¬φ) ∧ (¬ψ))
4. φ→ ψ = (¬φ) ∨ ψ 5. Xφ = ⊥Uφ 6. Aφ = ¬(E¬φ)
7. Fφ = >Uφ 8. Gφ = ¬(F¬φ)

The meanings of the operators are the following ones.
The boolean operators ∨ (or),→ (implies), > (true) and ⊥ (false) have the meaning from classic

propositional logic, as our language is an extension of propositional logic.
The operator E, in the formula Eφ (where φ is an evolution formula), is the existential quantifier

over the possible evolutions of a colony. Thus, Eφ is read “there exists an evolution of the analyzed
colony that has the property φ”. The (derived) operator A is the universal quantifier over evolutions,
defined as the dual of E. Used together with an evolution formula φ, A defines the configuration
formula Aφ that characterizes a CSA π when every possible evolution of π has the property φ.

Two configuration formulas φ, ψ can be combined by mean of U (Until) operator generating the
evolution formula φUψ, read “φ until ψ”. An evolution of a colony π has the property φUψ if a
future state of π, during this evolution, has the property ψ while all its previous states satisfy φ.

The formula Xφ, where φ is a configuration formula, is an evolution formula satisfied by an
evolution of a colony π when φ is satisfied at the next state in this evolution. Thus, Xφ is read “at the
next state φ is satisfied”.

The evolution formula Fφ characterizes an evolution e of a CSA π if there is a future state π′ of
π in this evolution, such that π′ has the property φ. For this reason Fφ is read “finally (eventually)
φ”. G is the dual of F , and Gφ, read “globally φ” is a property of an evolution e of π when all the
elements of e have the property φ.

Combining A,E quantifiers with evolution formulas, we obtain complex configuration formulas.
For instance the configuration formula EφUψ (“exists an evolution where φ until ψ”) characterizes
the CSA π iff there exists at least one evolution e of π such that, during this evolution, the colony will
eventually reach a state which satisfies ψ while all the previous states satisfy ψ.

We now formalize all the intuitions about the expressiveness of these operators. We start by
introducing the notion of model, which is used for defining the satisfiability relation that associates a
property φ (expressed by a configuration formula in LS) to a CSA π.

Definition 4.2 (Models) A model over S is a pairM = 〈M, i〉 where M ⊆ Π is a set of CSAs such
that if π ∈ M and π 7→+ π′, then π′ ∈ M , and i : M → P(S) is the interpretation function that
associates to each colony from M a set of atomic properties.

9

The reason for which we introduce models is that, in some real applications we might be interested
in studying the properties of a predefined set of colonies. The closure conditions imposed to M with
respect to the transitive closure of 7→ guarantees that once a CSA is present in the chosen model, all
its possible evolution are present too. As consequence, ifM = 〈M, i〉 is a model and π ∈ M , then
all the CSAs present in an arbitrary complete asyn-evolution e ∈ Easyn(π) are also in M , and this is
denoted by the short notation e >M.

The next definition introduces the satisfiability relation that defines when a property (expressed in
LS) is satisfied by a colony in a given model.

Definition 4.3 (Semantics) The satisfiability relation forLS against a modelM = 〈M, i〉 is defined,
for π ∈M and for e >M, inductively by:
M, π |= s, for some s ∈ S, iff π ∈ i(s).
M, π |= ¬φ iffM, π 6|= φ.
M, π |= φ ∧ ψ iffM, π |= φ andM, π |= ψ.
M, π |= Eφ iff there exists e ∈ Easynπ such thatM, e |= φ.
M, e |= φUψ for e = 〈π0, π1, . . . πk, . . . 〉, iff there exists i ≥ 0 such thatM, πi |= ψ and for all

j ≤ iM, πj |= φ.

Consequently, the semantics of the derived formulas are the following.
M, π |= φ ∨ ψ iffM, π |= φ orM, π |= ψ.
M, π |= φ→ ψ iffM, π |= φ impliesM, π |= ψ.
M, π |= > always.
M, π |= ⊥ never.
M, e |= Xφ for e = 〈π0, π1, . . . πk, . . . 〉, iffM, π1 |= φ.
M, π |= Aφ iff for any e ∈ Easyn

π we haveM, e |= φ.
M, e |= Fφ for e = 〈π0, π1, . . . πk, . . . 〉, iff there exists i ≥ 0 such thatM, ei |= φ.
M, e |= Gφ for e = 〈π0, π1, . . . πk, . . . 〉, iff for any i ≥ 0 we haveM, ei |= φ.
We now introduce some concepts from model theory that will be useful in defining the robustness

and the related concepts.

Definition 4.4 (Validity and satisfiability) A configuration formula φ (evolution formula φ) from
LS is valid, denoted by |= φ, iff for every modelM = 〈M, i〉 and any π ∈ M (any e > M , resp.)
we haveM, π |= φ (M, e |= φ, resp.). A configuration formula φ (evolution formula φ) is satisfiable
iff there exist a model M = 〈M, i〉 and a colony π ∈ M (an evolution e > M , resp.) such that
M, π |= φ (M, e |= φ, resp.).

A configuration formula φ (evolution formula φ) from LS is valid in the model M = 〈M, i〉,
denoted by |=M φ, iff for every π ∈ M (for every e > M , resp.) we haveM, π |= φ (M, e |= φ,
resp.). A configuration formula φ (evolution formula φ) is satisfiable in the model M = 〈M, i〉 iff
there exists a colony π ∈M (an evolution e > M , resp.) such thatM, π |= φ (M, e |= φ, resp.).

The concept of satisfiability characterizes a property that is consistent, i.e., it is not trivially false,
in the sense that there exists at least a colony satisfying such a property. On the other hand, validity

10

stays for universally true, i.e., any colony satisfy the property. Both concepts can be made “local” to
the model. Thus satisfiability in a model characterizes a property for which there exists at least one
colony in that model that has the property. Consequently, not any consistent property is a satisfiability
property with respect to a given model. In the same way, validity with respect to a model can be
stated about a property only if all the colonies in the model have this property. In this way, the valid
properties in a model can be used to characterize the colonies included in the model and thus to
differentiate them from the other colonies.

A model-checking problem is defined as the problem to decide, for an arbitrary modelM = 〈M, i〉
over S, an arbitrary colony π ∈ M (or an arbitrary evolution e > M), and an arbitrary property
φ ∈ LS , whether or not M, π |= φ (M, e |= φ, respectively). Informally this means to decide
whether or not the colony π satisfies the property φ in the modelM (if the evolution e satisfies the
property φ inM, respectively).

Theorem 4.1 (Decidability) For a finite set of atomic properties S, the satisfiability, validity and
model-checking problems for LS against the semantics defined on CSAs are decidable.

Proof The result derives from the fact that CTL logic is decidable (see, e.g., [19, 1]) for a finite
set of atomic propositions. 2

The previous theorem does not take in account the complexity issues related to the construction
of the modelM, to the membership problems inM, or to the costs of checking satisfiability for an
atomic property s ∈ S. Theorem 4.1 states that, ifM is given (in a descriptive way), and if we assume
that satisfiability of atomic properties is decidable, than validity, satisfiability and model-checking
problems are also decidable. In our case, as CSAs are given in a grammar-like form, additional
complexity issues might rise, and in the next sections we will underline some of these problems.

5 Robustness
We are now ready to define and to investigate robustness of properties of CSAs against perturbations
or modifications of some of the features of the colonies. We generalize the concept of robustness
introduced in [5]. We are interested in studying the relationship between a given class of properties
and the structure of a colony having these properties. In particular, we want to characterize when
a given class of properties Φ is preserved under some structural modification of the colonies, such
as removing the ability to act of some agents (i.e., cells) or replacing them with different agents, or
removing/modifying some of the evolution rules (i.e., intra or intercellular actions).

In an abstract way, we assume a class S of properties, the atomic properties, that generate, by log-
ical constructs, the properties to be tested for invariance against modifications of CSAs. Robustness is
defined for a given modelM = 〈M, i〉 over S (the interpretation function i associates to a colony the
set of atomic properties that it satisfies), against some modifications of the colonies in M . In [5] the
modifications analyzed were the elimination of one or more agents from the configuration of a colony,
and the elimination of some evolution rules. In this paper we propose a more general approach. For

11

this reason, we introduce a refinement relation on the model, that is a relation on M . This relation de-
fines the modifications against which the robustness of some properties will be defined. For instance,
we can define the refinement relation by deleting/modifying some agents, or by deleting/modifying
some of the production rules. Each of these refinements relations defines a specific robustness.

Definition 5.1 (Robustness) Let S be a set of atomic properties, Φ ⊆ LS , M = 〈M, i〉 a model
over S, andR ⊆M ×M a relation on M called refinement.
M is robust for Φ against the refinement relationR if for any φ ∈ Φ and for any π, π′ ∈M such that
(π, π′) ∈ R,M, π |= φ iffM, π′ |= φ.
A modelM is globally robust againstR if it is robust for LS againstR.

Notice that the global robustness ensures the invariability against refinements for any definable
temporal property.

We propose some characterization results for robustness.

Proposition 5.1 For an arbitrary modelM = 〈M, i〉 over S, an arbitrary refinement relation R ⊆
M ×M , and an arbitrary set of properties Φ ⊆ LS , the following assertions are equivalent.

1. M is robust for Φ againstR.

2. For any φ ∈ Φ and for any (π, π′) ∈ R,M, π 6|= φ iffM, π′ 6|= φ.

3. For any φ ∈ Φ and for any (π, π′) ∈ R, ifM, π |= φ, thenM, π′ |= φ and ifM, π 6|= φ, then
M, π′ 6|= φ.

Proof (1 =⇒ 2) Suppose thatM is robust for Φ againstR, that (π, π′) ∈ R, and for some φ ∈ Φ,
M, π 6|= φ. We have to prove thatM, π′ 6|= φ. Suppose thatM, π′ |= φ. As (π, π′) ∈ R and asM is
robust againstR, we deriveM, π |= φ that is in contradiction with the first hypothesis. Consequently
we cannot have M, π′ |= φ, i.e., M, π′ 6|= φ. Similarly can be proved that if M, π′ 6|= φ, then
M, π 6|= φ that completes this part of the proof.

(2 =⇒ 3) Suppose that for any φ ∈ Φ and for any (π, π′) ∈ R, M, π 6|= φ iff M, π′ 6|= φ.
From here we derive that ifM, π 6|= φ, thenM, π′ 6|= φ, so second part of (3) is proved. We prove
now that ifM, π |= φ, then M, π′ |= φ. Suppose that M, π |= φ and that M, π′ 6|= φ. But from
M, π′ 6|= φ we derive, using (2), M, π 6|= φ, which contradicts our hypothesis. Hence, M, π |= φ
impliesM, π′ |= φ.

(3 =⇒ 1) Suppose that for any φ ∈ Φ and for any (π, π′) ∈ R, ifM, π |= φ, thenM, π′ |= φ and
ifM, π 6|= φ, thenM, π′ 6|= φ. We have to prove thatM, π |= φ iffM, π′ |= φ. From the hypothesis
(3) we have that ifM, π |= φ, thenM, π′ |= φ. We have to prove that ifM, π′ |= φ, thenM, π |= φ.
If we suppose that this is not true, i.e., that M, π′ |= φ and M, π 6|= φ, we derive, using (3), that
M, π′ 6|= φ - contradiction. 2

Proposition 5.1 underlines a difference with respect to our previous work, [5], where robustness
was defined only by the one-way implication “if π has the property φ, then any refinement of it, π′,

12

has the property φ”. This was rather incomplete as, intuitively, robustness for a property has to be
sensitive to negation. The robustness introduced in this paper is taking into account all the possible
logical combination of the considered properties. For instance ifM is robust for φ and for ψ against
the refinement R, thenM is robust also for φ ∧ ψ or for ¬φ. Playing with negation is less intuitive,
but, indeed robustness for φ is equivalent with robustness for ¬φ as robustness means that “π and
π′ either have both the property φ, or neither of them have the property φ”. The following results
summarize this intuition.

Definition 5.2 (Boolean closure) Let S be a set of atomic properties and Φ ⊆ LS . The boolean
closure of Φ, denoted by Φ, is the smallest set of formulas such that Φ ⊆ Φ and if φ, ψ ∈ Φ, then
¬φ, φ ∧ ψ ∈ Φ.

Proposition 5.2 A model M = 〈M, i〉 is robust for Φ against R iff M is robust for Φ against R,
where Φ is the boolean closure of Φ.

Proof IfM is robust for Φ againstR, thenM is robust for Φ againstR, as Φ ⊆ Φ. We prove the
reverse implication. Let φ, ψ ∈ Φ and let π, π′ ∈ M be two arbitrary colonies such that (π, π′) ∈ R.
AsM is robust for Φ againstR, we have thatM, π |= φ iffM, π′ |= φ andM, π |= ψ iffM, π′ |= ψ.
Then, by the defined semantics, we also haveM, π |= ¬φ iffM, π′ |= ¬φ andM, π |= φ ∧ ψ iff
M, π′ |= φ ∧ ψ. Since Φ is the boolean closure of Φ, then for any ρ ∈ Φ we have M, π |= ρ iff
M, π′ |= ρ. 2

The next theorem states that a model is robust for all its “universal truths” against any possible
refinement.

Proposition 5.3 Let M = 〈M, i〉 be a model over S. M is robust for the class of formulas in LS
that are validities ofM, against any definable refinement.

Proof A validity ofM is a formula φ such that for any π ∈ M we haveM, π |= φ. Hence, if
R ⊆M ×M is a refinement and (π, π′) ∈ R, thenM, π |= φ andM, π′ |= φ. Hence,M, π |= φ iff
M, π′ |= φ. 2

From the previous two propositions we can derive a corollary that somehow describes the class of
validities as a “propagation mechanism” for the class of robust properties.

Corollary 5.1 (Propagation) If a modelM = 〈M, i〉 over S is robust for φ against a refinement R,
and if |=M φ→ ψ (or |= φ→ ψ), thenM is robust for ψ againstR.

Proof We prove that for an arbitrary pair of colonies (π, π′) ∈ R we haveM, π |= ψ iffM, π′ |=
ψ. From |=M φ → ψ, as well as from |= φ → ψ, we deriveM, π |= φ → ψ andM, π′ |= φ → ψ,
which implies that M, π |= φ → ψ iff M, π′ |= φ → ψ. As M is robust for φ, we also have
M, π |= φ iffM, π′ |= φ. Combining these results we derive thatM, π |= ψ iffM, π′ |= ψ. 2

The next definition exploits the previous propositions to introduce formally the core of a set of
properties. In this way, we can generalize the notion of core result (introduced in [5]).

13

Definition 5.3 A core of a set of properties Φ ⊆ LS is a set Ψ ⊆ Φ such that Φ = Ψ and for any
Θ (Ψ, Θ (Ψ.

Note that the core of a set of properties is not necessary unique.
The next theorem confirms the intuition that a core of a set of properties is indeed a minimal sub-

class (with respect to inclusion) that has to be checked for robustness in order to infer the robustness
for the entire class of properties. Consequently, checking robustness for a set of properties can be as
efficient as checking robustness for the smallest core.

Theorem 5.4 LetM = 〈M, i〉 be a model over S, Φ ⊆ LS a set of properties and Ψ ⊆ Φ a core of
Φ.M is robust for Φ against the refinementR iffM is robust for Ψ againstR.

Proof The result follows from Definition 5.3 and Proposition 5.2. 2

6 Robust properties: Case studies
This section is dedicated to the analysis of some specific cases of robustness properties of CSAs. In
particular, we analyze the case of agent-restriction (where the refinement is defined by removing some
agents of the colony), and the case of rule-restriction (where the refinement is based on removing rules
of the colony).

The case of agent-restriction is interesting as it formalizes the overall behavior of the colony for
the case in which some of the agents cease to work. Therefore, using the presented definitions, a
property is robust against agent-restriction of a colony only if is a property that still characterizes the
colony after some agents are eliminated.

On the other hand, we also investigate the case of rule-restriction that can be used to represent
possible “mutations” of the rules used by a colony. In this respect, following the presented definition,
a property is robust against rule-restriction if it characterizes the colony and its possible “mutants”.

Eventually, we will take advantage of the use of robustness to formally define the concept of
species of CSA.

6.1 Agent-Restriction
Let π = (A, T, C,R) be an arbitrary CSA. We say that π′ is an agent-restriction of π if π′ =
(A, T, C ′, R) with C ′ ⊆ C. This means that π′ is a CSA where some of the agents originally present
in π no longer “work”, i.e., as though they are absent from the colony.

We use Definition 5.1 to define the notion of robustness against agent-restriction for properties
such as “part of the result produced by a CSA belongs to a given core set S from PsREG”.

For doing that, we introduce the modelM = 〈M, i〉, where M is the smallest set of CSAs that
contains the colonies of interest, and which is closed under asyn-evolutions; i : M → P(S) is the

14

interpretation function defined by i(π) = PsasynT (π) ∩ S if π is a halted CSA, and i(π) = ∅ else. All
these can be written, in terms of satisfiability relation for π ∈M and s ∈ S, as
M, π |= s iff π is halted and s ∈ PsasynT (π).
We also define the refinement relation R ⊆ M ×M by (π, π′) ∈ R iff π′ is an agent-restriction

of π.
Then the robustness for the property “part of the result produced by a CSA belongs to a given set

S from PsREG” against agent-restriction, can be formulated as the robustness ofM for Φ against
R, where

Φ = {EF (s ∧ AX⊥) | s ∈ S}.

Indeed,M, π |= EF (s ∧ AX⊥) for some s ∈ S iff there exists an evolution e ∈ Easyn(π) such that
M, e |= F (s ∧ AX⊥), iff e = 〈π0 = π, π1, · · · πi, · · · 〉 and there exists j ≥ 0 such thatM, πj |=
(s ∧ AX⊥), i.e., M, πj |= AX⊥ and M, πj |= s. However, M, πj |= AX⊥ means that for any
evolution e′ = 〈πj = π′0, π

′
1 . . . 〉 we haveM, π′1 |= ⊥, which is not possible. Concluding, we have

thatM, πj |= AX⊥ specifies the fact that πj is a halted CSA. Note also thatM, πj |= s is is true iff
s ∈ PsasynT (π). Summing up,M, π |= EF (s ∧ AX⊥) expresses the fact that there exists a halting
evolution of π where the halting configuration satisfies s.

Consequently, if π′ is an agent-restriction of π, then the fact that they will eventually produce the
same vectors from S can be expressed as:

for any s ∈ S,M, π |= EF (s∧AX⊥) iffM, π′ |= EF (s∧AX⊥), or equivalently,M is robust
for Φ against agent-restriction.

The problem of checking whether or not “part of the result produced by a CSA belongs to a given
set S from PsREG” is called S-reachability problem ofM against agent-restriction.

Example 6.1 Consider π as given in Example 3.2. Suppose we fix the core set {(1, 2)}. π is robust
when an occurrence of agent bc is deleted from its initial configuration. In fact, if we consider π′ =
(A, T, C ′, R) with C ′ = {(ab, 1), (bd, 1), (a, 1)} we have that PsasynT (π′) = {(1, 2), (0, 0)}, which
still contains the defined core set. The single computation of π′ is represented in Figure 3(a).

On the other hand, π is not robust when an occurrence of ab is deleted from its initial configu-
ration. In fact, if we consider π′′ = (A, T, C ′′, R) with C ′′ = {(bd, 1), (bc, 1), (a, 1)} we have that
PsasynT (π′′) = {0}, which does not contain the core set. The single computation of π′′, i.e., the one
halting in the initial configuration (no rule can be applied), is represented in Figure 3(b).

It is interesting to investigate whether or not the robustness in the case of S-reachability is de-
cidable and, if possible, to evaluate the computational cost. Hereafter we present an undecidability
result.

Theorem 6.1 For an arbitrary set S of vectors from PsREGT and an arbitrary modelM over S,
the S-reachability problem ofM against agent-restriction is undecidable.

Proof Basically, we have to prove that checking whether or notM is robust for Φ = {EF (s ∧
AX⊥) | s ∈ S} against agent-restriction is undecidable. Checking for robustness of M for Φ =

15

(a) π′: agent bc removed from C (b) π′′: agent ab removed from C

Figure 3: The robustness and lack of robustness of (a) π′ and (b) π′′ from Example 6.1 when agents
bc and ab, respectively, are removed from C.

{EF (s ∧ AX⊥) | s ∈ S} against agent-restriction is equivalent, using the semantics introduced in
Definition 4.3, with checking for PsasynT (π) ∩ S = PsasynT (π′) ∩ S for any (π, π′) ∈ R. But this is
undecidable, because it is undecidable to check for PsasynT (π)∩S ⊆ PsasynT (π′), as already shown in
[5]. 2

Informally, Theorem 6.1 says that there is no algorithm to solve S-reachability problem for an
arbitrary model against agent-restriction. This result depends critically on the fact that the core set
corresponds to a specific internal contents that the agents must have in the halting configurations.

In fact, when we consider weaker core sets the problem becomes decidable. For instance, suppose
we only are interested in the magnitude of the agents in the halting configurations. This means that
we collect, for a CSA π, the set of numbers Nasyn(π). In this case the robustness problem can be
rephrased in the following manner.

Consider an arbitrary set N from NREG. We introduce, as before, the model M = 〈M, i〉
over N , where M is the smallest set of CSAs that contains the colonies we are interested in, and
which is closed under asyn-evolutions; i : M → P(N) is the interpretation function defined by
i(π) = N ∩Nasyn(π) if π is a halted CSA, and i(π) = ∅, else. All these can be alternatively written
in terms of satisfiability relation, for π ∈M and n ∈ N , as
M, π |= n iff π is halted and n ∈ Nasyn(π).
We also define the refinement relation R ⊆ M ×M by (π, π′) ∈ R iff π′ is an agent-restriction

of π.
Then, the robustness for the property “the magnitude of the result produced by a CSA belongs to a

given set N of numbers from NREG” against agent-restriction, can be formulated as the robustness
ofM for Φ againstR, where

Ψ = {EF (n ∧ AX⊥) | n ∈ N}.

16

One can verify that, as shown in the case of the set Φ, Ψ specifies the intended property. We call
this problem N -magnitude problem ofM against agent-restriction.

Theorem 6.2 For an arbitrary set N from NREG and an arbitrary model M over N , the N -
magnitude problem ofM against agent-restriction is decidable.

Proof Basically, we have to prove that checking whether or notM is robust for Ψ = {EF (n ∧
AX⊥) | n ∈ N} against agent-restriction is decidable. But checking for robustness of M for
Ψ = {EF (n ∧ AX⊥) | n ∈ N} against agent-restriction is equivalent with checking whether or
not Nasyn(π) ∩ S = Nasyn(π′) ∩ S for arbitrary (π, π′) ∈ R. In [5] it is shown that Nasyn(π) ∩
S ⊆ Nasyn(π′) is decidable and, using similar arguments we can derive the decidability of checking
whether or not Nasyn(π)∩S = Nasyn(π′)∩S is true. Hence, the N -magnitude problem is decidable.

2

Informally, the above result says that it is possible to check whether or not a CSA is robust against
arbitrary deletion of agents, subject to the core result being defined in terms of magnitudes of agents.

6.2 Rule-restrictions, Rule-modifications and Mutants
Similarly with the case of agent-restriction, we analyze the case where in the refinement relation the
second colony is obtained from the first colony by modifying or removing some of the rules. This
type of refinement can be seen as describing a “mutant” of a CSA. As in the previous sections, we
will stress on some decidability results obtained for particular class of properties.

Consider a CSA π = (A, T, C,R). The CSA π′ = (A, T, C,R′) is a mutant5 of π. Obviously
a colony has several mutants. A refinement relation that associates a colony and one of its possible
mutants is called rule-modification. A special case of mutants are the rule-restriction mutants, which
are mutants obtained by only removing some of the rules (possibly all) of a colony. This represents
the case when some of the rules do not work, as if, once again, they are absent from the colony.

The refinement relation defined on a model by the rule-modification/restriction introduces spe-
cific cases of robustness. As done in the previous subsection, we can study whether or not a moled
M is robust for properties such as “part of the result produced by a CSA belongs to a given set
S from PsREG” (S-reachability problem of M) or “the magnitude of the agents in the halting
configurations belong to a given subset N of NREG” (N -magnitude problem ofM), against rule-
modification/restrictions. As before, the S-reachability problem of M is equivalent with checking
for the robustness of M for Φ = {EF (s ∧ AX⊥) | s ∈ S}, while the N -magnitude problem is
equivalent with checking for the robustness ofM for Ψ = {EF (n ∧ AX⊥) | n ∈ N}.

Theorem 6.3 For an arbitrary set S from PsREGT and an arbitrary model M over S, the S-
reachability problem ofM is undecidable against rule-restriction.

5Note that there is no relation predefined between the set of rules R of π and the set of rules R′ of its mutant π′. A
particular case that is studied in this subsection is the case of rule-restriction where R′ ⊂ R

17

Proof In [5] it has been shown that it is undecidable whether or not, for an arbitrary CSA, π, with
arbitrary terminal alphabet T , arbitrary rule-restriction π′ of π, and arbitrary set S from PsREGT , we
have PsasynT (π)∩S ⊆ PsasynT (π′). Moreover, to check whether or not PsasynT (π)∩S = PsasynT (π′)∩S
is equivalent, using the semantics of LS as introduced in Definition 4.3, with checking the robustness
of M for Φ = {EF (s ∧ AX⊥) | s ∈ S} against rule-restriction. Thus, the result of the theorem
follows from the fact that PsasynT (π) ∩ S ⊆ PsasynT (π′) is undecidable. 2

The previous result says that given an arbitrary set S ⊆ PsREGT , and an arbitrary relation that
associates to a colony one of its mutants, we cannot provide an algorithm to decide the S-reachability
problem. The result can be generalized to the case of refinements defined by rule-modifications.

Corollary 6.1 For an arbitrary set S from PsREGT and an arbitrary modelM over S, S-reachability
problem ofM is undecidable against rule-modification.

Proof The result derives from Theorem 6.3 due to the fact that rule-restriction is a particular case
of rule-modification and the S-reachability problem is already undecidable for rule-restriction. 2

However, using the same ideas as those in Theorem 6.2 we can get the following result.

Theorem 6.4 For an arbitrary set N from NREG and an arbitrary model M over N , the N -
magnitude problem ofM against rule-restriction is decidable.

Proof It is known to be decidable whether or not, for an arbitrary CSA, π, arbitrary rule restriction
π′ of π and arbitrary set S from NREG, N(π) ∩ S ⊆ N(π′), [5]. This implies the decidability of
whether or not N(π) ∩ S = N(π′) ∩ S. However, N(π) ∩ S = N(π′) ∩ S iff M is robust for
Ψ = {EF (n ∧ AX⊥) | n ∈ N} against rule-restriction. Then the theorem follows. 2

In other words, there exists an algorithm to solve theN -magnitude problem of a modelM against
rule-restriction.

6.3 Global Robustness, Bisimulations and Species
Usually, in biology, a species is defined by a set of characteristic properties that are shared by all
the components of a species and only by them. Moreover, once an individual has been defined to be
part of a species, such an individual will always belong to that species. Inspired by this description,
we introduce in this section the concept of species of CSAs, and we use for this the notion of global
robustness defined for the characteristic properties of a species.

We first recall the definition of global robustness.

Definition 6.1 (Global Robustness) Let S be a set of atomic properties,M = 〈M, i〉 a model over
S, andR ⊆M ×M a refinement on M .M is globally robust againstR if it is robust for LS against
R.

18

Given a model M over a set S of atomic properties and a refinement R on M, we say that R
defines species onM whenM is globally robust againstR.

Notice that global robustness, once established against a couple (π, π′) of CSAs, it is preserved
in the future, i.e., the future states of π are robust against (some) future states of π′ and reverse. This
observation give hints on the fact that global robustness can be described as a bisimulation.

Definition 6.2 (Bisimulation on CSAs) Consider a modelM = 〈M, i〉 over a set S of atomic prop-
erties. The S-bisimulation relation onM is the smallest equivalence relation∼S⊆M ×M such that
if π1 ∼S π2, then

• i(π1) = i(π2);

• if π1 7→ π′1, then there exists π′2 ∈M such that π2 7→ π′2 and π′1 ∼S π′2;

• if π2 7→ π′2, then there exists π′1 ∈M such that π1 7→ π′1 and π′1 ∼S π′2;

Now we can prove that global robustness for LS can be characterized as the S-bisimulation on
M. In this way, we provide a “dynamic” description of robustness.

Theorem 6.5 (Characterization of Global Robustness) Consider a set S of atomic properties, a
modelM = 〈M, i〉 over S and a refinement R onM. M is globally robust against R iff R is the
S-bisimulation relation onM.

Proof We have to prove the following assertions.

1. The relation ∼⊆M ×M defined by π ∼ π′ iff for any φ ∈ LS ,M, π |= φ iffM, π′ |= φ is an
S-bisimulation.

2. If ∼⊆ M ×M is an S-bisimulation and π ∼ π′ then for any φ ∈ LS we haveM, π |= φ iff
M, π′ |= φ.

(1) Suppose that π ∼ π′.
We prove that i(π) = i(π′). We have s ∈ i(π) iffM, π |= s, iffM, π′ |= s, iff s ∈ i(π′). Hence,

s ∈ i(π) iff s ∈ i(π′), i.e., i(π) = i(π′).
We prove that if π 7→ π1, then π′ 7→ π′1 and π1 ∼ π′1. If π 7→ π1, thenM, π |= EXT , that implies

M, π′ |= EXT , i.e., there exists π′1 such that π 7→ π′1.
For proving that π1 ∼ π′1, consider all π′1 such that π′ 7→ π′1 (the successors of π′). As π′ has a

finite set of rules, we have a finite number of successors of π′ (we assumed that there are k successors).
We have to prove that one of these, π′k, has the property that for any φ ∈ LS we haveM, π1 |= φ iff
M, π′k |= φ.

Let π′1 be a successor of π′, i.e., π′ 7→ π′1. And suppose that there exists a formula φ1 ∈ LS
such that M, π1 |= φ1 and M, π′1 6|= φ1. From M, π1 |= φ1, we derive that M, π |= EXφ1, that
is equivalent withM, π′ |= EXφ1. Consequently, there exists a successor π′2 of π′ that satisfies φ1.
Obviously, π′1 6= π′2.

19

Suppose that there exists a formula φ2 ∈ LS such that M, π1 |= φ2 and M, π′2 6|= φ2. Then
M, π |= EX(φ1 ∧ φ2), implying thatM, π′ |= EX(φ1 ∧ φ2), i.e., there exists one successor π′3 of π′

that satisfies φ1 and φ2. Consequently, π3 6∈ {π′1, π′2}.
This argument can be repeated for maximum k steps such that, eventually, we find a successor π′k

of π′ with the property that for any φ ∈ LS ,M, π1 |= φ iffM, π′k |= φ.
Similarly, can be proved that if π′ 7→ π′1, then π 7→ π1 such that π1 ∼ π′1.
It is trivial to verify that ∼ is, indeed, the equivalence relation that defines the S-bisimulation.

(2) We prove, by induction on the complexity of a formula in LS (the complexity of a formula is given
in the standard way, by the number of logical operators that appear in the syntax of the formula), that
if π ∼ π′, then for any φ ∈ LS we haveM, π |= φ iffM, π′ |= φ.

(i) The case φ = s ∈ S.M, π |= s iff s ∈ i(π). Because∼ is a bisimulation and π ∼ π′, we have
i(π) = i(π′). Hence, s ∈ i(π′), which is equivalent withM, π′ |= s.

(ii) The case φ = ¬ψ. M, π |= ¬ψ iffM, π 6|= ψ. Suppose thatM, π′ |= ψ. Then, the inductive
hypothesis givesM, π |= ψ that is not possible. Consequently,M, π′ 6|= ψ, i.e.,M, π′ |= ¬ψ.

(iii) The case φ = φ1 ∧ φ2.M, π |= φ1 ∧ φ2 iffM, π |= φ1 andM, π |= φ2. Using the inductive
hypothesis we deriveM, π′ |= φ1 andM, π′ |= φ2, that implyM, π′ |= φ1 ∧ φ2.

(iv) The case φ = Eφ1Uφ2. M, π |= Eφ1Uφ2 iff there exists e = 〈π, π1, · · · , πk, · · · 〉 ∈
Easyn(π) such that there exists i ≥ 1 withM, πi |= φ2 and for all j ≤ i,M, πj |= φ1. Because ∼ is a
bisimulation and π ∼ π′, there exists e′ = 〈π′, π′1, · · · , π′k, · · · 〉 ∈ Easyn(π′) such that for each l ≥ 1,
πl ∼ π′l. Further, using the inductive hypothesis, we obtain that there exists i ≥ 1 withM, π′i |= φ2

and for all j ≤ i,M, π′j |= φ1, i.e.M, π′ |= Eφ1Uφ2. 2

Corollary 6.2 Let S be a set of atomic properties andM a model over S. A refinement R defines
species onM iffR is an S-bisimulation.

Proof Direct consequence of Theorem 6.5. 2

This result shows that checking whether or not a refinement defines species over a model is equiv-
alent with checking for bisimulation conditions.

Corollary 6.3 Let S be a set of atomic properties andM a model over S. If a refinement R defines
species onM, thenR is an equivalence relation.

Proof Consequence of the fact that bisimulation is an equivalence. 2

The fact that R defines species on M only if R is the S-bisimulation relation, implies that the
species are actually equivalence classes with respect to relation R. This allows us to propose the
following definition of species.

Definition 6.3 (Species) Let S be a set of atomic properties, M = 〈M, i〉 a model over S and
R ⊆M ×M a refinement that defines species onM. A species is an equivalence class defined byR
over M .

20

7 Conclusions and Prospects
In this paper we have analyzed the robustness of Colonies of Synchronizing Agents, a computability
model introduced in [6, 5]. We have defined a way of encoding properties of CSAs by means of
a temporal logic. Robustness of a model is introduced for temporal formulas and analyzed against
refinement relations between colonies. Examples of refinements are deleting/modifying agents of a
colony or deleting/modifying rules of a colony. By modifying rules of the colonies we obtain mutants
of the colony. A special case of robustness is the global robustness, which is preserved by the asyn-
evolutions of the colonies. The global robustness have been used to introduce the concept of species
of CSAs, and it has been proved to be equivalent with the notion of bisimulation on CSAs.

Several enhancements to this approach are already in prospect, especially in the extension of the
investigated model. Primary among these is the addition of space to the colony. Precisely, each agent
will have a triple of co-ordinates corresponding to its position in Euclidean space and the rules will be
similarly endowed with the ability to modify an agent’s position. A further extension of this idea is to
give each agent an orientation, i.e. a rotation relative to the spatial axes, which may also be modified
by the application of rules.

The idea is to make the application of a rule dependent on either an absolute position (thus directly
simulating a chemical gradient) or on the relative distance between agents in the case of synchroniza-
tion. Moreover, in the case of the application of a synchronization rule, the ensuing translation and
rotation of the two agents may be defined relative to each other. In this way it will be possible to
simulate reaction-diffusion effects, movement and local environments.

Some additional biologically-inspired primitives are also planned, such as agent division (one
agent becomes two) and agent death (deletion from the colony). These primitives can simulate,
for example, the effects of mitosis, apoptosis and morphogenesis. In combination with the existing
primitives, it will be possible (and is planned) to model, for example, many aspects of the complex
multi-scale behaviour of the immune system.

With the addition of the features just mentioned, it will also be interesting to extend the investiga-
tion and proofs given above to identify further classes of CSAs demonstrating robustness and having
decidable properties. It is hoped that this approach will then provide insight in challenging areas of
systems and evolutionary biology.

References
[1] M. Ben-Ari, A. Pnueli, Z. Manna, The Temporal Logic of Branching Time, Acta Inf., 20, 1983.

[2] F. Bernardini, R. Brijder, G. Rozenberg, C. Zandron, Multiset-Based Self-Assembly of Graphs,
Fundamenta Informaticae, 75, 2007.

[3] F. Bernardini, M. Gheorghe, Population P Systems, Journal of Universal Computer Science, 10,
5, 2004.

21

[4] C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa eds., Multiset Processing: Mathematical, Com-
puter Science, and Molecular Computing Point of View, LNCS 2235, Springer-Verlag, 2001.

[5] M. Cavaliere, R. Mardare, S. Sedwards, A Multiset-Based Model of Synchronizing Agents: Com-
putability and Robustness, Theoretical Computer Science, To Appear.

[6] M. Cavaliere, R. Mardare, S. Sedwards, Colonies of Synchronizing Agents, Technical Report
CoSBi 11/2007. Available at www.cosbi.eu/Rpty Tech.php.

[7] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-Verlag, Berlin,
1989.

[8] A. Ilachinski, Cellular Automata - A Discrete Universe, World Scientific Publishing, 2001.

[9] R. Freund, Gh. Păun, O.H. Ibarra, H.-C.Yen, Matrix Languages, Register Machines, Vector Addi-
tion Systems, Proc. Third Brainstorming on Membrane Computing, Sevilla, 2005, RGCN Report
01/2005. Available at www.gcn.us.es

[10] S. Greibach, Remarks on blind and partially blind one-way multicounter machines. Theoretical
Computer Science, 7, 3, 1978.

[11] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley, 1979.

[12] J. Kelemen, A. Kelemenová, Gh. Păun, Preview of P Colonies - A Biochemically Inspired Com-
puting Model, Proceedings of Workshop on Artificial Chemistry, ALIFE9, Boston, USA, 2004.

[13] J. Kelemen, Gh. Păun, Robustness of Decentralized Knowledge Systems: A Grammar-Theoretic
Point of View, Journal Expt. Theor. Artificial Intelligence, 12, 2000.

[14] C. Martı́n-Vide, Gh. Păun, J. Pazos, A. Rodrǵuez-Patón, Tissue P Systems, Theoretical Com-
puter Science, 296, 2, 2003.

[15] J. Mata, M. Cohn, Cellular Automata-Based Modelling Program: Synthetic Immune Systems,
Immunol Rev, 207, 2007.

[16] Gh. Păun, Membrane Computing - An Introduction, Springer-Verlag, Berlin, 2002.

[17] Gh. Păun, Introduction to Membrane Computing, in Applications of Membrane Computing, G.
Ciobanu, Gh. Păun, M.J. Pérez-Jiménez, eds., Springer-Verlag, Berlin, 2006.

[18] G. Rozenberg, A. Salomaa, eds., in Handbook of Formal Languages, Springer-Verlag, Berlin,
1997.

[19] J. Van Benthem, Temporal logic, in Handbook of Logic in Artificial Intelligence and Logic
Programming: Epistemic and Temporal reasoning, Oxford University Press, 1995.

22

[20] S. Wolfram, A New Kind of Science, Wolfram Media, 2002.

[21] http://nusmv.irst.itc.it/

[22] http://psystems.disco.unimib.it

23

