
ar
X

iv
:c

s/
04

10
05

7v
2

 [
cs

.C
C

]
 2

7
Ju

n
20

06

Generalized Counters and Reversal Complexity

M. V. Panduranga Rao

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012
India.

pandurang@csa.iisc.ernet.in

Abstract. We generalize the definition of a counter and counter reversal
complexity and investigate the power of generalized deterministic counter
automata in terms of language recognition.

1 Introduction

Deterministic counter (DC) automata are essentially deterministic finite au-
tomata (DFA) enhanced with counters. A (conventional) counter is a device
capable of storing an integer on which three operations can be performed by
the finite control: increment, decrement (or do nothing) and test-for-zero. The
input lies on a tape demarcated by end-markers “¢” and “$”, and is read by a
read-only head.

Two counters can simulate a tape, and therefore a two-counter machine is
as powerful as a Turing machine. However, imposing restrictions on resources
yields proper subclasses of recursive languages. A deterministic counter machine
might be restricted in terms of different resources like (a) the number of counters
it is equipped with, (b) if the head can move both ways on the input tape (if
so, how many such head reversals are allowed) and (c) the number of times the
counter(s) is allowed to switch between increment and decrement modes (called
counter reversal complexity). Moreover, restrictions may also be imposed on the
types of actions permitted. Blind counter machines have no information available
on the contents and sign of the counters. Partially blind counter machines are
also blind; in addition, the contents of the counter must always be non-negative.
The machine crashes on being driven below zero [4,10].

In this paper we generalize the notion of a counter and investigate the result-
ing increase in power. Generalizations based on group theory have been proposed
and investigated by various authors [2,9,8]. Instead of a simple counter as de-
scribed above, the finite automaton is equipped with a group on which it can
perform the group operation. The counter can store any element of the group.
However, the exact element of the group currently contained in the counter is
not available to the finite control: it can only check whether it is the identity
element or not. The power of various groups (abelian, non-abelian, free etc.) has
been studied extensively in the above mentioned papers.

http://arxiv.org/abs/cs/0410057v2

The main contribution of this paper is threefold. First, we propose a gener-
alized algebraic structure for counters that includes a notion of “negativeness”
(in section 2, along with some preliminaries). In the process, we introduce a
generalized notion of counter reversal complexity. Secondly, we examine specific
instances1 of the generalized counter and show that they recognize non-trivial
languages with low counter and head reversal complexity and overall time com-
plexity. Duris and Galil [3] showed a witness language that cannot be recognized
by any 2-way deterministic one-counter machine, while it can be recognized by
a 2-way deterministic pushdown automata (2DPDA) with one stack. We show
that a powerful instance of the generalized counter given in this paper can rec-
ognize this language with small counter as well as head reversal complexity (in
section 3). And finally, we establish a hierarchy among the corresponding 1-way
versions in terms of language recognition in section 4. Section 5 concludes the
paper.

2 Related Previous Work and Definition of a Generalized

Counter

We first give a formal definition of 2-way one-counter deterministic (2DC) au-
tomata.

Definition 1. A 2DC machine M is a 5-tuple (Q,Σ, q0, δ, F) where Q is a
finite set of states, q0 a special start state, F ⊆ Q the set of accepting states and
Σ is a finite input alphabet. δ is a mapping from Q × (Σ

⋃

{¢, $}) × {0, 1} to
Q× {−1, 0,+1}× {−1, 0,+1}. �

The transition function takes three input parameters: the current state, the
current symbol being read, and the status of the counter (say, 0 if the counter
reads zero and 1 if non-zero), and does the following: changes the state, moves
the head by −1, 0 or +1 position on the tape, and changes the counter value by
−1, 0 or +1.

If the machine is blind (2BDC), the transition function does not get any
information from the counter. Transitions depend only on the current state and
the symbol being scanned. The machine accepts by final state and empty counter.
A partially blind machine (2PBDC) crashes if the counter goes negative at any
stage in the computation.

Many results regarding the power of various models of counter machines
exist [4,5,6,7,10,11,12,13].

We now give a formal definition of our abstract generalized counter.

Definition 2. Consider a group (U, ◦). Let G = {A1, . . . , Ak} ⊂ U be a finite
counter generating set and Ginv = {X ∈ U | X−1 ∈ G} such that G∗

⋂

G∗

inv = φ

1 In this paper, we consider machines that have only one counter. Further, unless
otherwise stated, the machines will be partially blind and accept by final state and
empty store.

where “*” denotes the closure operation and φ is the null set. Let F− ⊂ U be such
that F−

⋂

G∗ = φ, G∗

inv ⊆ F− and membership in F− is decidable in constant
time2. Let F+ = U\F−.

We call the tuple (U,G, F−) a generalized counter. Then, at any step t,
Ωt ∈ F+ serves as the non-negativity condition.

Define the operation increment(i) on Ωt−1 to be XiΩt−1 = Ωt and decrement(i)
on Ωt−1 to be X−1

i Ωt−1 = Ωt for Xi ∈ G. In general, XiXj 6= XjXi, for
Xi, Xj ∈ G

⋃

Ginv, i 6= j. We uniformly identify an incoming X at step t as a
left operand. �

Observe that in this setting, conventional counter is CZ = (Z, {1},Z−). We
now give the formal definition of a deterministic automaton with a generalized
counter.

Definition 3. A 2DC((U,G, F−)) machine M is a 6-tuple (Q,Σ, q0, δ, F, (U,G, F−))
where Q is a finite set of states, q0 a special start state, F ⊆ Q the set of accept-
ing states and Σ is a finite input alphabet. δ is a mapping from Q×(Σ

⋃

{¢, $})×
{0, 1} to Q× {−1, 0,+1}× (G

⋃

Ginv). �

In case of partially blind counter machines, the transition function behaves
as follows: ∀q ∈ Q and σ ∈ Σ

⋃

{¢, $}, (a) δ(q, σ,Ω1) = δ(q, σ,Ω2) for all
Ω1, Ω2 ∈ F+ (blindness) and (b) δ(q, σ,Ω) = φ if Ω ∈ F− (non-negativity).

Note that F− is not relevant in 2DC machines that are allowed to store neg-
ative elements. It is important, however, for specifying partially blind machines.
We include it in all models, for uniformity of presentation. We call a 2-way
machine with a generalized counter (U,G, F−) a 2DC((U,G, F−)) machine and
the class of languages recognized by such machines, L(2DC((U,G, F−))). Similar
conventions will be followed for PBDC machines also.

3 Applications

We now discuss two powerful instances of the abstract counter defined in the
previous section.

3.1 A Counter Over Reals

Consider the counter CR(k) = (R, {ρ1, . . . , ρk},R
−), where R is the additive

group of real numbers, ρ1, . . . , ρk are square roots of distinct prime numbers for
some constant k and R− is the set of negative reals. The non-negativity condition
is therefore, Ωt ∈ R+

⋃

0.
It is easy to see that this counter is at least as powerful as the conventional

counter. We now prove that machines with a CR(k) counter can do more. The

2 Checking if an element in the additive (multiplicative) group of real numbers is ≥ 0
(≥ 1) is an example of such a membership test. The counter is endowed with the
capability of performing such tests.

language Labc = anbncn is context sensitive and is therefore not recognizable
by any 1DPDA. We can show that there exists an algorithm to recognize the
general family of such languages using a CR(k) counter.

Theorem 1. There exists a 1PBDC(CR(k−1)) machine that recognizes Lgen =

{an0a
l1n
1 . . . a

lk−1n

k−1
| n ∈ N}, where a0, a1, . . . , ak−1 are symbols of a finite alphabet

and li ∈ N, with one counter reversal and no head reversal.

Proof. We begin by noting the following.

Definition 4. A set of n real numbers α1, . . . , αn is said to be rationally de-
pendent if the relation c1α1 + . . . + cnαn = 0 holds for some rational numbers
c1, . . . , cn, not all zero. A set that is not rationally dependent is said to be ratio-
nally independent. �

Fact 1 Any set of square roots of distinct prime numbers is rationally indepen-
dent.

We use square roots ρ1, . . . , ρk−1 of k−1 distinct primes. The 1PBDC(CR(k))
machine works as follows. That the input x is indeed of the form a∗0a

∗

1 . . . a
∗

k−1
is

verified by the DFA as the input is scanned. On scanning an a0, the counter is
incremented by (l1ρ1+ . . .+ lk−1ρk−1). Hence, after having scanned all the a0’s,
the counter holds (l1ρ1 + . . .+ lk−1ρk−1)n0, for some n0 ∈ Z+.

As the head moves further, on scanning an ai, 1 ≤ i ≤ k − 1, the counter is
decremented by ρi.

The counter holds 0 if and only if

(l1ρ1 + . . .+ lk−1ρk−1)n0 = n1ρ1 + . . .+ nk−1ρk−1

where n1, . . . , nk−1 are the number of a1, . . . , ak−1 symbols respectively in the
input string. Since ρ1, . . . , ρk−1 are rationally independent by fact 1, the above
equation is true if and only if l1n0 = n1, . . . , lk−1n0 = nk−1. In other words, the
counter reads 0 if and only if the input is in the language. �

In the next section, we will show limitations of the real counter in spite of
having the facility of arbitrary precision.

3.2 A Matrix Counter

The operands of a general matrix counter are finite dimensional invertible ma-
trices, the operator being (left) matrix multiplication. The matrix counter is
defined by (GL(m,R), {A1, . . . , Ak}, F−) where GL(m,R) is the group of m-
dimensional invertible matrices over R, and F− = {X ∈ GL(m,R) | |X | < 1}
where |.| is defined as:

|X | =

√

∑

i

∑

j

|Xij |2.

Therefore, the non-negativity condition is
√

∑

i

∑

j |(Ωt)i,j |2 ≥ 1 at any time t

during the computation.

Theorem 2. L(2PBDC(CR(k))) ⊆ L(2PBDC(CM(k))).

Proof. Given any 2PBDC(CR(k)) machine M we construct a 2PBDC(CM(k))
machine M ′ that recognizes the same language as M as follows.

Suppose M is described by the tuple (Q,Σ, q0, F, δ, CR(k)). Then, M ′ is
(Q,Σ, q0, F, δ

′, CM(k)). The matrix counter and δ′ are defined as follows. Sup-
pose the generating set of CR(k) is {ρ1, . . . , ρk}, consisting of square roots of
distinct primes as mentioned earlier.

Then the CM(k) counter is
(

GL(1,Z), {[p1], . . . , [pk]}, F−

)

where pi, 1 ≤ i ≤
k, are the primes ρ2 and F− = {[x] | |[x]| < 1}. If δ(q, σ, β) = (q′, D, ρi or − ρi),
then δ′(q, σ, β) = (q′, D, [pi] or [pi]

−1), where q, q′ ∈ Q, σ ∈ Σ
⋃

{¢, $}, β ∈
{0, 1},D ∈ {−1, 0,+1}, 0 ≤ i ≤ k. Thus, if the real counter holds (na,1−nb,1)ρ1+

. . .+(na,k−nb,k)ρk, the matrix counter holds [p
na,1−nb,1

1 p
na,2−nb,2

2 . . . p
na,k−nb,k

k].
Therefore, the matrix counter contains [1] if the real counter contains 0. Further,
as long as the content of the real counter is greater than 0, the non-negativity
condition is maintained for the matrix counter also, because of the way in which
the primes have been chosen. �

Duris and Galil [3] showed that no 2DC can recognize
Lpat = {x0# . . .#xk# | k ≥ 1, xj ∈ {0, 1}∗ for 0 ≤ j ≤ k, for some 1 ≤ i ≤

k, xi = x0}, where a substring between two successive #’s is called a block. In
this section we show a matrix counter machine that recognizes Lpat.

Theorem 3. There exists a 2DC(CM(k)) machine that recognizes Lpat. The
number of reversals O(m) where m is the number of blocks in the input.

Proof. We use a theorem of Ambainis and Watrous:

Theorem 4 (Ambainis and Watrous [1]). Let

A =

4 3 0
−3 4 0
0 0 5

 and B =

4 0 3
0 5 0
−3 0 4

and u be a 3× 1 vector with components u[1], u[2] and u[3].
Let u = Y −1

1 . . . Y −1
n Xn . . . X1(1 0 0)T where Xj, Yj ∈ {A,B}. Then, u[2]2+

u[3]2 = 0 if and only if Xj = Yj for 1 ≤ j ≤ n. �

Observe that

A−1 =
1

25

4 −3 0
3 4 0
0 0 5

 and B−1 =
1

25

4 0 −3
0 5 0
3 0 4

Let the counter be (GL(3,R), {A,B}, F−) where F− is defined as before.
In this proof, “scanning” a block (in whichever direction) is also meant to

involve a non-trivial operation (i.e. other than I, the identity matrix) on the
counter for every symbol in the block. We give a 2DC(CM(k)) algorithm that

recognizes Lpat. For the sake of clarity in presenting the algorithm, we first define
two “subroutines”:

subroutine increment subroutine decrement

If a “0” is being scanned If a “0” is being scanned
Ωt+1 := AΩt. Ωt+1 := A−1Ωt.

If a “1” is being scanned If a “1” is being scanned

Ωt+1 := BΩt. Ωt+1 := B−1Ωt.

where Ωt is the content of the counter at step t. The algorithm is as follows:

Initially Ω0=I.
Until the first “#” is encountered,

scan right from ¢ performing increment.

For all subsequent blocks do:

scan from the right “#” to that on the left, performing decrement.

if Ωt = I accept.
scan from the left “#” to that on the right, performing increment.

move to the next block.

reject.

Let Cx stand for the product of the matrices taken from G applied while
scanning a block x in the forward direction. Similarly, let C−1

x be the product
of the matrices taken from Ginv, applied while scanning a block x in the reverse
order.

The 2DC(CM(k)) machine M recognizes Lpat as follows. Initially the counter
contains the identity matrix I. After scanning x0, let the counter contain Cx0

.
For every subsequent block i, it checks if C−1

xi
Cx0

= I. This will be the case if
and only if x0 = xi, by theorem 4. If C−1

xi
Cx0

6= I, the matrices applied in the
current block are undone while scanning to the # on the right end of the block
so that the counter contains Cxi

C−1
xi

Cx0
= Cx0

just before entering the next
block.

Since there are only two reversals of the counter per block, the reversal com-
plexity of the algorithm is O(m) where m is the number of blocks in the input
string. �

4 One-Way Versions

In this section we discuss some results regarding 1-way PBDC automata.

Let us first note some useful facts. One can view the counter as a container
into which marked coins are added or taken out. Incrementing or decrementing
the counter by Xi corresponds to putting a coin marked Xi into the counter or
taking it out respectively, satisfying the non-negativity condition at any given
time. Therefore,

Observation 1 A counter can hold only countably many values. �

The following is an immediate consequence.

Lemma 1. Let M = (Q,Σ, q0, δ, F, CR(k)) and Ωx denote the state of the
counter after having read a string x ∈ Σ∗. Then, if there exists a positive real
α such that Ωx ≤ α for all x ∈ Σ∗, then L(M) ∈ L(REG), the class of regular
languages.

Proof. The above observation implies that in such a machine, the counter can
contain only finitely many values. Therefore the “state space” of the counter can
be absorbed into the finite control itself, resulting in a DFA. �

Definition 5. If at any step, the 1PBDC(C) machine is in state q ∈ Q, the
head is reading the first symbol of the x and the counter contains Ω, then the
triple (q, x,Ω) describes its instantaneous configuration. �

If a 1PBDC(C) configuration (q, x, c) yields (q′, ǫ, c′), where ǫ denotes the
empty string, after scanning x, then we write (q, x,Ω) |=x (q′, ǫ, Ω′).

We now state the main theorem of this section.

Theorem 5. L(1PBDC(CZ)) (L(1PBDC(CR(k))) (L (1PBDC(CM(k))).

Proof. (a) L(1PBDC(CZ)) (L(1PBDC(CR(k))):

The conventional counter over Z is a special case of the counter over reals.
So, L(1PBDC(CZ)) ⊆ L(1PBDC(CR(k))). Further, by theorem 1, Labc ∈ L(
1PBDC(CR(k))). Since the conventional one-way counter machine is weaker
than pushdown automata which cannot recognize Labc, it follows that Labc /∈
L(1PBDC(CZ)).

(b) L(1PBDC(CR(k))) (L(1PBDC(CM(k))):

That L(1PBDC(CR(k))) ⊆ L(1PBDC(CM(k))) follows from theorem 2. To
prove proper containment, we need an “interchange” lemma.

Lemma 2. Let CR(k) be a real counter as defined in the previous section, with
ρk as the largest element in the generating set, and let L be a language in
L(1PBDC((CR(k)). There is a constant r and two integers 1 ≤ l < m ≤ r
such that for any decomposition of an input x = v1w1v2w2 . . . vrwrvr+1 ∈ L
with Ωv1 ≥ (

∑r

i=2
|vi| +

∑r

i=1
|wi|)ρk, |wi| ≥ 1, we have that the string x′ =

v1w
′

1v2w
′

2 . . . vrw
′

rvr+1 with w′

l = wm, w′

m = wl and w′

i = wi for i /∈ {l,m}, is
also in L.

Proof. The proof proceeds on the lines of the interchange lemma in [9].

LetM = (Q,Σ, q0, δ, F, CR(k) be a 1PBDC(CR(k)) machine. Let r = |Q|2+1.
Consider a string x ∈ L(M), and a decomposition x = v1w1v2w2 . . . vrwrvr+1,
|wi| ≥ 1, such that Ωv1 ≥ (

∑r

i=2
|vi|+

∑r

i=1
|wi|)ρk. Then there exist qi, si ∈ Q,

1 ≤ i ≤ r, qf ∈ F such that

(qi−1, vi, 0) |=vi (si, ǫ, Ωi), 1 ≤ i ≤ r

(si, wi, 0) |=wi
(qi, ǫ, Ω

′

i), 1 ≤ i ≤ r

(sr, vr+1, 0) |=vr+1
(qf , ǫ, Ωr+1).

Since x ∈ L, Ω1 +Ω′

1 +Ω2 +Ω′

2 + . . .+Ωr +Ω′

r +Ωr+1 = 0. Since there are at
most |Q|2 pairs of tuples in Q×Q, and the input has a length greater than |Q|2,
by the pigeon hole principle we have (sl, ql) = (sm, qm) for some 1 ≤ l < m ≤ r.

Now consider x′ = v1w
′

1v2w
′

2 . . . vrw
′

rvr+1 with w′

l = wm, w′

m = wl and
w′

i = wi for i /∈ {l,m}. Then,

(qi−1, vi, 0) |=vi (si, ǫ, Ωi), 1 ≤ i ≤ r

(si, w
′

i, 0) |=w′

i
(qi, ǫ, Ω

′′

i), 1 ≤ i ≤ r

(sr, vr+1, 0) |=vr+1
(qf , ǫ, Ωr+1)

with Ω′′

l = Ω′

m, Ω′′

m = Ω′

l and Ω′′

i = Ω′

i for i /∈ {l,m}. So, Ω1 + Ω′′

1 + Ω2 +
Ω′′

2 + . . .+Ωr +Ω′′

r +Ωr+1 = Ω1 +Ω′

1 +Ω2 +Ω′

2 + . . .+Ωr +Ω′

r +Ωr+1 = 0.
Note that Ω1 = Ωv1 has been chosen such that the interchange still satisfies the
non-negativity condition. Therefore, x′ also belongs to L. �

Let Lpal be {x#xR | x ∈ Σ∗}, where xR is the string x reversed.

Lemma 3. Suppose M is a CR(k) counter machine recognizing Lpal. Then, for
any positive α, there exists a string v1 ∈ Σ∗ such that Ωv1 > α.

Proof. Follows from lemma 1 and the fact that Lpal is not regular. �

Lemma 4. Lpal /∈ L(1PBDC(CR(k))).

Proof. Let Lpal be recognized by a 1PBDC(CR(k)) machineM . Let r be the con-
stant from the interchange lemma. Consider x = v1w1v2w2 . . .# . . . wr−1vrwrvr+1

in Lpal, where w1 6= w2 and Ωv1 ≥ (
∑r

i=2
|vi| +

∑r

i=1
|wi|)ρk. By the previous

lemma, such a v1 exists. Note that vr+1 = vR1 , wr = wR
1 , vr = vR2 and wr−1 = wR

2 .
Then, by the interchange lemma, x′ = v1w2v2w1 . . .# . . . wR

2 v
R
2 w

R
1 v

R
1 also be-

longs to Lpal, a contradiction. �

However, a simple modification of the algorithm to recognize Lpat given in the
previous section recognizes Lpal. The tape head is now 1-way, and the counter is
queried only on reading “$”. Therefore, L(1PBDC(CR(k))) (L(1PBDC(CM(k)).
�

5 Discussion

In this paper we proposed a natural generalization of the counter. The gener-
alization helps in analyzing the performance of a counter machine in terms of
reversal complexity of the counter. We established a hierarchy of counters when
the head is restricted to move only forward. We believe that characterizing lan-
guages recognized by various types of counter machines and their comparison
with existing models are interesting problems to be addressed.

References

1. A. Ambainis and J. Watrous. Two-way finite automata with quantum and classical
states. Theor. Comput. Sci., 287(1):299–311, 2002.

2. J. Dassow and V. Mitrana. Finite automata over free generated groups. Int. Journ.
Algebra Comput., 10(6):725–737, 2000.

3. P. Duris and Z. Galil. Fooling a two way automaton or one pushdown store is
better than one counter for two way machines. Theor. Comput. Sci., 21:39–53,
1982.

4. Sheila A. Greibach. Remarks on blind and partially blind one-way multicounter
machines. Theor. Comput. Sci., 7:311–324, 1978.

5. E. M. Gurari and O. H. Ibarra. Two-way counter machines and diophantine equa-
tions. Journal of the ACM, 29(3):863–873, 1982.

6. Oscar H. Ibarra, Tao Jiang, Nicholas Q. Trân, and Hui Wang. On the equivalence
of two-way pushdown automata and counter machines over bounded languages.
Int. J. Found. Comput. Sci., 4(2):135–146, 1993.

7. Oscar H. Ibarra, Sartaj Sahni, and Chul E. Kim. Finite automata with multipli-
cation. Theor. Comput. Sci., 2(3):271–294, 1976.

8. Victor Mitrana and Ralf Stiebe. The accepting power of finite automata over
groups. In New Trends in Formal Languages, pages 39–48, 1997.

9. Victor Mitrana and Ralf Stiebe. Extended finite automata over groups. Discrete

Applied Mathematics, 108(3):287–300, 2001.
10. S. Miyano. Two-way deterministic multi-weak-counter machines. Theor. Comput.

Sci., 21(1):27–37, 1982.
11. S. Miyano. Remarks on two-way automata with weak-counters. Inf. Process. Lett.,

18(2):105–107, 1984.
12. B. Monien. Deterministic two-way one-head pushdown automata are very powerful.

Inf. Proc. Letters, 18(5):239–242, 1984.
13. H. Petersen. Two-way one-counter automata accepting bounded languages. ACM

Sigact News Archive, 25(3):102–105, 1994.

	Generalized Counters and Reversal Complexity

